EngineeredControl of Cell Morphology In Vivo Reveals andFilamentous Forms of Candida albicans duringInfec

Eukaryotic Cell 2, 1053-1060

DOI: 10.1128/ec.2.5.1053-1060.2003

Citation Report

#	Article	IF	CITATIONS
1	Assessment ofCandida albicansgenes expressed during infections as a tool to understand pathogenesis. Medical Mycology, 2004, 42, 293-304.	0.3	14
2	Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites. Infection and Immunity, 2004, 72, 6206-6210.	1.0	216
3	Cdc42p GTPase Regulates the Budded-to-Hyphal-Form Transition and Expression of Hypha-Specific Transcripts in Candida albicans. Eukaryotic Cell, 2004, 3, 724-734.	3.4	41
4	Role of Candida albicans polymorphism in interactions with oral epithelial cells. Oral Microbiology and Immunology, 2004, 19, 262-269.	2.8	46
5	Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis. Molecular Microbiology, 2004, 55, 637-652.	1.2	38
6	Developing animal models for polymicrobial diseases. Nature Reviews Microbiology, 2004, 2, 552-568.	13.6	118
7	Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO Journal, 2004, 23, 1845-1856.	3.5	289
8	Genetic analysis of innate immunity in resistance to Candida albicans. Genes and Immunity, 2004, 5, 576-587.	2.2	38
10	Candida morphogenesis and host–pathogen interactions. Current Opinion in Microbiology, 2004, 7, 350-357.	2.3	174
11	Genetic and Epigenetic Regulation of the FLO Gene Family Generates Cell-Surface Variation in Yeast. Cell, 2004, 116, 405-415.	13.5	335
12	A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Molecular Microbiology, 2004, 54, 1212-1223.	1.2	535
13	Innate Defense Mechanisms in Oral Candidiasis. , 2005, , 13-35.		3
14	Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society Transactions, 2005, 33, 291-293.	1.6	104
15	Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cellular Microbiology, 2005, 7, 1546-1554.	1.1	347
16	The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth inCandida albicans. Molecular Microbiology, 2005, 56, 649-669.	1.2	169
17	Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Molecular Microbiology, 2005, 57, 942-959.	1.2	87
18	Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO Journal, 2005, 24, 1277-1286.	3.5	573
19	Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobicCandida albicansserotype A cells. FEMS Microbiology Letters, 2005, 244, 373-377.	0.7	40

#	Article	IF	CITATIONS
20	Antifungal and Antitumor Activities of a Monoclonal Antibody Directed Against a Stress Mannoprotein of Candida albicans. Current Molecular Medicine, 2005, 5, 393-401.	0.6	24
21	Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Research, 2005, 33, e22-e22.	6.5	162
22	The Host Cytokine Responses and Protective Immunity in Oropharyngeal Candidiasis. Journal of Dental Research, 2005, 84, 966-977.	2.5	120
23	Microtubules in Candida albicans Hyphae Drive Nuclear Dynamics and Connect Cell Cycle Progression to Morphogenesis. Eukaryotic Cell, 2005, 4, 1697-1711.	3.4	58
24	Hyphal Guidance and Invasive Growth in Candida albicans Require the Ras-Like GTPase Rsr1p and Its GTPase-Activating Protein Bud2p. Eukaryotic Cell, 2005, 4, 1273-1286.	3.4	72
25	The G Protein-coupled Receptor Gpr1 and the Gα Protein Gpa2 Act through the cAMP-Protein Kinase A Pathway to Induce Morphogenesis inCandida albicans. Molecular Biology of the Cell, 2005, 16, 1971-1986.	0.9	188
26	Inactivation of Sterol Δ 5,6 -Desaturase Attenuates Virulence in Candida albicans. Antimicrobial Agents and Chemotherapy, 2005, 49, 3646-3651.	1.4	67
27	Hyphal Growth in the Fission Yeast Schizosaccharomyces pombe. Eukaryotic Cell, 2005, 4, 1287-1297.	3.4	44
28	Systemic Fungal Infections Caused by Candida Species: Epidemiology, Infection Process and Virulence Attributes. Current Drug Targets, 2005, 6, 863-874.	1.0	208
29	Thriving in Adolescence. Journal of Early Adolescence, 2005, 25, 94-112.	1.1	79
30	Tetracycline-Inducible Gene Expression and Gene Deletion in Candida albicans. Eukaryotic Cell, 2005, 4, 1328-1342.	3.4	172
31	Yeast wall protein 1 of Candida albicans. Microbiology (United Kingdom), 2005, 151, 1631-1644.	0.7	123
32	Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans. Eukaryotic Cell, 2005, 4, 298-309.	3.4	530
33	Induction of theCandida albicansFilamentous Growth Program by Relief of Transcriptional Repression: A Genome-wide Analysis. Molecular Biology of the Cell, 2005, 16, 2903-2912.	0.9	260
34	Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host–pathogen interaction. Research in Microbiology, 2005, 156, 822-829.	1.0	10
35	The Structure of the Candida albicans Ess1 Prolyl Isomerase Reveals a Well-Ordered Linker that Restricts Domain Mobility,. Biochemistry, 2005, 44, 6180-6189.	1.2	46
37	Drosophila melanogasteras a Facile Model for Large cale Studies of Virulence Mechanisms and Antifungal Drug Efficacy inCandidaSpecies. Journal of Infectious Diseases, 2006, 193, 1014-1022.	1.9	105
38	Determination of Antifungal Activities in Serum Samples from Mice Treated with Different Antifungal Drugs Allows Detection of an Active Metabolite of Itraconazole. Microbiology and Immunology, 2006, 50, 281-292.	0.7	3

#	Article	IF	CITATIONS
39	Morphogenesis and cell cycle progression in Candida albicans. Current Opinion in Microbiology, 2006, 9, 595-601.	2.3	210
40	A role for Efg1p inCandida albicansinteractions with extracellular matrices. FEMS Microbiology Letters, 2006, 256, 151-158.	0.7	24
41	Biofilm formation byCandida albicansmutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Research, 2006, 6, 1074-1084.	1.1	90
42	Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Molecular Microbiology, 2006, 59, 753-764.	1.2	207
43	Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microbes and Infection, 2006, 8, 791-800.	1.0	42
44	Host-Pathogen Interactions and the Pathological Consequences of Acute Systemic Candida albicans Infections in Mice. Current Drug Targets, 2006, 7, 483-494.	1.0	19
45	A Glucose Sensor in Candida albicans. Eukaryotic Cell, 2006, 5, 1726-1737.	3.4	105
46	Conserved Elements of the RAM Signaling Pathway Establish Cell Polarity in the BasidiomyceteCryptococcus neoformansin a Divergent Fashion from Other Fungi. Molecular Biology of the Cell, 2006, 17, 3768-3780.	0.9	68
47	The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 2006, 70, 660-703.	2.9	801
48	Inhibition of Filamentation Can Be Used To Treat Disseminated Candidiasis. Antimicrobial Agents and Chemotherapy, 2006, 50, 3312-3316.	1.4	110
49	Talking to Themselves: Autoregulation and Quorum Sensing in Fungi. Eukaryotic Cell, 2006, 5, 613-619.	3.4	237
50	Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence. Eukaryotic Cell, 2007, 6, 2046-2055.	3.4	118
51	Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans. Microbiology and Molecular Biology Reviews, 2007, 71, 348-376.	2.9	457
52	Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biology, 2007, 5, e64.	2.6	492
53	Effect of Farnesol on a Mouse Model of Systemic Candidiasis, Determined by Use of a DPP3 Knockout Mutant of Candida albicans. Infection and Immunity, 2007, 75, 1609-1618.	1.0	118
54	Susceptibility of gnotobiotic transgenic mice (Tgϵ26) with combined deficiencies in natural killer cells and T cells to wild-type and hyphal signalling-defective mutants of Candida albicans. Journal of Medical Microbiology, 2007, 56, 1138-1144.	0.7	10
55	Control of Ammonium Permease Expression and Filamentous Growth by the GATA Transcription Factors GLN3 and GAT1 in Candida albicans. Eukaryotic Cell, 2007, 6, 875-888.	3.4	54
56	Developmental Regulation of an Adhesin Gene during Cellular Morphogenesis in the Fungal Pathogen Candida albicans. Eukaryotic Cell, 2007, 6, 682-692.	3.4	107

#	Article	IF	Citations
57	Anticandidal Immunity and Vaginitis: Novel Opportunities for Immune Intervention. Infection and Immunity, 2007, 75, 4675-4686.	1.0	44
58	MAP kinase pathways as regulators of fungal virulence. Trends in Microbiology, 2007, 15, 181-190.	3.5	145
59	The Virulence of Human Pathogenic Fungi: Notes from the South of France. Cell Host and Microbe, 2007, 2, 77-83.	5.1	18
60	Role of mini-host models in the study of medically important fungi. Lancet Infectious Diseases, The, 2007, 7, 42-55.	4.6	81
61	Signal Transduction and Morphogenesis in Candida albicans. , 2007, , 167-194.		8
62	Host recognition of fungal pathogens. Drug Discovery Today Disease Mechanisms, 2007, 4, 247-252.	0.8	0
63	Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cellular Microbiology, 2007, 9, 1647-1659.	1.1	98
64	Effective killing of the human pathogen Candida albicans by a specific inhibitor of non-essential mitotic kinesin Kip1p. Molecular Microbiology, 2007, 65, 347-362.	1.2	16
65	Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Molecular Microbiology, 2007, 66, 915-929.	1.2	50
66	Farnesol and dodecanol effects on the <i>Candida albicans</i> Ras1 AMP signalling pathway and the regulation of morphogenesis. Molecular Microbiology, 2008, 67, 47-62.	1.2	220
67	Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. Journal of Applied Microbiology, 2007, 102, 757-765.	1.4	69
68	Collaboration between the innate immune receptors dectinâ€1, TLRs, and Nods. Immunological Reviews, 2007, 219, 75-87.	2.8	163
69	Monocyte responses to <i>Candida albicans</i> are enhanced by antibody in cooperation with antibody-independent pathogen recognition. FEMS Immunology and Medical Microbiology, 2007, 51, 70-83.	2.7	14
70	cAMP regulates vegetative growth and cell cycle in Candida albicans. Molecular and Cellular Biochemistry, 2007, 304, 331-341.	1.4	11
71	Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA). Mycopathologia, 2007, 164, 301-306.	1.3	57
72	A history of research on yeasts 12: medical yeasts part 1, <i>Candida albicans</i> . Yeast, 2008, 25, 385-417.	0.8	48
73	Cell wall glycans and soluble factors determine the interactions between the hyphae of <i>Candida albicans</i> and <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Letters, 2008, 287, 48-55.	0.7	80
74	Vacuolar dynamics during the morphogenetic transition in <i>Candida albicans</i> . FEMS Yeast Research, 2008, 8, 1339-1348.	1.1	21

