Dietary restriction normalizes glucose metabolism and progression, and increases survival in huntingtin mutar

Proceedings of the National Academy of Sciences of the Unite 100, 2911-2916

DOI: 10.1073/pnas.0536856100

Citation Report

#	Article	IF	CITATIONS
1	Excitotoxic and Excitoprotective Mechanisms: Abundant Targets for the Prevention and Treatment of Neurodegenerative Disorders. NeuroMolecular Medicine, 2003, 3, 65-94.	1.8	415
2	Perturbed Signal Transduction in Neurodegenerative Disorders Involving Aberrant Protein Aggregation. NeuroMolecular Medicine, 2003, 4, 109-132.	1.8	28
3	Huntington's Disease. NeuroMolecular Medicine, 2003, 4, 7-20.	1.8	79
4	Interactive Effects of Excitotoxic Injury and Dietary Restriction on Microgliosis and Neurogenesis in the Hippocampus of Adult Mice. NeuroMolecular Medicine, 2003, 4, 179-196.	1.8	22
5	Adventures in neural plasticity, aging, and neurodegenerative disorders aboard the CWC beagle. Neurochemical Research, 2003, 28, 1631-1637.	1.6	7
6	Synaptic plasticity in the ischaemic brain. Lancet Neurology, The, 2003, 2, 622-629.	4.9	139
7	Plans for HDBase—a research community website for Huntington's Disease. Clinical Neuroscience Research, 2003, 3, 197-217.	0.8	6
8	Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. Journal of Neurochemistry, 2003, 86, 529-537.	2.1	151
9	Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. British Journal of Cancer, 2003, 89, 1375-1382.	2.9	221
10	Learning from the gut. Nature Medicine, 2003, 9, 1113-1115.	15.2	27
10	Learning from the gut. Nature Medicine, 2003, 9, 1113-1115. Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375.	15.2 4.9	27 476
	Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4,		
11	Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in	4.9	476
11 12	Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 2003, 9, 196-205. Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing	4.9 3.5	476 246
11 12 13	 Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 2003, 9, 196-205. Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471. Nicotine Attenuates Arachidonic Acid-Induced Apoptosis of Spinal Cord Neurons by Preventing 	4.9 3.5 5.0	476 246 16
11 12 13 15	 Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 2003, 9, 196-205. Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471. Nicotine Attenuates Arachidonic Acid-Induced Apoptosis of Spinal Cord Neurons by Preventing Depletion of Neurotrophic Factors. Journal of Neurotrauma, 2003, 20, 1201-1213. Reversal of Behavioral and Metabolic Abnormalities, and Insulin Resistance Syndrome, by Dietary Restriction in Mice Deficient in Brain-Derived Neurotrophic Factor. Endocrinology, 2003, 144, 	4.9 3.5 5.0 1.7	476 246 16 25
11 12 13 15 16	 Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 365-375. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 2003, 9, 196-205. Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471. Nicotine Attenuates Arachidonic Acid-Induced Apoptosis of Spinal Cord Neurons by Preventing Depletion of Neurotrophic Factors. Journal of Neurotrauma, 2003, 20, 1201-1213. Reversal of Behavioral and Metabolic Abnormalities, and Insulin Resistance Syndrome, by Dietary Restriction in Mice Deficient in Brain-Derived Neurotrophic Factor. Endocrinology, 2003, 144, 2446-2453. The search for energy: a driving force in evolution and aging. Advances in Cell Aging and 	4.9 3.5 5.0 1.7 1.4	476 246 16 25 166

#	Article	IF	Citations
20	Environmental Enrichment Rescues Protein Deficits in a Mouse Model of Huntington's Disease, Indicating a Possible Disease Mechanism. Journal of Neuroscience, 2004, 24, 2270-2276.	1.7	342
21	Brain-Derived Neurotrophic Factor Regulates the Onset and Severity of Motor Dysfunction Associated with Enkephalinergic Neuronal Degeneration in Huntington's Disease. Journal of Neuroscience, 2004, 24, 7727-7739.	1.7	323
22	Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18171-18176.	3.3	334
23	Dietary supplementation with 2-deoxy-d-glucose improves cardiovascular and neuroendocrine stress adaptation in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1186-H1193.	1.5	40
24	Environmental enrichment affects striatal graft morphology and functional recovery. European Journal of Neuroscience, 2004, 19, 159-168.	1.2	60
25	Can the Ketogenic Diet be Anticonvulsant as Well as Antiepileptogenic?. Epilepsy Currents, 2004, 4, 91-92.	0.4	4
26	Experimental therapeutics in transgenic mouse models of Huntington's disease. Nature Reviews Neuroscience, 2004, 5, 373-384.	4.9	201
28	Assessment of the nutrition status of patients with Huntington's disease. Nutrition, 2004, 20, 192-196.	1.1	147
29	The Energetics of Huntington's Disease. Neurochemical Research, 2004, 29, 531-546.	1.6	206
30	Metal-Catalyzed Disruption of Membrane Protein and Lipid Signaling in the Pathogenesis of Neurodegenerative Disorders. Annals of the New York Academy of Sciences, 2004, 1012, 37-50.	1.8	151
31	Genetic and environmental factors in the pathogenesis of Huntington's disease. Neurogenetics, 2004, 5, 9-17.	0.7	51
32	Paroxetine retards disease onset and progression in Huntingtin mutant mice. Annals of Neurology, 2004, 55, 590-594.	2.8	84
33	Early Striatal Dendrite Deficits followed by Neuron Loss with Advanced Age in the Absence of Anterograde Cortical Brain-Derived Neurotrophic Factor. Journal of Neuroscience, 2004, 24, 4250-4258.	1.7	357
34	Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx, 2004, 1, 111-116.	6.0	119
35	Translating therapies for Huntington's disease from genetic animal models to clinical trials. NeuroRx, 2004, 1, 298-306.	6.0	70
36	Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutrition and Metabolism, 2004, 1, 11.	1.3	100
37	BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in Neurosciences, 2004, 27, 589-594.	4.2	795
38	Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 2004, 124, 985-992.	1.1	226

