The Farnesoid X-receptor Is an Essential Regulator of C

Journal of Biological Chemistry 278, 2563-2570 DOI: 10.1074/jbc.m209525200

Citation Report

#	Article	IF	CITATIONS
1	Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology, 2003, 125, 544-555.	0.6	235
2	Complementary Roles of Farnesoid X Receptor, Pregnane X Receptor, and Constitutive Androstane Receptor in Protection against Bile Acid Toxicity. Journal of Biological Chemistry, 2003, 278, 45062-45071.	1.6	272
3	Farnesoid X Receptor Regulates Bile Acid-Amino Acid Conjugation. Journal of Biological Chemistry, 2003, 278, 27703-27711.	1.6	155
4	Influence of the HDL Receptor SR-BI on Lipoprotein Metabolism and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1732-1738.	1.1	229
5	Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice. Journal of Biological Chemistry, 2003, 278, 33920-33927.	1.6	288
6	Enterohepatic Circulation of Bile Salts in Farnesoid X Receptor-deficient Mice. Journal of Biological Chemistry, 2003, 278, 41930-41937.	1.6	184
7	The Role of the High-Density Lipoprotein Receptor SR-BI in the Lipid Metabolism of Endocrine and Other Tissues. Endocrine Reviews, 2003, 24, 357-387.	8.9	378
9	The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. Journal of Lipid Research, 2004, 45, 1197-1206.	2.0	88
10	Reduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1. Human Molecular Genetics, 2004, 13, 2451-2460.	1.4	107
11	Farnesoid X receptor represses hepatic lipase gene expression. Journal of Lipid Research, 2004, 45, 2110-2115.	2.0	43
12	Peroxisome proliferator-activated receptor-Â coactivator 1Â (PGC-1Â) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes and Development, 2004, 18, 157-169.	2.7	311
13	Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. Journal of Lipid Research, 2004, 45, 1169-1196.	2.0	1,194
14	Glucose Regulates the Expression of the Farnesoid X Receptor in Liver. Diabetes, 2004, 53, 890-898.	0.3	226
15	Nuclear Receptor Signaling in the Control of Cholesterol Homeostasis. Circulation Research, 2004, 95, 660-670.	2.0	111
17	Lipid-activated nuclear receptors: from gene transcription to the control of cellular metabolism. European Journal of Lipid Science and Technology, 2004, 106, 432-450.	1.0	10
18	Function and regulation of hepatic scavenger receptor class B type I (SR-BI). International Congress Series, 2004, 1262, 527-530.	0.2	1
19	Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. Journal of Hepatology, 2004, 40, 539-551.	1.8	433
20	The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. International Journal of Biochemistry and Cell Biology, 2004, 36, 39-77.	1.2	140

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
21	Regulation of CYP3A4 by the bile acid receptor FXR. Pharmacogenetics and Genomics, 2004, 14, 635-645.	5.7	153
22	Expression of the Pregnane X Receptor in Mice Antagonizes the Cholic Acid–Mediated Changes in Plasma Lipoprotein Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2164-2169.	1.1	37
23	Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. Journal of Lipid Research, 2005, 46, 2595-2604.	2.0	145
24	Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes. American Journal of Physiology - Renal Physiology, 2005, 289, G267-G273.	1.6	37
25	Genetics of Variation in HDL Cholesterol in Humans and Mice. Circulation Research, 2005, 96, 27-42.	2.0	137
26	Role of Farnesoid X Receptor in the Enhancement of Canalicular Bile Acid Output and Excretion of Unconjugated Bile Acids: A Mechanism for Protection against Cholic Acid-Induced Liver Toxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 759-766.	1.3	29
27	HNF-4-dependent Induction of Apolipoprotein A-IV Gene Transcription by an Apical Supply of Lipid Micelles in Intestinal Cells. Journal of Biological Chemistry, 2005, 280, 5406-5413.	1.6	35
28	Regulation of Complement C3 Expression by the Bile Acid Receptor FXR. Journal of Biological Chemistry, 2005, 280, 7427-7434.	1.6	82
29	Retinoid X Receptor Heterodimers in the Metabolic Syndrome. New England Journal of Medicine, 2005, 353, 604-615.	13.9	347
30	Induction of apoptosis in breast cancer cells by apomine is mediated by caspase and p38 mitogen activated protein kinase activation. Biochemical and Biophysical Research Communications, 2005, 329, 772-779.	1.0	16
31	Statins and transcriptional regulation: The FXR connection. Biochemical and Biophysical Research Communications, 2005, 334, 601-605.	1.0	15
32	Bile acids reduce SR-BI expression in hepatocytes by a pathway involving FXR/RXR, SHP, and LRH-1. Biochemical and Biophysical Research Communications, 2005, 336, 1096-1105.	1.0	47
33	LXRS AND FXR: The Yin and Yang of Cholesterol and Fat Metabolism. Annual Review of Physiology, 2006, 68, 159-191.	5.6	536
34	Diet and Murine Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 242-249.	1.1	279
35	Cholesterol Gallstone Susceptibility Loci: A Mouse Map, Candidate Gene Evaluation, and Guide to Human LITH Genes. Gastroenterology, 2006, 131, 1943-1970.	0.6	68
36	Nuclear bile acid receptor FXR as pharmacological target: Are we there yet?. FEBS Letters, 2006, 580, 5492-5499.	1.3	74
37	Effects of FXR in foam-cell formation and atherosclerosis development. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1401-1409.	1.2	110
38	Nuclear receptors as drug targets in metabolic diseases: new approaches to therapy. Trends in Endocrinology and Metabolism, 2006, 17, 284-290.	3.1	63