#	Article	IF	CITATIONS
75	A novel DSF-like signal from <i>Burkholderia cenocepacia</i> interferes with <i>Candida albicans</i> morphological transition. ISME Journal, 2008, 2, 27-36.	4.4	250
76	<i>Candida albicans</i> transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology, 2008, 10, 2180-2196.	1.1	144
77	Transcript profiling of a MAP kinase pathway in C. albicans. Microbiological Research, 2008, 163, 380-393.	2.5	20
78	CO2 Sensing and Virulence of Candida albicans. , 2008, , 83-94.		4
79	Hyphal Growth and Virulence in Candida albicans. , 2008, , 95-114.		1
81	Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans. Fungal Genetics and Biology, 2008, 45, 1235-1247.	0.9	97
82	Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology (United Kingdom), 2008, 154, 960-970.	0.7	58
83	Prokaryote–eukaryote interactions identified by using <i>Caenorhabditis elegans</i> . Proceedings of the United States of America, 2008, 105, 14585-14590.	3.3	184
84	Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Reviews in Molecular Medicine, 2008, 10, e29.	1.6	50
85	<i>UME6</i> , a Novel Filament-specific Regulator of <i>Candida albicans</i> Hyphal Extension and Virulence. Molecular Biology of the Cell, 2008, 19, 1354-1365.	0.9	215
86	Use of a Genetically Engineered Strain To Evaluate the Pathogenic Potential of Yeast Cell and Filamentous Forms during <i>Candida albicans</i> Systemic Infection in Immunodeficient Mice. Infection and Immunity, 2008, 76, 97-102.	1.0	44
87	Transcriptome Profile of the Vascular Endothelial Cell Response to <i>Candida albicans</i> . Journal of Infectious Diseases, 2008, 198, 193-202.	1.9	39
88	The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 2251-2266.	0.9	59
89	<i>Candida albicans</i> -Endothelial Cell Interactions: a Key Step in the Pathogenesis of Systemic Candidiasis. Infection and Immunity, 2008, 76, 4370-4377.	1.0	77
90	Dynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment. PLoS Pathogens, 2008, 4, e1000227.	2.1	269
91	Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 483-492.	3.4	62
92	An Internal Polarity Landmark Is Important for Externally Induced Hyphal Behaviors in <i>Candida albicans</i> . Eukaryotic Cell, 2008, 7, 712-720.	3.4	55
93	How the host fights against Candida infections. Frontiers in Bioscience - Elite, 2009, 1, 246.	0.9	21

#	Article	IF	CITATIONS
94	How the host fights against Candida infections. Frontiers in Bioscience - Landmark, 2009, Volume, 4363.	3.0	25
95	How the host fights against Candida infections. Frontiers in Bioscience - Scholar, 2009, S1, 246-257.	0.8	13
96	Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans. Journal of Medical Microbiology, 2009, 58, 779-790.	0.7	32
97	Cellular interactions of farnesol, a quorum-sensing molecule produced by <i>Candida albicans</i> . Future Microbiology, 2009, 4, 1353-1362.	1.0	68
98	Role for Endosomal and Vacuolar GTPases in <i>Candida albicans</i> Pathogenesis. Infection and Immunity, 2009, 77, 2343-2355.	1.0	29
99	<i>Candida albicans</i> Hyphal Formation and Virulence Assessed Using a <i>Caenorhabditis elegans</i> Infection Model. Eukaryotic Cell, 2009, 8, 1750-1758.	3.4	178
100	Expression levels of a filament-specific transcriptional regulator are sufficient to determine <i>Candida albicans</i> morphology and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 599-604.	3.3	191
101	Interaction of <i>Candida albicans</i> with an Intestinal Pathogen, <i>Salmonella enterica</i> Serovar Typhimurium. Eukaryotic Cell, 2009, 8, 732-737.	3.4	81
102	<i>Candida albicans</i> Cas5, a Regulator of Cell Wall Integrity, Is Required for Virulence in Murine and <i>Toll</i> Mutant Fly Models. Journal of Infectious Diseases, 2009, 200, 152-157.	1.9	43
103	A Multifunctional, Synthetic <i>Gaussia princeps</i> Luciferase Reporter for Live Imaging of <i>Candida albicans</i> Infections. Infection and Immunity, 2009, 77, 4847-4858.	1.0	123
104	Functional Genomics of Adhesion, Invasion, and Mycelial Formation in <i>Schizosaccharomyces pombe</i> . Eukaryotic Cell, 2009, 8, 1298-1306.	3.4	18
105	Msb2 Signaling Mucin Controls Activation of Cek1 Mitogen-Activated Protein Kinase in <i>Candida albicans</i> . Eukaryotic Cell, 2009, 8, 1235-1249.	3.4	112
106	Efficacy of a Genetically Engineered Candida albicans tet-NRG1 Strain as an Experimental Live Attenuated Vaccine against Hematogenously Disseminated Candidiasis. Vaccine Journal, 2009, 16, 430-432.	3.2	45
107	Glucose Sensing Network in <i>Candida albicans</i> : a Sweet Spot for Fungal Morphogenesis. Eukaryotic Cell, 2009, 8, 1314-1320.	3.4	82
108	Adhesion of <i>Candida albicans</i> to Endothelial Cells under Physiological Conditions of Flow. Infection and Immunity, 2009, 77, 3872-3878.	1.0	58
109	The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (United Kingdom), 2009, 155, 2004-2020.	0.7	56
110	Transcriptional Responses of <i>Candida albicans</i> to Epithelial and Endothelial Cells. Eukaryotic Cell, 2009, 8, 1498-1510.	3.4	54
111	Farnesol-Induced Apoptosis in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2392-2401.	1.4	210

		CITATION R	EPORT	
#	Article		IF	CITATIONS
112	Pseudohypha budding patterns of <i>Candida albicans</i> . Medical Mycology, 2009, 47,	268-275.	0.3	33
113	2â€dodecanol (decyl methyl carbinol) inhibits hyphal formation and <i>SIR2</i> expressi albicans. Journal of Basic Microbiology, 2009, 49, 579-583.	on in <i>C.</i>	1.8	16
114	Vacuole inheritance regulates cell size and branching frequency of <i>Candida albicans< Molecular Microbiology, 2009, 71, 505-519.</i>	∣i> hyphae.	1.2	41
115	βâ€glucan recognition by the innate immune system. Immunological Reviews, 2009, 230	0, 38-50.	2.8	532
116	High environmental iron concentrations stimulate adhesion and invasive growth of <i>Schizosaccharomyces pombe</i> . FEMS Microbiology Letters, 2009, 293, 130-134.		0.7	15
117	Cross-kingdom interactions: <i>Candida albicans</i> and bacteria. FEMS Microbiology Let 299, 1-8.	ters, 2009,	0.7	362
118	Promoter regulation in <i>Candida albicans</i> and related species. FEMS Yeast Research	, 2009, 9, 2-15.	1.1	16
119	<i>Candida albicans ABG1</i> gene is involved in endocytosis. FEMS Yeast Research, 200	9, 9, 293-300.	1.1	7
120	The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogal by albicans. FEMS Yeast Research, 2009, 9, 942-955.	gen <i>Candida</i>	1.1	68
121	The antagonistic effect of <i>Saccharomyces boulardii</i> on <i>Candida albicans</i> filan adhesion and biofilm formation. FEMS Yeast Research, 2009, 9, 1312-1321.	ientation,	1.1	50
122	Quorum sensing and fungal-bacterial interactions in <i>Candida albicans</i> : a communine network regulating microbial coexistence and virulence. FEMS Yeast Research, 2009, 9, 9		1.1	100
123	<i>Candida albicans</i> internalization by host cells is mediated by a clathrin-dependent Cellular Microbiology, 2009, 11, 1179-1189.	mechanism.	1.1	128
124	Trimorphic stepping stones pave the way to fungal virulence. Proceedings of the Nationa Sciences of the United States of America, 2009, 106, 351-352.	I Academy of	3.3	48
125	An Essential Role for the NLRP3 Inflammasome in Host Defense against the Human Fung Candida albicans. Cell Host and Microbe, 2009, 5, 487-497.	al Pathogen	5.1	512
126	Our Current Understanding of Fungal Biofilms. Critical Reviews in Microbiology, 2009, 3	5, 340-355.	2.7	429
127	Recent advances in understanding human opportunistic fungal pathogenesis mechanism	ıs. , 2009, , 15-31.		2
128	Fungal-Derived Immune Modulating Molecules. Advances in Experimental Medicine and E 666, 108-120.	Biology, 2009,	0.8	42
130	The Role of MAPK Signal Transduction Pathways in the Response to Oxidative Stress in the Pathogen Candida albicans: Implications in Virulence. Current Protein and Peptide Science 693-703.	he Fungal ce, 2010, 11,	0.7	43