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
39	Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiology of Disease, 2004, 15, 152-159.	2.1	52
40	A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin. Ageing Research Reviews, 2004, 3, 445-464.	5.0	242
41	Targeting energy metabolism in Huntington's disease. Lancet, The, 2004, 364, 312-313.	6.3	20
42	A forkhead in the road to longevity: the molecular basis of lifespan becomes clearer. Journal of Hypertension, 2005, 23, 1285-1309.	0.3	89
43	Dietary Modulation of Lipid Rafts. , 2005, , 191-201.		1
44	CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. Journal of Neurochemistry, 2005, 93, 310-320.	2.1	156
45	GENE–ENVIRONMENT INTERACTIONS, NEURONAL DYSFUNCTION AND PATHOLOGICAL PLASTICITY IN HUNTINGTON'S DISEASE. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 1007-1019.	0.9	50
46	Normal huntingtin function: an alternative approach to Huntington's disease. Nature Reviews Neuroscience, 2005, 6, 919-930.	4.9	590
47	Ageing and metabolism: drug discovery opportunities. Nature Reviews Drug Discovery, 2005, 4, 569-580.	21.5	69
48	Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Journal, 2005, 272, 2347-2361.	2.2	87
49	Development of novel therapies for Huntington's disease: hope and challenge1. Acta Pharmacologica Sinica, 2005, 26, 129-142.	2.8	15
50	Dietary restriction affects striatal glutamate in the MPTP-induced mouse model of nigrostriatal degeneration. Synapse, 2005, 57, 100-112.	0.6	43
51	The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient β-cell mass and exocytosis. Human Molecular Genetics, 2005, 14, 565-574.	1.4	129
52	Neurotrophic factors and sleep. Advances in Cell Aging and Gerontology, 2005, , 155-164.	0.1	0
53	Optimising Plasticity: Environmental and Training Associated Factors in Transplant-mediated Brain Repair. Reviews in the Neurosciences, 2005, 16, 1-22.	1.4	35
54	Gene expression in Huntington's disease skeletal muscle: a potential biomarker. Human Molecular Genetics, 2005, 14, 1863-1876.	1.4	150
55	The need for controlled studies of the effects of meal frequency on health. Lancet, The, 2005, 365, 1978-1980.	6.3	61
56	Short-Term Feeding of Fish Oil Down-Regulates the Expression of Pyruvate Dehydrogenase E1 Alpha Subunit mRNA in Mouse Brain. Bioscience, Biotechnology and Biochemistry, 2005, 69, 301-306.	0.6	2

