Mechanotransduction and flow across the endothelial g

Proceedings of the National Academy of Sciences of the Unite 100, 7988-7995

DOI: 10.1073/pnas.1332808100

Citation Report

#	Article	IF	CITATIONS
1	Experimental measurements of intracellular mechanics., 2001,, 18-49.		4
2	From Red Cells to Snowboarding: A New Concept for a Train Track. Physical Review Letters, 2004, 93, 194501.	2.9	38
3	A Charge-Diffusion-Filtration Model for Endothelial Surface Glycocalyx. , 2004, , 685.		0
4	An Electrodiffusion-Filtration Model for Effects of Endothelial Surface Glycocalyx on Microvessel Permeability to Macromolecules. Journal of Biomechanical Engineering, 2004, 126, 614-624.	0.6	21
5	The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A "bumper-car" model. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16483-16488.	3.3	277
6	Optimal lift force on vesicles near a compressible substrate. Europhysics Letters, 2004, 67, 676-682.	0.7	45
7	Oncotic pressures opposing filtration across non-fenestrated rat microvessels. Journal of Physiology, 2004, 557, 889-907.	1.3	277
8	Impact of the FÃ¥hraeus Effect on NO and O2Biotransport: A Computer Model. Microcirculation, 2004, 11, 337-349.	1.0	46
9	Mechanotransduction and strain amplification in osteocyte cell processes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16689-16694.	3.3	413
10	The endothelial glycocalyx: a potential barrier between health and vascular disease. Current Opinion in Lipidology, 2005, 16, 507-511.	1.2	266
11	Blood flow and permeability in microvessels. Fluid Dynamics Research, 2005, 37, 82-132.	0.6	80
12	Stagnation-point flows in a porous medium. Chemical Engineering Science, 2005, 60, 123-134.	1.9	51
13	Electron microscopic characterization of gels formed by blood cells of leukemia patients at hypertonicity. Colloids and Surfaces B: Biointerfaces, 2005, 44, 167-171.	2.5	4
14	Microvascular Solute and Water Transport. Microcirculation, 2005, 12, 17-31.	1.0	84
15	Biochemistry and Biomechanics of Cell Motility. Annual Review of Biomedical Engineering, 2005, 7, 105-150.	5.7	230
16	Mechanotransduction in endothelial cell migration. Journal of Cellular Biochemistry, 2005, 96, 1110-1126.	1.2	213
17	Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. Journal of Cellular Physiology, 2005, 203, 166-176.	2.0	114
18	Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of Biomechanics, 2005, 38, 1949-1971.	0.9	722

#	Article	IF	CITATIONS
19	Mechanobiology in the Third Dimension. Annals of Biomedical Engineering, 2005, 33, 1469-1490.	1.3	343
20	Cellular Fluid Mechanics and Mechanotransduction. Annals of Biomedical Engineering, 2005, 33, 1719-1723.	1.3	125
21	Dynamic purine signaling and metabolism during neutrophil–endothelial interactions. Purinergic Signalling, 2005, 1, 229-239.	1.1	27
22	Beating-Heart Microvascular Imaging by High-Speed Video Microscope and SPring-8., 2005,, 21-32.		0
23	Flow and deformation of the capillary glycocalyx in the wake of a leukocyte. Physics of Fluids, 2005, 17, 031509.	1.6	20
24	Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts. Physics of Fluids, 2005, 17, 092101.	1.6	115
25	Hypercholesterolemia impairs reactive hyperemic vasodilation of 2A but not 3A arterioles in mouse cremaster muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H447-H454.	1.5	24
26	Microvascular blood viscosity in vivo and the endothelial surface layer. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2657-H2664.	1.5	273
27	Transmission of steady and oscillatory fluid shear stress across epithelial and endothelial surface structures. Physics of Fluids, 2005, 17, 031508.	1.6	20
28	Elastohydrodynamic Lubrication in Biological Systems. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, 219, 367-380.	1.0	57
29	In situ measurement of solute transport in the bone lacunar-canalicular system. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11911-11916.	3.3	182
30	MICROCIRCULATION AND HEMORHEOLOGY. Annual Review of Fluid Mechanics, 2005, 37, 43-69.	10.8	674
31	A Model for Charged Molecule Transport in the Interstitial Space. , 2005, 2006, 55-8.		3
32	Dynamic compression of highly compressible porous media with application to snow compaction. Journal of Fluid Mechanics, 2005, 542, 281.	1.4	32
33	Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. Journal of Fluid Mechanics, 2006, 554, 217.	1.4	51
34	Transport of spheres suspended in the fluid flowing between hexagonally arranged cylinders. Journal of Fluid Mechanics, 2006, 551, 309.	1.4	15
35	Deposition of Patterned Glycosaminoglycans on Silanized Glass Surfaces. Langmuir, 2006, 22, 3228-3234.	1.6	13
36	Mechanisms of Mechanotransduction. Developmental Cell, 2006, 10, 11-20.	3.1	698

#	Article	IF	CITATIONS
37	CONTROL OF ENDOTHELIAL CELL ADHESION BY MECHANOTRANSMISSION FROM CYTOSKELETON TO SUBSTRATE. , $2006,$, $25-50.$		1
38	The Exact Stimulus for the Strain Adaptation of Bone Tissue is Unknown. Journal of Biomechanical Science and Engineering, 2006, $1,16$ -28.	0.1	7
39	The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. Journal of Applied Physiology, 2006, 100, 482-492.	1.2	75
40	Mechanotransduction and the glycocalyx. Journal of Internal Medicine, 2006, 259, 339-350.	2.7	344
41	Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. Journal of Internal Medicine, 2006, 259, 393-400.	2.7	161
42	Differential inhibition by hyperglycaemia of shear stress- but not acetylcholine-mediated dilatation in the iliac artery of the anaesthetized pig. Journal of Physiology, 2006, 573, 133-145.	1.3	34
43	Osteocyte lacunae tissue strain in cortical bone. Journal of Biomechanics, 2006, 39, 1735-1743.	0.9	222
44	Normal Endothelium., 2006,, 1-40.		157
45	Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 2006, 86, 279-367.	13.1	1,496
46	Flow-Activated Ion Channels in Vascular Endothelium. Cell Biochemistry and Biophysics, 2006, 46, 277-284.	0.9	22
47	Nature of the hemodynamic forces exerted on vascular endothelial cells or leukocytes adhering to the surface of blood vessels. Physics of Fluids, 2006, 18, 087107.	1.6	24
48	Mechanism of osmotic flow in a periodic fiber array. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H844-H852.	1.5	30
49	Tribology of capillary blood flow. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 767-774.	1.0	8
50	Regulation of cation transport in the distal nephron by mechanical forces. American Journal of Physiology - Renal Physiology, 2006, 291, F923-F931.	1.3	78
51	Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2247-H2256.	1.5	211
52	Normal Force Exerted on Vascular Endothelial Cells. Physical Review Letters, 2006, 96, 028106.	2.9	17
53	Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H458-H452.	1.5	158
54	Loss of Endothelial Glycocalyx During Acute Hyperglycemia Coincides With Endothelial Dysfunction and Coagulation Activation In Vivo. Diabetes, 2006, 55, 480-486.	0.3	469