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
39	Genetic predisposition of cholesterol gallstone disease. Annals of Hepatology, 2006, 5, 140-149.	0.6	11
40	Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7A1 gene. BMC Genetics, 2006, 7, 29.	2.7	32
41	FXR, a multipurpose nuclear receptor. Trends in Biochemical Sciences, 2006, 31, 572-580.	3.7	294
42	Bile Acids Decrease Hepatic Paraoxonase 1 Expression and Plasma High-Density Lipoprotein Levels Via FXR-Mediated Signaling of FGFR4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 301-306.	1.1	63
43	The Nuclear Hormone Receptor Farnesoid X Receptor (FXR) Is Activated by Androsterone. Endocrinology, 2006, 147, 4025-4033.	1.4	79
44	Fasting Induces Hyperlipidemia in Mice Overexpressing Proprotein Convertase Subtilisin Kexin Type 9: Lack of Modulation of Very-Low-Density Lipoprotein Hepatic Output by the Low-Density Lipoprotein Receptor. Endocrinology, 2006, 147, 4985-4995.	1.4	105
45	Cholesterol 7α-Hydroxylase Deficiency in Mice on an APOE*3-Leiden Background Increases Hepatic ABCA1 mRNA Expression and HDL-Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2724-2730.	1.1	8
46	FXR: a target for cholestatic syndromes?. Expert Opinion on Therapeutic Targets, 2006, 10, 409-421.	1.5	49
47	The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. Journal of Biological Chemistry, 2006, 281, 11039-11049.	1.6	463
48	The Farnesoid X Receptor Promotes Adipocyte Differentiation and Regulates Adipose Cell Function in Vivo. Molecular Pharmacology, 2006, 70, 1164-1173.	1.0	145
49	International Union of Pharmacology. LXII. The NR1H and NR1I Receptors: Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor α, Farnesoid X Receptor β, Liver X Receptor α, Liver X Receptor β, and Vitamin D Receptor. Pharmacological Reviews, 2006, 58, 742-759.	7.1	189
50	Spontaneous Development of Liver Tumors in the Absence of the Bile Acid Receptor Farnesoid X Receptor. Cancer Research, 2007, 67, 863-867.	0.4	397
51	ldentification of Novel Human High-Density Lipoprotein Receptor Up-regulators Using a Cell-Based High-Throughput Screening Assay. Journal of Biomolecular Screening, 2007, 12, 211-219.	2.6	17
53	Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Current Opinion in Lipidology, 2007, 18, 289-297.	1.2	53
54	FXR: a promising target for the metabolic syndrome?. Trends in Pharmacological Sciences, 2007, 28, 236-243.	4.0	136
55	Functional analysis on the 5′-flanking region of human FXR gene in HepG2 cells. Gene, 2007, 396, 358-368.	1.0	11
56	New perspectives for the treatment of cholestasis: Lessons from basic science applied clinically. Journal of Hepatology, 2007, 46, 365-371.	1.8	76
57	Physiological and therapeutic factors affecting cholesterol metabolism: Does a reciprocal relationship between cholesterol absorption and synthesis really exist?. Life Sciences, 2007, 80, 505-514.	2.0	96

#	Article	IF	CITATIONS
58	Targeting farnesoid X receptor for liver and metabolic disorders. Trends in Molecular Medicine, 2007, 13, 298-309.	3.5	179
60	Identification of Genes Implicated in Methapyrilene-Induced Hepatotoxicity by Comparing Differential Gene Expression in Target and Nontarget Tissue. Environmental Health Perspectives, 2007, 115, 572-578.	2.8	20
61	Bivariate genome-wide scan for metabolic phenotypes in non-diabetic Chinese individuals from the Stanford, Asia and Pacific Program of Hypertension and Insulin Resistance Family Study. Diabetologia, 2007, 50, 1631-1640.	2.9	9
62	The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology, 2008, 48, 1896-1905.	3.6	95
63	Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4339-4343.	1.0	121
64	FXR signaling in metabolic disease. FEBS Letters, 2008, 582, 10-18.	1.3	178
65	Variation of the gene encoding the nuclear bile salt receptor FXR and gallstone susceptibility in mice and humans. Journal of Hepatology, 2008, 48, 116-124.	1.8	77
67	Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clinical Science, 2008, 114, 611-624.	1.8	225
68	FXR Promotes Endothelial Cell Motility Through Coordinated Regulation of FAK and MMP-9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 562-570.	1.1	35
69	Farnesoid X receptor as a therapeutic target for dyslipidemia. Clinical Lipidology, 2009, 4, 587-594.	0.4	2
70	A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. American Journal of Physiology - Renal Physiology, 2009, 296, G543-G552.	1.6	81
71	Farnesoid X Receptor Deficiency Induces Nonalcoholic Steatohepatitis in Low-Density Lipoprotein Receptor-Knockout Mice Fed a High-Fat Diet. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 116-122.	1.3	174
72	Antiatherosclerotic effect of farnesoid X receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H272-H281.	1.5	166
73	Chapter 1 Regulation of Metabolism by Nuclear Hormone Receptors. Progress in Molecular Biology and Translational Science, 2009, 87, 1-51.	0.9	3
74	Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 469-477.	1.3	198
75	Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLRâ^'/â^' and apoEâ^'/â^' mice. Journal of Lipid Research, 2009, 50, 1090-1100.	2.0	117
76	Loss of small heterodimer partner expression in the liver protects against dyslipidemia. Journal of Lipid Research, 2009, 50, 193-203.	2.0	32
77	FXR agonist activity of conformationally constrained analogs of GW 4064. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4733-4739.	1.0	60