#	Article	IF	CITATIONS
131	An analysis of the Impact of NRG1 Overexpression on the Candida albicans Response to Specific Environmental Stimuli. Mycopathologia, 2010, 170, 1-10.	1.3	13
132	Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiology, 2010, 10, 238.	1.3	33
133	Activities of essential oils in the inhibition of Candida albicans and Candida dubliniensis germ tube formation. Journal De Mycologie Medicale, 2010, 20, 185-189.	0.7	26
134	Human oral keratinocyte E-cadherin degradation by <i>Candida albicans</i> and <i>Candida glabrata</i> . Journal of Oral Pathology and Medicine, 2010, 39, 275-278.	1.4	25
135	The effect of Saccharomyces boulardii on Candida albicans-infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiology Letters, 2010, 310, 17-23.	0.7	32
136	The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Molecular Microbiology, 2010, 76, 1572-1590.	1.2	30
137	HOS2 and HDA1 Encode Histone Deacetylases with Opposing Roles in Candida albicans Morphogenesis. PLoS ONE, 2010, 5, e12171.	1.1	34
138	Limited Role of Secreted Aspartyl Proteinases Sap1 to Sap6 in <i>Candida albicans</i> Virulence and Host Immune Response in Murine Hematogenously Disseminated Candidiasis. Infection and Immunity, 2010, 78, 4839-4849.	1.0	69
139	<i>Candida albicans</i> Hyr1p Confers Resistance to Neutrophil Killing and Is a Potential Vaccine Target. Journal of Infectious Diseases, 2010, 201, 1718-1728.	1.9	112
140	Endosomal and AP-3-Dependent Vacuolar Trafficking Routes Make Additive Contributions to Candida albicans Hyphal Growth and Pathogenesis. Eukaryotic Cell, 2010, 9, 1755-1765.	3.4	14
141	Animal Models of Mucosal Candida Infections. Methods in Microbiology, 2010, 37, 329-352.	0.4	0
142	A Clinical Isolate of <i>Candida albicans</i> with Mutations in <i>ERG11</i> (Encoding Sterol) Tj ETQq1 1 0.7843 Amphotericin B. Antimicrobial Agents and Chemotherapy, 2010, 54, 3578-3583.	814 rgBT / 1.4	Overlock 10 152
143	Differential Filamentation of Candida albicans and Candida dubliniensis Is Governed by Nutrient Regulation of <i>UME6</i> Expression. Eukaryotic Cell, 2010, 9, 1383-1397.	3.4	55
144	Pseudohyphal Regulation by the Transcription Factor Rfg1p in Candida albicans. Eukaryotic Cell, 2010, 9, 1363-1373.	3.4	24
145	Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Acta Biochimica Et Biophysica Sinica, 2010, 42, 793-800.	0.9	18
146	Contribution of <i>Candida albicans</i> Cell Wall Components to Recognition by and Escape from Murine Macrophages. Infection and Immunity, 2010, 78, 1650-1658.	1.0	225
147	A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Research, 2010, 38, e184-e184.	6.5	31
148	Candida albicans Ume6, a Filament-Specific Transcriptional Regulator, Directs Hyphal Growth via a Pathway Involving Hgc1 Cyclin-Related Protein. Eukaryotic Cell, 2010, 9, 1320-1328.	3.4	52

#	Article	IF	CITATIONS
149	The Transcriptional Regulator Nrg1p Controls Candida albicans Biofilm Formation and Dispersion. Eukaryotic Cell, 2010, 9, 1531-1537.	3.4	86
150	Identification and Characterization of Four Azole-Resistant <i>erg3</i> Mutants of <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 4527-4533.	1.4	150
151	The Set3/Hos2 Histone Deacetylase Complex Attenuates cAMP/PKA Signaling to Regulate Morphogenesis and Virulence of Candida albicans. PLoS Pathogens, 2010, 6, e1000889.	2.1	99
152	CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans. PLoS Pathogens, 2010, 6, e1001193.	2.1	104
153	Imaging morphogenesis of Candida albicans during infection in a live animal. Journal of Biomedical Optics, 2010, 15, 010504.	1.4	19
154	Bioluminescent fungi for real-time monitoring of fungal infections. Virulence, 2010, 1, 174-176.	1.8	24
155	MAPK cell-cycle regulation in <i>Saccharomyces cerevisiae</i> and <i>Candida albicans</i> . Future Microbiology, 2010, 5, 1125-1141.	1.0	26
156	Yeast Biofilms. , 2010, , 121-144.		1
157	Pathogenic Yeasts. , 2010, , .		8
158	Exposure to host or fungal PGE2abrogates protection following immunization withCandida-pulsed dendritic cells. Medical Mycology, 2011, 49, 380-394.	0.3	14
159	The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology, 2011, 48, 747-763.	0.9	141
160	Retigeric acid B exerts antifungal effect through enhanced reactive oxygen species and decreased cAMP. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 569-576.	1.1	28
161	Transcriptome profiling of endothelial cells during infections with high and low densities of C. albicans cells. International Journal of Medical Microbiology, 2011, 301, 536-546.	1.5	9
162	Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. Current Opinion in Microbiology, 2011, 14, 682-686.	2.3	45
164	Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease. PLoS ONE, 2011, 6, e20449.	1.1	6
165	Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione. PLoS ONE, 2011, 6, e28830.	1.1	63
166	Differential virulence of C <i>andida albicans</i> and <i>C. dubliniensis</i> : A role for Tor1 kinase?. Virulence, 2011, 2, 77-81.	1.8	18
167	Xenobiotic Efflux in Bacteria and Fungi: A Genomics Update. Advances in Enzymology and Related Areas of Molecular Biology, 2011, 77, 237-306.	1.3	16

#	Article	IF	CITATIONS
168	<i>Candida</i> invasion and influences in smoking patients with multiple oral leucoplakias – a retrospective study. Mycoses, 2011, 54, e377-83.	1.8	20
169	A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses, 2011, 54, e697-e703.	1.8	40
170	A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Molecular Microbiology, 2011, 79, 759-771.	1.2	65
171	Cell wall integrity is linked to mitochondria and phospholipid homeostasis in <i>Candida albicans</i> through the activity of the postâ€ŧranscriptional regulator Ccr4â€Pop2. Molecular Microbiology, 2011, 79, 968-989.	1.2	115
172	Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2011, 79, 1574-1593.	1.2	59
173	Growth of Candida albicans hyphae. Nature Reviews Microbiology, 2011, 9, 737-748.	13.6	869
174	Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans. Mammalian Genome, 2011, 22, 55-65.	1.0	55
175	Vacuolar trafficking and <i>Candida albicans</i> pathogenesis. Communicative and Integrative Biology, 2011, 4, 240-242.	0.6	22
176	The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH. MBio, 2011, 2, e00055-11.	1.8	273
177	Orthologues of the Anaphase-Promoting Complex/Cyclosome Coactivators Cdc20p and Cdh1p Are Important for Mitotic Progression and Morphogenesis in Candida albicans. Eukaryotic Cell, 2011, 10, 696-709.	3.4	17
178	Killing of Candida albicans Filaments by Salmonella enterica Serovar Typhimurium Is Mediated by sopB Effectors, Parts of a Type III Secretion System. Eukaryotic Cell, 2011, 10, 782-790.	3.4	47
179	Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Microbiology (United Kingdom), 2011, 157, 1806-1815.	0.7	43
180	Lack of Th17 Cell Generation in Patients with Severe Burn Injuries. Journal of Immunology, 2011, 187, 2155-2161.	0.4	34
181	Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiology and Molecular Biology Reviews, 2011, 75, 213-267.	2.9	448
182	Phospholipase Cγ2 (PLCγ2) Is Key Component in Dectin-2 Signaling Pathway, Mediating Anti-fungal Innate Immune Responses. Journal of Biological Chemistry, 2011, 286, 43651-43659.	1.6	47
183	Regulation of Innate Immune Response to <i>Candida albicans</i> Infections by α _M β ₂ -Pra1p Interaction. Infection and Immunity, 2011, 79, 1546-1558.	1.0	73
184	Coevolution of Morphology and Virulence in Candida Species. Eukaryotic Cell, 2011, 10, 1173-1182.	3.4	164
185	Modulation of Morphogenesis in Candida albicans by Various Small Molecules. Eukaryotic Cell, 2011, 10, 1004-1012.	3.4	110

#	Article	IF	CITATIONS
186	A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis. PLoS Genetics, 2011, 7, e1002058.	1.5	46
187	Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses. PLoS Pathogens, 2011, 7, e1002074.	2.1	131
188	Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance. PLoS Biology, 2011, 9, e1001105.	2.6	152
189	Candida albicans Als3, a Multifunctional Adhesin and Invasin. Eukaryotic Cell, 2011, 10, 168-173.	3.4	263
190	Stage Specific Assessment of Candida albicans Phagocytosis by Macrophages Identifies Cell Wall Composition and Morphogenesis as Key Determinants. PLoS Pathogens, 2012, 8, e1002578.	2.1	120
191	A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans. PLoS Pathogens, 2012, 8, e1002663.	2.1	77
192	A Candida albicans Temperature-Sensitivecdc12-6Mutant Identifies Roles for Septins in Selection of Sites of Germ Tube Formation and Hyphal Morphogenesis. Eukaryotic Cell, 2012, 11, 1210-1218.	3.4	28
193	Farnesol and Cyclic AMP Signaling Effects on the Hypha-to-Yeast Transition in Candida albicans. Eukaryotic Cell, 2012, 11, 1219-1225.	3.4	97
194	Divergent Targets of Candida albicans Biofilm Regulator Bcr1 <i>In Vitro</i> and <i>In Vivo</i> . Eukaryotic Cell, 2012, 11, 896-904.	3.4	103
195	Azole Resistance by Loss of Function of the Sterol Δ ^{5,6} -Desaturase Gene (<i>ERG3</i>) in Candida albicans Does Not Necessarily Decrease Virulence. Antimicrobial Agents and Chemotherapy, 2012, 56, 1960-1968.	1.4	85
196	Integrin αXβ2Is a Leukocyte Receptor forCandida albicansand Is Essential for Protection against Fungal Infections. Journal of Immunology, 2012, 189, 2468-2477.	0.4	23
197	Physiologic Expression of the Candida albicans Pescadillo Homolog Is Required for Virulence in a Murine Model of Hematogenously Disseminated Candidiasis. Eukaryotic Cell, 2012, 11, 1552-1556.	3.4	10
198	N-Acetylglucosamine Functions in Cell Signaling. Scientifica, 2012, 2012, 1-15.	0.6	138
199	Transcript profiling reveals rewiring of iron assimilation gene expression inCandida albicansandC.Âdubliniensis. FEMS Yeast Research, 2012, 12, 918-923.	1.1	8
200	Inhibition of Candida albicans yeast–hyphal transition and biofilm formation by Solidago virgaurea water extracts. Journal of Medical Microbiology, 2012, 61, 1016-1022.	0.7	47
201	Quorum sensing in fungi – a review. Medical Mycology, 2012, 50, 337-345.	0.3	334
202	Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biology, 2012, 116, 769-777.	1.1	21
203	Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicanshyphae. BMC Microbiology, 2012, 12, 281.	1.3	46