#	Article	IF	CITATIONS
57	Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats. Brain Research Bulletin, 2005, 67, 482-491.	1.4	61
58	Dietary restriction alters fine motor function in rats. Physiology and Behavior, 2005, 85, 581-592.	1.0	23
59	Caloric restriction does not reverse aging-related changes in hippocampal BDNF. Neurobiology of Aging, 2005, 26, 683-688.	1.5	53
61	ENERGY INTAKE, MEAL FREQUENCY, AND HEALTH: A Neurobiological Perspective. Annual Review of Nutrition, 2005, 25, 237-260.	4.3	226
63	Molecular Pathogenesis and Therapeutic Targets in Huntington's Disease. , 2006, , 223-249.		1
64	Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Research Reviews, 2006, 5, 165-178.	5.0	123
65	Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Research Reviews, 2006, 5, 332-353.	5.0	340
66	Neuronal Life-and-Death Signaling, Apoptosis, and Neurodegenerative Disorders. Antioxidants and Redox Signaling, 2006, 8, 1997-2006.	2.5	192
67	Cholesterol dysfunction in neurodegenerative diseases: Is Huntington's disease in the list?. Progress in Neurobiology, 2006, 80, 165-176.	2.8	63
68	Neuronal death and rescue: neurotrophic factors and anti-apoptotic mechanisms. , 2006, , 271-292.		4
69	Ageing and neuronal vulnerability. Nature Reviews Neuroscience, 2006, 7, 278-294.	4.9	895
70	DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington's mice (R6/2) reveals neuroinflammation and insulin associations. Brain Research, 2006, 1088, 176-186.	1.1	50
71	No evidence of association between BDNF gene variants and age-at-onset of Huntington's disease. Neurobiology of Disease, 2006, 24, 274-279.	2.1	18
72	Oral uridine pro-drug PN401 is neuroprotective in the R6/2 and N171-82Q mouse models of Huntington's disease. Neurobiology of Disease, 2006, 24, 455-465.	2.1	27
73	Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. Journal of Neuroscience Research, 2006, 83, 1028-1038.	1.3	35
74	Interferon-Î ³ is up-regulated in the hippocampus in response to intermittent fasting and protects hippocampal neurons against excitotoxicity. Journal of Neuroscience Research, 2006, 83, 1552-1557.	1.3	45
75	Revenge of the "Sit― How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 2006, 84, 699-715.	1.3	258
76	Secrets of the lac Operon. , 2006, 35, 39-68.		31

#	Article	IF	CITATIONS
77	Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19908-19912.	3.3	243
78	Inhibitors of metabolism rescue cell death in Huntington's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14525-14530.	3.3	55
79	Resveratrol stimulates AMP kinase activity in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7217-7222.	3.3	675
80	Dysregulation of C/EBPα by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Human Molecular Genetics, 2007, 16, 483-498.	1.4	87
81	Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. Journal of Lipid Research, 2007, 48, 1571-1580.	2.0	106
82	Hypothalamic Dysfunction and Neuroendocrine and Metabolic Alterations in Huntington Disease: Clinical Consequences and Therapeutic Implications. Reviews in the Neurosciences, 2007, 18, 223-51.	1.4	77
83	The corticostriatal pathway in Huntington's disease. Progress in Neurobiology, 2007, 81, 253-271.	2.8	287
84	Role of brain-derived neurotrophic factor in Huntington's disease. Progress in Neurobiology, 2007, 81, 294-330.	2.8	486
85	Prophylactic treatment with paroxetine ameliorates behavioral deficits and retards the development of amyloid and tau pathologies in 3xTgAD mice. Experimental Neurology, 2007, 205, 166-176.	2.0	159
86	Gene expression atlas of the mouse central nervous system: impact and interactions of age, energy intake and gender. Genome Biology, 2007, 8, R234.	13.9	103
87	RESEARCH ARTICLE: Systematic Assessment of BDNF and Its Receptor Levels in Human Cortices Affected by Huntington's Disease. Brain Pathology, 2008, 18, 225-238.	2.1	197
88	Calcium and neurodegeneration. Aging Cell, 2007, 6, 337-350.	3.0	643
89	Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Disease, 2007, 26, 212-220.	2.1	474
90	Energy Intake and Amyotrophic Lateral Sclerosis. NeuroMolecular Medicine, 2007, 9, 17-20.	1.8	97
91	Dietary Restriction Enhances Kainate-Induced Increase in NCAM While Blocking the Glial Activation in Adult Rat Brain. Neurochemical Research, 2008, 33, 1178-1188.	1.6	22
92	Neurotrophic Factors in Autonomic Nervous System Plasticity and Dysfunction. NeuroMolecular Medicine, 2008, 10, 157-168.	1.8	19
93	Neurogenesis and Exercise: Past and Future Directions. NeuroMolecular Medicine, 2008, 10, 128-140.	1.8	521
94	Nutrition and the risk for Parkinson's disease: review of the literature. Journal of Neural Transmission, 2008, 115, 703-713.	1.4	18

