Neck Length and Processivity of Myosin V

Journal of Biological Chemistry 278, 29201-29207 DOI: 10.1074/jbc.m303662200

Citation Report

#	Article	IF	CITATIONS
1	Myosin-V motility: these levers were made for walking. Trends in Cell Biology, 2003, 13, 447-451.	3.6	25
2	Myosin V motor proteins. Journal of Cell Biology, 2003, 163, 445-450.	2.3	139
3	Regulated Conformation of Myosin V. Journal of Biological Chemistry, 2004, 279, 2333-2336.	1.6	150
4	Myosin V. Journal of Cell Biology, 2004, 164, 877-886.	2.3	196
5	A one-headed class V myosin molecule develops multiple large (Â32-nm) steps successively. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9630-9635.	3.3	30
6	A Model of Myosin V Processivity. Journal of Biological Chemistry, 2004, 279, 40100-40111.	1.6	152
7	Myosin V processivity: Multiple kinetic pathways for head-to-head coordination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5542-5546.	3.3	152
8	The motor mechanism of myosin V: insights for muscle contraction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1829-1842.	1.8	66
9	Myosin VI Steps via a Hand-over-Hand Mechanism with Its Lever Arm Undergoing Fluctuations when Attached to Actin. Journal of Biological Chemistry, 2004, 279, 37223-37226.	1.6	141
10	The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4787-4792.	3.3	73
11	Relating biochemistry and function in the myosin superfamily. Current Opinion in Cell Biology, 2004, 16, 61-67.	2.6	256
12	Does the myosin V neck region act as a lever?. Journal of Muscle Research and Cell Motility, 2004, 25, 29-35.	0.9	41
13	Lever arms and necks: a common mechanistic theme across the myosin superfamily. Journal of Muscle Research and Cell Motility, 2004, 25, 467-474.	0.9	24
14	Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cell Motility, 2004, 25, 337-341.	0.9	342
15	Nanometer Localization of Single Green Fluorescent Proteins: Evidence that Myosin V Walks Hand-Over-Hand via Telemark Configuration. Biophysical Journal, 2004, 87, 1776-1783.	0.2	96
16	Calmodulin bridging of IQ motifs in myosin-V. FEBS Letters, 2004, 567, 166-170.	1.3	35
17	The Mechanism of Myosin VI Translocation and Its Load-Induced Anchoring. Cell, 2004, 116, 737-749.	13.5	243
18	<title>Are motor proteins power strokers, Brownian motors or both? (Invited Paper)</title> . , 2005, , .		2

ITATION REDO

#	Article	IF	CITATIONS
19	Load-dependent kinetics of myosin-V can explain its high processivity. Nature Cell Biology, 2005, 7, 861-869.	4.6	247
20	The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 2005, 435, 779-785.	13.7	206
21	Recent progress in dynein structure and mechanism. Current Opinion in Cell Biology, 2005, 17, 98-103.	2.6	93
22	Myosin genes inTetrahymena. Cytoskeleton, 2005, 61, 237-243.	4.4	23
23	The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Human Molecular Genetics, 2005, 14, 2155-2165.	1.4	172
24	A force-dependent state controls the coordination of processive myosin V. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13873-13878.	3.3	164
25	The Predicted Coiled-coil Domain of Myosin 10 Forms a Novel Elongated Domain That Lengthens the Head. Journal of Biological Chemistry, 2005, 280, 34702-34708.	1.6	139
26	Structure of the light chain-binding domain of myosin V. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12718-12723.	3.3	59
27	The Neck Domain of Myosin II Primarily Regulates the Actomyosin Kinetics, not the Stepsize. Journal of Molecular Biology, 2005, 353, 213-221.	2.0	5
28	A Flexible Domain Is Essential for the Large Step Size and Processivity of Myosin VI. Molecular Cell, 2005, 17, 603-609.	4.5	95
29	Elastic Lever-Arm Model for Myosin V. Biophysical Journal, 2005, 88, 3792-3805.	0.2	87
30	Force-Dependent Stepping Kinetics of Myosin-V. Biophysical Journal, 2005, 88, 4402-4410.	0.2	143
31	Force Generation in Single Conventional Actomyosin Complexes under High Dynamic Load. Biophysical Journal, 2006, 90, 1295-1307.	0.2	157
32	Cargo-Binding Makes a Wild-Type Single-Headed Myosin-VI Move Processively. Biophysical Journal, 2006, 90, 3643-3652.	0.2	57
33	The cargo-binding domain regulates structure and activity of myosin 5. Nature, 2006, 442, 212-215.	13.7	159
34	A structural model for monastrol inhibition of dimeric kinesin Eg5. EMBO Journal, 2006, 25, 2263-2273.	3.5	54
35	A hand-over-hand diffusing model for myosin-VI molecular motors. Biophysical Chemistry, 2006, 122, 90-100.	1.5	8
36	Model for kinetics of myosin-V molecular motors. Biophysical Chemistry, 2006, 120, 225-236.	1.5	11