#	ARTICLE	IF	CITATIONS
55	Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1023-H1030.	1.5	173
56	Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2853-H2859.	1.5	55
57	Lack of a role of membrane-protein interactions in flow-dependent activation of ENaC. American Journal of Physiology - Renal Physiology, 2007, 293, F316-F324.	1.3	21
58	Lights, camera, actin! The cytoskeleton takes center stage in mechanotransduction. Focus on "Mapping the dynamics of shear stress-induced structural changes in endothelial cells.― American Journal of Physiology - Cell Physiology, 2007, 293, C1771-C1772.	2.1	3
59	The Role of Shear Stress on ET-1, KLF2, and NOS-3 Expression in the Developing Cardiovascular System of Chicken Embryos in a Venous Ligation Model. Physiology, 2007, 22, 380-389.	1.6	90
60	Effect of Fluid Shear Stress on Endocytosis of Heparan Sulfate and Low-density Lipoproteins. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-8.	3.0	9
61	Elasticity Imaging of Polymeric Media. Journal of Biomechanical Engineering, 2007, 129, 259-272.	0.6	29
62	Two-Photon Microscopy of Vital Murine Elastic and Muscular Arteries. Journal of Vascular Research, 2007, 44, 87-98.	0.6	168
63	Change in Properties of the Glycocalyx Affects the Shear Rate and Stress Distribution on Endothelial Cells. Journal of Biomechanical Engineering, 2007, 129, 324-329.	0.6	29
64	Patient hydration: a major source of laboratory uncertainty. Clinical Chemistry and Laboratory Medicine, 2007, 45, 158-66.	1.4	14
65	A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15941-15946.	3 . 3	224
66	Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1209-H1224.	1.5	737
67	The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochemical and Biophysical Research Communications, 2007, 355, 228-233.	1.0	320
68	The Role of Glycocalyx in Nanocarrier-Cell Adhesion Investigated Using a Thermodynamic Model and Monte Carlo Simulations. Journal of Physical Chemistry C, 2007, 111, 15848-15856.	1.5	44
69	Molecular Mechanisms in Chronic Venous Insufficiency. Annals of Vascular Surgery, 2007, 21, 260-266.	0.4	51
70	Glomerular Endothelial Glycocalyx Constitutes a Barrier to Protein Permeability. Journal of the American Society of Nephrology: JASN, 2007, 18, 2885-2893.	3.0	230
71	The Structure and Function of the Endothelial Glycocalyx Layer. Annual Review of Biomedical Engineering, 2007, 9, 121-167.	5.7	976
72	The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology, 2007, 134, 1477-1526.	0.7	47

#	Article	IF	CITATIONS
73	On Darcy-Brinkman Equation: Viscous Flow Between Two Parallel Plates Packed with Regular Square Arrays of Cylinders. Entropy, 2007, 9, 118-131.	1.1	48
74	Endothelial Luminal Glycocalyx: Protective Barrier between Endothelial Cells and Flowing Blood. , 2007, , 689-695.		4
75	Flow-induced shear strain in intima of porcine coronary arteries. Journal of Applied Physiology, 2007, 103, 587-593.	1.2	9
76	Endothelial and Epithelial Cells: General Principles of Selective Vectorial Transport., 2007,, 632-642.		O
77	Tissue strain amplification at the osteocyte lacuna: A microstructural finite element analysis. Journal of Biomechanics, 2007, 40, 2199-2206.	0.9	145
78	The significance of bone microstructure in mechanotransduction. Journal of Biomechanics, 2007, 40, \$105-\$109.	0.9	45
79	Characteristics of the response of the iliac artery to wall shear stress in the anaesthetized pig. Journal of Physiology, 2007, 582, 731-743.	1.3	29
80	Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications. Progress in Biophysics and Molecular Biology, 2007, 93, 374-383.	1.4	118
81	Fibrin gel formation in a shear flow. Mathematical Medicine and Biology, 2007, 24, 111-130.	0.8	65
82	Finite-Element Stress Analysis of a Multicomponent Model of Sheared and Focally-Adhered Endothelial Cells. Annals of Biomedical Engineering, 2007, 35, 208-223.	1.3	63
83	The endothelial glycocalyx: composition, functions, and visualization. Pflugers Archiv European Journal of Physiology, 2007, 454, 345-359.	1.3	1,440
84	The effects of spatial inhomogeneities on flow through the endothelial surface layer. Journal of Theoretical Biology, 2008, 252, 313-325.	0.8	19
85	In vivo blood flow and wall shear stress measurements in the vitelline network. Experiments in Fluids, 2008, 45, 703-713.	1.1	82
86	The development of the heart and microcirculation: role of shear stress. Medical and Biological Engineering and Computing, 2008, 46, 479-484.	1.6	53
87	Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Medical and Biological Engineering and Computing, 2008, 46, 451-460.	1.6	59
88	Lung Ischemia: A Model for Endothelial Mechanotransduction. Cell Biochemistry and Biophysics, 2008, 52, 125-138.	0.9	42
89	Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Archiv European Journal of Physiology, 2008, 455, 775-785.	1.3	61
90	Primary cilia sensitize endothelial cells for fluid shear stress. Developmental Dynamics, 2008, 237, 725-735.	0.8	154

#	Article	IF	Citations
91	The mechanical transduction of physiological strength electric fields. Bioelectromagnetics, 2008, 29, 447-455.	0.9	18
92	A model of the cranial vault as a tensegrity structure, and its significance to normal and abnormal cranial development. International Journal of Osteopathic Medicine, 2008, 11, 80-89.	0.4	21
93	Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM - Monthly Journal of the Association of Physicians, 2008, 101, 513-518.	0.2	99
94	Static Magnetic Fields Affect Capillary Flow of Red Blood Cells in Striated Skin Muscle. Microcirculation, 2008, 15, 15-26.	1.0	25
95	The Endothelial Glycocalyx: A Mechano-Sensor and -TransducerA presentation from the Experimental Biology 2008 Meeting, San Diego, CA, USA, 5 to 9 April 2008 Science Signaling, 2008, 1, pt8.	1.6	125
96	Bradykinin―and sodium nitroprusside―nduced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties. Journal of Physiology, 2008, 586, 3207-3218.	1.3	27
97	Modelling mucociliary clearance. Respiratory Physiology and Neurobiology, 2008, 163, 178-188.	0.7	147
98	The Endothelial Glycocalyx is Hydrodynamically Relevant in Arterioles throughout the Cardiac Cycle. Biophysical Journal, 2008, 95, 1439-1447.	0.2	28
100	The Microcirculation in Inflammation. , 2008, , 387-448.		8
102	The Coagulant Response in Sepsis. Clinics in Chest Medicine, 2008, 29, 627-642.	0.8	108
103	Recent Advancements in Microcirculatory Image Acquisition and Analysis., 2008,, 677-690.		3
104	A poroelastic model of transcapillary flow in normal tissue. Microvascular Research, 2008, 75, 285-295.	1.1	8
105	Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1439-H1450.	1.5	44
106	Blood Flow in Microvascular Networks. , 2008, , 3-36.		74
107	Transient regulation of transport by pericytes in venular microvessels via trapped microdomains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1374-1379.	3.3	22
108	The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo Is Absent In Vitro. Circulation Research, 2008, 102, 770-776.	2.0	160
109	Viscous flow over outflow slits covered by an anisotropic Brinkman medium: A model of flow above interendothelial cell clefts. Physics of Fluids, 2008, 20, .	1.6	15
110	Development and application of a one-dimensional blood flow model for microvascular networks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 487-511.	1.0	29

#	Article	IF	CITATIONS
111	Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1788-H1793.	1.5	40
112	On the motion of a porous sphere in a Stokes flow parallel to a planar confining boundary. Journal of Fluid Mechanics, 2008, 606, 75-104.	1.4	10
113	Inflammation, endothelium, and coagulation in sepsis. Journal of Leukocyte Biology, 2008, 83, 536-545.	1.5	518
114	Effects of particulates and lipids on the hydraulic conductivity of Matrigel. Journal of Applied Physiology, 2008, 105, 621-628.	1.2	17
115	Chapter 11 Intravital Microscopic Investigation of Leukocyte Interactions with the Blood Vessel Wall. Methods in Enzymology, 2008, 445, 255-279.	0.4	14
116	Flow across microvessel walls through the endothelial surface glycocalyx and the interendothelial cleft. Journal of Fluid Mechanics, 2008, 601, 229-252.	1.4	19
117	Intracellular Ca2+ Responses in Cultured Endothelial Cells to Mechanical Stimulation by Laser Tweezers. Journal of Biomechanical Science and Engineering, 2008, 3, 116-123.	0.1	0
118	Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. Journal of Applied Physiology, 2008, 104, 845-852.	1.2	170
119	Fluid Shear Stress and Inner Curvature Remodeling of the Embryonic Heart. Choosing the Right Lane!. Scientific World Journal, The, 2008, 8, 212-222.	0.8	53
122	Endothelial Mechanotransduction. , 2009, , 20-60.		3
123	Role of Ion Channels in Cellular Mechanotransduction – Lessons from the Vascular Endothelium. , 0, , 161-180.		3
124	Role of the Plasma Membrane in Endothelial Cell Mechanosensation of Shear Stress. , 2009, , 61-88.		2
125	On the Characterization of Lifting Forces During the Rapid Compaction of Deformable Porous Media. Journal of Heat Transfer, 2021, 131, .	1.2	11
126	MECHANICS, BIOLOGY AND MEDICINE AND THE CHALLENGES OF METAMECHANICS: A PERSONAL REFLECTION. Journal of Mechanics in Medicine and Biology, 2009, 09, 141-160.	0.3	2
127	C-reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction. Cardiovascular Research, 2009, 84, 479-484.	1.8	73
128	The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1451-H1456.	1.5	58
129	Swelling and pressure-volume relationships in the dermis measured by osmotic-stress technique. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1907-R1913.	0.9	10
130	Viscoelastic response of a model endothelial glycocalyx. Physical Biology, 2009, 6, 025014.	0.8	28

