Cardiorespiratory Fitness and the Incidence of Type 2 D Japanese men

Diabetes Care 26, 2918-2922

DOI: 10.2337/diacare.26.10.2918

Citation Report

#	Article	IF	CITATIONS
1	Metabolic syndrome and other factors associated with increased risk of diabetes. Clinical Cornerstone, 2004, 6, S14-S29.	0.7	20
2	Current literature in diabetes. Diabetes/Metabolism Research and Reviews, 2004, 20, 337-344.	4.0	O
3	C-Reactive protein is inversely related to physical fitness in middle-aged subjects. Atherosclerosis, 2004, 176, 173-179.	0.8	87
4	Physical activity and diabetes prevention. Journal of Applied Physiology, 2005, 99, 1205-1213.	2.5	246
5	Physical Activity, Physical Fitness, and Risk of Type 2 Diabetes Mellitus. Metabolic Syndrome and Related Disorders, 2005, 3, 35-44.	1.3	9
6	Moderate Alcohol Consumption Lowers the Risk of Type 2 Diabetes. Diabetes Care, 2005, 28, 719-725.	8.6	574
7	Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. Journal of Applied Physiology, 2005, 99, 1193-1204.	2.5	562
8	Relative Contributions of Cardiorespiratory Fitness and Visceral Fat to Metabolic Syndrome in Patients with Diabetes Mellitus. Metabolic Syndrome and Related Disorders, 2005, 3, 213-220.	1.3	8
10	Serum brain-derived neurotrophic factor level is increased and associated with obesity in newly diagnosed female patients with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2006, 55, 852-857.	3.4	168
11	Relation of alcohol use and smoking to glucose tolerance status in Japanese men. Diabetes Research and Clinical Practice, 2006, 73, 83-88.	2.8	15
13	Epidemiological studies of exercise in diabetes prevention. Applied Physiology, Nutrition and Metabolism, 2007, 32, 583-595.	1.9	58
15	Active Smoking and the Risk of Type 2 Diabetes. JAMA - Journal of the American Medical Association, 2007, 298, 2654.	7.4	1,032
17	Adiposity, physical fitness and incident diabetes: the physical activity longitudinal study. Diabetologia, 2007, 50, 538-544.	6.3	158
18	Can we out-run the diabetes epidemic?. Diabetologia, 2007, 50, 1113-1115.	6.3	12
19	Staged diabetes management according to individual patient insulin resistance and βâ€cell function ameliorates glycaemic control in type 2 diabetes mellitus. Clinical Endocrinology, 2008, 69, 549-555.	2.4	6
20	Required muscle mass for preventing lifestyle-related diseases in Japanese women. BMC Public Health, 2008, 8, 291.	2.9	12
21	The possible influence of osteoarthritis of the knee on the accumulation of coronary risk factors in postmenopausal obese women. Obesity Research and Clinical Practice, 2008, 2, 29-34.	1.8	6
22	Maximum oxygen uptake and body composition of healthy Hong Kong Chinese adult men and women aged 20–Â64 years. Journal of Sports Sciences, 2008, 26, 295-302.	2.0	15