#	Article	IF	CITATIONS
78	Pyrrole[2,3-d]azepino compounds as agonists of the farnesoid X receptor (FXR). Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5289-5292.	1.0	23
79	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	13.1	1,309
80	Reciprocal regulation of the bile acid-activated receptor FXR and the interferon-Î ³ -STAT-1 pathway in macrophages. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 564-573.	1.8	43
81	Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends in Pharmacological Sciences, 2009, 30, 570-580.	4.0	295
82	How to modulate FXR activity to treat the Metabolic Syndrome. Drug Discovery Today Disease Mechanisms, 2009, 6, e55-e64.	0.8	9
83	Bile Acid Sequestrants for Lipid and Clucose Control. Current Diabetes Reports, 2010, 10, 70-77.	1.7	68
84	FXR an emerging therapeutic target for the treatment of atherosclerosis. Journal of Cellular and Molecular Medicine, 2010, 14, 79-92.	1.6	66
85	Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine. Hepatology, 2010, 51, 1410-1419.	3.6	173
86	Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nature Neuroscience, 2010, 13, 877-882.	7.1	86
87	Central melanocortin signaling regulates cholesterol. Nature Neuroscience, 2010, 13, 779-780.	7.1	3
88	Deciphering the nuclear bile acid receptor FXR paradigm. Nuclear Receptor Signaling, 2010, 8, nrs.08005.	1.0	226
89	Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice. Biological Chemistry, 2010, 391, 1441-9.	1.2	22
90	A Role of the Bile Salt Receptor FXR in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1519-1528.	1.1	99
91	Farnesoid X Receptor Activation Mediates Head-to-Tail Chromatin Looping in the <i>Nr0b2</i> Gene Encoding Small Heterodimer Partner. Molecular Endocrinology, 2010, 24, 1404-1412.	3.7	38
92	Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model. Diabetes, 2010, 59, 2916-2927.	0.3	149
93	Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Molecular Pharmacology, 2010, 78, 617-630.	1.0	164
94	Identification of Novel Pathways That Control Farnesoid X Receptor-mediated Hypocholesterolemia. Journal of Biological Chemistry, 2010, 285, 3035-3043.	1.6	96
95	Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice. Journal of Lipid Research, 2010, 51, 3289-3298.	2.0	42

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
96	From the metabolic syndrome to NAFLD or vice versa?. Digestive and Liver Disease, 2010, 42, 320-330.	0.4	406
97	The bile acid sensor FXR regulates insulin transcription and secretion. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 363-372.	1.8	153
98	Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Progress in Lipid Research, 2010, 49, 171-185.	5.3	121
99	Upregulation of scavenger receptor class B type I expression by activation of FXR in hepatocyte. Atherosclerosis, 2010, 213, 443-448.	0.4	37
101	Tuberatolides, Potent FXR Antagonists from the Korean Marine Tunicate <i>Botryllus tuberatus</i> . Journal of Natural Products, 2011, 74, 90-94.	1.5	55
102	Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacological Research, 2011, 63, 259-265.	3.1	83
103	Oxysterols in bile acid metabolism. Clinica Chimica Acta, 2011, 412, 2037-2045.	0.5	24
104	Farnesoid X receptor activation improves erectile dysfunction in models of metabolic syndrome and diabetes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 859-866.	1.8	17
105	Sterol Regulation of Metabolism, Homeostasis, and Development. Annual Review of Biochemistry, 2011, 80, 885-916.	5.0	122
106	Hepatic FXR: key regulator of whole-body energy metabolism. Trends in Endocrinology and Metabolism, 2011, 22, 458-466.	3.1	103
107	Mechanisms regulating hepatic SR-BI expression and their impact on HDL metabolism. Atherosclerosis, 2011, 217, 299-307.	0.4	60
108	Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepatic Medicine: Evidence and Research, 2011, 3, 29.	0.9	15
109	Bile Acid Metabolites in Serum: Intraindividual Variation and Associations with Coronary Heart Disease, Metabolic Syndrome and Diabetes Mellitus. PLoS ONE, 2011, 6, e25006.	1.1	109
110	Conformationally constrained farnesoid X receptor (FXR) agonists: Alternative replacements of the stilbene. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6154-6160.	1.0	31
111	Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2011, 11, 160-166.	1.7	201
112	Lipidâ€sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 562-587.	6.6	56
113	Conformationally constrained farnesoid X receptor (FXR) agonists: Heteroaryl replacements of the naphthalene. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1206-1213.	1.0	55
114	Interplay between cholesterol and drug metabolism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 146-160.	1.1	58