#	ARTICLE	IF	CITATIONS
131	On the generation of lift forces in random soft porous media. Journal of Fluid Mechanics, 2009, 619, 147-166.	1.4	21
132	Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radical Biology and Medicine, 2009, 47, 600-607.	1.3	74
133	Chemical Biology of Cell Surface Oligosaccharides. , 0, , 189-222.		0
134	Polymer model of cancer cell adhesion to glycosaminoglycan substrates using the radius of gyration. Journal of Applied Polymer Science, 2009, 111, 70-77.	1.3	0
135	Cytoskeletal forces produced by extremely lowâ€frequency electric fields acting on extracellular glycoproteins. Bioelectromagnetics, 2010, 31, 77-84.	0.9	11
136	Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Archiv European Journal of Physiology, 2009, 457, 1199-1206.	1.3	106
137	Biomechanics: Cell Research and Applications for the Next Decade. Annals of Biomedical Engineering, 2009, 37, 847-859.	1.3	169
138	Measurement of Solute Transport in the Endothelial Glycocalyx Using Indicator Dilution Techniques. Annals of Biomedical Engineering, 2009, 37, 1781-1795.	1.3	6
139	A Time-Dependent Electrodiffusion-Convection Model for Charged Macromolecule Transport Across the Microvessel Wall and in the Interstitial Space. Cellular and Molecular Bioengineering, 2009, 2, 514-532.	1.0	4
140	Bending rigidities of cell surface molecules P-selectin and PSGL-1. Journal of Biomechanics, 2009, 42, 303-307.	0.9	9
141	Flow within models of the vertebrate embryonic heart. Journal of Theoretical Biology, 2009, 259, 449-461.	0.8	21
142	The dependency of solute diffusion on molecular weight and shape in intact bone. Bone, 2009, 45, 1017-1023.	1.4	40
143	Poroelastic theory of transcapillary flow: Effects of endothelial glycocalyx deterioration. Microvascular Research, 2009, 78, 432-441.	1.1	6
144	Peritoneal Ultrafiltration: Physiology and Failure. Contributions To Nephrology, 2009, 163, 7-14.	1.1	17
145	Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. Journal of Translational Medicine, 2009, 7, 51.	1.8	146
146	Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. Journal of Translational Medicine, 2009, 7, 77.	1.8	70
147	Rheology of the Cytoskeleton. Annual Review of Fluid Mechanics, 2009, 41, 433-453.	10.8	108
149	Regenerative Wound Healing via Biomaterials. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2009, , 405-424.	0.7	1

#	Article	IF	CITATIONS
151	Wall shear stress revisited. Artery Research, 2009, 3, 73.	0.3	13
152	Tumor necrosis factor-α inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis, 2009, 202, 296-303.	0.4	136
153	On the Future Development of Optimally-Sized Lipid-Insoluble Systemic Therapies for CNS Solid Tumors and Other Neuropathologies. Recent Patents on CNS Drug Discovery, 2010, 5, 239-252.	0.9	10
154	Effects of electric charge on osmotic flow across periodically arranged circular cylinders. Journal of Fluid Mechanics, 2010, 664, 174-192.	1.4	7
155	Cohesive suction-cup force in cell separation dynamics. Europhysics Letters, 2010, 91, 28004.	0.7	0
156	Passage of a Small Air Bubble through a Circular Pore across the Plate of Finite Thickness. Journal of the Physical Society of Japan, 2010, 79, 084402.	0.7	4
157	ENDOTHELIAL GLYCOCALYX STRUCTURE AND ROLE IN MECHANOTRANSDUCTION. , 2010, , 69-95.		1
158	Overcoming the challenges in the effective delivery of chemotherapies to CNS solid tumors. Therapeutic Delivery, 2010, 1, 289-305.	1.2	21
159	Elastic Response of Carbon Nanotube Forests to Aerodynamic Stresses. Physical Review Letters, 2010, 105, 144504.	2.9	37
160	A multirate time integrator for regularized Stokeslets. Journal of Computational Physics, 2010, 229, 4208-4224.	1.9	24
161	Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel. Annals of Biomedical Engineering, 2010, 38, 2649-2659.	1.3	47
162	Effect of Surface Charge of Immortalized Mouse Cerebral Endothelial Cell Monolayer on Transport of Charged Solutes. Annals of Biomedical Engineering, 2010, 38, 1463-1472.	1.3	57
163	High glucoseâ€mediated loss of cell surface heparan sulfate proteoglycan impairs the endothelial shear stress response. Cytoskeleton, 2010, 67, 135-141.	1.0	27
164	Study on the Sliding Friction of Endothelial Cells Cultured on Hydrogel and the Role of Glycocalyx on Friction Reduction. Advanced Engineering Materials, 2010, 12, B628.	1.6	11
165	A model for the blood–brain barrier permeability to water and small solutes. Journal of Biomechanics, 2010, 43, 2133-2140.	0.9	41
166	Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. Journal of Angiogenesis Research, 2010, 2, 14.	2.9	434
167	The Effects of Hemodynamic Force on Embryonic Development. Microcirculation, 2010, 17, 164-178.	1.0	158
168	Sepsis-Induced Degradation of Endothelial Glycocalix. Scientific World Journal, The, 2010, 10, 917-923.	0.8	94

#	Article	IF	CITATIONS
169	Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vascular Health and Risk Management, 2010, 6, 145.	1.0	82
170	Inflammation and coagulation. Critical Care Medicine, 2010, 38, S26-S34.	0.4	733
171	Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13648-13653.	3.3	174
172	Review: Hyperglycaemia and the vascular glycocalyx: the key to microalbuminuria and cardiovascular disease in diabetes mellitus?. British Journal of Diabetes and Vascular Disease, 2010, 10, 66-70.	0.6	6
173	Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16530-16535.	3.3	116
174	Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21860-21865.	3.3	79
175	Mechanotransduction in the renal tubule. American Journal of Physiology - Renal Physiology, 2010, 299, F1220-F1236.	1.3	124
176	Mechanical properties of primary cilia regulate the response to fluid flow. American Journal of Physiology - Renal Physiology, 2010, 298, F1096-F1102.	1.3	93
177	Molecular and Biochemical Features of the Mitochondrial Enzyme Ornithine Transcarbamylase: A Possible New Role as a Signaling Factor. Current Medicinal Chemistry, 2010, 17, 2253-2260.	1.2	10
178	HuR regulates the expression of stress-sensitive genes and mediates inflammatory response in human umbilical vein endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6858-6863.	3.3	80
179	Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Annals of Oncology, 2010, 21, 1723-1727.	0.6	78
180	Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvascular Research, 2010, 80, 394-401.	1.1	147
181	Simple geometry in complex organisms. Journal of Bodywork and Movement Therapies, 2010, 14, 424-444.	0.5	16
182	Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiological Reviews, 2011, 91, 327-387.	13.1	1,661
183	Mechanotransductional basis of endothelial cell response to intravascular bubbles. Integrative Biology (United Kingdom), 2011, 3, 1033.	0.6	31
184	Mechanosensing Biology., 2011,,.		5
185	Human macrophage adhesion on polysaccharide patterned surfaces. Soft Matter, 2011, 7, 3599.	1.2	25
186	Similar Endothelial Glycocalyx Structures in Microvessels from a Range of Mammalian Tissues: Evidence for a Common Filtering Mechanism?. Biophysical Journal, 2011, 101, 1046-1056.	0.2	81