#	Article	IF	CITATIONS
23	Cardiorespiratory Fitness as a Predictor of Cancer Mortality Among Men With Pre-Diabetes and Diabetes. Diabetes Care, 2008, 31, 764-769.	8.6	35
24	A Prospective Study of Cardiorespiratory Fitness and Risk of Type 2 Diabetes in Women. Diabetes Care, 2008, 31, 550-555.	8.6	154
25	Is Physical Activity Without Weight Loss A Useful Strategy for Obesity Reduction?. Obesity Management, 2008, 4, 56-58.	0.2	0
26	Genes, Environment, and Interactions in Prevention of Type 2 Diabetes: A Focus on Physical Activity and Lifestyle Changes. Current Molecular Medicine, 2008, 8, 519-532.	1.3	118
27	Relationships among Fitness, Body Composition, and Physical Activity. Medicine and Science in Sports and Exercise, 2008, 40, 1163-1170.	0.4	57
28	Obesity and diabetes. , 2008, , 21-49.		1
29	Association between Maximal Oxygen Uptake and the Heart Rate Corrected-QT Interval in Postmenopausal Overweight Women. Journal of Atherosclerosis and Thrombosis, 2009, 16, 396-403.	2.0	5
30	DEVELOPMENT OF VO2max PREDICTION MODELS FROM 3-MINUTE WALK TEST. Japanese Journal of Physical Fitness and Sports Medicine, 2009, 58, 527-536.	0.0	2
31	Fat or Fit: What Is More Important?. Diabetes Care, 2009, 32, S392-S397.	8.6	72
32	Associations of Cardiorespiratory Fitness and Obesity With Risks of Impaired Fasting Glucose and Type 2 Diabetes in Men. Diabetes Care, 2009, 32, 257-262.	8.6	148
33	High-Fat Diet Induces IKK \hat{I}^2 and Reduces Insulin Sensitivity in Rats with Low Running Capacity. International Journal of Sports Medicine, 2009, 30, 631-635.	1.7	8
35	Cigarette smoking is an independent risk factor for type 2 diabetes: a fourâ€year communityâ€based prospective study. Clinical Endocrinology, 2009, 71, 679-685.	2.4	79
36	Genetic basis of interâ€individual variability in the effects of exercise on the alleviation of lifestyleâ€related diseases. Journal of Physiology, 2009, 587, 5577-5584.	2.9	28
37	Beyond epidemiology: field studies and the physiology laboratory as the whole world. Journal of Physiology, 2009, 587, 5569-5575.	2.9	44
38	Supervised Exercise in Patients with Impaired Fasting Glucose: Impact on Exercise Capacity. Clinical Journal of Sport Medicine, 2009, 19, 394-398.	1.8	23
40	Predicting V˙O2max with an Objectively Measured Physical Activity in Japanese Women. Medicine and Science in Sports and Exercise, 2010, 42, 179-186.	0.4	63
41	Muscular and Performance Fitness and the Incidence of Type 2 Diabetes: Prospective Study of Japanese Men. Journal of Physical Activity and Health, 2010, 7, 627-632.	2.0	24
42	Three-Year Changes in Fitness and Adiposity Are Independently Associated With Cardiovascular Risk Factors Among Young Danish Children. Journal of Physical Activity and Health, 2010, 7, 37-44.	2.0	11

#	Article	IF	Citations
43	The future: genes, physical activity and health. Acta Physiologica, 2010, 199, 549-556.	3.8	54
44	REFERENCE INTERVAL OF MAXIMAL OXYGEN UPTAKE (VO2max) AS ONE OF THE DETERMINANTS OF HEALTH-RELATED PHYSICAL FITNESS IN JAPAN. Japanese Journal of Physical Fitness and Sports Medicine, 2010, 59, 75-86.	0.0	5
45	The Epidemiology of Diabetes in Korea: From the Economics to Genetics. Korean Diabetes Journal, 2010, 34, 10.	0.8	19
46	A quick self-assessment tool to identify individuals at high risk of type 2 diabetes in the Chinese general population. Journal of Epidemiology and Community Health, 2010, 64, 236-242.	3.7	23
47	Smoking and Risk for Diabetes Incidence and Mortality in Korean Men and Women. Diabetes Care, 2010, 33, 2567-2572.	8.6	87
48	Physical activity, cardiorespiratory fitness and the incidence of type 2 diabetes in a prospective study of men. British Journal of Sports Medicine, 2010, 44, 238-244.	6.7	87
49	Long-Term Trends in Cardiorespiratory Fitness and the Incidence of Type 2 Diabetes. Diabetes Care, 2010, 33, 1353-1357.	8.6	65
50	A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. International Journal of Behavioral Nutrition and Physical Activity, 2010, 7, 39.	4.6	656
51	Exercise in Obesity, Metabolic Syndrome, and Diabetes. Progress in Cardiovascular Diseases, 2011, 53, 412-418.	3.1	143
52	Physical fitness and indices of lifestyle-related diseases before and after interval walking training in middle-aged and older males and females. British Journal of Sports Medicine, 2011, 45, 216-224.	6.7	54
53	Anthropometry and physical fitness in individuals with family history of type-2 diabetes mellitus: A comparative study. Indian Journal of Endocrinology and Metabolism, 2011, 15, 327.	0.4	12
54	Associations of cardiorespiratory fitness and parental history of diabetes with risk of type 2 diabetes. Diabetes Research and Clinical Practice, 2012, 95, 425-431.	2.8	14
55	Dose–response relationship between tobacco or alcohol consumption and the development of diabetes mellitus in Japanese male workers. Drug and Alcohol Dependence, 2012, 125, 276-282.	3.2	23
56	Blood Pressure Control at Rest and during Exercise in Obese Children and Adults. Journal of Obesity, 2012, 2012, 1-10.	2.7	20
57	Low Cardiorespiratory Fitness in African Americans: A Health Disparity Risk Factor?. Sports Medicine, 2013, 43, 1301-1313.	6.5	38
58	Physical Activity, Cardiorespiratory Fitness, and Exercise Training in Primary and Secondary Coronary Prevention. Circulation Journal, 2013, 77, 281-292.	1.6	272
59	Insomnia Symptoms and Cardiorespiratory Fitness in Healthy Individuals: The Nord-TrÃ,ndelag Health Study (HUNT). Sleep, 2013, 36, 99-108.	1.1	58
60	Racial differences in the response of cardiorespiratory fitness to aerobic exercise training in Caucasian and African American postmenopausal women. Journal of Applied Physiology, 2013, 114, 1375-1382.	2.5	37