#	Article	IF	CITATIONS
204	Effects of salivary protein flow and indigenous microorganisms on initial colonization of Candida albicans in an in vivo model. BMC Oral Health, 2012, 12, 36.	0.8	20
205	Protein kinase A and fungal virulence. Virulence, 2012, 3, 109-121.	1.8	41
206	The histone acetyltransferase <scp>Hat</scp> 1 facilitates <scp>DNA</scp> damage repair and morphogenesis in <i><scp>C</scp>andida albicans</i> . Molecular Microbiology, 2012, 86, 1197-1214.	1.2	42
207	Morphogenesis in Candida albicans: How to Stay Focused. Topics in Current Genetics, 2012, , 133-161.	0.7	0
208	Synergistic Interaction between Candida albicans and Commensal Oral Streptococci in a Novel <i>In Vitro</i> Mucosal Model. Infection and Immunity, 2012, 80, 620-632.	1.0	205
209	<i>Candida albicans</i> dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 2012, 10, 85-93.	2.0	292
210	Metabolome analysis during the morphological transition of Candida albicans. Metabolomics, 2012, 8, 1204-1217.	1.4	24
211	Modular Gene Over-expression Strategies for Candida albicans. Methods in Molecular Biology, 2012, 845, 227-244.	0.4	18
212	Effect of exogenous administration of <i>Candida albicans</i> autoregulatory alcohols in a murine model of hematogenously disseminated candidiasis. Journal of Basic Microbiology, 2012, 52, 487-491.	1.8	18
213	Differential Interaction of the Two Related Fungal SpeciesCandida albicansandCandida dubliniensiswith Human Neutrophils. Journal of Immunology, 2012, 189, 2502-2511.	0.4	31
214	Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature Reviews Microbiology, 2012, 10, 112-122.	13.6	693
215	Potential role of probiotic bacteria in the treatment and prevention of localised candidosis. Mycoses, 2012, 55, 17-26.	1.8	18
216	<i>BRG1</i> and <i>NRG1</i> form a novel feedback circuit regulating <i>Candida albicans</i> hypha formation and virulence. Molecular Microbiology, 2012, 85, 557-573.	1.2	70
217	Candida and invasive candidiasis: back to basics. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 21-31.	1.3	90
218	Effective concentration-based serum pharmacodynamics for antifungal azoles in a murine model of disseminated Candida albicans infection. European Journal of Drug Metabolism and Pharmacokinetics, 2013, 38, 261-268.	0.6	2
219	Secretory products of <i><scp>E</scp>scherichia coli</i> biofilm modulate <i><scp>C</scp>andida</i> biofilm formation and hyphal development. Journal of Investigative and Clinical Dentistry, 2013, 4, 186-199.	1.8	44
220	Anti-Candida activity of 1–18 fragment of the frog skin peptide esculentin-1b: in vitro and in vivo studies in a Caenorhabditis elegans infection model. Cellular and Molecular Life Sciences, 2013, 71, 2535-46.	2.4	22
221	Human Endothelial Cells Internalize Candida parapsilosis via N-WASP-Mediated Endocytosis. Infection and Immunity, 2013, 81, 2777-2787.	1.0	13

#	Article	IF	CITATIONS
222	Synergistic Regulation of Hyphal Elongation by Hypoxia, CO2, and Nutrient Conditions Controls the Virulence of Candida albicans. Cell Host and Microbe, 2013, 14, 499-509.	5.1	65
223	Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion on Drug Discovery, 2013, 8, 1117-1126.	2.5	121
224	Ras Signaling Gets Fine-Tuned: Regulation of Multiple Pathogenic Traits of Candida albicans. Eukaryotic Cell, 2013, 12, 1316-1325.	3.4	62
225	Comparative Evolution of Morphological Regulatory Functions in Candida Species. Eukaryotic Cell, 2013, 12, 1356-1368.	3.4	55
226	Calcineurin Plays Key Roles in the Dimorphic Transition and Virulence of the Human Pathogenic Zygomycete Mucor circinelloides. PLoS Pathogens, 2013, 9, e1003625.	2.1	134
227	A Comprehensive Functional Portrait of Two Heat Shock Factor-Type Transcriptional Regulators Involved in Candida albicans Morphogenesis and Virulence. PLoS Pathogens, 2013, 9, e1003519.	2.1	53
228	Fungal Immune Evasion in a Model Host–Pathogen Interaction: Candida albicans Versus Macrophages. PLoS Pathogens, 2013, 9, e1003741.	2.1	63
229	Shaping Up for Battle: Morphological Control Mechanisms in Human Fungal Pathogens. PLoS Pathogens, 2013, 9, e1003795.	2.1	18
230	<i><i>Candida albicans</i></i> and <i><i>Enterococcus faecalis</i></i> in the gut. Gut Microbes, 2013, 4, 409-415.	4.3	52
231	SR-Like RNA-Binding Protein Slr1 Affects Candida albicans Filamentation and Virulence. Infection and Immunity, 2013, 81, 1267-1276.	1.0	37
232	Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines. MBio, 2013, 4, e00526-12.	1.8	208
233	A genome-wide transcriptional analysis of morphology determination in <i>Candida albicans</i> . Molecular Biology of the Cell, 2013, 24, 246-260.	0.9	52
234	Histone biotinylation in <i>Candida albicans</i> . FEMS Yeast Research, 2013, 13, 529-539.	1.1	12
235	Regulated proteolysis of <i><scp>C</scp>andida albicans</i> â€ <scp>R</scp> as1 is involved in morphogenesis and quorum sensing regulation. Molecular Microbiology, 2013, 89, 166-178.	1.2	26
236	<i>Candida albicans</i> pathogenicity mechanisms. Virulence, 2013, 4, 119-128.	1.8	1,438
237	Chemical screening identifies filastatin, a small molecule inhibitor of <i>Candida albicans</i> adhesion, morphogenesis, and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13594-13599.	3.3	95
238	Three Prevacuolar Compartment Rab GTPases Impact Candida albicans Hyphal Growth. Eukaryotic Cell, 2013, 12, 1039-1050.	3.4	23
239	Normal Adaptation of Candida albicans to the Murine Gastrointestinal Tract Requires Efg1p-Dependent Regulation of Metabolic and Host Defense Genes. Eukaryotic Cell, 2013, 12, 37-49.	3.4	84

#	Article	IF	CITATIONS
240	Transcriptomic analysis of <i>U<i>stilago maydis</i></i> infecting <i><i>Arabidopsis</i></i> reveals important aspects of the fungus pathogenic mechanisms. Plant Signaling and Behavior, 2013, 8, e25059.	1.2	25
241	Candida albicans Czf1 and Efg1 Coordinate the Response to Farnesol during Quorum Sensing, White-Opaque Thermal Dimorphism, and Cell Death. Eukaryotic Cell, 2013, 12, 1281-1292.	3.4	47
242	Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora. BMC Microbiology, 2013, 13, 227.	1.3	22
243	The CEK1-mediated mitogen-activated protein kinase pathway in the fungal pathogen Candida albicans. MAP Kinase, 2013, 2, .	0.3	4
244	Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans. Brazilian Journal of Microbiology, 2013, 44, 1315-1320.	0.8	26
245	A Core Filamentation Response Network in Candida albicans Is Restricted to Eight Genes. PLoS ONE, 2013, 8, e58613.	1.1	90
246	Characterization of Genetic Determinants That Modulate Candida albicans Filamentation in the Presence of Bacteria. PLoS ONE, 2013, 8, e71939.	1.1	22
247	Therapeutic Potential of Thiazolidinedione-8 as an Antibiofilm Agent against Candida albicans. PLoS ONE, 2014, 9, e93225.	1.1	49
248	Human Fungal Infections. , 2014, , 652-652.		2
251	Yeast Taxonomy, 1900 to 2000. , 0, , 254-274.		0
252	Fungal Morphogenetic Pathways Are Required for the Hallmark Inflammatory Response during Candida albicans Vaginitis. Infection and Immunity, 2014, 82, 532-543.	1.0	147
253	Candida albicans: Molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. Fungal Biology Reviews, 2014, 28, 85-96.	1.9	40
254	Efg1 Directly Regulates <i>ACE2</i> Expression To Mediate Cross Talk between the cAMP/PKA and RAM Pathways during Candida albicans Morphogenesis. Eukaryotic Cell, 2014, 13, 1169-1180.	3.4	30
255	<i>Galleria mellonella</i> as a model host to study virulence of <i>Candida</i> . Virulence, 2014, 5, 237-239.	1.8	59
256	Ascorbic Acid Inhibition of Candida albicans Hsp90-Mediated Morphogenesis Occurs via the Transcriptional Regulator Upc2. Eukaryotic Cell, 2014, 13, 1278-1289.	3.4	17
257	Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth. Revista Argentina De	0.4	30
	Microbiologia, 2014, 46, 288-297.	0.4	
258		0.4	221