#	Article	IF	Citations
95	Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction. Biogerontology, 2008, 9, 441-454.	2.0	36
96	Islet β-cell area and hormone expression are unaltered in Huntington's disease. Histochemistry and Cell Biology, 2008, 129, 623-629.	0.8	24
97	Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease. Annals of the New York Academy of Sciences, 2008, 1144, 97-112.	1.8	525
98	Brain foods: the effects of nutrients on brain function. Nature Reviews Neuroscience, 2008, 9, 568-578.	4.9	931
99	Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. Journal of Neurochemistry, 2008, 106, 1977-1990.	2.1	136
100	Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radical Biology and Medicine, 2008, 45, 667-678.	1.3	250
101	The substrates of memory: Defects, treatments, and enhancement. European Journal of Pharmacology, 2008, 585, 2-13.	1.7	93
102	The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Experimental Gerontology, 2008, 43, 1086-1093.	1.2	67
103	Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. , 2008, 117, 30-51.		173
104	Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington's disease. Neurobiology of Disease, 2008, 30, 293-302.	2.1	44
105	Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiology of Disease, 2008, 30, 312-322.	2.1	129
106	GABAergic drugs become neurotoxic in cortical neurons pre-exposed to brain-derived neurotrophic factor. Molecular and Cellular Neurosciences, 2008, 37, 312-322.	1.0	7
107	Hormesis in aging. Ageing Research Reviews, 2008, 7, 63-78.	5.0	427
108	The influences of diet and exercise on mental health through hormesis. Ageing Research Reviews, 2008, 7, 49-62.	5.0	125
109	Dietary factors, hormesis and health. Ageing Research Reviews, 2008, 7, 43-48.	5.0	258
110	Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiology of Aging, 2008, 29, 1502-1511.	1.5	103
111	Progress in Parkinson's disease—Where do we stand?. Progress in Neurobiology, 2008, 85, 376-392.	2.8	164
112	The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model. Experimental Neurology, 2008, 210, 154-163.	2.0	152

#	Article	IF	CITATIONS
113	The metabolic profile of early Huntington's disease- a combined human and transgenic mouse study. Experimental Neurology, 2008, 210, 691-698.	2.0	99
114	Dietary restriction started after spinal cord injury improves functional recovery. Experimental Neurology, 2008, 213, 28-35.	2.0	101
115	Neurotrophic Factors in Neurodegenerative Disorders. CNS Drugs, 2008, 22, 1005-1019.	2.7	35
116	Glucose Homeostasis in Huntington Disease. Archives of Neurology, 2008, 65, 476.	4.9	137
117	Huntington Disease. , 2008, , 207-266.		5
118	Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology, 2008, 70, 1004-1009.	1.5	488
119	Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Human Molecular Genetics, 2008, 17, 3095-3104.	1.4	41
120	Beneficial effects of phenolic compounds from fruit and vegetables in neurodegenerative diseases. , 2008, , 145-181.		2
121	A Critical Evaluation of Adenosine A2A Receptors as Potentially "Druggable" Targets in Huntingtons Disease. Current Pharmaceutical Design, 2008, 14, 1500-1511.	0.9	63
122	Formation of Polyglutamine Inclusions in a Wide Range of Non-CNS Tissues in the HdhQ150 Knock-In Mouse Model of Huntington's Disease. PLoS ONE, 2009, 4, e8025.	1.1	131
124	Nutrient Deprivation Induces Neuronal Autophagy and Implicates Reduced Insulin Signaling in Neuroprotective Autophagy Activation. Journal of Biological Chemistry, 2009, 284, 2363-2373.	1.6	107
125	Development of selective nutrient deprivation as a system to study autophagy induction and regulation in neurons. Autophagy, 2009, 5, 555-557.	4.3	4
126	Benefits of Caloric Restriction on Brain Aging and Related Pathological States: Understanding Mechanisms to Devise Novel Therapies. Current Medicinal Chemistry, 2009, 16, 350-361.	1.2	35
127	Adenosine, Ketogenic Diet and Epilepsy: The Emerging Therapeutic Relationship Between Metabolism and Brain Activity. Current Neuropharmacology, 2009, 7, 257-268.	1.4	122
128	SIRT2 Suppresses Adipocyte Differentiation by Deacetylating FOXO1 and Enhancing FOXO1's Repressive Interaction with PPARI ³ . Molecular Biology of the Cell, 2009, 20, 801-808.	0.9	251
129	The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Research Reviews, 2009, 59, 293-315.	9.1	463
130	Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurology, The, 2009, 8, 765-774.	4.9	312
131	Huntington's Disease Does Not Appear to Increase the Risk of Diabetes Mellitus. Journal of Neuroendocrinology, 2009, 21, 770-776.	1.2	38

