Gravitational decoherence

Physical Review D 68, DOI: 10.1103/physrevd.68.085006

Citation Report

#	Article	IF	CITATIONS
1	Teleportation with a Uniformly Accelerated Partner. Physical Review Letters, 2003, 91, 180404.	7.8	261
2	Graviton emission and loss of coherence. Classical and Quantum Gravity, 2004, 21, 2339-2349.	4.0	6
3	Spin decoherence by spacetime curvature. Journal of Physics A, 2005, 38, 2029-2037.	1.6	23
4	Methods of approaching decoherence in the flavor sector due to space-time foam. Physical Review D, 2006, 74, .	4.7	29
5	Decoherence inducedCPTviolation and entangled neutral mesons. Physical Review D, 2006, 74, .	4.7	43
6	Detection of gravitational waves —An application of relativistic quantum information theory. Europhysics Letters, 2007, 78, 20006.	2.0	2
7	Decoherence in quantum gravity: issues and critiques. Journal of Physics: Conference Series, 2007, 67, 012012.	0.4	14
8	Quantum decoherence modulated by special relativity. Physical Review A, 2007, 76, .	2.5	3
9	The Unruh effect and its applications. Reviews of Modern Physics, 2008, 80, 787-838.	45.6	634
10	Detecting gravitational waves using entangled photon states. Physical Review A, 2008, 78, .	2.5	5
11	Emergent/quantum gravity: macro/micro structures of spacetime. Journal of Physics: Conference Series, 2009, 174, 012015.	0.4	38
12	Sudden death of entanglement and teleportation fidelity loss via the Unruh effect. Physical Review A, 2009, 80, .	2.5	88
13	Event Operators and Quantum Gates. , 2010, , .		0
14	QFT AS PILOT-WAVE THEORY OF PARTICLE CREATION AND DESTRUCTION. International Journal of Modern Physics A, 2010, 25, 1477-1505.	1.5	17
15	HORAVA–LIFSHITZ GRAVITY, ABSOLUTE TIME, AND OBJECTIVE PARTICLES IN CURVED SPACE. Modern Physics Letters A, 2010, 25, 1595-1601.	1.2	17
16	No quantum gravity signature from the farthest quasars. Astronomy and Astrophysics, 2011, 533, A71.	5.1	29
17	Relativistic quantum information and time machines. Contemporary Physics, 2012, 53, 1-16.	1.8	25
18	Changing quantum reference frames. Physical Review A, 2014, 89, .	2.5	41

CITATION REPORT

#	Article	IF	CITATIONS
19	Killing quantum entanglement by acceleration or a black hole. Journal of High Energy Physics, 2015, 2015, 1.	4.7	21
20	The minimum mass of a spherically symmetric object in D-dimensions, and its implications for the mass hierarchy problem. European Physical Journal C, 2015, 75, 1.	3.9	21
21	Losing Information Outside the Horizon. Entropy, 2015, 17, 4083-4109.	2.2	1
22	Quantum metrology and estimation of Unruh effect. Scientific Reports, 2014, 4, 7195.	3.3	35
23	Is the Fulling–Davies–Unruh effect valid for the case of an atom coupled to quantum electromagnetic field?. Modern Physics Letters A, 2016, 31, 1650189.	1.2	3
24	Irreversible degradation of quantum coherence under relativistic motion. Physical Review A, 2016, 93, .	2.5	49
25	Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Physical Review D, 2016, 94, .	4.7	29
26	Gravitational decoherence. Classical and Quantum Gravity, 2017, 34, 193002.	4.0	124
27	Quantum fluctuations of spacetime generate quantum entanglement between gravitationally polarizable subsystems. European Physical Journal C, 2018, 78, 1.	3.9	3
28	Nonlocal advantage of quantum coherence under relativistic frame. Modern Physics Letters B, 2018, 32, 1850377.	1.9	1
29	Gauge protected entanglement between gravity and matter. Classical and Quantum Gravity, 2018, 35, 185015.	4.0	2
30	Unruh effect as a noisy quantum channel. Physical Review A, 2018, 98, .	2.5	8
31	Multipartite Quantum Coherence and Distribution under the Unruh Effect. Annalen Der Physik, 2018, 530, 1800167.	2.4	8
32	Kinematic spin decoherence of a wave packet in a gravitational field. International Journal of Modern Physics D, 2019, 28, 1950104.	2.1	3
33	Testing the equivalence principle and discreteness of spacetime through the t3 gravitational phase with quantum information technology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 810, 135792.	4.1	2
34	Tighter Bound of Entropic Uncertainty under theÂUnruhÂEffect. Annalen Der Physik, 2020, 532, 1900386.	2.4	5
35	Complete complementarity relations in curved spacetimes. Physical Review A, 2021, 103, .	2.5	6
36	Decoherence from general relativity. Physical Review D, 2021, 103, .	4.7	7

#	Article	IF	CITATIONS
37	General Relativistic Decoherence with Applications to Dark Matter Detection. Physical Review Letters, 2021, 127, 031301.	7.8	8
38	Decoherence-free entropic gravity: Model and experimental tests. Physical Review Research, 2021, 3, .	3.6	5
39	Gravitational decoherence of dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 2020, 056-056.	5.4	16
40	Introduction: Spacetime and Quantum Gravity. , 2016, , 1-37.		0
41	Gravitational decoherence: A thematic overview. AVS Quantum Science, 2022, 4, .	4.9	8
42	Decoherence of Atomic Ensembles in Optical Lattice Clocks by Gravity. Journal of the Physical Society of Japan, 2022, 91, .	1.6	1
43	How gravitational fluctuations degrade the high-dimensional spatial entanglement. Physical Review D, 2022, 106, .	4.7	1
44	Interaction between Everett Worlds and Fundamental Decoherence in Non-Unitary Newtonian Gravity. Universe, 2023, 9, 121.	2.5	0
45	Decoherence from long-range forces in atom interferometry. Physical Review A, 2023, 107, .	2.5	0
46	A gravitationally induced decoherence model using Ashtekar variables. Classical and Quantum Gravity, 2023, 40, 094002.	4.0	3
47	Accelerating Unruh-DeWitt detectors coupled with a spinor field. Journal of High Energy Physics, 2023, 2023, .	4.7	2
48	Birth and death of entanglement between two accelerating Unruh-DeWitt detectors coupled with a scalar field. Journal of High Energy Physics, 2023, 2023, .	4.7	1
49	The nonlocal advantage of quantum coherence and Bell nonlocality under relativistic motion. Quantum Information Processing, 2024, 23, .	2.2	0

CITATION REPORT