#	Article	IF	CITATIONS
187	Divalent Counterions Tether Membrane-Bound Carbohydrates To Promote the Cohesion of Auditory Hair Bundles. Biophysical Journal, 2011, 101, 1316-1325.	0.2	7
188	Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discovery Today: Disease Models, 2011, 8, 57-62.	1.2	51
189	Effects of Mechanical Stress on Cells. , 2011, , 73-80.		2
190	Nonthrombogenic Approaches to Cardiovascular Bioengineering. Annual Review of Biomedical Engineering, 2011, 13, 451-475.	5.7	105
192	Molecular Mechanisms Underlying Mechanosensing in Vascular Biology. , 2011, , 21-37.		2
193	Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation. Microvascular Research, 2011, 81, 303-312.	1.1	18
194	Mechanotransduction of Flow-Induced Shear Stress by Endothelial Glycocalyx Fibers is Torque Determined. ASAIO Journal, 2011, 57, 487-494.	0.9	6
195	Multiscale Modeling of Functionalized Nanocarriers in Targeted Drug Delivery. Current Nanoscience, 2011, 7, 727-735.	0.7	29
196	New Molecular Mechanisms for Cardiovascular Disease: Blood Flow Sensing Mechanism in Vascular Endothelial Cells. Journal of Pharmacological Sciences, 2011, 116, 323-331.	1.1	44
197	Excessive erythrocytosis compromises the blood–endothelium interface in erythropoietinâ€overexpressing mice. Journal of Physiology, 2011, 589, 5181-5192.	1.3	13
198	Theoretical models for coronary vascular biomechanics: Progress & Drogress Progress in Biophysics and Molecular Biology, 2011, 104, 49-76.	1.4	62
199	Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Archiv European Journal of Physiology, 2011, 462, 209-217.	1.3	64
200	Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Archiv European Journal of Physiology, 2011, 462, 519-528.	1.3	186
201	Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 900-908.	1.5	37
202	Fluid Dynamics of Heart Development. Cell Biochemistry and Biophysics, 2011, 61, 1-22.	0.9	60
203	Endothelial Cell Membrane Sensitivity to Shear Stress is Lipid Domain Dependent. Cellular and Molecular Bioengineering, 2011, 4, 169-181.	1.0	40
204	An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cellular and Molecular Bioengineering, 2011, 4, 510-537.	1.0	58
205	Integration of cardiovascular regulation by the blood/endothelium cellâ€free layer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 458-470.	6.6	18

#	Article	IF	CITATIONS
206	Dynamic factors controlling carrier anchoring on vascular cells. IUBMB Life, 2011, 63, 640-647.	1.5	19
207	Compression-dependent permeability measurement for random soft porous media and its implications to lift generation. Chemical Engineering Science, 2011, 66, 294-302.	1.9	19
208	Modeling of biological doses and mechanical effects on bone transduction. Journal of Theoretical Biology, 2011, 274, 36-42.	0.8	16
209	Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile. Medical Engineering and Physics, 2011, 33, 832-839.	0.8	14
210	Dynamic permeability of highly compressible porous layers under squeeze at constant velocity and under impact. Tribology International, 2011, 44, 272-283.	3.0	4
212	Blood-Brain Barrier Breakdown and Blood-Brain Communication in Neurological and Psychiatric Diseases. Cardiovascular Psychiatry and Neurology, 2011, 2011, 1-2.	0.8	13
213	An Electrodiffusion Model for the Blood-Brain Barrier Permeability to Charged Molecules. Journal of Biomechanical Engineering, 2011, 133, 021002.	0.6	22
214	The Effect of Small Changes in Hematocrit on Nitric Oxide Transport in Arterioles. Antioxidants and Redox Signaling, 2011, 14, 175-185.	2.5	42
215	The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, 2011, , .	0.4	12
217	Intercellular Interactomics of Human Brain Endothelial Cells and Th17 Lymphocytes: A Novel Strategy for Identifying Therapeutic Targets of CNS Inflammation. Cardiovascular Psychiatry and Neurology, 2011, 2011, 1-11.	0.8	14
218	Two barriers for sodium in vascular endothelium?. Annals of Medicine, 2012, 44, S143-S148.	1.5	43
219	Extending vaterite microviscometry to ex vivo blood vessels by serial calibration. Biomedical Optics Express, 2012, 3, 37.	1.5	6
220	Fluid flows and forces in development: functions, features and biophysical principles. Development (Cambridge), 2012, 139, 1229-1245.	1.2	121
221	No-Reflow Phenomenon and Endothelial Glycocalyx of Microcirculation. Biochemistry Research International, 2012, 2012, 1-10.	1.5	22
222	Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer. Biorheology, 2012, 49, 301-316.	1.2	0
223	Dynamic Factors Controlling Targeting Nanocarriers to Vascular Endothelium. Current Drug Metabolism, 2012, 13, 70-81.	0.7	27
224	Passage of a Small Sphere through a Cleft of Endothelia with Flexible Glycocalyx. Journal of the Physical Society of Japan, 2012, 81, 124401.	0.7	0
225	Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. Journal of Fluid Mechanics, 2012, 711, 192-211.	1.4	58

#	Article	IF	Citations
226	Local Control of Microvascular Perfusion. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2012, 4, 1-148.	0.3	1
227	Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integrative Biology (United Kingdom), 2012, 4, 1102.	0.6	29
228	Films of End-Grafted Hyaluronan Are a Prototype of a Brush of a Strongly Charged, Semiflexible Polyelectrolyte with Intrinsic Excluded Volume. Biomacromolecules, 2012, 13, 1466-1477.	2.6	44
229	Damage of the Endothelial Glycocalyx in Dialysis Patients. Journal of the American Society of Nephrology: JASN, 2012, 23, 1900-1908.	3.0	222
230	Combining Colloidal Probe Atomic Force and Reflection Interference Contrast Microscopy to Study the Compressive Mechanics of Hyaluronan Brushes. Langmuir, 2012, 28, 3206-3216.	1.6	23
231	Top-down Mesoscale Models and Free Energy Calculations of Multivalent Protein-Protein and Protein-Membrane Interactions in Nanocarrier Adhesion and Receptor Trafficking. RSC Biomolecular Sciences, 2012, , 272-292.	0.4	3
232	Passage of a Small Sphere through a Cleft of Endothelia with Pivoted Glycocalyx. Journal of the Physical Society of Japan, 2012, 81, 014401.	0.7	1
233	Cytoskeleton, cytoskeletal interactions, and vascular endothelial function. Cell Health and Cytoskeleton, 0, , 119.	0.7	2
234	Self-similarity in coupled Brinkman/Navier–Stokes flows. Journal of Fluid Mechanics, 2012, 699, 94-114.	1.4	30
235	Dependence of smooth muscle tone upon pulsatility in the iliac artery of the anaesthetised pig. Pflugers Archiv European Journal of Physiology, 2012, 463, 679-684.	1.3	1
236	Endothelial Glycocalyx: Permeability Barrier and Mechanosensor. Annals of Biomedical Engineering, 2012, 40, 828-839.	1.3	234
237	Experimental study on the lift generation inside a random synthetic porous layer under rapid compaction. Experimental Thermal and Fluid Science, 2012, 36, 205-216.	1.5	17
238	3D Reconstruction of the Glycocalyx Structure in Mammalian Capillaries using Electron Tomography. Microcirculation, 2012, 19, 343-351.	1.0	39
240	Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, 2013, , .	0.7	6
241	What is the mechanism of flowâ€mediated arterial dilatation. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 489-494.	0.9	30
242	Blood flow and arterial endothelial dysfunction: Mechanisms and implications. Comptes Rendus Physique, 2013, 14, 479-496.	0.3	33
243	Indirect measurement of the vascular endothelial glycocalyx layer thickness in human submucosal capillaries with a plug-in for ImageJ. Computer Methods and Programs in Biomedicine, 2013, 110, 38-47.	2.6	13
244	Molecular Biology of Atherosclerosis. Physiological Reviews, 2013, 93, 1317-1542.	13.1	418