#	Article	IF	CITATIONS
115	Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 2011, 60, 1861-1871.	0.3	261
116	Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. Journal of Lipid Research, 2011, 52, 1188-1199.	2.0	13
117	Increased Activation of the Wnt/β-Catenin Pathway in Spontaneous Hepatocellular Carcinoma Observed in Farnesoid X Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 12-21.	1.3	118
118	Nutritional Regulation of Bile Acid Metabolism Is Associated with Improved Pathological Characteristics of the Metabolic Syndrome. Journal of Biological Chemistry, 2011, 286, 28382-28395.	1.6	55
119	The farnesoid X receptor -1G>T polymorphism influences the lipid response to rosuvastatin. Journal of Lipid Research, 2012, 53, 1384-1389.	2.0	17
120	Bile acid sequestrants. Current Opinion in Lipidology, 2012, 23, 43-55.	1.2	68
121	Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. Journal of Lipid Research, 2012, 53, 1723-1737.	2.0	241
122	Nuclear Receptors in Nonalcoholic Fatty Liver Disease. Journal of Lipids, 2012, 2012, 1-10.	1.9	30
123	Non-Alcoholic Fatty Liver Disease: The Bile Acid-Activated Farnesoid X Receptor as an Emerging Treatment Target. Journal of Lipids, 2012, 2012, 1-8.	1.9	88
124	NASH and atherosclerosis are two aspects of a shared disease: Central role for macrophages. Atherosclerosis, 2012, 220, 287-293.	0.4	79
125	Synthetic Farnesoid X Receptor Agonists Induce High-Density Lipoprotein-Mediated Transhepatic Cholesterol Efflux in Mice and Monkeys and Prevent Atherosclerosis in Cholesteryl Ester Transfer Protein Transgenic Low-Density Lipoprotein Receptor (â^'/â^') Mice. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 556-567.	1.3	90
126	Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. Journal of Hepatology, 2012, 57, 359-365.	1.8	38
127	An improved synthesis of 6α-ethylchenodeoxycholic acid (6ECDCA), a potent and selective agonist for the Farnesoid X Receptor (FXR). Steroids, 2012, 77, 1335-1338.	0.8	21
128	The extended TILAR approach: a novel tool for dynamic modeling of the transcription factor network regulating the adaption to in vitro cultivation of murine hepatocytes. BMC Systems Biology, 2012, 6, 147.	3.0	14
129	Tissue Specific Induction of p62/Sqstm1 by Farnesoid X Receptor. PLoS ONE, 2012, 7, e43961.	1.1	30
130	Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Reviews Molecular Cell Biology, 2012, 13, 213-224.	16.1	616
131	Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochemistry and Function, 2012, 30, 531-551.	1.4	14
132	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089

#	Article	IF	CITATIONS
133	Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver. Toxicology and Applied Pharmacology, 2013, 266, 260-266.	1.3	7
134	Diacylglycerol kinase Î, couples farnesoid X receptor-dependent bile acid signalling to Akt activation and glucose homoeostasis in hepatocytes. Biochemical Journal, 2013, 454, 267-274.	1.7	21
135	Bile acid receptors in non-alcoholic fatty liver disease. Biochemical Pharmacology, 2013, 86, 1517-1524.	2.0	111
136	Developments in understanding bile acid metabolism. Expert Review of Endocrinology and Metabolism, 2013, 8, 59-69.	1.2	3
137	Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery. Bioorganic and Medicinal Chemistry, 2013, 21, 4266-4278.	1.4	19
138	An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. European Journal of Nutrition, 2013, 52, 1523-1532.	1.8	28
139	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	1.1	110
140	New developments in selective cholesteryl ester uptake. Current Opinion in Lipidology, 2013, 24, 386-392.	1.2	34
141	Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1. Journal of Lipid Research, 2013, 54, 379-385.	2.0	9
142	Direct Effect of Chenodeoxycholic Acid on Differentiation of Mouse Embryonic Stem Cells Cultured under Feeder-Free Culture Conditions. BioMed Research International, 2013, 2013, 1-9.	0.9	5
143	Essential roles of bile acid receptors FXR and TGR5 as metabolic regulators. Animal Cells and Systems, 2014, 18, 359-364.	0.8	11
144	Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 176, 80-85.	0.5	98
145	SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells. Biochemical and Biophysical Research Communications, 2014, 443, 477-482.	1.0	28
146	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680
147	Bile acids, obesity, and the metabolic syndrome. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 573-583.	1.0	140
148	Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1765-1778.	1.8	221
149	Discovery of 6-(4-{[5-Cyclopropyl-3-(2,6-dichlorophenyl)isoxazol-4-yl]methoxy}piperidin-1-yl)-1-methyl-1 <i>H</i> -indole-3-carbo Acid: A Novel FXR Agonist for the Treatment of Dyslipidemia. Journal of Medicinal Chemistry, 2015, 58, 9768-9772.	oxylic 2.9	49
150	Amla prevents fructose-induced hepatic steatosis in ovariectomized rats: role of liver FXR and LXRα. Climacteric, 2015, 18, 299-310.	1.1	16

#	Article	IF	CITATIONS
151	The Metabolic Profile of Intrahepatic Cholestasis of Pregnancy Is Associated With Impaired Glucose Tolerance, Dyslipidemia, and Increased Fetal Growth. Diabetes Care, 2015, 38, 243-248.	4.3	98
152	Farnesoid x receptor in human metabolism and disease: the interplay between gene polymorphisms, clinical phenotypes and disease susceptibility. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 523-532.	1.5	20
153	FXR Agonists as Therapeutic Agents for Non-alcoholic Fatty Liver Disease. Current Atherosclerosis Reports, 2015, 17, 500.	2.0	96
154	MiR-22-silenced Cyclin A Expression in Colon and Liver Cancer Cells Is Regulated by Bile Acid Receptor. Journal of Biological Chemistry, 2015, 290, 6507-6515.	1.6	67
155	Effects of alfalfa saponin extract on mRNA expression of Ldlr, LXRα, and FXR in BRL cells. Journal of Zhejiang University: Science B, 2015, 16, 479-486.	1.3	6
156	Intestinal nuclear receptors in HDL cholesterol metabolism. Journal of Lipid Research, 2015, 56, 1262-1270.	2.0	15
157	Maltitol Prevents the Progression of Fatty Liver Degeneration in Mice Fed High-Fat Diets. Journal of Medicinal Food, 2015, 18, 1081-1087.	0.8	5
158	Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmaceutica Sinica B, 2015, 5, 135-144.	5.7	264
159	Regulation of HDL Genes: Transcriptional, Posttranscriptional, and Posttranslational. Handbook of Experimental Pharmacology, 2015, 224, 113-179.	0.9	22
160	Nuclear bile acid signaling through the farnesoid X receptor. Cellular and Molecular Life Sciences, 2015, 72, 1631-1650.	2.4	92
161	Transcription factor networks regulating hepatic fatty acid metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 2-8.	1.2	56
162	Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver International, 2015, 35, 1133-1144.	1.9	104
163	Tissue-specific actions of FXR in metabolism and cancer. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 30-39.	1.2	90
164	Lipidome in colorectal cancer. Oncotarget, 2016, 7, 33429-33439.	0.8	61
165	Bile Acid Nuclear Receptor Farnesoid X Receptor: Therapeutic Target for Nonalcoholic Fatty Liver Disease. Endocrinology and Metabolism, 2016, 31, 500.	1.3	39
166	The expanding role of the bile acid receptor farnesoid X in the intestine and its potential clinical implications. Acta Chirurgica Belgica, 2016, 116, 156-163.	0.2	3
167	Fatty liver diseases, bile acids, and FXR. Acta Pharmaceutica Sinica B, 2016, 6, 409-412.	5.7	91
168	Treatment of Non-Alcoholic Fatty Liver Disease. Digestive Diseases, 2016, 34, 27-31.	0.8	22