#	Article	IF	CITATIONS
132	Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neuroscience Research, 2009, 65, 367-374.	1.0	37
133	The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Research Reviews, 2009, 8, 173-188.	5.0	181
134	The Heat Shock Connection of Metabolic Stress and Dietary Restriction. Current Pharmaceutical Biotechnology, 2010, 11, 139-145.	0.9	15
135	Dietary restriction and brain health. Neuroscience Bulletin, 2010, 26, 55-65.	1.5	17
136	Effects of postnatal dietary choline manipulation against MK-801 neurotoxicity in pre and postadolescent rats. Brain Research, 2010, 1362, 117-132.	1.1	5
137	Age and energy intake interact to modify cell stress pathways and stroke outcome. Annals of Neurology, 2010, 67, 41-52.	2.8	225
138	Chronic caloric restriction reduces tissue damage and improves spatial memory in a rat model of traumatic brain injury. Journal of Neuroscience Research, 2010, 88, 2933-2939.	1.3	48
139	A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Movement Disorders, 2010, 25, 1444-1450.	2.2	72
140	Restricted ketogenic diet enhances the therapeutic action of <i>N</i> â€butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. Journal of Neurochemistry, 2010, 113, 1525-1535.	2.1	23
141	Dietary restriction mitigates cocaineâ€induced alterations of olfactory bulb cellular plasticity and gene expression, and behavior. Journal of Neurochemistry, 2010, 114, 323-334.	2.1	5
142	The impact of dietary energy intake on cognitive aging. Frontiers in Aging Neuroscience, 2010, 2, 5.	1.7	71
143	Etiology, Pathology, and Pathogenesis. Blue Books of Neurology, 2010, , 417-431.	0.1	0
144	Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Human Molecular Genetics, 2010, 19, 4043-4058.	1.4	84
145	Impaired TrkB-mediated ERK1/2 Activation in Huntington Disease Knock-in Striatal Cells Involves Reduced p52/p46 Shc Expression. Journal of Biological Chemistry, 2010, 285, 21537-21548.	1.6	58
146	Hormesis: What it is and Why it Matters. , 2010, , 1-13.		15
147	Neuronutrition and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 1123-1139.	1.2	90
148	How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. Advances in the Study of Behavior, 2010, , 255-366.	1.0	60
149	Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behavioural Brain Research, 2010, 214, 193-200.	1.2	153

#	Article	IF	CITATIONS
150	Caloric restriction provided after global ischemia does not reduce hippocampal cornu ammonis injury or improve functional recovery. Neuroscience, 2010, 166, 263-270.	1.1	9
151	Perspective: Does brown fat protect against diseases of aging?. Ageing Research Reviews, 2010, 9, 69-76.	5.0	100
152	Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiological Reviews, 2010, 90, 905-981.	13.1	732
153	Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Experimental Neurology, 2010, 225, 74-84.	2.0	121
154	Sirtuins: A Family of Proteins With Implications for Human Performance and Exercise Physiology. Research in Sports Medicine, 2010, 19, 53-65.	0.7	18
155	Short-term fasting induces profound neuronal autophagy. Autophagy, 2010, 6, 702-710.	4.3	243
156	The lighter side of BDNF. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1053-R1069.	0.9	235
157	Intermittent Fasting Improves Functional Recovery after Rat Thoracic Contusion Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 479-492.	1.7	73
159	Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation. Archives of Biochemistry and Biophysics, 2011, 510, 27-34.	1.4	35
160	Early defect of transforming growth factor β1 formation in Huntington's disease. Journal of Cellular and Molecular Medicine, 2011, 15, 555-571.	1.6	64
162	Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. Journal of Toxicology, 2011, 2011, 1-12.	1.4	96
163	2-Deoxy-D-Glucose Treatment Induces Ketogenesis, Sustains Mitochondrial Function, and Reduces Pathology in Female Mouse Model of Alzheimer's Disease. PLoS ONE, 2011, 6, e21788.	1.1	149
164	Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurology, The, 2011, 10, 83-98.	4.9	1,393
166	Electroconvulsive shock ameliorates disease processes and extends survival in huntingtin mutant mice. Human Molecular Genetics, 2011, 20, 659-669.	1.4	24
167	Role of Sirtuins and Calorie Restriction in Neuroprotection: Implications in Alzheimers and Parkinsons Diseases. Current Pharmaceutical Design, 2011, 17, 3418-3433.	0.9	62
168	Impaired Adaptive Cellular Responses to Oxidative Stress and the Pathogenesis of Alzheimer's Disease. Antioxidants and Redox Signaling, 2011, 14, 1519-1534.	2.5	54
169	Combined Treatment with the Mood Stabilizers Lithium and Valproate Produces Multiple Beneficial Effects in Transgenic Mouse Models of Huntington's Disease. Neuropsychopharmacology, 2011, 36, 2406-2421.	2.8	126
170	Recruiting adaptive cellular stress responses for successful brain ageing. Nature Reviews Neuroscience, 2012, 13, 209-216.	4.9	153