CITATION REPORT

	Сітаті	on Report	
#	Article	IF	Citations
37	Walking with myosin V. Current Opinion in Cell Biology, 2006, 18, 68-73.	2.6	143
38	Walking mechanism of the intracellular cargo transporter myosin V. Journal of Physics Condensed Matter, 2006, 18, S1943-S1956.	0.7	3
39	Two modes of microtubule sliding driven by cytoplasmic dynein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17736-17740.	3.3	59
40	Brownian molecular motors driven by rotation-translation coupling. Physical Review E, 2006, 74, 011912.	0.8	18
41	Looped Actin Structures for Testing Processive Molecular Motors. , 2006, , .		0
42	In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain. Journal of Cell Science, 2007, 120, 4093-4098.	1.2	20
43	A new model for myosin dimeric motors incorporating Brownian ratchet and powerstroke mechanisms. , 2007, , .		0
44	Drebrin attenuates the interaction between actin and myosin-V. Biochemical and Biophysical Research Communications, 2007, 359, 398-401.	1.0	34
45	Myosin V., 2008, , 289-323.		7
46	The Myosin Family: Biochemical And Kinetic Properties. , 2008, , 55-93.		5
47	Insight into the mechanism of fast movement of myosin fromChara corallina. Cytoskeleton, 2007, 64, 131-142.	4.4	8
48	Myosin at work: Motor adaptations for a variety of cellular functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 615-630.	1.9	84
49	Cargo Transport: Two Motors Are Sometimes Better Than One. Current Biology, 2007, 17, R478-R486.	1.8	191
50	Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma, 2007, 230, 193-202.	1.0	101
51	Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature, 2008, 455, 128-132.	13.7	133
52	Myosin V Passing over Arp2/3 Junctions: Branching Ratio Calculated from the Elastic Lever Arm Model. Biophysical Journal, 2008, 94, 3405-3412.	0.2	3
53	Human Myosin Vc Is a Low Duty Ratio Nonprocessive Motor. Journal of Biological Chemistry, 2008, 283, 10581-10592.	1.6	30
54	Load and Pi Control Flux through the Branched Kinetic Cycle of Myosin V. Journal of Biological Chemistry, 2008, 283, 17477-17484.	1.6	62

#	Article	IF	CITATIONS
55	Kinetics of ADP Dissociation from the Trail and Lead Heads of Actomyosin V following the Power Stroke. Journal of Biological Chemistry, 2008, 283, 766-773.	1.6	50
56	Human Myosin Vc Is a Low Duty Ratio, Nonprocessive Molecular Motor. Journal of Biological Chemistry, 2008, 283, 8527-8537.	1.6	44
57	Imaging and Molecular Motors. , 0, , 41-85.		0
58	Single Molecule Study for Elucidating the Mechanism Used by Biosystems to Utilize Thermal Fluctuations. , 0, , 11-39.		0
59	Force-Generating Mechanisms of Dynein Revealed through Single Molecule Studies. , 2009, , 61-104.		0
60	Single Molecule Studies of Myosins. , 2009, , 1-33.		1
61	Unconventional myosin traffic in cells reveals a selective actin cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9685-9690.	3.3	73
62	The SAH domain extends the functional length of the myosin lever. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22193-22198.	3.3	70
63	Removal of the cardiac myosin regulatory light chain increases isometric force production. FASEB Journal, 2009, 23, 3571-3580.	0.2	46
64	Switch 1 Mutation S217A Converts Myosin V into a Low Duty Ratio Motor. Journal of Biological Chemistry, 2009, 284, 2138-2149.	1.6	40
65	Hopping and stalling of processive molecular motors. Journal of Theoretical Biology, 2009, 261, 43-49.	0.8	3
66	Reverse Conformational Changes of the Light Chain-Binding Domain of Myosin V and VI Processive Motor Heads during and after Hydrolysis of ATP by Small-Angle X-Ray Solution Scattering. Journal of Molecular Biology, 2009, 392, 420-435.	2.0	4
67	Chapter 7 Cell and Molecular Biology of the Fastest Myosins. International Review of Cell and Molecular Biology, 2009, 276, 301-347.	1.6	16
69	Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices. Angewandte Chemie - International Edition, 2010, 49, 312-316.	7.2	19
70	Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study. EMBO Journal, 2010, 29, 93-106.	3.5	46
71	Robust processivity of myosin V under off-axis loads. Nature Chemical Biology, 2010, 6, 300-305.	3.9	23
72	Influence of lever structure on myosin 5a walking. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2509-2514.	3.3	42
73	Functional adaptation of the switchâ€2 nucleotide sensor enables rapid processive translocation by myosinâ€5. FASEB Journal, 2010, 24, 4480-4490.	0.2	12