#	Article	IF	CITATIONS
169	Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Archives of Pharmacal Research, 2016, 39, 1062-1074.	2.7	17
170	Role of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver. Acta Pharmaceutica Sinica B, 2016, 6, 453-459.	5.7	14
171	Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metabolism, 2016, 24, 41-50.	7.2	1,734
172	The Role of Cholesterol in the Pathogenesis of NASH. Trends in Endocrinology and Metabolism, 2016, 27, 84-95.	3.1	347
173	Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids, 2016, 51, 519-536.	0.7	82
174	Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1600-1605.	3.3	61
175	SAR studies on FXR modulators led to the discovery of the first combined FXR antagonistic/TGR5 agonistic compound. Future Medicinal Chemistry, 2016, 8, 133-148.	1.1	10
176	Mechanisms of Action of Surgical Interventions on Weight-Related Diseases: the Potential Role of Bile Acids. Obesity Surgery, 2017, 27, 826-836.	1.1	31
177	Role of gut microbiota in atherosclerosis. Nature Reviews Cardiology, 2017, 14, 79-87.	6.1	428
178	Farnesoid X Receptor and Liver X Receptor Ligands Initiate Formation of Coated Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1482-1493.	1.1	17
179	Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease. Digestive Diseases, 2017, 35, 282-287.	0.8	32
180	Microbial Factors in Inflammatory Diseases and Cancers. Advances in Experimental Medicine and Biology, 2017, 1024, 153-174.	0.8	20
181	Nonalcoholic fatty liver disease, association with cardiovascular disease and treatment (II). The treatment of nonalcoholic fatty liver disease. ClÃnica E Investigación En Arteriosclerosis (English) Tj ETQq0 0 0 r	gBJ.1Over	loæk 10 Tf 50
182	Altenusin, a Nonsteroidal Microbial Metabolite, Attenuates Nonalcoholic Fatty Liver Disease by Activating the Farnesoid X Receptor. Molecular Pharmacology, 2017, 92, 425-436.	1.0	31
183	Phytosterols Synergize With Endotoxin to Augment Inflammation in Kupffer Cells but Alone Have Limited Direct Effect on Hepatocytes. Journal of Parenteral and Enteral Nutrition, 2017, 42, 014860711772275.	1.3	14
184	The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease. Scientific Reports, 2017, 7, 17193.	1.6	50
185	Molecular features of bile salt hydrolases and relevance in human health. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2981-2991.	1.1	60
186	Enfermedad del hÃgado graso no alcohólico, asociación con la enfermedad cardiovascular y tratamiento (II). Tratamiento de la enfermedad del hÃgado graso no alcohólico. ClÃnica E Investigación En Arteriosclerosis, 2017, 29, 185-200.	0.4	6

#	Article	IF	CITATIONS
187	Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions. Diabetology and Metabolic Syndrome, 2017, 9, 102.	1.2	51
188	A rare missense variant in NR1H4 associates with lower cholesterol levels. Communications Biology, 2018, 1, 14.	2.0	6
189	Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific Reports, 2018, 8, 1253.	1.6	73
190	Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1–7) upregulation. Biomedicine and Pharmacotherapy, 2018, 97, 1694-1700.	2.5	31
191	Bile Acids and the Gut Microbiome as Potential Targets for NAFLD Treatment. Journal of Pediatric Gastroenterology and Nutrition, 2018, 67, 3-5.	0.9	12
192	FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. Journal of Lipid Research, 2018, 59, 982-993.	2.0	47
193	New therapeutic perspectives in non-alcoholic steatohepatitis. GastroenterologÃa Y HepatologÃa (English Edition), 2018, 41, 128-142.	0.0	0
194	Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1308-1318.	1.8	67
195	Farnesoid X receptor: A "homeostat―for hepatic nutrient metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 45-59.	1.8	73
196	Nuevas perspectivas terapéuticas en la esteatohepatitis no alcohólica. GastroenterologÃa Y HepatologÃa, 2018, 41, 128-142.	0.2	10
197	Role of Bile Acids in Metabolic Control. Trends in Endocrinology and Metabolism, 2018, 29, 31-41.	3.1	299
198	Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor. Journal of Computer-Aided Molecular Design, 2018, 32, 103-111.	1.3	12
199	Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut, 2018, 67, 1881-1891.	6.1	438
200	Farnesoid X receptor antagonist exacerbates dyslipidemia in mice. Pharmacological Reports, 2018, 70, 172-177.	1.5	6
201	Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Laboratory Animal Research, 2018, 34, 140.	1.1	37
202	Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Frontiers in Pharmacology, 2018, 9, 1382.	1.6	78
203	Farnesoid X receptor agonist decreases lipid accumulation by promoting hepatic fatty acid oxidation in db/db mice. International Journal of Molecular Medicine, 2018, 42, 1723-1731.	1.8	15
204	The hypolipidemic effects of Tamarindus indica fruit pulp extract in normal and dietâ€induced hypercholesterolemic hamsters are associated with altered levels of serum proteins. Electrophoresis, 2018, 39, 2965-2973.	1.3	2