#	Article	IF	CITATIONS
171	Involvement of PGC-1 \hat{l} ± in the formation and maintenance of neuronal dendritic spines. Nature Communications, 2012, 3, 1250.	5.8	308
172	Energy Intake and Exercise as Determinants of Brain Health and Vulnerability to Injury and Disease. Cell Metabolism, 2012, 16, 706-722.	7.2	340
173	Effects of a Calorie-Restricted Diet on the Content of Phospholipids in the Brain and Cognitive Functions in Rats. Neurophysiology, 2012, 44, 201-207.	0.2	3
174	Aberrant heart rate and brainstem brain-derived neurotrophic factor (BDNF) signaling in a mouse model of Huntington's disease. Neurobiology of Aging, 2012, 33, 1481.e1-1481.e5.	1.5	24
175	Effects of diet on synaptic vesicle release in dynactin complex mutants: a mechanism for improved vitality during motor disease. Aging Cell, 2012, 11, 418-427.	3.0	11
176	Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nature Medicine, 2012, 18, 153-158.	15.2	300
177	Neuroprotection by dietary restriction and the PPAR transcription complex. Translational Neuroscience, 2012, 3, .	0.7	4
178	Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I. Molecular Neurobiology, 2012, 46, 393-429.	1.9	50
179	Mouse Models of Polyglutamine Diseases in Therapeutic Approaches: Review and Data Table. Part II. Molecular Neurobiology, 2012, 46, 430-466.	1.9	39
180	Do <i>β</i> -Defensins and Other Antimicrobial Peptides Play a Role in Neuroimmune Function and Neurodegeneration?. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	37
181	Cognitive Dysfunction in Huntington's Disease: Humans, Mouse Models and Molecular Mechanisms. Journal of Huntington's Disease, 2012, 1, 155-173.	0.9	57
182	Brainâ€derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health. Annals of the New York Academy of Sciences, 2012, 1264, 49-63.	1.8	143
183	Choosing an animal model for the study of Huntington's disease. Nature Reviews Neuroscience, 2013, 14, 708-721.	4.9	287
184	Targeting Sirtuin-1 in Huntington's Disease: Rationale and Current Status. CNS Drugs, 2013, 27, 345-352.	2.7	36
185	Sirtuin Deacetylases as Therapeutic Targets in the Nervous System. Neurotherapeutics, 2013, 10, 605-620.	2.1	28
186	Neuroprotective effects of <scp>PPAR</scp> â€Ĥ³ agonist rosiglitazone in N171â€82Q mouse model of Huntington's disease. Journal of Neurochemistry, 2013, 125, 410-419.	2.1	98
187	Fasting Therapy for Treating and Preventing Disease - Current State of Evidence. Research in Complementary Medicine, 2013, 20, 444-453.	2.2	100
188	Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder. Pharmacological Reviews, 2013, 65, 105-142.	7.1	338

ARTICLE IF CITATIONS # Drug Delivery Systems for the Treatment of Ischemic Stroke. Pharmaceutical Research, 2013, 30, 189 1.7 46 2429-2444. Role of the hypothalamus in mediating protective effects of dietary restriction during aging. Frontiers in Neuroendocrinology, 2013, 34, 95-106. 2.5 28 Degradation of Misfolded Proteins by Autophagy: Is it a Strategy for Huntington's Disease Treatment?. 191 0.9 21 Journal of Huntington's Disease, 2013, 2, 149-157. Surveying the Landscape of Huntington's Disease Mechanisms, Measurements, and Medicines. Journal 0.9 of Huntington's Disease, 2013, 2, 405-436. A Small Molecule TrkB Ligand Reduces Motor Impairment and Neuropathology in R6/2 and BACHD 193 1.7 128 Mouse Models of Huntington's Disease. Journal of Neuroscience, 2013, 33, 18712-18727. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease. Human Molecular Genetics, 2013, 22, 2462-2470. 194 1.4 Systemic Delivery of Recombinant Brain Derived Neurotrophic Factor (BDNF) in the R6/2 Mouse Model 195 1.1 74 of Huntington's Disease. PLoS ONE, 2013, 8, e64037. Sirtuins: from metabolic regulation to brain aging. Frontiers in Aging Neuroscience, 2013, 5, 36. 1.7 Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice. PLoS ONE, 197 98 1.1 2013, 8, e66069. Mood disorders in Huntington's disease: from behavior to cellular and molecular mechanisms. 198 1.0 Frontiers in Behavioral Neuroscience, 2014, 8, 135. Disease Modifying Potential of Glatiramer Acetate in Huntington's Disease. Journal of Huntington's 199 12 0.9 Disease, 2014, 3, 311-316. Manganese and Huntington Disease. Issues in Toxicology, 2014, , 540-573. 200 Differential Effects of Delayed Aging on Phenotype and Striatal Pathology in a Murine Model of 201 1.7 12 Huntington Disease. Journal of Neuroscience, 2014, 34, 15658-15668. Challenging Oneself Intermittently to Improve Health. Dose-Response, 2014, 12, dose-response.1. Neurotrophin Strategies for Neuroprotection: Are They Sufficient?. Journal of NeuroImmune 203 2.1 12 Pharmacology, 2014, 9, 182-194. Late-Onset Dietary Restriction Modulates Protein Carbonylation and Catalase in Cerebral Hemispheres 204 of Aged Mice. Cellular and Molecular Neurobiology, 2014, 34, 307-313. 205 Huntington's Disease. Handbook of Experimental Pharmacology, 2014, 220, 357-409. 0.9 90 Communication breakdown: The impact of ageing on synapse structure. Ageing Research Reviews, 2014, 14, 31-42.