#	ARTICLE	IF	CITATIONS
61	The Effects of Single Long and Accumulated Short Bouts of Exercise on Cardiovascular Risks in Male Japanese Workers: A Randomized Controlled Study. Industrial Health, 2013, 51, 563-571.	1.0	10
62	Cardiorespiratory Fitness Levels and its Correlates Among Adults with Diabetes. Cardiopulmonary Physical Therapy Journal, 2013, 24, 27-34.	0.3	13
63	Association of Cardiorespiratory Fitness and Overweight with Risk of Type 2 Diabetes in Japanese Men. PLoS ONE, 2014, 9, e98508.	2.5	23
64	Body composition analysis to determine gender specific physical fitness equations in a cohort of Saudi population. Pakistan Journal of Medical Sciences, 2014, 30, 798-903.	0.6	7
65	Physical fitness for health. The Journal of Physical Fitness and Sports Medicine, 2014, 3, 377-384.	0.3	7
66	Circulating leptin levels are associated with physical activity or physical fitness in Japanese. Environmental Health and Preventive Medicine, 2014, 19, 362-366.	3.4	15
67	Cardiorespiratory Fitness and Visceral Fat Are Key Determinants of Serum Fibroblast Growth Factor 21 Concentration in Japanese Men. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1877-E1884.	3.6	32
68	High cardiorespiratory fitness can reduce glycated hemoglobin levels regardless of polygenic risk for Type 2 diabetes mellitus in nondiabetic Japanese men. Physiological Genomics, 2014, 46, 497-504.	2.3	4
69	Cardiorespiratory fitness and the incidence of type 2 diabetes: a cohort study of Japanese male athletes. BMC Public Health, 2014, 14, 493.	2.9	18
70	Common single nucleotide polymorphisms in the FNDC5 gene are associated with glucose metabolism but do not affect serum irisin levels in Japanese men with low fitness levels. Metabolism: Clinical and Experimental, 2014, 63, 574-583.	3.4	46
71	Reference Values for Cardiorespiratory Fitness and Incidence of Type 2 Diabetes. Journal of Epidemiology, 2014, 24, 25-30.	2.4	15
72	Participation in Vigorous Sports, Not Moderate Sports, Is Positively Associated With Cardiorespiratory Fitness Among Adolescent Girls. Journal of Physical Activity and Health, 2014, 11, 596-603.	2.0	7
73	The Relationship between Serum 25-Hydroxyvitamin D Concentration, Cardiorespiratory Fitness, and Insulin Resistance in Japanese Men. Nutrients, 2015, 7, 91-102.	4.1	10
74	Cardiorespiratory Fitness and Incident Diabetes: The FIT (Henry Ford Exercise Testing) Project. Diabetes Care, 2015, 38, 1075-1081.	8.6	61
75	Cardiorespiratory fitness and risk of type 2 diabetes mellitus: A 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis, 2015, 243, 131-137.	0.8	68
77	Gene-exercise interactions in the development of cardiometabolic diseases. The Journal of Physical Fitness and Sports Medicine, 2016, 5, 25-36.	0.3	4
78	Physical Fitness Among Swedish Military Conscripts and Long-Term Risk for Type 2 Diabetes Mellitus. Annals of Internal Medicine, 2016, 164, 577.	3.9	84
79	Association of Mediterranean diet and cardiorespiratory fitness with the development of pre-diabetes and diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) study. BMJ Open Diabetes Research and Care, 2016, 4, e000229.	2.8	13