#	Article	IF	CITATIONS
245	Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H811-H820.	1.5	77
246	Plane Couette-Poiseuille flow past a homogeneous poroelastic layer. Physics of Fluids, 2013, 25, .	1.6	10
247	Modeling Momentum and Mass Transport in Cellular Biological Media: From the Molecular to the Tissue Scale. , 2013 , , $1-40$.		4
248	Self-assembly and elasticity of hierarchical proteoglycan–hyaluronan brushes. Soft Matter, 2013, 9, 10473.	1.2	25
249	Shearâ€Dependent Adhesion of Leukocytes and Lectins to the Endothelium and Concurrent Changes in Thickness of the Glycocalyx of Postâ€Capillary Venules in the Lowâ€Flow State. Microcirculation, 2013, 20, 149-157.	1.0	10
250	Mechanoâ€sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 381-390.	6.6	132
251	Biomechanical force in blood development: Extrinsic physical cues drive pro-hematopoietic signaling. Differentiation, 2013, 86, 92-103.	1.0	45
252	The endothelial glycocalyx as a potential modifier of the hemolytic uremic syndrome. European Journal of Internal Medicine, 2013, 24, 503-509.	1.0	31
253	Hyaluronan and dextran modified tubes resist cellular activation with blood contact. Colloids and Surfaces B: Biointerfaces, 2013, 108, 44-51.	2.5	9
254	Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Archiv European Journal of Physiology, 2013, 465, 1451-1458.	1.3	44
255	Blood viscosity in microvessels: Experiment and theory. Comptes Rendus Physique, 2013, 14, 470-478.	0.3	100
256	CHAPTER 2. Bone Structural Adaptation and Wolff's Law. RSC Smart Materials, 2013, , 17-45.	0.1	3
257	Mechanobiology of bone. Aging Clinical and Experimental Research, 2013, 25, 3-7.	1.4	61
258	The Fluid Mechanics of Cancer and Its Therapy. Annual Review of Fluid Mechanics, 2013, 45, 325-355.	10.8	117
259	Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism. Bioelectromagnetics, 2013, 34, 85-94.	0.9	33
260	Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, 101011-1010115.	0.8	26
261	Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. American Journal of Physiology - Cell Physiology, 2013, 304, C137-C146.	2.1	109
262	Numerical simulation of the hydrodynamics of endothelial glycocalyx under shear flow. , 2013, , .		0

#	Article	lF	Citations
263	Shear-induced force transmission in a multicomponent, multicell model of the endothelium. Journal of the Royal Society Interface, 2014, 11, 20140431.	1.5	24
264	Loss of Syndecan-1 Induces a Pro-inflammatory Phenotype in Endothelial Cells with a Dysregulated Response to Atheroprotective Flow. Journal of Biological Chemistry, 2014, 289, 9547-9559.	1.6	106
265	Instabilities in the boundary layer over a permeable, compliant wall. Physics of Fluids, 2014, 26, .	1.6	9
266	Red blood cell dynamics in polymer brush-coated microcapillaries: A model of endothelial glycocalyx <i>in vitro</i> . Biomicrofluidics, 2014, 8, 014104.	1.2	32
267	Physical Biology in Cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. American Journal of Physiology - Cell Physiology, 2014, 306, C89-C97.	2.1	70
268	Are cellular mechanosensors potential therapeutic targets in osteoarthritis?. International Journal of Clinical Rheumatology, 2014, 9, 155-167.	0.3	11
269	Mechanosensation. Progress in Molecular Biology and Translational Science, 2014, 126, 75-102.	0.9	25
270	Flow-dependent concentration polarization and the endothelial glycocalyx layer: multi-scale aspects of arterial mass transport and their implications for atherosclerosis. Biomechanics and Modeling in Mechanobiology, 2014, 13, 313-326.	1.4	24
271	Vascular endothelium: a vulnerable transit zone for merciless sodium. Nephrology Dialysis Transplantation, 2014, 29, 240-246.	0.4	40
272	Modelling of binding free energy of targeted nanocarriers to cell surface. Heat and Mass Transfer, 2014, 50, 315-321.	1.2	3
273	Nanomechanics of vascular endothelium. Cell and Tissue Research, 2014, 355, 727-737.	1.5	73
274	Association of Kidney Function with Changes in the Endothelial Surface Layer. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 698-704.	2.2	115
275	Mechanical Loading by Fluid Shear Stress of Myotube Glycocalyx Stimulates Growth Factor Expression and Nitric Oxide Production. Cell Biochemistry and Biophysics, 2014, 69, 411-419.	0.9	49
276	Structure and Response to Flow of the Glycocalyx Layer. Biophysical Journal, 2014, 106, 232-243.	0.2	70
277	Mechanosensing at the Vascular Interface. Annual Review of Biomedical Engineering, 2014, 16, 505-532.	5.7	146
278	Endothelial glycocalyx layer in the aqueous outflow pathway of bovine and human eyes. Experimental Eye Research, 2014, 128, 27-33.	1.2	23
281	Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows. European Physical Journal E, 2014, 37, 19.	0.7	12
282	Perlecan-Containing Pericellular Matrix Regulates Solute Transport and Mechanosensing Within the Osteocyte Lacunar-Canalicular System. Journal of Bone and Mineral Research, 2014, 29, 878-891.	3.1	82

#	Article	IF	CITATIONS
283	Cardiovascular manifestations of the emerging dengue pandemic. Nature Reviews Cardiology, 2014, 11, 335-345.	6.1	110
284	Transport of Low-Density Lipoprotein Into the Blood Vessel Wall During Atherogenic Diet in the Isolated Rabbit Carotid Artery. Circulation Journal, 2015, 79, 1846-1852.	0.7	3
285	A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140955.	1.0	6
286	Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Science, 2015, 13, 30.	0.7	5
287	Role of the endothelial surface layer in neutrophil recruitment. Journal of Leukocyte Biology, 2015, 98, 503-515.	1.5	104
288	A microscopic view on the renal endothelial glycocalyx. American Journal of Physiology - Renal Physiology, 2015, 308, F956-F966.	1.3	100
289	Comparative analysis of effects of cyclic uniaxial and equiaxial stretches on gene expression of human umbilical vein endothelial cells. Cell Biology International, 2015, 39, 741-749.	1.4	6
290	Dynamic reciprocity revisited. Journal of Theoretical Biology, 2015, 370, 205-208.	0.8	12
291	Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab on A Chip, 2015, 15, 1205-1212.	3.1	55
292	Hemodynamics in the Developing Cardiovascular System. , 2015, , 371-405.		3
293	Dense brushes of stiff polymers or filaments in fluid flow. Europhysics Letters, 2015, 109, 68001.	0.7	11
294	Shear stress is normalized in glomerular capillaries following âš nephrectomy. American Journal of Physiology - Renal Physiology, 2015, 308, F588-F593.	1.3	22
295	Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1165-1173.	1.9	22
296	Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-9.	2.0	0
297	Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1889-1904.	1.9	42
298	Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, 2015, 12, 20140970.	1.5	288
299	Mechanoreception at the cell membrane: More than the integrins. Archives of Biochemistry and Biophysics, 2015, 586, 20-26.	1.4	46
300	The glycocalyxâ€"linking albuminuria with renal and cardiovascular disease. Nature Reviews Nephrology, 2015, 11, 667-676.	4.1	128

#	ARTICLE	IF	CITATIONS
301	Flow-induced stress on adherent cells in microfluidic devices. Lab on A Chip, 2015, 15, 4114-4127.	3.1	111
302	Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting. International Journal of Nanomedicine, 2016, Volume 11, 3305-3315.	3.3	34
303	Recent advances in understanding dengue. F1000Research, 2016, 5, 78.	0.8	40
304	Endothelial Mechanosignaling: Does One Sensor Fit All?. Antioxidants and Redox Signaling, 2016, 25, 373-388.	2.5	128
305	Measurement of concentration distribution in endothelial surface layer using super resolution LIF technique. Transactions of the JSME (in Japanese), 2016, 82, 15-00404-15-00404.	0.1	0
306	Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics. Journal of Fluid Mechanics, 2016, 798, 812-852.	1.4	13
307	Where's the Leak in Vascular Barriers? A Review. Shock, 2016, 46, 20-36.	1.0	35
309	Swimming in a two-dimensional Brinkman fluid: Computational modeling and regularized solutions. Physics of Fluids, 2016, 28, .	1.6	26
310	Mechanisms of osteocyte stimulation in osteoporosis. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 158-168.	1.5	37
311	Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5293-5298.	3.3	68
312	A fast method to compute triply-periodic Brinkman flows. Computers and Fluids, 2016, 133, 55-67.	1.3	4
313	Dispersion controlled by permeable surfaces: surface properties and scaling. Journal of Fluid Mechanics, 2016, 801, 13-42.	1.4	38
314	The Functions of Endothelial Glycocalyx and Their Effects on Patient Outcomes During the Perioperative Period. A Review of Current Methods to Evaluate Structure-Function Relations in the Glycocalyx in Both Basic Research and Clinical Settings., 2016,,75-116.		4
315	Vortex ring behavior provides the epigenetic blueprint for the human heart. Scientific Reports, 2016, 6, 22021.	1.6	69
316	Surface wave excitations and backflow effect over dense polymer brushes. Scientific Reports, 2016, 6, 22257.	1.6	7
317	Fundamentals of Vascular Bio-fluid and Solid Mechanics. , 2016, , 13-45.		1
318	Mechanotransduction of Shear Stress by the Endothelium., 2016, , 159-197.		2
319	Vascular Engineering. , 2016, , .		6