#	ARTICLE	IF	CITATIONS
205	The Role of Gut Microbiota in Atherosclerosis and Hypertension. Frontiers in Pharmacology, 2018, 9, 1082.	1.6	164
206	Ganoderma Lucidum Polysaccharide Peptide Alleviates Hepatoteatosis via Modulating Bile Acid Metabolism Dependent on FXR-SHP/FGF. Cellular Physiology and Biochemistry, 2018, 49, 1204-1220.	1.1	54
207	A selective gut bacterial bile salt hydrolase alters host metabolism. ELife, 2018, 7, .	2.8	177
208	FXR Acts as a Metastasis Suppressor in Intrahepatic Cholangiocarcinoma by Inhibiting IL-6-Induced Epithelial-Mesenchymal Transition. Cellular Physiology and Biochemistry, 2018, 48, 158-172.	1.1	21
209	A randomised, double-blind, placebo-controlled phase 1 study of the safety, tolerability and pharmacodynamics of volixibat in overweight and obese but otherwise healthy adults: implications for treatment of non-alcoholic steatohepatitis. BMC Pharmacology & Toxicology, 2018, 19, 10.	1.0	21
210	Gut Microbiota Influence Lipid and Glucose Metabolism, Energy Homeostasis and Inflammation Through Effects on Bile Acid Metabolism. , 2018, , 107-134.		2
211	Regulation of Macrophage Foam Cell Formation During Nitrogen Mustard (NM)-Induced Pulmonary Fibrosis by Lung Lipids. Toxicological Sciences, 2019, 172, 344-358.	1.4	23
212	<i>Monascus</i> yellow, red and orange pigments from red yeast rice ameliorate lipid metabolic disorders and gut microbiota dysbiosis in Wistar rats fed on a high-fat diet. Food and Function, 2019, 10, 1073-1084.	2.1	79
213	Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis. Handbook of Experimental Pharmacology, 2019, 256, 325-357.	0.9	43
214	Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. Handbook of Experimental Pharmacology, 2019, 256, 51-72.	0.9	93
215	Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handbook of Experimental Pharmacology, 2019, 256, 167-205.	0.9	59
216	Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 235-246.	2.3	27
217	Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling–activated Src maintains cholesterol levels and protects from atherosclerosis. Journal of Biological Chemistry, 2019, 294, 8732-8744.	1.6	31
218	Farnesoid X receptor: An important factor in blood glucose regulation. Clinica Chimica Acta, 2019, 495, 29-34.	0.5	14
219	The Cross Talk Between Bile Acids and Intestinal Microbiota. , 2019, , 139-145.		0
220	nâ€3 Fatty Acids Abrogate Dyslipidemiaâ€Induced Changes in Bile Acid Uptake, Synthesis, and Transport in Young and Aged Dyslipidemic Rats. Lipids, 2019, 54, 39-51.	0.7	4
221	Farnesoid X receptor and bile acids regulate vitamin A storage. Scientific Reports, 2019, 9, 19493.	1.6	10
222	Berberine Directly Affects the Gut Microbiota to Promote Intestinal Farnesoid X Receptor Activation. Drug Metabolism and Disposition, 2019, 47, 86-93.	1.7	84

		CITATION REPORT		
#	Article		IF	CITATIONS
223	Bile acids and the metabolic syndrome. Annals of Clinical Biochemistry, 2019, 56, 326-3	37.	0.8	91
224	The prevalence and pregnancy outcomes of intrahepatic cholestasis of pregnancy: A retr clinical audit review. Obstetric Medicine, 2019, 12, 123-128.	ospective	0.5	19
225	The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Ca Disease. Nutrients, 2020, 12, 79.	rdiovascular	1.7	52
226	Discovery of selective farnesoid X receptor agonists for the treatment of hyperlipidemia traditional Chinese medicine based on virtual screening and in vitro validation. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4461-4470.		2.0	8
227	Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Novel Non–Bile A Tropifexor (LJN452) in Healthy Volunteers. Clinical Pharmacology in Drug Development, 395-410.		0.8	53
228	Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats Hydrocolloids, 2020, 102, 105582.	s. Food	5.6	36
229	Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progressio NAFLD/NASH. Frontiers in Endocrinology, 2020, 11, 592157.	n of	1.5	28
230	Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Fron Pharmacology, 2020, 11, 1247.	tiers in	1.6	18
231	Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure?. Agricultural and Food Chemistry, 2020, 68, 10517-10531.	lournal of	2.4	42
232	FGF19 and FGF21 for the Treatment of NASH—Two Sides of the Same Coin? Differenti. Effects of FGF19 and FGF21 From Mice to Human. Frontiers in Endocrinology, 2020, 11,	al and Overlapping 601349.	1.5	53
233	Pyrazinamide alleviates rifampin-induced steatohepatitis in mice by regulating the activit cholesterol-activated 7α-hydroxylase and lipoprotein lipase. European Journal of Pharma Sciences, 2020, 151, 105402.	ies of ceutical	1.9	2
234	Transcriptome Differences Suggest Novel Mechanisms for Intrauterine Growth Restriction Dysfunction in Small Intestine of Neonatal Piglets. Frontiers in Physiology, 2020, 11, 563		1.3	13
235	FXR activation promotes intestinal cholesterol excretion and attenuates hyperlipidemia i SRâ€B1â€deficient mice fed a highâ€fat and highâ€cholesterol diet. Physiological Repor	n ts, 2020, 8, e14387.	0.7	7
236	d-Allulose enhances uptake of HDL-cholesterol into rat's primary hepatocyte via SR-E Cytotechnology, 2020, 72, 295-301.	81.	0.7	13
237	Nidufexor (LMB763), a Novel FXR Modulator for the Treatment of Nonalcoholic Steatoh Journal of Medicinal Chemistry, 2020, 63, 3868-3880.	epatitis.	2.9	65
238	SR-BI as a target of natural products and its significance in cancer. Seminars in Cancer B 80, 18-38.	ology, 2022,	4.3	16
239	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological Re 101, 683-731.	views, 2021,	13.1	184
240	Role of nâ€3 Fatty Acids on Bile Acid Metabolism and Transport in Dyslipidemia: A Review 125-139.	w. Lipids, 2021, 56,	0.7	2