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	Head of Myosin IX Binds Calmodulin and Moves Processively toward the Plus-end of Actin Filaments. Journal of Biological Chemistry, 2010, 285, 24933-24942.	1.6	42
75	Structured Post-IQ Domain Governs Selectivity of Myosin X for Fascin-Actin Bundles*. Journal of Biological Chemistry, 2010, 285, 26608-26617.	1.6	33
76	The Lever Arm Effects a Mechanical Asymmetry of the Myosin-V-Actin Bond. Biophysical Journal, 2010, 98, 277-281.	0.2	7
77	Cytoplasmic dynein is not a conventional processive motor. Journal of Structural Biology, 2010, 170, 266-269.	1.3	25
78	Lever-Arm Mechanics of Processive Myosins. Biophysical Journal, 2011, 101, 1-11.	0.2	46
79	Molecular organization and forceâ€generating mechanism of dynein. FEBS Journal, 2011, 278, 2964-2979.	2.2	22
80	Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nature Cell Biology, 2011, 13, 40-48.	4.6	163
81	Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma, 2011, 248, 39-60.	1.0	95
82	Coarseâ€grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2291-2305.	1.5	17
83	Myosin cleft closure determines the energetics of the actomyosin interaction. FASEB Journal, 2011, 25, 111-121.	0.2	19
84	Cargo binding activates myosin VIIA motor function in cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7028-7033.	3.3	63
85	Drosophila melanogaster Myosin-18 Represents a Highly Divergent Motor with Actin Tethering Properties. Journal of Biological Chemistry, 2011, 286, 21755-21766.	1.6	28
86	Plant-Specific Myosin XI, a Molecular Perspective. Frontiers in Plant Science, 2012, 3, 211.	1.7	51
87	Tilting and twirling as myosin V steps along actin filaments as detected by fluorescence polarization. Journal of General Physiology, 2012, 139, 97-100.	0.9	2
88	Coarse-Grained Simulation of Myosin-V Movement. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-15.	0.7	2
89	Characteristics of light chains of Chara myosin revealed by immunological investigation. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2012, 88, 201-211.	1.6	2
90	Temperature dependent measurements reveal similarities between muscle and non-muscle myosin motility. Journal of Muscle Research and Cell Motility, 2012, 33, 385-394.	0.9	36
91	4.10 Single Molecule Fluorescence Techniques for Myosin. , 2012, , 170-190.		0

#	Article	lF	CITATIONS
92	Walking to work: roles for class V myosins as cargo transporters. Nature Reviews Molecular Cell Biology, 2012, 13, 13-26.	16.1	266
93	Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin. Biophysical Journal, 2013, 105, 1871-1881.	0.2	31
94	R1 Motif Is the Major Actin-Binding Domain of TRIOBP-4. Biochemistry, 2013, 52, 5256-5264.	1.2	17
95	A Subdomain Interaction at the Base of the Lever Allosterically Tunes the Mechanochemical Mechanism of Myosin 5a. PLoS ONE, 2013, 8, e62640.	1.1	2
96	To understand muscle you must take it apart. Frontiers in Physiology, 2014, 5, 90.	1.3	31
97	Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH ₂ terminus of the RLC on β-myosin cross-bridge mechanics. Journal of Applied Physiology, 2014, 117, 1471-1477.	1.2	13
98	A Toxoplasma gondii Class XIV Myosin, Expressed in Sf9 Cells with a Parasite Co-chaperone, Requires Two Light Chains for Fast Motility. Journal of Biological Chemistry, 2014, 289, 30832-30841.	1.6	40
99	Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1833-42.	3.3	45
100	Engineering myosins for long-range transport on actin filaments. Nature Nanotechnology, 2014, 9, 33-38.	15.6	42
101	Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport. Current Biology, 2014, 24, 1743-1750.	1.8	55
102	Molecular Characterization and Subcellular Localization of Arabidopsis Class VIII Myosin, ATM1. Journal of Biological Chemistry, 2014, 289, 12343-12355.	1.6	46
103	The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophysical Reviews, 2014, 6, 237-260.	1.5	29
104	The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. Journal of Cell Biology, 2014, 205, 357-375.	2.3	40
105	Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a. Scientific Reports, 2015, 5, 10874.	1.6	23
106	Myosin tails and single α-helical domains. Biochemical Society Transactions, 2015, 43, 58-63.	1.6	9
107	Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron. International Journal of Biological Sciences, 2016, 12, 1083-1092.	2.6	35
108	Transport of germ cells across the seminiferous epithelium during spermatogenesis—the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers, 2016, 4, e1265042.	1.6	42
109	Force-producing ADP state of myosin bound to actin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1844-52.	3.3	76