#	ARTICLE	IF	CITATIONS
320	Non-affinity factors modulating vascular targeting of nano- and microcarriers. Advanced Drug Delivery Reviews, 2016, 99, 97-112.	6.6	65
321	Intravenous Fluids and Acute Kidney Injury. Blood Purification, 2017, 43, 163-172.	0.9	4,905
322	Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. Journal of Cellular and Molecular Medicine, 2017, 21, 1457-1462.	1.6	80
323	Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Current Heart Failure Reports, 2017, 14, 117-126.	1.3	66
324	Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation. Scientific Reports, 2017, 7, 46476.	1.6	39
326	A biphasic approach for the study of lift generation in soft porous media. Physics of Fluids, 2017, 29, .	1.6	12
327	Physics-based hybrid method for multiscale transport in porous media. Journal of Computational Physics, 2017, 344, 320-338.	1.9	31
328	Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. Journal of the Royal Society Interface, 2017, 14, 20170185.	1.5	37
329	Sialic acids regulate microvessel permeability, revealed by novel <i>in vivo</i> studies of endothelial glycocalyx structure and function. Journal of Physiology, 2017, 595, 5015-5035.	1.3	98
330	Examining Nanoparticle Adsorption on Electrostatically "Patchy―Glycopolymer Brushes Using Real-Time ζ-Potential Measurements. Langmuir, 2017, 33, 6322-6332.	1.6	2
331	Glycocalyx bending by an electric field increases cell motility. Bioelectromagnetics, 2017, 38, 482-493.	0.9	5
332	From red cells to soft lubrication, an experimental study of lift generation inside a compressible porous layer. Journal of Fluid Mechanics, 2017, 818, 5-25.	1.4	10
333	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29
334	Nonlinear flow response of soft hair beds. Nature Physics, 2017, 13, 1014-1019.	6.5	37
335	On the examination of the Darcy permeability of soft fibrous porous media; new correlations. Chemical Engineering Science, 2017, 173, 525-536.	1.9	29
336	On the Dynamic Suction Pumping of Blood Cells in Tubular Hearts. Association for Women in Mathematics Series, 2017, , 211-231.	0.1	9
337	Combined effects of shear stress and glucose on the morphology, actin filaments, and VE-cadherin of endothelial cells in vitro. IJC Heart and Vasculature, 2017, 15, 31-35.	0.6	5
338	Large-scale molecular dynamics simulation of coupled dynamics of flow and glycocalyx: towards understanding atomic events on an endothelial cell surface. Journal of the Royal Society Interface, 2017, 14, 20170780.	1.5	22

#	ARTICLE	IF	CITATIONS
339	Laminar flow drag reduction on soft porous media. Scientific Reports, 2017, 7, 17263.	1.6	18
340	Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Scientific Reports, 2017, 7, 17138.	1.6	59
341	Glycocalyx in Atherosclerosis-Relevant Endothelium Function and as a Therapeutic Target. Current Atherosclerosis Reports, 2017, 19, 63.	2.0	89
342	Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. Journal of Materials Chemistry B, 2017, 5, 9249-9277.	2.9	113
343	Endothelial Glycocalyx-Mediated Nitric Oxide Production in Response to Selective AFM Pulling. Biophysical Journal, 2017, 113, 101-108.	0.2	77
344	Mechanotransduction Mechanisms in Mitral Valve Physiology and Disease Pathogenesis. Frontiers in Cardiovascular Medicine, 2017, 4, 83.	1.1	18
345	Rat Liver Enzyme Release Depends on Blood Flow-Bearing Physical Forces Acting in Endothelium Glycocalyx rather than on Liver Damage. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	9
346	5.6 Effects of Mechanical Stress on Cells â~†., 2017, , 102-114.		0
347	Endothelial Glycocalyx: Basic Science and Clinical Implications. Anaesthesia and Intensive Care, 2017, 45, 295-307.	0.2	97
348	Three-Dimensional Low Reynolds Number Flows near Biological Filtering and Protective Layers. Fluids, 2017, 2, 62.	0.8	8
349	Theoretical study of the effect of piezoelectric bone matrix on transient fluid flow in the osteonal lacunocanaliculae. Journal of Orthopaedic Research, 2018, 36, 2239-2249.	1,2	6
350	Laminar shear stress modulates endothelial luminal surface stiffness in a tissueâ€specific manner. Microcirculation, 2018, 25, e12455.	1.0	10
351	Structure and elasticity of bush and brush-like models of the endothelial glycocalyx. Scientific Reports, 2018, 8, 240.	1.6	24
352	Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces. Carbohydrate Polymers, 2018, 190, 346-355.	5.1	22
353	Endothelial cell dysfunction and glycocalyx – A vicious circle. Matrix Biology, 2018, 71-72, 421-431.	1.5	112
354	Endothelial permeability, LDL deposition, and cardiovascular risk factors—a review. Cardiovascular Research, 2018, 114, 35-52.	1.8	208
355	Vascular Cell Glycocalyx-Mediated Vascular Remodeling Induced by Hemodynamic Environmental Alteration. Hypertension, 2018, 71, 1201-1209.	1.3	14
356	Mechanobiology in vascular remodeling. National Science Review, 2018, 5, 933-946.	4.6	18

#	ARTICLE	IF	CITATIONS
357	Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis. Cancer Drug Discovery and Development, 2018, , 117-148.	0.2	2
358	Structural alteration of the endothelial glycocalyx: contribution of the actin cytoskeleton. Biomechanics and Modeling in Mechanobiology, 2018, 17, 147-158.	1.4	22
359	Endothelial Mechanotransduction., 2018,, 37-58.		0
360	Endothelial Dysfunction as a Consequence of Endothelial Glycocalyx Damage: A Role in the Pathogenesis of Preeclampsia. , 0, , .		4
361	The Application of Electric Fields in Biology and Medicine. , 0, , .		16
362	Fluid dynamics in heart development: effects of hematocrit and trabeculation. Mathematical Medicine and Biology, 2018, 35, 493-516.	0.8	17
363	Mathematical Model on Magnetic Drug Targeting in Microvessel., 0, , .		4
364	Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomaterials Science and Engineering, 2018, 4, 3818-3842.	2.6	34
365	The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. Advances in Experimental Medicine and Biology, 2018, 1097, 1-27.	0.8	66
366	The Molecular Structure of the Endothelial Glycocalyx Layer (EGL) and Surface Layers (ESL) Modulation of Transvascular Exchange. Advances in Experimental Medicine and Biology, 2018, 1097, 29-49.	0.8	14
367	On the Physics Underlying Longitudinal Capillary Recruitment. Advances in Experimental Medicine and Biology, 2018, 1097, 191-200.	0.8	0
368	The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. International Journal of Molecular Sciences, 2018, 19, 2559.	1.8	35
369	Oncotically Driven Control over Glycocalyx Dimension for Cell Surface Engineering and Protein Binding in the Longitudinal Direction. Scientific Reports, 2018, 8, 7581.	1.6	9
370	Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Annals of Biomedical Engineering, 2018, 46, 1309-1324.	1.3	20
371	Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2104-2111.	1.1	18
372	Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model. Biomedical Optics Express, 2018, 9, 2383.	1.5	28
373	Hyaluronidase2 (Hyal2) modulates low shear stressâ€induced glycocalyx impairment via the LKB1/AMPK/NADPH oxidaseâ€dependent pathway. Journal of Cellular Physiology, 2018, 233, 9701-9715.	2.0	15
374	Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Frontiers in Physiology, 2018, 9, 168.	1.3	19