#	Article	IF	CITATIONS
80	Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation, 2016, 134, e653-e699.	1.6	1,423
81	Lifestyle Approaches and Glucose Intolerance. American Journal of Lifestyle Medicine, 2016, 10, 406-416.	1.9	3
82	Consistently High Level of Cardiorespiratory Fitness and Incidence of Type 2 Diabetes. Medicine and Science in Sports and Exercise, 2017, 49, 2048-2055.	0.4	11
83	Cardiorespiratory fitness, fatness and incident diabetes. Diabetes Research and Clinical Practice, 2017, 134, 113-120.	2.8	13
84	Prognostic value of exercise capacity among men undergoing pharmacologic treatment for erectile dysfunction: The FIT Project. Clinical Cardiology, 2017, 40, 1049-1054.	1.8	8
85	Effects of shortâ€lasting supramaximalâ€intensity exercise on dietâ€induced increase in oxygen uptake. Physiological Reports, 2017, 5, e13506.	1.7	8
86	Predictors of cardiorespiratory fitness in female and male adults with different body mass index: National Health and Nutrition Examination Survey 1999–2004 dataset. Annals of Medicine, 2017, 49, 83-92.	3.8	4
87	2. Körperliche Aktivitäund Training in der Präention bei Gesunden. , 2017, , .		0
88	The Association of Fit-Fat Index with Incident Diabetes in Japanese Men: A Prospective Cohort Study. Scientific Reports, 2018, 8, 569.	3.3	7
89	Long-term Impact of Cardiorespiratory Fitness on Type 2 Diabetes Incidence: A Cohort Study of Japanese Men. Journal of Epidemiology, 2018, 28, 266-273.	2.4	14
90	Importance of Achieving a "Fit―Cardiorespiratory Fitness Level for Several Years on the Incidence of Type 2 Diabetes Mellitus: A Japanese Cohort Study. Journal of Epidemiology, 2018, 28, 230-236.	2.4	7
91	Combined association of cardiorespiratory fitness and family history of hypertension on the incidence of hypertension: a long-term cohort study of Japanese males. Hypertension Research, 2018, 41, 1063-1069.	2.7	11
92	Tracking of cardiorespiratory fitness in Japanese men. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 25-33.	0.3	1
93	Relationship between Cardiorespiratory Fitness and Non-High-Density Lipoprotein Cholesterol: A Cohort Study. Journal of Atherosclerosis and Thrombosis, 2018, 25, 1196-1205.	2.0	15
94	High-intensity exercise to promote accelerated improvements in cardiorespiratory fitness (HI-PACE): study protocol for a randomized controlled trial. Trials, 2019, 20, 484.	1.6	2
95	An Overview of Non-exercise Estimated Cardiorespiratory Fitness: Estimation Equations, Cross-Validation and Application. Journal of Science in Sport and Exercise, 2019, 1, 38-53.	1.0	25
96	Alcohol consumption and its interaction with genetic variants are strongly associated with the risk of type 2 diabetes: a prospective cohort study. Nutrition and Metabolism, 2019, 16, 64.	3.0	8
97	Low total physical activity, high total sitting time and high sitting time on a work day are correlated with low fitness in male working adults: a cross sectional study. Bangladesh Journal of Medical Science, 2019, 18, 279-287.	0.2	1

