Applications of the <i>Saccharomyces cerevisiae</i> Flg Genetics

Journal of Molecular Microbiology and Biotechnology 5, 67-77 DOI: 10.1159/000069976

Citation Report

IF

CITATIONS

Pseudomonas., 2004,,. 19 1 Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase. Gene, 2004, 1.0 38 343, 181-190 The functional mapping of long-range transcription control elements of the HOX11 proto-oncogene. 3 1.0 7 Biochemical and Biophysical Research Communications, 2004, 313, 327-335. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 639-650. 4 Pyramiding Unmarked Deletions in Ralstonia solanacearum Shows That Secreted Proteins in Addition to Plant Cell-Wall-Degrading Enzymes Contribute to Virulence. Molecular Plant-Microbe Interactions, 124 5 1.4 2005, 18, 1296-1305. A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1009-1014. 3.3 254 Functional expression of the Flp recombinase in Mycobacterium bovis BCG. Gene, 2007, 399, 112-119. 7 1.0 27 Construction and analysis of Leishmania tarentolae transgenic strains free of selection markers. Molecular and Biochemical Parasitology, 2007, 155, 71-83. Functional expression of the Cre recombinase in actinomycetes. Applied Microbiology and 9 1.7 56 Biotechnology, 2008, 78, 1065-1070. Marker removal from actinomycetes genome using Flp recombinase. Gene, 2008, 419, 43-47. 1.0 Marker Removal in Staphylococci via Cre Recombinase and Different <i>lox</i> Sites. Applied and 11 1.4 61 Environmental Microbiology, 2008, 74, 1316-1323. Genetic Tools for Select-Agent-Compliant Manipulation of <i>Burkholderia pseudomallei</i>. Applied 1.4 199 and Environmental Microbiology, 2008, 74, 1064-1075. Bacterial genetics: past achievements, present state of the field, and future challenges. BioTechniques, 13 0.8 52 2008, 44, 633-641. New methods for tightly regulated gene expression and highly efficient chromosomal integration of 14 2.3 109 cloned genes for <i>Methanosarcina </i> species. Archaea, 2008, 2, 193-203. In vivo Activation of Tetracycline Rep ressor by Cre/<i>lox</i>-Mediated Gene Assembly. 15 1.0 7 Journal of Molecular Microbiology and Biotechnology, 2009, 17, 136-145. Use of the native flp gene to generate in-frame unmarked mutations in Streptomyces spp.. Gene, 2009, 1.0 443, 48-54. Site-specific recombinases in genetic engineering: Modern in vivo technologies. Cytology and Genetics, 17 0.2 1 2010, 44, 244-251. Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short 1.3 homology regions. BMC Microbiology, 2010, 10, 209.

ARTICLE

CITATION REPORT

#	Article	IF	CITATIONS
19	Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans. BMC Research Notes, 2010, 3, 308.	0.6	12
20	Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering. Journal of Bioscience and Bioengineering, 2010, 110, 646-652.	1.1	10
21	BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 2010, 4, 1.	2.0	348
22	The use of FLPâ€mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus <i>Ustilago maydis</i> . New Phytologist, 2010, 187, 957-968.	3.5	93
23	Application of the <i>Saccharomyces cerevisiae</i> FLP/ <i>FRT</i> Recombination System in Filamentous Fungi for Marker Recycling and Construction of Knockout Strains Devoid of Heterologous Genes. Applied and Environmental Microbiology, 2010, 76, 4664-4674.	1.4	76
24	Improved gene targeting in C. elegans using counter-selection and Flp-mediated marker excision. Genomics, 2010, 95, 37-46.	1.3	16
25	Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis. Molecular Microbiology, 2011, 81, 249-258.	1.2	19
26	Modification of the Genome of Rhodobacter sphaeroides and Construction of Synthetic Operons. Methods in Enzymology, 2011, 497, 519-538.	0.4	28
27	Efficient Generation of Unmarked Deletions inLegionella pneumophila. Applied and Environmental Microbiology, 2011, 77, 2545-2548.	1.4	19
28	Site-Specific Recombination Strategies for Engineering Actinomycete Genomes. Applied and Environmental Microbiology, 2012, 78, 1804-1812.	1.4	88
29	Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek, 2012, 102, 503-516.	0.7	26
30	Two Systems for Targeted Gene Deletion in Coxiella burnetii. Applied and Environmental Microbiology, 2012, 78, 4580-4589.	1.4	99
31	Genetic Manipulation of Coxiella burnetii. Advances in Experimental Medicine and Biology, 2012, 984, 249-271.	0.8	35
32	Streamlining of a Pseudomonas putida Genome Using a Combinatorial Deletion Method Based on Minitransposon Insertion and the Flp-FRT Recombination System. Methods in Molecular Biology, 2012, 813, 249-266.	0.4	13
33	Synthetic Gene Networks. Methods in Molecular Biology, 2012, , .	0.4	2
34	Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, 2012, , .	0.8	16
35	Genetic manipulation of Methanosarcina spp Frontiers in Microbiology, 2012, 3, 259.	1.5	45
36	Enhanced electrotransformation of the ethanologen <i>Zymomonas mobilis</i> ZM4 with plasmids. Engineering in Life Sciences, 2012, 12, 152-161.	2.0	12