		CITATION REPORT		
#	Article		IF	CITATIONS
110	Mechanics and Activation of Unconventional Myosins. Traffic, 2016, 17, 860-871.		1.3	29
111	Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. Jou Biological Chemistry, 2017, 292, 18372-18385.	urnal of	1.6	18
112	Robust mechanobiological behavior emerges in heterogeneous myosin systems. Proce National Academy of Sciences of the United States of America, 2017, 114, E8147-E81	edings of the 54.	3.3	5
113	Myosin Motors. , 2018, , 237-291.			0
114	Nonmuscle myosin II isoforms interact with sodium channel alpha subunits. Molecular 174480691878863.	Pain, 2018, 14,	1.0	7
115	Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecul Communications, 2018, 9, 2844.	e level. Nature	5.8	28
116	A model for the chemomechanical coupling of myosin-V molecular motors. RSC Advan 26734-26747.	ces, 2019, 9,	1.7	3
117	Chiral Neuronal Motility: The Missing Link between Molecular Chirality and Brain Asym Symmetry, 2019, 11, 102.	metry.	1.1	11
118	Myosin VIIa Supports Spermatid/Organelle Transport and Cell Adhesion During Sperma Rat Testis. Endocrinology, 2019, 160, 484-503.	atogenesis in the	1.4	16
119	Theory of Nonequilibrium Free Energy Transduction by Molecular Machines. Chemical I 120, 434-459.	Reviews, 2020,	23.0	90
120	Dynamics of ATP-dependent and ATP-independent steppings of myosin-V on actin: cate characteristics. Journal of the Royal Society Interface, 2020, 17, 20200029.	ch-bond	1.5	5
121	Dynamic multimerization of Dab2–Myosin VI complexes regulates cargo processivity cortical actin reorganization. Journal of Biological Chemistry, 2021, 296, 100232.	v while minimizing	1.6	11
122	Biophysical Approaches to Understanding the Action of Myosin as a Molecular Machin	e., 2013,, 341-361.		1
123	High-Speed Atomic Force Microscopy to Study Myosin Motility. Advances in Experimer Biology, 2020, 1239, 127-152.	ntal Medicine and	0.8	3
124	How Myosin 5 Walks Deduced from Single-Molecule Biophysical Approaches. Advance Medicine and Biology, 2020, 1239, 153-181.	s in Experimental	0.8	3
125	Actin Structure-Dependent Stepping of Myosin 5a and 10 during Processive Movemen 8, e74936.	t. PLoS ONE, 2013,	1.1	17
126	Mechanism of muscle contraction based on stochastic properties of single actomyosir observed in vitro. Biophysics (Nagoya-shi, Japan), 2005, 1, 1-19.	ı motors	0.4	49
127	Five models for myosin V. Frontiers in Bioscience - Landmark, 2009, Volume, 2269.		3.0	15

		CITATION REPORT		
#	Article		IF	CITATIONS
128	Use of Fluorescent Techniques to Study the In Vitro Movement of Myosins. Exs, 2014,	105, 193-210.	1.4	4
129	Single-Molecule Biophysical Techniques to Study Actomyosin Force Transduction. Adva Experimental Medicine and Biology, 2020, 1239, 85-126.	inces in	0.8	3
130	Mitochondria-associated myosin 19 processively transports mitochondria on actin trac cells. Journal of Biological Chemistry, 2022, 298, 101883.	ks in living	1.6	15
131	Engineering reconfigurable flow patterns via surface-driven light-controlled active matt Review Fluids, 2021, 6, .	er. Physical	1.0	2
132	Flagella-like beating of actin bundles driven by self-organized myosin waves. Nature Phy 1240-1247.	ysics, 2022, 18,	6.5	8
133	Organization ofÂIntracellular Transport. Graduate Texts in Physics, 2022, , 107-116.		0.1	0
134	The potential of myosin and actin in nanobiotechnology. Journal of Cell Science, 2023,	136,.	1.2	1