#	Article	IF	CITATIONS
241	Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids, 2021, 165, 108757.	0.8	14
242	Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70, 1174-1182.	6.1	519
243	Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. Journal of Agricultural and Food Chemistry, 2021, 69, 3982-3991.	2.4	20
244	Long noncoding RNAs-a new dimension in the molecular architecture of the bile acid/FXR pathway. Molecular and Cellular Endocrinology, 2021, 525, 111191.	1.6	2
247	Knockout of zebrafish colony-stimulating factor 1 receptor by CRISPR/Cas9 affects metabolism and locomotion capacity. Biochemical and Biophysical Research Communications, 2021, 551, 93-99.	1.0	6
248	Bile acids and their receptors in metabolic disorders. Progress in Lipid Research, 2021, 82, 101094.	5.3	112
249	Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. Journal of Clinical Investigation, 2021, 131, .	3.9	50
250	The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opinion on Drug Discovery, 2021, 16, 1193-1208.	2.5	17
251	<i>NR1H4</i> rs35724 G>C variant modulates liver damage in nonalcoholic fatty liver disease. Liver International, 2021, 41, 2712-2719.	1.9	6
252	FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166133.	1.8	64
253	The Role of Short-Chain Fatty Acids and Bile Acids in Intestinal and Liver Function, Inflammation, and Carcinogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 703218.	1.8	55
254	A meta-analysis of the prevalence of gestational diabetes in patients diagnosed with obstetrical cholestasis. AJOG Global Reports, 2021, 1, 100013.	0.4	1
255	Role of Cholesterolâ€Associated Steatohepatitis in the Development of NASH. Hepatology Communications, 2022, 6, 12-35.	2.0	80
256	Redox-Dependent Effects in the Physiopathological Role of Bile Acids. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	10
257	Oxysterols and Bile Acid Act as Signaling Molecules That Regulate Cholesterol Homeostasis: Nuclear Receptors LXR, FXR, and Fibroblast Growth Factor 15/19. , 2020, , 117-143.		1
258	Gut Microbiota and Heart, Vascular Injury. Advances in Experimental Medicine and Biology, 2020, 1238, 107-141.	0.8	13
259	Role of Farnesoid X Receptor in the Determination of Liver Transcriptome during Postnatal Maturation in Mice. Nuclear Receptor Research, 2017, 4, .	2.5	5
260	Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation, 2006, 116, 1102-1109.	3.9	716

#	Article	IF	CITATIONS
261	Farnesoid X receptor: Acting through bile acids to treat metabolic disorders. Drugs of the Future, 2010, 35, 635.	0.0	9
262	Farnesoid X Receptor Induces Murine Scavenger Receptor Class B Type I via Intron Binding. PLoS ONE, 2012, 7, e35895.	1.1	31
263	Ageing Fxr Deficient Mice Develop Increased Energy Expenditure, Improved Glucose Control and Liver Damage Resembling NASH. PLoS ONE, 2013, 8, e64721.	1.1	57
264	Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells. PLoS ONE, 2014, 9, e102026.	1.1	11
265	The molecular and metabolic basis of biliary cholesterol secretion and gallstone disease. Frontiers in Bioscience - Landmark, 2003, 8, s1166-1174.	3.0	14
266	Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice. Functional Foods in Health and Disease, 2013, 3, 428.	0.3	6
267	Serial changes in expression of functionally clustered genes in progression of liver fibrosis in hepatitis C patients. World Journal of Gastroenterology, 2008, 14, 2010.	1.4	27
268	Endocrine and paracrine role of bile acids. World Journal of Gastroenterology, 2008, 14, 5620.	1.4	103
269	Recent insights into farnesoid X receptor in non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 13493.	1.4	34
270	Bile Acids and Their Role in Cholesterol Homeostasis. , 2009, , 107-129.		1
270 271	Bile Acids and Their Role in Cholesterol Homeostasis. , 2009, , 107-129. Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238.	0.1	1
	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal	0.1	
271	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238.	0.1	0
271 272	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238. The Liver in Metabolic Syndrome. , 2014, , 27-61. Implications for Farnesoid X Receptor Signaling on Bile Acid Metabolism as a Potential Therapeutic		0
271 272 273	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238. The Liver in Metabolic Syndrome. , 2014, , 27-61. Implications for Farnesoid X Receptor Signaling on Bile Acid Metabolism as a Potential Therapeutic Strategy for Nonalcoholic Fatty Liver Disease. The Korean Journal of Obesity, 2016, 25, 167-175.	0.2	0 1 0
271 272 273 274	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238. The Liver in Metabolic Syndrome., 2014, , 27-61. Implications for Farnesoid X Receptor Signaling on Bile Acid Metabolism as a Potential Therapeutic Strategy for Nonalcoholic Fatty Liver Disease. The Korean Journal of Obesity, 2016, 25, 167-175. Farnesoid X Receptor Agonist as a new treatment option for Non-Alcoholic Fatty Liver disease: A Review. Archives of Hepatitis Research, 2017, 3, 029-036. <i>NR1H4</i> rs35724 G>C Variant Modulates Liver Damage in Nonalcoholic Fatty Liver	0.2	0 1 0 1
271 272 273 274 275	Effects of FXR Deficiency and Pioglitazone on Atherosclerosis in ApoE-Knockout Mice. Korean Journal of Medicine, 2013, 84, 238. The Liver in Metabolic Syndrome. , 2014, , 27-61. Implications for Farnesoid X Receptor Signaling on Bile Acid Metabolism as a Potential Therapeutic Strategy for Nonalcoholic Fatty Liver Disease. The Korean Journal of Obesity, 2016, 25, 167-175. Farnesoid X Receptor Agonist as a new treatment option for Non-Alcoholic Fatty Liver disease: A Review. Archives of Hepatitis Research, 2017, 3, 029-036. <i>NR1H4</i> rs35724 G>C Variant Modulates Liver Damage in Nonalcoholic Fatty Liver Disease. SSRN Electronic Journal, 0, , .	0.2	0 1 0 1 0