#	Article	IF	CITATIONS
37	Random and cyclical deletion of large DNA segments in the genome of <i>Pseudomonas putida</i> . Environmental Microbiology, 2012, 14, 1444-1453.	1.8	56
38	Towards a metabolic engineering strain "commons†An <i>Escherichia coli</i> platform strain for ethanol production. Biotechnology and Bioengineering, 2013, 110, 1520-1526.	1.7	24
39	Genome engineering in actinomycetes using site-specific recombinases. Applied Microbiology and Biotechnology, 2013, 97, 4701-4712.	1.7	16
40	Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Applied Microbiology and Biotechnology, 2013, 97, 6373-6382.	1.7	32
41	Site-Directed Mutagenesis Using Oligonucleotide-Based Recombineering. , 2013, , .		2
42	Flp Site-Specific Recombination System. , 2013, , 72-77.		0
43	Parallel In Vivo DNA Assembly by Recombination: Experimental Demonstration and Theoretical Approaches. PLoS ONE, 2013, 8, e56854.	1.1	7
44	Flippase (FLP) recombinase-mediated marker recycling in the dermatophyte Arthroderma vanbreuseghemii. Microbiology (United Kingdom), 2014, 160, 2122-2135.	0.7	14
45	FLP-FRT-Based Method To Obtain Unmarked Deletions of CHU _ 3237 (porU) and Large Genomic Fragments of Cytophaga hutchinsonii. Applied and Environmental Microbiology, 2014, 80, 6037-6045.	1.4	37
46	Chassis optimization as a cornerstone for the application of synthetic biology based strategies in microbial secondary metabolism. Frontiers in Microbiology, 2015, 6, 906.	1.5	30
47	Genome engineering and direct cloning of antibiotic gene clusters via phage ï•BT1 integrase-mediated site-specific recombination in Streptomyces. Scientific Reports, 2015, 5, 8740.	1.6	62
48	Quorum Sensing Protects Pseudomonas aeruginosa against Cheating by Other Species in a Laboratory Coculture Model. Journal of Bacteriology, 2015, 197, 3154-3159.	1.0	58
49	Testing the utility of site-specific recombinases for manipulations of genome of moenomycin producer Streptomyces ghanaensis ATCC14672. Journal of Applied Genetics, 2015, 56, 547-550.	1.0	7
50	Genetic tools for manipulating Acinetobacter baumannii genome: an overview. Journal of Medical Microbiology, 2015, 64, 657-669.	0.7	26
51	λ Recombination and Recombineering. EcoSal Plus, 2016, 7, .	2.1	90
53	Genome Editing of Structural Variations: Modeling and Gene Correction. Trends in Biotechnology, 2016, 34, 548-561.	4.9	18
54	The Genetic System of Actinobacteria. , 2017, , 79-121.		0
55	Engineering Gram-Negative Microbial Cell Factories Using Transposon Vectors. Methods in Molecular Biology, 2017, 1498, 273-293.	0.4	23

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Application of FLP-FRT System to Construct Unmarked Deletion in Helicobacter pylori and Functional Study of Gene hp0788 in Pathogenesis. Frontiers in Microbiology, 2017, 8, 2357.	1.5	3
57	Flp Site-Specific Recombination System â~†. , 2017, , .		0
58	Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides. Biotechnology Letters, 2018, 40, 933-940.	1.1	9
59	A Genetic System for Methanocaldococcus jannaschii: An Evolutionary Deeply Rooted Hyperthermophilic Methanarchaeon. Frontiers in Microbiology, 2019, 10, 1256.	1.5	22
60	Challenges and advances in genetic manipulation of filamentous actinomycetes – the remarkable producers of specialized metabolites. Natural Product Reports, 2019, 36, 1351-1369.	5.2	27
61	Development of a novel selection/counter-selection system for chromosomal gene integrations and deletions in lactic acid bacteria. BMC Molecular Biology, 2019, 20, 10.	3.0	13
62	An Update on Molecular Tools for Genetic Engineering of Actinomycetes—The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics, 2020, 9, 494.	1.5	20
63	A CRISPR-Cas9, Cre-lox, and Flp-FRT Cascade Strategy for the Precise and Efficient Integration of Exogenous DNA into Cellular Genomes. CRISPR Journal, 2020, 3, 470-486.	1.4	6
64	Remediation of Heavy Metals Through Genetically Engineered Microorganism. Environmental and Microbial Biotechnology, 2021, , 315-366.	0.4	2
65	Rapid visualized assessment of drug efficacy in live mice with a selectable marker-free autoluminescent Klebsiella pneumoniae. Biosensors and Bioelectronics, 2021, 177, 112919.	5.3	6
66	Molecular Tools for Genetic Analysis of Pseudomonads. , 2004, , 317-350.		8
67	A modified method of gene disruption in Komagataella phaffii with Cre/loxP system. Journal of Biotechnology, 2022, 347, 40-48.	1.9	2
69	Generation of markerless and multiple-gene knockout in Glaesserella parasuis based on natural transformation and Flp recombinase. Applied Microbiology and Biotechnology, 2022, 106, 5167-5178.	1.7	2
70	Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker <i>tetA</i> ^{<i>OPT</i>} . ACS Synthetic Biology, 2022, 11, 3440-3450.	1.9	4
71	Engineered <i>Agrobacterium</i> improves transformation by mitigating plant immunity detection. New Phytologist, 2023, 237, 2493-2504.	3.5	6
72	Development and Perspective of <i>Rhodotorula toruloides</i> as an Efficient Cell Factory. Journal of Agricultural and Food Chemistry, 2023, 71, 1802-1819.	2.4	5