#	Article	IF	CITATIONS
208	A review of physical and cognitive interventions in aging. Neuroscience and Biobehavioral Reviews, 2014, 44, 206-220.	2.9	295
209	Fasting: Molecular Mechanisms and Clinical Applications. Cell Metabolism, 2014, 19, 181-192.	7.2	1,001
210	The neuropathology of obesity: insights from human disease. Acta Neuropathologica, 2014, 127, 3-28.	3.9	64
211	Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of <scp>H</scp> untington's disease. Brain and Behavior, 2014, 4, 675-686.	1.0	36
212	Exercise, Energy Intake, Glucose Homeostasis, and the Brain. Journal of Neuroscience, 2014, 34, 15139-15149.	1.7	117
213	Genetic Findings in Obsessive–Compulsive Disorder Connect to Brainâ€Derived Neurotropic Factor and Mammalian Target of Rapamycin Pathways: Implications for Drug Development. Drug Development Research, 2014, 75, 372-383.	1.4	11
214	Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats. Brain Research Bulletin, 2014, 107, 54-60.	1.4	9
215	Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice. Neurobiology of Disease, 2014, 71, 81-94.	2.1	36
216	Glycobiology of the Nervous System. Advances in Neurobiology, 2014, , .	1.3	9
217	High stress hormone levels accelerate the onset of memory deficits in male Huntington's disease mice. Neurobiology of Disease, 2014, 69, 248-262.	2.1	27
218	Interventions that Improve Body and Brain Bioenergetics for Parkinson's Disease Risk Reduction and Therapy. Journal of Parkinson's Disease, 2014, 4, 1-13.	1.5	52
219	â€~Super-Enrichment' Reveals Dose-Dependent Therapeutic Effects of Environmental Stimulation in a Transgenic Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2014, 3, 299-309.	0.9	35
220	BDNF signaling and survival of striatal neurons. Frontiers in Cellular Neuroscience, 2014, 8, 254.	1.8	171
221	Sirtuin 1 activator <scp>SRT</scp> 2104 protects Huntington's disease mice. Annals of Clinical and Translational Neurology, 2014, 1, 1047-1052.	1.7	40
222	In Vivo MRI Evidence that Neuropathology is Attenuated by Cognitive Enrichment in the Yac128 Huntington's Disease Mouse Model. Journal of Huntington's Disease, 2015, 4, 149-160.	0.9	6
223	Late-onset dementia: a mosaic of prototypical pathologies modifiable by diet and lifestyle. Npj Aging and Mechanisms of Disease, 2015, 1, .	4.5	24
224	The role of cannabinoids and leptin in neurological diseases. Acta Neurologica Scandinavica, 2015, 132, 371-380.	1.0	17
225	Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	1.9	24

#	Article	IF	CITATIONS
226	Diabetes and Stem Cell Function. BioMed Research International, 2015, 2015, 1-16.	0.9	26
227	Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Research Reviews, 2015, 20, 37-45.	5.0	126
228	Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Neurobiology of Disease, 2015, 82, 66-77.	2.1	45
229	Gene–Environment Interactions in Huntington's Disease. , 2015, , 355-383.		0
230	Environmental factors as modulators of neurodegeneration: Insights from gene–environment interactions in Huntington's disease. Neuroscience and Biobehavioral Reviews, 2015, 52, 178-192.	2.9	84
231	Neuroprotective effects of dietary restriction: Evidence and mechanisms. Seminars in Cell and Developmental Biology, 2015, 40, 106-114.	2.3	79
232	Leptin as a Neuroprotector and a Central Nervous System Functional Stability Factor. Neuroscience and Behavioral Physiology, 2015, 45, 612-618.	0.2	4
233	What is the effect of fasting on the lifespan of neurons?. Ageing Research Reviews, 2015, 24, 160-165.	5.0	6
234	Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease mouse models through SIRT1 pathway. Nature Communications, 2016, 7, 11445.	5.8	86
235	Metformin Protects Cells from Mutant Huntingtin Toxicity Through Activation of AMPK and Modulation of Mitochondrial Dynamics. NeuroMolecular Medicine, 2016, 18, 581-592.	1.8	40
236	Mouse models of ageing and their relevance to disease. Mechanisms of Ageing and Development, 2016, 160, 41-53.	2.2	82
237	Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. Journal of Proteome Research, 2016, 15, 3266-3283.	1.8	32
238	A small molecule p75 ^{NTR} ligand normalizes signalling and reduces Huntington's disease phenotypes in R6/2 and BACHD mice. Human Molecular Genetics, 2016, 25, ddw316.	1.4	39
239	3â€Hydroxybutyrate regulates energy metabolism and induces <scp>BDNF</scp> expression in cerebral cortical neurons. Journal of Neurochemistry, 2016, 139, 769-781.	2.1	179
240	A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2016, 5, 149-161.	0.9	14
241	Caloric restriction: beneficial effects on brain aging and Alzheimer's disease. Mammalian Genome, 2016, 27, 300-319.	1.0	82
242	A comparison of discrimination learning in touchscreen and 2-choice swim tank using an allelic series of Huntington's disease mice. Journal of Neuroscience Methods, 2016, 265, 56-71.	1.3	5
243	Mini-review: Retarding aging in murine genetic models of neurodegeneration. Neurobiology of Disease, 2016, 85, 73-80.	2.1	6