#	Article	IF	CITATIONS
375	Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Frontiers in Physiology, 2018, 9, 524.	1.3	119
376	Hydrodynamic dispersion in thin channels with micro-structured porous walls. Physics of Fluids, 2018, 30, .	1.6	30
377	An experimental study of the lubrication theory for highly compressible porous media, with and without lateral leakage. Tribology International, 2018, 127, 324-332.	3.0	5
378	Coagulation Abnormalities in Sepsis. , 2019, , 508-517.e3.		0
379	The quest for blood-compatible materials: Recent advances and future technologies. Materials Science and Engineering Reports, 2019, 138, 118-152.	14.8	66
380	Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces. Soft Matter, 2019, 15, 1747-1757.	1.2	17
381	Mechanotransmission of haemodynamic forces by the endothelial glycocalyx in a full-scale arterial model. Royal Society Open Science, 2019, 6, 190607.	1.1	3
382	Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. Nanoscale, 2019, 11, 11227-11235.	2.8	27
383	Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis. Soft Matter, 2019, 15, 5128-5137.	1.2	16
384	Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. Langmuir, 2019, 35, 8076-8084.	1.6	9
385	Endothelial Glycocalyx Shedding Predicts Donor Organ Acceptability and Is Associated With Primary Graft Dysfunction in Lung Transplant Recipients. Transplantation, 2019, 103, 1277-1285.	0.5	21
386	Vortex Dynamics in Trabeculated Embryonic Ventricles. Journal of Cardiovascular Development and Disease, 2019, 6, 6.	0.8	12
387	Understanding endothelial glycocalyx function under flow shear stress from a molecular perspective. Biorheology, 2019, 56, 89-100.	1.2	5
388	On the study of fluid flow in a soft porous media using a scaled-up indenter. European Journal of Mechanics, B/Fluids, 2019, 76, 332-339.	1.2	3
389	Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx. Biophysical Journal, 2019, 116, 694-708.	0.2	27
390	Computation of a regularized Brinkmanlet near a plane wall. Journal of Engineering Mathematics, 2019, 114, 19-41.	0.6	4
391	Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment. Advanced Biology, 2019, 3, e1800252.	3.0	60
392	Endothelial Nanomechanics in the Context of Endothelial (Dys)function and Inflammation. Antioxidants and Redox Signaling, 2019, 30, 945-959.	2.5	23

#	Article	IF	CITATIONS
393	Membrane Deformation of Endothelial Surface Layer Interspersed with Syndecan-4: A Molecular Dynamics Study. Annals of Biomedical Engineering, 2020, 48, 357-366.	1.3	5
394	Bone adaptation: Safety factors and load predictability in shaping skeletal form. Bone, 2020, 131, 115114.	1.4	31
395	Primary cilia have a length-dependent persistence length. Biomechanics and Modeling in Mechanobiology, 2020, 19, 445-460.	1.4	8
396	Syndecanâ€4, a model proteoglycan to study endothelial glycocalyx mechanosensing and signal transduction. Acta Physiologica, 2020, 228, e13410.	1.8	3
397	Principal mode of Syndecanâ€4 mechanotransduction for the endothelial glycocalyx is a scissorâ€like dimer motion. Acta Physiologica, 2020, 228, e13376.	1.8	22
398	The hydromechanics in arteriogenesis. Aging Medicine (Milton (N S W)), 2020, 3, 169-177.	0.9	5
399	The vital role for nitric oxide in intraocular pressure homeostasis. Progress in Retinal and Eye Research, 2021, 83, 100922.	7.3	48
400	Polyethylene Glycol 35 as a Perfusate Additive for Mitochondrial and Glycocalyx Protection in HOPE Liver Preservation. International Journal of Molecular Sciences, 2020, 21, 5703.	1.8	24
401	Sodium ion transport across the endothelial glycocalyx layer under electric field conditions: A molecular dynamics study. Journal of Chemical Physics, 2020, 153, 105102.	1.2	3
403	Peritubular Capillary Rarefaction: An Underappreciated Regulator of CKD Progression. International Journal of Molecular Sciences, 2020, 21, 8255.	1.8	33
404	Aqueous surface gels as low friction interfaces to mitigate implant-associated inflammation. Journal of Materials Chemistry B, 2020, 8, 6782-6791.	2.9	8
405	Elastohydrodynamics of a deformable porous packing in a channel competing under shear and pressure gradient. Physics of Fluids, 2020, 32, .	1.6	10
406	Effect of molecular shape of suspended colloids on an osmotic flow across a fibrous membrane. Chemical Engineering Science, 2020, 217, 115521.	1.9	1
407	Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Advanced Healthcare Materials, 2020, 9, e1901255.	3.9	35
408	Nanomechanics of the Endothelial Glycocalyx. American Journal of Pathology, 2020, 190, 732-741.	1.9	69
409	Influence of endothelial glycocalyx layer microstructure upon its role as a mechanotransducer. Journal of Fluid Mechanics, 2020, 893, .	1.4	4
410	The glycocalyx core protein Glypican 1 protects vessel wall endothelial cells from stiffness-mediated dysfunction and disease. Cardiovascular Research, 2021, 117, 1592-1605.	1.8	36
411	Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia. Microvascular Research, 2021, 133, 104099.	1.1	7

#	Article	IF	CITATIONS
412	The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases. Cardiovascular Engineering and Technology, 2021, 12, 37-71.	0.7	67
413	Polarized Proteins in Endothelium and Their Contribution to Function. Journal of Vascular Research, 2021, 58, 65-91.	0.6	18
414	Flow shear stress controls the initiation of neovascularization <i>via</i> heparan sulfate proteoglycans within a biomimetic microfluidic model. Lab on A Chip, 2021, 21, 421-434.	3.1	17
415	Physiology of the Endothelium. , 2021, , 7-16.		0
416	Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury—An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. International Journal of Molecular Sciences, 2021, 22, 1864.	1.8	21
417	The Endothelial Glycocalyx and Organ Preservation—From Physiology to Possible Clinical Implications for Solid Organ Transplantation. International Journal of Molecular Sciences, 2021, 22, 4019.	1.8	12
418	Effect of endothelial glycocalyx on water and LDL transport through the rat abdominal aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1724-H1737.	1.5	8
420	Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Communications Biology, 2021, 4, 764.	2.0	77
421	Malonyldialdehyde- and Methylglyoxal-Induced Suppression ofÂEndothelium-Mediated Dilation of Rat Iliac Artery inÂResponse to Elevation of Blood Flow. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 792-802.	0.2	3
422	Critical Role of LSEC in Post-Hepatectomy Liver Regeneration and Failure. International Journal of Molecular Sciences, 2021, 22, 8053.	1.8	20
423	Detrimental or beneficial: Role of endothelial ENaC in vascular function. Journal of Cellular Physiology, 2022, 237, 29-48.	2.0	10
424	Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nature Biomedical Engineering, 2021, 5, 1202-1216.	11.6	12
425	On the modeling of mechanotransduction in flow-mediated dilation. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104606.	1.5	2
426	Symmetries in porous flows: recursive solutions of the Brinkman equation in polygonal ducts. Journal of Physics Communications, 2021, 5, 085006.	0.5	0
427	Understanding the Role of Endothelial Glycocalyx in Mechanotransduction via Computational Simulation: A Mini Review. Frontiers in Cell and Developmental Biology, 2021, 9, 732815.	1.8	4
428	Glycocalyx crowding with mucin mimetics strengthens binding of soluble and virus-associated lectins to host cell glycan receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
429	Editorial: Understanding molecular interactions that underpin vascular mechanobiology. APL Bioengineering, 2021, 5, 030401.	3.3	3
430	Physics of unsteady Couette flow in an anisotropic porous medium. Journal of Engineering Mathematics, 2021, 130, 1.	0.6	6