#	Article	IF	CITATIONS
260	Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport. PLoS Pathogens, 2014, 10, e1003995.	2.1	157
261	A 5′ <scp>UTR</scp> â€mediated translational efficiency mechanism inhibits the <scp><i>C</i></scp> <i>andida albicans</i> morphological transition. Molecular Microbiology, 2014, 92, 570-585.	1.2	39
262	Control of yeast-mycelium dimorphism inÂvitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biology, 2014, 118, 872-884.	1.1	33
263	The effect of microenvironment on Candida albicans morphological switch. Reviews in Medical Microbiology, 2014, 25, 100-107.	0.4	1
264	High-content phenotypic screenings to identify inhibitors of <i>Candida albicans</i> biofilm formation and filamentation. Pathogens and Disease, 2014, 70, 423-431.	0.8	28
265	Morphogenesis Is Not Required for Candida albicans-Staphylococcus aureus Intra-Abdominal Infection-Mediated Dissemination and Lethal Sepsis. Infection and Immunity, 2014, 82, 3426-3435.	1.0	54
266	A Candida albicans PeptideAtlas. Journal of Proteomics, 2014, 97, 62-68.	1.2	21
267	A putative phospholipase C is involved in Pichia fermentans dimorphic transition. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 344-349.	1.1	10
268	Mutational Analysis of Essential Septins Reveals a Role for Septin-Mediated Signaling in Filamentation. Eukaryotic Cell, 2014, 13, 1403-1410.	3.4	9
269	Role of Candida albicans Tem1 in mitotic exit and cytokinesis. Fungal Genetics and Biology, 2014, 69, 84-95.	0.9	13
270	Ppg1, a PP2A-Type Protein Phosphatase, Controls Filament Extension and Virulence in Candida albicans. Eukaryotic Cell, 2014, 13, 1538-1547.	3.4	14
271	Potential role of Candida albicans germ tube antibody in the diagnosis of deep-seated candidemia. Medical Mycology, 2014, 52, 270-275.	0.3	40
272	Fungal invasion of epithelial cells. Microbiological Research, 2014, 169, 803-810.	2.5	50
273	A Host View of the Fungal Cell Wall. , 2014, , 105-112.		1
275	Metabolite Uptake by Active Transport, 1925 to 2000. , 0, , 183-201.		0
276	The Fungal Pathogen Candida albicans. , 2014, , 751-768.		0
277	Mucins Suppress Virulence Traits of Candida albicans. MBio, 2014, 5, e01911.	1.8	95
278	A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. Npj Biofilms and Microbiomes, 2015, 1, .	2.9	102

#	Article	IF	Citations
π		11	CHAHONS
279	Candida and macrophages: a deadly affair. Microbiology Australia, 2015, 36, 53.	0.1	0
280	Studies of Immune Responses in Candida vaginitis. Pathogens, 2015, 4, 697-707.	1.2	35
281	Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans. Frontiers in Microbiology, 2015, 6, 792.	1.5	29
282	Systems Level Dissection of Candida Recognition by Dectins: A Matter of Fungal Morphology and Site of Infection. Pathogens, 2015, 4, 639-661.	1.2	18
283	Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States. PLoS ONE, 2015, 10, e0137947.	1.1	13
284	Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways. PLoS Pathogens, 2015, 11, e1005133.	2.1	101
285	The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of <i>Candida albicans</i> upon Interaction with Vaginal Epithelial Cells <i>In Vitro</i> . BioMed Research International, 2015, 2015, 1-13.	0.9	2
286	Analysis of the Candida albicans Phosphoproteome. Eukaryotic Cell, 2015, 14, 474-485.	3.4	40
287	Protection of <i>Candida parapsilosis</i> from neutrophil killing through internalization by human endothelial cells. Virulence, 2015, 6, 504-514.	1.8	7
288	Synergistic combinations of antifungals and anti-virulence agents to fight against <i>Candida albicans</i> . Virulence, 2015, 6, 362-371.	1.8	139
289	Sustained Release of a Novel Anti-Quorum-Sensing Agent against Oral Fungal Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 2265-2272.	1.4	23
290	Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie, 2015, 115, 108-115.	1.3	72
291	Neonatal Candidiasis: New Insights into an Old Problem at a Unique Host-Pathogen Interface. Current Fungal Infection Reports, 2015, 9, 246-252.	0.9	21
293	Dual-species relations between <i>Candida tropicalis</i> isolated from apple juice ultrafiltration membranes, with <i>Escherichia coli</i> O157:H7 and <i>Salmonella</i> sp Journal of Applied Microbiology, 2015, 118, 431-442.	1.4	14
294	Stability and Resilience of Oral Microcosms Toward Acidification and Candida Outgrowth by Arginine Supplementation. Microbial Ecology, 2015, 69, 422-433.	1.4	39
295	The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans. Fungal Genetics and Biology, 2015, 81, 261-270.	0.9	21
296	Characterization of Virulence-Related Phenotypes in Candida Species of the CUG Clade. Eukaryotic Cell, 2015, 14, 931-940.	3.4	44
297	Clobal analysis of fungal morphology exposes mechanisms of host cell escape. Nature Communications, 2015, 6, 6741.	5.8	191

#	Article	IF	CITATIONS
298	The Great Escape: Pathogen Versus Host. PLoS Pathogens, 2015, 11, e1004661.	2.1	21
299	Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11. Bioresource Technology, 2015, 192, 556-563.	4.8	19
300	<i>Candida</i> biomarkers in patients with candidaemia and bacteraemia. Journal of Antimicrobial Chemotherapy, 2015, 70, 2354-2361.	1.3	55
301	Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cellular and Molecular Life Sciences, 2015, 72, 2261-2287.	2.4	63
302	Candida Survival Strategies. Advances in Applied Microbiology, 2015, 91, 139-235.	1.3	126
303	<i>ERG2</i> and <i>ERG24</i> Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis. Eukaryotic Cell, 2015, 14, 1006-1016.	3.4	22
304	The Candida albicans ATO Gene Family Promotes Neutralization of the Macrophage Phagolysosome. Infection and Immunity, 2015, 83, 4416-4426.	1.0	44
305	Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease. Infection and Immunity, 2015, 83, 604-613.	1.0	73
306	Candida biofilm formation on voice prostheses. Journal of Medical Microbiology, 2015, 64, 199-208.	0.7	48
307	Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Frontiers in Microbiology, 2016, 7, 780.	1.5	36
308	Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues. PLoS Genetics, 2016, 12, e1006405.	1.5	35
309	Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1. PLoS Genetics, 2016, 12, e1006487.	1.5	39
310	Dosage and Dose Schedule Screening of Drug Combinations in Agent-Based Models Reveals Hidden Synergies. Frontiers in Physiology, 2016, 6, 398.	1.3	17
311	The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, 2016, , .	0.1	20
312	Effects of hemin, CO2, and pH on the branching of Candida albicans filamentous forms. Acta Microbiologica Et Immunologica Hungarica, 2016, 63, 387-403.	0.4	5
313	Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids. MBio, 2016, 7, .	1.8	55
314	Adaptation of <i>Candida albicans</i> to commensalism in the gut. Future Microbiology, 2016, 11, 567-583.	1.0	44
315	Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Seminars in Cell and Developmental Biology, 2016, 57, 93-99.	2.3	15

#	Article	IF	CITATIONS
316	Enterohemorrhagic Escherichia coli promotes the invasion and tissue damage of enterocytes infected with Candida albicans in vitro. Scientific Reports, 2016, 6, 37485.	1.6	15
317	Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29. Antimicrobial Agents and Chemotherapy, 2016, 60, 7468-7480.	1.4	48
318	Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms. Cellular and Molecular Life Sciences, 2016, 73, 4265-4278.	2.4	32
319	Complex Haploinsufficiency-Based Genetic Analysis of the NDR/Lats Kinase Cbk1 Provides Insight into Its Multiple Functions in Candida albicans. Genetics, 2016, 203, 1217-1233.	1.2	8
320	Examination of the pathogenic potential of <i>C. albicans</i> filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Research, 2016, 16, fow011.	1.1	13
321	(-)-Nortrachelogenin from <i>Partrinia scabiosaefolia</i> elicits apoptotic response in <i>Candida albicans</i> . FEMS Yeast Research, 2016, 16, fow013.	1.1	9
322	Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. Journal of Microbiology, 2016, 54, 149-169.	1.3	186
323	Morphology-Independent Virulence of Candida Species during Polymicrobial Intra-abdominal Infections with Staphylococcus aureus. Infection and Immunity, 2016, 84, 90-98.	1.0	50
324	Targeting <i>Candida albicans</i> filamentation for antifungal drug development. Virulence, 2017, 8, 150-158.	1.8	142
325	The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	290
326	Morphogenesis in C. albicans. , 2017, , 41-62.		7
327	Postâ€translational modification directs nuclear and hyphal tip localization of <scp><i>C</i></scp> <i>andida albicans</i> m <scp>RNA</scp> â€binding protein <scp>S</scp> lr1. Molecular Microbiology, 2017, 104, 499-519.	1.2	8
328	<i>Enterococcus faecalis</i> bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4507-4512.	3.3	176
329	Immunity to Fungal Infections. , 2017, , 35-83.		3
330	Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. European Journal of Medicinal Chemistry, 2017, 136, 596-602.	2.6	42
331	Messenger RNA transport in the opportunistic fungal pathogen Candida albicans. Current Genetics, 2017, 63, 989-995.	0.8	8
332	Immunogenetics of Fungal Diseases. , 2017, , .		2
333	Parasex Generates Phenotypic Diversity <i>de Novo</i> and Impacts Drug Resistance and Virulence in <i>Candida albicans</i> . Genetics, 2017, 207, 1195-1211.	1.2	41