#	Article	IF	CITATIONS
98	Leisure-Time Running Reduces the Risk of Incident Type 2 Diabetes. American Journal of Medicine, 2019, 132, 1225-1232.	1.5	23
99	Physical Activity, Cardiorespiratory Fitness, and the Diabetes Spectrum. , 2019, , 191-206.		4
100	Frequency of achieving a â€~fit' cardiorespiratory fitness level and hypertension. Journal of Hypertension, 2019, 37, 820-826.	0.5	7
101	Alcoholâ€induced impaired insulin secretion in a Japanese population: 5â€year follow up in the Gifu Diabetes Study. Journal of Diabetes Investigation, 2020, 11, 1207-1214.	2.4	5
102	Combined Associations of Work and Leisure Time Physical Activity on Incident Diabetes Risk. American Journal of Preventive Medicine, 2021, 60, e149-e158.	3.0	7
103	Prevalence and characteristics of alcohol consumption and risk of type 2 diabetes mellitus in rural China. BMC Public Health, 2021, 21, 1644.	2.9	13
105	Relación entre la capacidad cardiorrespiratoria y el rendimiento en los tests de condición fÃsica relacionada con la salud incluidos en la baterÃa ALPHA en niños de 10-12 años (Relationship between) Tj ETQq	0 0 0 rgB1	√Overlock 10
106	Visceral fat area is a strong predictor of leukocyte cell-derived chemotaxin 2, a potential biomarker of dyslipidemia. PLoS ONE, 2017, 12, e0173310.	2.5	11
107	Anti-aging therapy through fitness enhancement. Clinical Interventions in Aging, 2006, 1, 213-220.	2.9	51
108	Cardiopulmonary Fitness Is Independently Associated with Insulin Resistance in Non-Diabetes Mellitus Patients of a University Hospital in Korea. Korean Journal of Family Medicine, 2013, 34, 139.	1.2	5
109	Effects of Health Education on the Glycemic Control of Type 2 Diabetic Patients: a Meta-Analysis. The Japanese Journal of Nutrition and Dietetics, 2006, 64, 309-324.	0.1	3
110	Muscle strength at young age is not associated with future development of type 2 diabetes in Japanese male athletes. The Journal of Physical Fitness and Sports Medicine, 2017, 6, 167-173.	0.3	4
111	EFFECTS OF EXERCISE ON VISCERAL FAT IN OBESE MIDDLE-AGED MEN: COMPARISON TO DIETARY MODIFICATION. Japanese Journal of Physical Fitness and Sports Medicine, 2008, 57, 89-100.	0.0	6
112	The Effect of Bench Stepping Exercise at Nursing Home in Snowy Area. International Journal of Sport and Health Science, 2006, 4, 577-582.	0.2	0
113	The Metabolic Syndrome: Identification and Management of the Patient at High Risk for Cardiovascular Disease. Fundamental and Clinical Cardiology, 2006, , 409-440.	0.0	0
114	Anthropometric Assessment., 2007,, 581-587.		0
116	æ±äº¬ã,¬ã,¹ãƒ»ã,¹ã,¿ãƒ‡ã,£(ã,³ãƒ>ヹ¼ãƒ^ç"ç©¶)ã•ã,‰ãŧãŸæœ€å§é,ç´æ',å⊷é‡ã® Minimum zone(MZ). Japanes	se (co ornal o	of Physical Fit
118	Physical Activity, Fitness, and the Prevention of Cardiovascular Disease. , 2008, , 158-177.		O