#	Article	IF	CITATIONS
431	Hydrodynamic instability and flow reduction in polymer brush coated channels. Soft Matter, 2021, 17, 9235-9245.	1.2	1
432	Biomechanical Modulation of Endothelial Phenotype: Implications for Health and Disease. Handbook of Experimental Pharmacology, 2006, , 79-95.	0.9	40
433	Methods to Study Glycoproteins at the Blood-Brain Barrier Using Mass Spectrometry. Methods in Molecular Biology, 2011, 686, 337-353.	0.4	17
434	The Functions of Endothelial Glycocalyx and Their Effects on Patient Outcomes During the Perioperative Period: A Review of Current Methods to Evaluate Structure-Function Relations in the Glycocalyx in Both Basic Research and Clinical Settings. , 2020, , 75-118.		3
435	Recent Advancements in Microcirculatory Image Acquisition and Analysis. Yearbook of Intensive Care and Emergency Medicine, 2008, , 677-690.	0.1	8
436	Cytoskeletal Mechanics and Rheology. , 2011, , 167-188.		3
437	Functional Adaptation and Remodeling of Arteries to Hemodynamic Forces: Role of Reactive Oxygen Species and the Vascular Renin-Angiotensin System., 2014, , 1213-1237.		1
438	Physiology and Pathophysiology of the Venous System. , 2015, , 4289-4304.		1
439	Physiology and Pathophysiology of the Venous System. , 2014, , 1-19.		2
440	Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules. Scientific Reports, 2020, 10, 22443.	1.6	25
441	Glycosylated Peptide Materials. RSC Soft Matter, 2020, , 335-362.	0.2	3
442	The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clinical Science, 2020, 134, 2399-2418.	1.8	60
443	Hydrocortisone Preserves the Vascular Barrier by Protecting the Endothelial Glycocalyx. Anesthesiology, 2007, 107, 776-784.	1.3	215
444	Experimental study of soft porous lubrication. Physical Review Fluids, 2019, 4, .	1.0	3
445	Characterization of blood velocity in arteries using a combined analytical and Doppler imaging approach. Physical Review Fluids, 2019, 4, .	1.0	3
446	Mathematical model to determine the effect of a sub-glycocalyx space. Physical Review Fluids, 2020, 5, .	1.0	3
447	MOLECULAR BASIS OF MODULATION OF VASCULAR FUNCTIONS BY MECHANICAL FORCES. Advanced Series in Biomechanics, 2008, , 79-97.	0.1	4
448	Nanomechanics and Sodium Permeability of Endothelial Surface Layer Modulated by Hawthorn Extract WS 1442. PLoS ONE, 2012, 7, e29972.	1.1	34

#	Article	IF	Citations
449	High Glucose Attenuates Shear-Induced Changes in Endothelial Hydraulic Conductivity by Degrading the Glycocalyx. PLoS ONE, 2013, 8, e78954.	1.1	49
450	Direct Observation of Enhanced Nitric Oxide in a Murine Model of Diabetic Nephropathy. PLoS ONE, 2017, 12, e0170065.	1.1	7
451	Modeling Loss of Microvascular Wall Homeostasis during Glycocalyx Deterioration and Hypertension that Impacts Plasma Filtration and Solute Exchange. Current Neurovascular Research, 2016, 13, 147-155.	0.4	3
452	Involvement of endothelial Man and Gal-binding lectins in sensing the flow in coronary arteries. Frontiers in Bioscience - Landmark, 2008, Volume, 5421.	3.0	8
453	Perioperative implication of the endothelial glycocalyx. Korean Journal of Anesthesiology, 2018, 71, 92-102.	0.9	22
454	Cellular Mechanotransduction. , 2004, , .		0
455	Impaired Coronary Capillary Hemodynamics with Decreased Glycocalyx Thickness and Irregular Inner Wall Remodeling in Right Ventricle of Pulmonary Hypertensive Rats. Okayama Igakkai Zasshi, 2008, 119, 247-251.	0.0	0
456	Role of Proteoglycans in Vascular Mechanotransduction. , 2010, , 219-236.		2
458	Kinetic Modeling of Peritoneal Dialysis. Studies in Computational Intelligence, 2013, , 1427-1475.	0.7	0
459	Taking the "initial dip―into cellular mechanisms of neurovascular coupling. Journal of Systems and Integrative Neuroscience, 2016, 2, 127-134.	0.6	0
460	Synthetic Hydrogels for Expansion of Functional Endothelial Cells. Springer Series in Biomaterials Science and Engineering, 2018, , 31-71.	0.7	0
462	Impaired Endothelial Glycocalyx Predicts Adverse Outcome in Subjects Without Overt Cardiovascular Disease: a 6-Year Follow-up Study. Journal of Cardiovascular Translational Research, 2022, 15, 890-902.	1.1	13
463	Oxygen Transport Analysis in Cortical Bone Trough Microstructural Porous Canal Network. IFMBE Proceedings, 2009, , 2099-2101.	0.2	0
466	Endothelial Glycocalyx and Cardiopulmonary Bypass. Journal of Extra-Corporeal Technology, 2017, 49, 174-181.	0.2	20
467	Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. Small, 2021, , 2103466.	5.2	5
468	An analysis of non-colloid suspended particles in a Newtonian fluid over porous media. European Journal of Mechanics, B/Fluids, 2021, 92, 143-143.	1.2	0
469	Epithelial Na+ channel and the glycocalyx: a sweet and salty relationship for arterial shear stress sensing. Current Opinion in Nephrology and Hypertension, 2022, 31, 142-150.	1.0	6
470	Dynamics and apparent permeability of the glycocalyx layer: Start-up and pulsating shear experiments <i>in silico</i>). Physical Review Fluids, 2022, 7, .	1.0	5

#	Article	IF	Citations
471	Hyaluronan and hyalectans: The good, the bad, and the ugly., 2022, , 165-192.		0
472	Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annual Review of Biomedical Engineering, 2022, 24, 29-59.	5.7	11
473	Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Scientific Reports, 2022, 12, 6044.	1.6	5
474	Rapid shear stress-dependent ENaC membrane insertion is mediated by the endothelial glycocalyx and the mineralocorticoid receptor. Cellular and Molecular Life Sciences, 2022, 79, 235.	2.4	10
477	On the examination of the viscous response of the brachial artery during flow-mediated dilation. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 131, 105255.	1.5	0
478	Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx?. Experimental Cell Research, 2022, 417, 113204.	1.2	2
479	Usefulness of Serum Biomarkers of Endothelial Glycocalyx Damage in Prognosis of Decompensated Patients with Heart Failure with Reduced Ejection Fraction. American Journal of Cardiology, 2022, 176, 73-78.	0.7	3
482	Heterogeneous Maturation of Arterio-Venous Fistulas and Loop-Shaped Venous Interposition Grafts: A Histological and 3D Flow Simulation Comparison. Biomedicines, 2022, 10, 1508.	1.4	2
483	Development of, and environmental impact on, endothelial cell diversity., 2022, , 5-15.		0
484	Two Methods of AuNPs Synthesis Induce Differential Vascular Effects. The Role of the Endothelial Glycocalyx. Frontiers in Medicine, 0, 9, .	1.2	1
485	Endothelial glycocalyx permeability for nanoscale solutes. Nanomedicine, 0, , .	1.7	3
486	Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells. Cellular and Molecular Bioengineering, 0, , .	1.0	1
487	Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Frontiers in Medicine, 0, 9, .	1.2	8
489	Glycocalyx Components Detune the Cellular Uptake of Gold Nanoparticles in a Size- and Charge-Dependent Manner. ACS Applied Bio Materials, 2023, 6, 64-73.	2.3	2
490	Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. International Journal of Molecular Sciences, 2023, 24, 128.	1.8	13
491	The Endothelial Glycocalyx and Retinal Hemodynamics. Pathophysiology, 2022, 29, 663-677.	1.0	1
492	Penetration of Cell Surface Glycocalyx by Enveloped Viruses Is Aided by Weak Multivalent Adhesive Interaction. Journal of Physical Chemistry B, 2023, 127, 486-494.	1.2	0
493	Bone strength, bone remodeling, and Biomechanics of fracture. , 2023, , 515-546.		0

#	ARTICLE	IF	CITATIONS
494	Impairment of endothelial glycocalyx in atherosclerosis and obesity. Current Topics in Membranes, 2023, , 1-19.	0.5	3
495	The glycocalyx and calcium dynamics in endothelial cells. Current Topics in Membranes, 2023, , 21-41.	0.5	1
496	Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Medicine in Drug Discovery, 2023, 18, 100158.	2.3	8