#	Article	IF	CITATIONS
334	<i>Candida albicans</i> isolates from a single hospital show low phenotypical specialization. Journal of Basic Microbiology, 2017, 57, 910-921.	1.8	2
335	The Transcriptional Response of <i>Candida albicans</i> to Weak Organic Acids, Carbon Source, and <i>MIG1</i> Inactivation Unveils a Role for <i>HGT16</i> in Mediating the Fungistatic Effect of Acetic Acid. G3: Genes, Genomes, Genetics, 2017, 7, 3597-3604.	0.8	21
336	<i>N</i> -Acetylglucosamine Metabolism Promotes Survival of Candida albicans in the Phagosome. MSphere, 2017, 2, .	1.3	29
337	The Dietary Food Components Capric Acid and Caprylic Acid Inhibit Virulence Factors in <i>Candida albicans</i> Through Multitargeting. Journal of Medicinal Food, 2017, 20, 1083-1090.	0.8	16
338	Candida albicans and Pseudomonas aeruginosa Interact To Enhance Virulence of Mucosal Infection in Transparent Zebrafish. Infection and Immunity, 2017, 85, .	1.0	79
340	Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Scientific Reports, 2017, 7, 5692.	1.6	48
341	Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Fungal Genetics and Biology, 2017, 107, 51-66.	0.9	5
342	Grf10 and Bas1 Regulate Transcription of Adenylate and One-Carbon Biosynthesis Genes and Affect Virulence in the Human Fungal Pathogen Candida albicans. MSphere, 2017, 2, .	1.3	9
343	The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases. Virulence, 2017, 8, 342-351.	1.8	124
344	Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology, 2017, 15, 96-108.	13.6	399
345	Synthesis and studies of the antifungal activity of 2-anilino-/2,3-dianilino-/2-phenoxy- and 2,3-diphenoxy-1,4-naphthoquinones. Research on Chemical Intermediates, 2017, 43, 1813-1827.	1.3	16
346	A functional link between hyphal maintenance and quorum sensing in <i>Candida albicans</i> . Molecular Microbiology, 2017, 103, 595-617.	1.2	35
347	Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of <i>Candida albicans</i> Filamentation. MBio, 2017, 8, .	1.8	90
348	Commensal to Pathogen Transition of Candida albicans. , 2017, , .		5
349	Morphology Changes in Human Fungal Pathogens upon Interaction with the Host. Journal of Fungi (Basel, Switzerland), 2017, 3, 66.	1.5	39
350	Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 2017, 08, 36.	1.5	281
351	Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Frontiers in Immunology, 2017, 8, 629.	2.2	125
352	Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathogens, 2017, 13, e1006340.	2.1	80

ARTICLE IF CITATIONS Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS 353 2.1 57 during fungal morphogenesis. PLoS Pathogens, 2017, 13, e1006763. The MAP Kinase Network As the Nervous System of Fungi., 2017, , . 354 355 Immunity against fungi. JCI Insight, 2017, 2, . 2.3 105 Efficacy of 7â€benzyloxyindole and other halogenated indoles to inhibit <i>Candida albicans</i> biofilm 356 and hyphal formation. Microbial Biotechnology, 2018, 11, 1060-1069. Anticandidal activity of bioinspired ZnO NPs: effect on growth, cell morphology and key virulence attributes of <i>Candida</i> species. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 357 1.9 56 912-925. Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis elegans. Microbial Pathogenesis, 2018, 117, 1.3 80-87. Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence 359 1.8 29 Activity That Targets Metal Ion Homeostasis. ACS Infectious Diseases, 2018, 4, 403-414. Quorum sensing: A less known mode of communication among fungi. Microbiological Research, 2018, 2.5 149 210, 51-58. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. 361 0.7 36 Journal De Mycologie Medicale, 2018, 28, 332-339. Candida vaginitis: virulence, host response and vaccine prospects. Medical Mycology, 2018, 56, S26-S31. Inhibition of yeastâ€toâ€filamentous growth transitions in <scp><i>Candida albicans</i></scp> by a small 364 0.8 14 molecule inducer of mammalian apoptosis. Yeast, 2018, 35, 291-298. Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell 1.0 44 Infiltration into the Central Nervous System. Infection and Immunity, 2018, 86, . A representative of arylcyanomethylenequinone oximes effectively inhibits growth and formation of 366 hyphae in Candida albicans and influences the activity of protein kinases in vitro. Saudi 1.2 7 Pharmaceutical Journal, 2018, 26, 244-252. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genetics and Biology, 2018, 111, 367 48 92-107. Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal Biology Reviews, 2018, 32, 368 19 1.9 10-19. Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. Journal of Fungi 33 (Basel, Switzerland), 2018, 4, 123. In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans 370 1.1 37 streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS ONE, 2018, 13, e0207262. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous 371 Nitric Oxide Signaling. Cell Reports, 2018, 25, 2244-2258.e7.

#	Article	IF	CITATIONS
372	From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Current Topics in Microbiology and Immunology, 2018, 422, 61-99.	0.7	30
373	(1â€aryloxyâ€2â€hydroxypropyl)â€phenylpiperazine derivatives suppress <i>Candida albicans</i> virulence by interfering with morphological transition. Microbial Biotechnology, 2018, 11, 1080-1089.	2.0	11
374	Hyphal development in Candida albicans from different cell states. Current Genetics, 2018, 64, 1239-1243.	0.8	29
375	Yeast and Filaments Have Specialized, Independent Activities in a Zebrafish Model of Candida albicans Infection. Infection and Immunity, 2018, 86, .	1.0	30
376	The Elusive Anti-Candida Vaccine: Lessons From the Past and Opportunities for the Future. Frontiers in Immunology, 2018, 9, 897.	2.2	54
377	Streptococcus agalactiae Inhibits Candida albicans Hyphal Development and Diminishes Host Vaginal Mucosal TH17 Response. Frontiers in Microbiology, 2018, 9, 198.	1.5	19
378	Candida auris: Disinfectants and Implications for Infection Control. Frontiers in Microbiology, 2018, 9, 726.	1.5	122
379	Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genetics, 2018, 14, e1007493.	1.5	15
380	Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens, 2018, 7, 11.	1.2	17
381	<i>SDH2</i> is involved in proper hypha formation and virulence in <i>Candida albicans</i> . Future Microbiology, 2018, 13, 1141-1156.	1.0	13
382	G1 and S phase arrest in <i>Candida albicans</i> induces filamentous growth via distinct mechanisms. Molecular Microbiology, 2018, 110, 191-203.	1.2	14
383	<i>Candida albicans</i> Dispersed Cells Are Developmentally Distinct from Biofilm and Planktonic Cells. MBio, 2018, 9, .	1.8	69
384	<i>TUP1</i> -mediated filamentation in <i>Candida albicans</i> leads to inability to colonize the mouse gut. Future Microbiology, 2018, 13, 857-867.	1.0	11
385	Efficacy of Compounds Isolated from Streptomyces olivaceus against the Morphogenesis and Virulence of Candida albicans. Marine Drugs, 2019, 17, 442.	2.2	10
386	Antifungal Activity of the Enterococcus faecalis Peptide EntV Requires Protease Cleavage and Disulfide Bond Formation. MBio, 2019, 10, .	1.8	29
387	Application of 2′-OMethylRNA′ Antisense Oligomer to Control Candida albicans EFG1 Virulence Determinant. Molecular Therapy - Nucleic Acids, 2019, 18, 508-517.	2.3	11
388	Effect of loureirin A against Candida albicans biofilms. Chinese Journal of Natural Medicines, 2019, 17, 616-623.	0.7	19
389	Inhibition of Yeast-to-Hypha Transition and Virulence of <i>Candida albicans</i> by 2-Alkylaminoquinoline Derivatives. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	22

#	Article	IF	CITATIONS
390	E-Cigarettes Increase Candida albicans Growth and Modulate its Interaction with Gingival Epithelial Cells. International Journal of Environmental Research and Public Health, 2019, 16, 294.	1.2	30
391	Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Current Opinion in Microbiology, 2019, 52, 27-34.	2.3	46
392	Network analysis of hyphae forming proteins in Candida albicans identifies important proteins responsible for pathovirulence in the organism. Heliyon, 2019, 5, e01916.	1.4	11
393	Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	7
394	Role of Candida albicans mating in genetic variability and adaptation to the host. Fungal Biology Reviews, 2019, 33, 180-189.	1.9	5
395	Intravital Imaging Reveals Divergent Cytokine and Cellular Immune Responses to Candida albicans and Candida parapsilosis. MBio, 2019, 10, .	1.8	17
396	Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. International Journal of Molecular Sciences, 2019, 20, 2345.	1.8	57
397	A metabolomic study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. Npj Biofilms and Microbiomes, 2019, 5, 13.	2.9	39
398	Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. Journal of Fungi (Basel,) Tj ETQqO	00rgBT/ 1.5	Overlock 10
399	Safeguard function of PU.1 shapes the inflammatory epigenome of neutrophils. Nature Immunology, 2019, 20, 546-558.	7.0	40
400	Candida albicans Morphology-Dependent Host FGF-2 Response as a Potential Therapeutic Target. Journal of Fungi (Basel, Switzerland), 2019, 5, 22.	1.5	10
401	Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism. Cell Host and Microbe, 2019, 25, 418-431.e6.	5.1	63
402	Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. Journal of Fungi (Basel, Switzerland), 2019, 5, 17.	1.5	45
403	The Vacuolar Ca ²⁺ ATPase Pump Pmc1p Is Required for Candida albicans Pathogenesis. MSphere, 2019, 4, .	1.3	14
404	A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 213, 705-720.	1.2	6
405	Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. MBio, 2019, 10, .	1.8	24
406	PP2A-Like Protein Phosphatase (Sit4) Regulatory Subunits, Sap155 and Sap190, Regulate Candida albicans' Cell Growth, Morphogenesis, and Virulence. Frontiers in Microbiology, 2019, 10, 2943.	1.5	3
407	Filamentation Is Associated with Reduced Pathogenicity of Multiple Non- <i>albicans Candida</i> Species. MSphere, 2019, 4, .	1.3	17