#	Article	IF	CITATIONS
280	Transcriptional Control of Trpm6 by the Nuclear Receptor FXR. International Journal of Molecular Sciences, 2022, 23, 1980.	1.8	6
281	Nuclear Receptors Linking Metabolism, Inflammation, and Fibrosis in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 2668.	1.8	42
282	Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. Journal of Nutritional Biochemistry, 2022, 105, 108991.	1.9	36
283	The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Liver Disorders. International Journal of Molecular Sciences, 2022, 23, 3528.	1.8	10
284	Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles. Journal of Clinical Medicine, 2022, 11, 4.	1.0	16
285	Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation. Cardiovascular Research, 2022, 118, 3171-3182.	1.8	21
287	Beyond PXR and CAR, Regulation of Xenobiotic Metabolism by other Nuclear Receptors. , 0, , 275-300.		0
288	Circulating bile acid concentrations and nonâ€ e lcoholic fatty liver disease in Guatemala. Alimentary Pharmacology and Therapeutics, 2022, 56, 321-329.	1.9	12
289	Discovery of 9,11-Seco-Cholesterol Derivatives as Novel FXR Antagonists. ACS Omega, 2022, 7, 17401-17405.	1.6	4
290	Enhancement of Farnesoid X Receptor Inhibits Migration, Adhesion and Angiogenesis through Proteasome Degradation and VEGF Reduction in Bladder Cancers. International Journal of Molecular Sciences, 2022, 23, 5259.	1.8	7
291	Opisthorchis viverrini infection induces metabolic disturbances in hamsters fed with high fat/high fructose diets: Implications for liver and kidney pathologies. Journal of Nutritional Biochemistry, 2022, 107, 109053.	1.9	1
292	Recent advances on FXR-targeting therapeutics. Molecular and Cellular Endocrinology, 2022, 552, 111678.	1.6	27
293	Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. International Journal of Molecular Sciences, 2022, 23, 6046.	1.8	44
294	Bile acid metabolism and signaling, the microbiota, and metabolic disease. , 2022, 237, 108238.		62
295	Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. International Journal of Biological Sciences, 2022, 18, 5681-5697.	2.6	12
296	Farnesoid X Receptor Overexpression Decreases the Migration, Invasion and Angiogenesis of Human Bladder Cancers via AMPK Activation and Cholesterol Biosynthesis Inhibition. Cancers, 2022, 14, 4398.	1.7	6
297	Mind the Gap—Deciphering GPCR Pharmacology Using 3D Pharmacophores and Artificial Intelligence. Pharmaceuticals, 2022, 15, 1304.	1.7	3
298	<scp>EDP</scp> â€297: A novel, farnesoid X receptor agonist—Results of a phase I study in healthy subjects. Clinical and Translational Science, 2023, 16, 338-351.	1.5	3

#	Article	IF	CITATIONS
299	The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis?. Progress in Lipid Research, 2023, 89, 101209.	5.3	13
300	Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Frontiers in Microbiology, 0, 13, .	1.5	7
301	Exploring the roles of intestinal flora in enhanced recovery after surgery. IScience, 2023, 26, 105959.	1.9	3
302	The therapeutic role of microbial metabolites in human health and diseases. , 2023, , 1-38.		1
303	Role of FXR in Renal Physiology and Kidney Diseases. International Journal of Molecular Sciences, 2023, 24, 2408.	1.8	4
304	Gut Microbiota and Coronary Artery Disease: Current Therapeutic Perspectives. Metabolites, 2023, 13, 256.	1.3	4
305	The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology, 2023, 164, 1069-1085.	0.6	14
306	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10
307	Machine learning- and structure-based discovery of a novel chemotype as FXR agonists for potential treatment of nonalcoholic fatty liver disease. European Journal of Medicinal Chemistry, 2023, 252, 115307.	2.6	4
308	Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomaterialia, 2023, , .	4.1	0

Pathophysiology of Bile Acid Regulation. , 2023, , 85-93.

0