#	Article	IF	CITATIONS
119	Physical Activity, Fitness, and the Prevention of Type 2 Diabetes., 2008, , 201-224.		0
120	METABOLIC SYNDROME RISK FACTORS IN RELATION TO AEROBIC FITNESS IN JAPANESE MIDDLE-AGED AND ELDERLY PEOPLE ^ ^#65293; ANALYSIS BASED ON ^ ^ ^ dquo; EXERCISE AND PHYSICAL ACTIVITY REFERENCE FOR HEALTH PROMOTION 2006 (EPAR2006) ^ ^ rdquo; ^ ^ *65293; Japanese Journal of Physical Fitness and Sports Medicine, 2009, 58, 341-352.	0.0	1
121	A study on the association between cardiorespiratory fitness and body fatness and metabolic risk factors in young adults. Exercise Science, 2009, 18, 295-306.	0.3	1
122	AN INVERSE ASSOCIATION BETWEEN PREDICTED 50%VO2MAX PER BODY WEIGHT AND CORONARY RISK FACTORS. Japanese Journal of Physical Fitness and Sports Medicine, 2011, 60, 139-146.	0.0	1
124	THE RELATION BETWEEN DOUBLE PRODUCT BREAK POINT DURING SUB-MAXIMAL EXERCISE AND ARTERIAL STIFFNESS IN HEALTHY ADULT FEMALES. Japanese Journal of Physical Fitness and Sports Medicine, 2011, 60, 249-257.	0.0	0
125	An inverse association between the predicted 50%VO2max per body weight calculated by a simple and novel equation and coronary risk factors. Taiikugaku Kenkyu (Japan Journal of Physical Education) Tj ETQq1 1 0.7	'843.14 rgI	BT Øverlock
126	Anthropometric Assessment., 2013,, 625-632.		0
127	PreventivnÃ-kardiologie v praxi. Cor Et Vasa, 2013, 55, 692-697.	0.1	0
128	The ABC of Physical Activity Epidemiology: How to Prepare, Plan, and Promote Your Research. Japanese Journal of Physical Fitness and Sports Medicine, 2014, 63, 425-437.	0.0	0
129	åŠ′åf者ã®ãf¡ã,¿ãfœãfªãffã,¯ã,∙ãf³ãf‰ãfãf¼ãf対ç−—æ™,é−"効率ã,'é‡è¦−ã⊷ãŸä»‹å…¥ãf−ãfã,°ãf	©ðfð®æ6	e¡ ˆê€". Journ
131	Association of Estimated Cardiorespiratory Fitness in Midlife With Cardiometabolic Outcomes and Mortality. JAMA Network Open, 2021, 4, e2131284.	5.9	13
132	Systematic review with meta-analysis of the epidemiological evidence relating smoking to type 2 diabetes. World Journal of Meta-analysis, 2020, 8, 119-152.	0.1	1
133	Overweight, physical activity and high blood pressure in children: a review of the literature. Vascular Health and Risk Management, 2007, 3, 139-49.	2.3	118
134	Cardiorespiratory fitness levels and its correlates among adults with diabetes. Cardiopulmonary Physical Therapy Journal, 2013, 24, 27-34.	0.3	4
135	Association of cardiorespiratory fitness with elevated hepatic enzyme and liver fat in Japanese patients with impaired glucose tolerance and type 2 diabetes mellitus. Journal of Sports Science and Medicine, 2010, 9, 405-10.	1.6	6
136	Accuracy of Non-Exercise Estimated Cardiorespiratory Fitness in Japanese Adults. International Journal of Environmental Research and Public Health, 2021, 18, 12288.	2.6	2
137	The combination of cardiorespiratory fitness and muscular fitness, and prevalence of diabetes mellitus in middle-aged and older men: WASEDA'S Health Study. BMC Public Health, 2022, 22, 626.	2.9	1
138	Fitness epidemiology: current trends and future research. The Journal of Physical Fitness and Sports Medicine, 2022, 11, 175-181.	0.3	0

#	Article	IF	CITATIONS
139	Sport Program Service study and Setagaya-Aoba study. The Journal of Physical Fitness and Sports Medicine, 2022, 11, 127-136.	0.3	О
140	Cardiorespiratory fitness, genetic susceptibility, inflammation and risk of incident type 2 diabetes: A population-based longitudinal study. Metabolism: Clinical and Experimental, 2022, 132, 155215.	3.4	7
141	Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19-64 years. Science and Sports, 2023, 38, 68-74.	0.5	2
142	Scientific bases for the superiority of the Tabata training. , 2022, , 5-31.		O
143	Health effects associated with smoking: a Burden of Proof study. Nature Medicine, 2022, 28, 2045-2055.	30.7	31
144	Intrinsic cardiorespiratory fitness modulates clinical and molecular response to caloric restriction. Molecular Metabolism, 2023, , 101668.	6.5	1
145	Higher mitochondrial oxidative capacity is the primary molecular differentiator in muscle of rats with high and low intrinsic cardiorespiratory fitness. Molecular Metabolism, 2023, 76, 101793.	6.5	1
146	Knowledge of Osteoporosis in Patients with Type 2 Diabetes in Mongolia: Web-based Cross-sectional Study During COVID-19 Pandemic. Turk Osteoporoz Dergisi, 2023, 29, 161-169.	0.3	O
147	Sex modulates the diet-induced changes to the plasma lipidome in a rat model of cardiorespiratory fitness. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2024, 1869, 159451.	2.4	0
149	Exploring the role of sex in the association of late chronotype on cardiorespiratory fitness. Physiological Reports, 2024, 12, .	1.7	O