#	Article	IF	Citations
408	Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Current Topics in Microbiology and Immunology, 2019, 425, 297-330.	0.7	16
409	The planarian Schmidtea mediterranea is a new model to study host-pathogen interactions during fungal infections. Developmental and Comparative Immunology, 2019, 93, 18-27.	1.0	17
410	Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genetics, 2019, 15, e1007901.	1.5	17
411	Insights of Phyto-Compounds as Antipathogenic Agents. , 2019, , 367-389.		2
412	Diagnostic accuracy of Candida albicans germ tube antibody for invasive candidiasis: systematic review and meta-analysis. Diagnostic Microbiology and Infectious Disease, 2019, 93, 339-345.	0.8	12
413	Natural Variation in Clinical Isolates of Candida albicans Modulates Neutrophil Responses. MSphere, 2020, 5, .	1.3	12
414	A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets?. Drug Discovery Today, 2020, 25, 2317-2325.	3.2	12
415	Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. MBio, 2020, 11, .	1.8	2
416	Inhibition of Distinct Proline- or N-Acetylglucosamine-Induced Hyphal Formation Pathways by Proline Analogs in Candida albicans. BioMed Research International, 2020, 2020, 1-10.	0.9	6
417	Antifungal Activity and Potential Mechanism of Panobinostat in Combination With Fluconazole Against Candida albicans. Frontiers in Microbiology, 2020, 11, 1584.	1.5	10
418	Immune defence to invasive fungal infections: A comprehensive review. Biomedicine and Pharmacotherapy, 2020, 130, 110550.	2.5	114
419	The Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2020, , .	0.7	7
420	Characterization of a Candida albicans Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network. Journal of Fungi (Basel, Switzerland), 2020, 6, 230.	1.5	9
422	<i>Candida albicans</i> adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence, 2020, 11, 1453-1465.	1.8	16
423	Signaling C-Type Lectin Receptors in Antifungal Immunity. Current Topics in Microbiology and Immunology, 2020, 429, 63-101.	0.7	7
424	An Evaluation of Norspermidine on Anti-fungal Effect on Mature Candida albicans Biofilms and Angiogenesis Potential of Dental Pulp Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 948.	2.0	8
425	The Rise of Fungi: A Report on the CIFAR Program <i>Fungal Kingdom: Threats & Opportunities</i> Inaugural Meeting. G3: Genes, Genomes, Genetics, 2020, 10, 1837-1842.	0.8	4
426	The effects of clioquinol in morphogenesis, cell membrane and ion homeostasis in Candida albicans. BMC Microbiology, 2020, 20, 165.	1.3	15

#	Article	IF	CITATIONS
427	Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific Reports, 2020, 10, 10327.	1.6	41
428	Antifungal glycoconjugate vaccines. , 2020, , 315-334.		1
429	Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Future Science OA, 2020, 6, FSO440.	0.9	34
430	Face/Off: The Interchangeable Side of Candida Albicans. Frontiers in Cellular and Infection Microbiology, 2019, 9, 471.	1.8	22
431	A Re-Evaluation of the Relationship between Morphology and Pathogenicity in Candida Species. Journal of Fungi (Basel, Switzerland), 2020, 6, 13.	1.5	22
432	Proton pump inhibitors act synergistically with fluconazole against resistant Candida albicans. Scientific Reports, 2020, 10, 498.	1.6	23
433	Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Research, 2020, 20, .	1.1	45
434	Inhibitory effect of novel Eugenol Tosylate Congeners on pathogenicity of Candida albicans. BMC Complementary Medicine and Therapies, 2020, 20, 131.	1.2	11
435	Pathways That Synthesize Phosphatidylethanolamine Impact Candida albicans Hyphal Length and Cell Wall Composition through Transcriptional and Posttranscriptional Mechanisms. Infection and Immunity, 2020, 88, .	1.0	7
436	The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling. MBio, 2020, 11, .	1.8	21
437	Candida albicans Adaptation on Simulated Human Body Fluids under Different pH. Microorganisms, 2020, 8, 511.	1.6	11
438	Antifungal activity of hypocrellin compounds and their synergistic effects with antimicrobial agents against <i>Candida albicans</i> . Microbial Biotechnology, 2021, 14, 430-443.	2.0	18
439	Commensal to Pathogen Transition of Candida albicans. , 2021, , 507-525.		2
440	LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microbial Pathogenesis, 2021, 152, 104614.	1.3	8
441	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	3.9	139
442	The role of fungi in fungal keratitis. Experimental Eye Research, 2021, 202, 108372.	1.2	37
443	Dual identities for various alcohols in two different yeasts. Mycology, 2021, 12, 25-38.	2.0	10
444	Candida albicans Colonizes and Disseminates to the Gastrointestinal Tract in the Presence of the Microbiota in a Severe Combined Immunodeficient Mouse Model. Frontiers in Microbiology, 2020, 11,	1.5	7

#	Article	IF	CITATIONS
446	Vacuole and Mitochondria Patch (vCLAMP) Protein Vam6 Is Involved in Maintenance of Mitochondrial and Vacuolar Functions under Oxidative Stress in Candida albicans. Antioxidants, 2021, 10, 136.	2.2	7
447	Geldanamycin-Induced Morphological Changes Require Candida albicans Hyphal Growth Regulatory Machinery. Mycopathologia, 2021, 186, 103-107.	1.3	3
448	Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. Biofouling, 2020, 36, 1-16.	0.8	5
449	Epithelial Infection With Candida albicans Elicits a Multi-System Response in Planarians. Frontiers in Microbiology, 2020, 11, 629526.	1.5	3
450	Small molecule natural products in human nasal/oral microbiota. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	7
451	Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Reports, 2021, 34, 108781.	2.9	19
452	A new 1-nitro-9-aminoacridine derivative targeting yeast topoisomerase II able to overcome fluconazole-resistance. Bioorganic and Medicinal Chemistry Letters, 2021, 35, 127815.	1.0	7
453	Cell Surface Expression of Nrg1 Protein in Candida auris. Journal of Fungi (Basel, Switzerland), 2021, 7, 262.	1.5	4
454	The isolation and identification of Candida glabrata from avian species and a study of the antibacterial activities of Chinese herbal medicine inÂvitro. Poultry Science, 2021, 100, 101003.	1.5	7
455	Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of <i>Candida albicans</i> . MSphere, 2021, 6,	1.3	12
456	Germination of a Field: Women in Candida albicans Research. Current Clinical Microbiology Reports, 2021, 8, 139-151.	1.8	0
457	Effects of mesoporous SiO2-CaO nanospheres on the murine peritoneal macrophages/Candidaalbicans interface. International Immunopharmacology, 2021, 94, 107457.	1.7	7
458	Extracellular Nucleic Acids Present in the Candida albicans Biofilm Trigger the Release of Neutrophil Extracellular Traps. Frontiers in Cellular and Infection Microbiology, 2021, 11, 681030.	1.8	16
459	Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nature Communications, 2021, 12, 3899.	5.8	31
460	Intravital Imaging of Candida albicans Identifies Differential <i>In Vitro</i> and <i>In Vivo</i> Filamentation Phenotypes for Transcription Factor Deletion Mutants. MSphere, 2021, 6, e0043621.	1.3	21
461	Suppression of hyphal formation and virulence of <i>Candida albicans</i> by natural and synthetic compounds. Biofouling, 2021, 37, 626-655.	0.8	13
462	Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorganic and Medicinal Chemistry, 2021, 44, 116293.	1.4	7
463	Activation of Cph1 causes ß(1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner. PLoS Pathogens, 2021, 17, e1009839.	2.1	11

#	Article	IF	CITATIONS
464	The macrophage-derived protein PTMA induces filamentation of the human fungal pathogen Candida albicans. Cell Reports, 2021, 36, 109584.	2.9	12
465	Identification and Phenotypic Characterization of Hsp90 Phosphorylation Sites That Modulate Virulence Traits in the Major Human Fungal Pathogen Candida albicans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 637836.	1.8	9
467	Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Molecular Aspects of Medicine, 2021, 81, 101017.	2.7	3
468	The zinc cluster transcription factor Rha1 is a positive filamentation regulator in <i>Candida albicans</i> . Genetics, 2022, 220, .	1.2	5
469	Rapid Proliferation Compensates for Defective Filamentation in Candida albicans Pathogenesis. Trends in Microbiology, 2021, 29, 867-868.	3.5	0
470	Anti-inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish). Biomedicine and Pharmacotherapy, 2021, 133, 111043.	2.5	20
471	Detection of Fungi by Mannose-based Recognition Receptors. , 2007, , 293-307.		5
472	Integration of Metabolism with Virulence in Candida albicans. , 2006, , 185-203.		2
473	Genome-Wide Synthetic Genetic Screening by Transposon Mutagenesis in Candida albicans. Methods in Molecular Biology, 2015, 1279, 125-135.	0.4	7
474	Tetracycline-Inducible Gene Expression in Candida albicans. Methods in Molecular Biology, 2012, 845, 201-210.	0.4	4
475	Fungal Recognition by TLR2 and Dectin-1. Handbook of Experimental Pharmacology, 2008, , 87-109.	0.9	89
476	1 From Commensal to Pathogen: Candida albicans. , 2014, , 3-18.		7
477	C-Type Lectin Receptors in Antifungal Immunity. Advances in Experimental Medicine and Biology, 2020, 1204, 1-30.	0.8	22
478	Clobal translational landscape of the <i>Candida albicans</i> morphological transition. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	8
479	The effects of human lactoferrin in experimentally induced systemic candidiasis. Journal of Medical Microbiology, 2019, 68, 1802-1812.	0.7	8
480	Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (United Kingdom), 2012, 158, 585-600.	0.7	29
481	Signal Transduction in the Interactions of Fungal Pathogens and Mammalian Hosts. , 0, , 143-162.		2
482	Fungal Biofilms: Agents of Disease and Drug Resistance. , 0, , 177-185.		3

#	Article	IF	CITATIONS
483	Saccharomyces cerevisiae: an Emerging and Model Pathogenic Fungus. , 0, , 245-259.		12
484	Toward a Molecular Understanding of <i>Candida albicans</i> Virulence. , 0, , 305-P1.		10
485	Candida albicans Hypha Formation and Virulence. , 0, , 45-P2.		10
486	Gene Expression during the Distinct Stages of Candidiasis. , 0, , 283-298.		1
487	An Introduction to the Medically Important Candida Species. , 0, , 9-25.		16
488	Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules. PLoS Genetics, 2015, 11, e1005564.	1.5	24
489	Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350.	1.5	39
490	Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans. PLoS ONE, 2012, 7, e32467.	1.1	52
491	Retigeric Acid B Attenuates the Virulence of Candida albicans via Inhibiting Adenylyl Cyclase Activity Targeted by Enhanced Farnesol Production. PLoS ONE, 2012, 7, e41624.	1.1	44
492	Purpurin Suppresses Candida albicans Biofilm Formation and Hyphal Development. PLoS ONE, 2012, 7, e50866.	1.1	105
493	Candida albicans Increases Tumor Cell Adhesion to Endothelial Cells In Vitro: Intraspecific Differences and Importance of the Mannose Receptor. PLoS ONE, 2013, 8, e53584.	1.1	25
494	Rbt1 Protein Domains Analysis in Candida albicans Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation. PLoS ONE, 2013, 8, e82395.	1.1	26
495	Filament Condition-Specific Response Elements Control the Expression of NRG1 and UME6, Key Transcriptional Regulators of Morphology and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0122775.	1.1	20
496	Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions. PLoS ONE, 2015, 10, e0126919.	1.1	5
497	Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans. PLoS ONE, 2017, 12, e0171145.	1.1	11
498	Fungal Invasion of Normally Non-Phagocytic Host Cells. PLoS Pathogens, 2006, 2, e129.	2.1	237
499	Analysis of gene expression in filamentous cells of Candida albicans grown on agar plates. Journal of Biological Methods, 2018, 5, e84.	1.0	6
500	The role of virulence factors inCandida albicanspathogenicity. Berkala Ilmu Kedokteran, 2016, 48, 58-68.	0.1	5

#	Article	IF	CITATIONS
501	Effect of Growth Media, pH and Temperature on Yeast to Hyphal Transition in <i>Candida albicans</i> . Open Journal of Medical Microbiology, 2013, 03, 185-192.	0.1	45
503	Coexistencia de Pseudomonas Aeruginosa y Candida Albicans en Infecciones Nosocomiales en Cartagena de Indias (Colombia). Nova, 2011, 9, 22.	0.2	0
504	Farnesol Sensitivity of Serum Induced Yeast to Hyphae Morphogenesis: A Study on Fifty Clinical Isolates of Candida albicans. British Microbiology Research Journal, 2013, 3, 150-157.	0.2	0
505	Effect of Incubation Temperature and Human Serum on Yeast to Hyphal Morphogenesis in Vaginal Candida albicans and its Correlation to Virulence Markers. British Microbiology Research Journal, 2014, 4, 1798-812.	0.2	0
506	Encounters with Mammalian Cells: Survival Strategies of Candida Species. , 0, , 261-P1.		1
507	Candida spp. in Microbial Populations and Communities: Molecular Interactions and Biological Importance. , 0, , 317-330.		Ο
508	Genetic and Proteomic Analysis of Fungal Virulence. , 0, , 643-655.		0
509	Studying Fungal Virulence by Using Genomics. , 0, , 589-P1.		1
510	Overview of Fungal Pathogens. , 0, , 165-172.		0
512	Striking up the conversation: quorum sensing in fungi. Fine Focus, 2015, 1, 139-151.	0.2	Ο
513	Opportunisitic Pathogens of Humans. Advances in Environmental Microbiology, 2016, , 301-357.	0.1	0
514	The MAP Kinase Network As the Nervous System of Fungi. , 2017, , 102-113.		Ο
516	Clarification of the Sterilization Mechanism of Antimicrobial Photodynamic Therapy for <i>Candida albicans</i> . Journal of Japanese Society for Laser Dentistry, 2019, 29, 141-147.	0.1	1
517	Role of Glucan-Derived Polymers in the Pathogenic Fungus Candida albicans. Biologically-inspired Systems, 2019, , 393-407.	0.4	Ο
518	Does alternation of Candida albicans TUP1 gene expression affect the progress of symptomatic recurrent vulvovaginal candidiasis?. Current Medical Mycology, 2020, 6, 7-10.	0.8	1
520	Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes. Scientific Reports, 2021, 11, 21049.	1.6	10
521	Exploring the Biodiversity of Red Yeasts for In Vitro and In Vivo Phenotypes Relevant to Agri-Food-Related Processes. Fermentation, 2021, 7, 2.	1.4	3
522	Regulators of Candida glabrata Pathogenicity. , 2006, , 205-219.		0

# 523	ARTICLE Postgenomic Approaches to Analyse Candida albicans Pathogenicity. , 2006, , 163-184.	IF	CITATIONS 0
526	Signaling cascades as drug targets in model and pathogenic fungi. Current Opinion in Investigational Drugs, 2008, 9, 856-64.	2.3	27
528	D319 induced antifungal effects through ROS-mediated apoptosis and inhibited isocitrate lyase in Candida albicans. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130050.	1.1	4
529	Effect of Cannabis Smoke Condensate on C. albicans Growth and Biofilm Formation. Microorganisms, 2021, 9, 2348.	1.6	2
530	Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. European Journal of Medicinal Chemistry, 2022, 230, 114137.	2.6	4
531	An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microbial Pathogenesis, 2022, 164, 105418.	1.3	5
533	Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Communications Biology, 2022, 5, 292.	2.0	1
536	Genetic Screening of Candida albicans Inactivation Mutants Identifies New Genes Involved in Macrophage-Fungal Cell Interactions. Frontiers in Microbiology, 2022, 13, 833655.	1.5	3
537	Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathogens, 2022, 18, e1010012.	2.1	14
538	A dual action small molecule enhances azoles and overcomes resistance through co-targeting Pdr5 and Vma1. Translational Research, 2022, , .	2.2	2
547	Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway <i>In Vivo</i> . MBio, 2022, 13, e0085122.	1.8	12
548	<i>FKS1</i> Is Required for Cryptococcus neoformans Fitness <i>In Vivo</i> : Application of Copper-Regulated Gene Expression to Mouse Models of Cryptococcosis. MSphere, 2022, 7, e0016322.	1.3	1
549	Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Reports, 2022, 39, 110837.	2.9	17
550	Raman Study of Pathogenic Candida auris: Imaging Metabolic Machineries in Reaction to Antifungal Drugs. Frontiers in Microbiology, 2022, 13, .	1.5	5
551	Antifungal Activity of the Frog Skin Peptide Temporin G and Its Effect on Candida albicans Virulence Factors. International Journal of Molecular Sciences, 2022, 23, 6345.	1.8	5
552	Continuing Shifts in Epidemiology and Antifungal Susceptibility Highlight the Need for Improved Disease Management of Invasive Candidiasis. Microorganisms, 2022, 10, 1208.	1.6	6
553	Magnesium impairs Candida albicans immune evasion by reduced hyphal damage, enhanced β-glucan exposure and altered vacuole homeostasis. PLoS ONE, 2022, 17, e0270676.	1.1	8
554	Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms, 2022, 10, 1437.	1.6	19

#	Article	IF	CITATIONS
555	Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathogens, 2022, 18, e1010681.	2.1	3
556	Development and Multi-Center Validation of Machine LearningÂModel for Early Detection of Fungal Keratitis. SSRN Electronic Journal, 0, , .	0.4	0
557	An in vitro study of interactions of Candida albicans with Klebsiella pneumoniae and Enterococcus faecalis isolated from intestinal microbiome of HIV infected patients. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2022, 99, 420-427.	0.3	1
558	The GARP complex is required for filamentation in <i>Candida albicans</i> . Genetics, 2022, 222, .	1.2	3
559	Impact of changes at the Candida albicans cell surface upon immunogenicity and colonisation in the gastrointestinal tract. Cell Surface, 2022, 8, 100084.	1.5	4
560	Anaerobic conditions are a major influence on Candida albicans chlamydospore formation. Folia Microbiologica, 0, , .	1.1	2
562	From intestinal colonization to systemic infections: <i>Candida albicans</i> translocation and dissemination. Gut Microbes, 2022, 14, .	4.3	12
563	Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. IScience, 2023, 26, 106145.	1.9	1
564	Development and multi-center validation of machine learning model for early detection of fungal keratitis. EBioMedicine, 2023, 88, 104438.	2.7	5
565	<i>Candida albicans</i> can foster gut dysbiosis and systemic inflammation during HIV infection. Gut Microbes, 2023, 15, .	4.3	15
566	Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection. ELife, 0, 12, .	2.8	10
567	Aneuploidy and gene dosage regulate filamentation and host colonization by <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
568	Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infection and Drug Resistance, 0, Volume 16, 1455-1470.	1.1	8
583	Role of Quorum Quenching in Pathogen Control in Aquaculture. , 2023, , 223-249.		Ο