#	Article	IF	CITATIONS
244	Protection by dietary restriction in the YAC128 mouse model of Huntington's disease: Relation to genes regulating histone acetylation and HTT. Neurobiology of Disease, 2016, 85, 25-34.	2.1	27
245	Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology and Medicine, 2017, 102, 203-216.	1.3	184
246	7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington's disease mouse model through specific activation of the PLCγ1 pathway. Human Molecular Genetics, 2017, 26, 3144-3160.	1.4	44
247	Neuroprotective effects of food restriction on autonomic innervation of the lacrimal gland in the rat. Annals of Anatomy, 2017, 213, 8-18.	1.0	3
248	2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Experimental Neurology, 2017, 293, 83-90.	2.0	31
249	Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron, 2017, 94, 48-57.e4.	3.8	190
250	Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Progress in Neurobiology, 2017, 153, 18-45.	2.8	52
251	Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein. Biogerontology, 2017, 18, 321-332.	2.0	12
252	Recommendations for the Treatment of Patients With Parkinson Disease During Ramadan. JAMA Neurology, 2017, 74, 233.	4.5	11
253	Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. Journal of Biological Chemistry, 2017, 292, 19238-19249.	1.6	46
254	Beneficial effects of glatiramer acetate in Huntington's disease mouse models: Evidence for BDNF-elevating and immunomodulatory mechanisms. Brain Research, 2017, 1673, 102-110.	1.1	16
257	Impact of intermittent fasting on health and disease processes. Ageing Research Reviews, 2017, 39, 46-58.	5.0	703
258	Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Molecular and Cellular Endocrinology, 2017, 455, 33-40.	1.6	31
260	Modulating Neurotrophin Receptor Signaling as a Therapeutic Strategy for Huntington's Disease. Journal of Huntington's Disease, 2017, 6, 303-325.	0.9	27
261	Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Frontiers in Neuroscience, 2017, 11, 451.	1.4	139
262	Metabolic Alterations at the Crossroad of Aging and Oncogenesis. International Review of Cell and Molecular Biology, 2017, 332, 1-42.	1.6	16
263	Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 15-28.	1.0	12
264	Huntington's Disease and Diabetes: Chronological Sequence of its Association. Journal of Huntington's Disease, 2017, 6, 179-188.	0.9	33

#	Article	IF	CITATIONS
265	The effects of fasting during Ramadan on the concentration of serotonin, dopamine, brainderived neurotrophic factor and nerve growth factor. Neurology International, 2017, 9, 7043.	1.3	27
266	Effect of caloric restriction on depression. Journal of Cellular and Molecular Medicine, 2018, 22, 2528-2535.	1.6	36
267	Brain-Derived Neurotrophic Factor Prevents Depressive-Like Behaviors in Early-Symptomatic YAC128 Huntington's Disease Mice. Molecular Neurobiology, 2018, 55, 7201-7215.	1.9	14
268	Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathologica Communications, 2018, 6, 16.	2.4	47
269	Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. Current Protocols in Neuroscience, 2018, 83, e47.	2.6	17
270	A critical review of brain and cognitive reserve in Huntington's disease. Neuroscience and Biobehavioral Reviews, 2018, 88, 155-169.	2.9	30
271	Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. Journal of Neuroscience, 2018, 38, 5122-5139.	1.7	69
272	Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation. FASEB Journal, 2018, 32, 3844-3858.	0.2	45
273	Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metabolism, 2018, 27, 1176-1199.	7.2	721
274	Automated Operant Assessments of Huntington's Disease Mouse Models. Methods in Molecular Biology, 2018, 1780, 143-162.	0.4	2
275	Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. Progress in Molecular Biology and Translational Science, 2018, 154, 105-145.	0.9	17
276	Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS ONE, 2018, 13, e0191256.	1.1	30
277	Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular Neurobiology, 2019, 56, 3295-3312.	1.9	449
278	Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacological Research, 2019, 150, 104371.	3.1	10
279	Glycation in Huntington's Disease: A Possible Modifier and Target for Intervention. Journal of Huntington's Disease, 2019, 8, 245-256.	0.9	19
280	Fasting prevents hypoxia-induced defects of proteostasis in C. elegans. PLoS Genetics, 2019, 15, e1008242.	1.5	8
281	Fasting as a Therapy in Neurological Disease. Nutrients, 2019, 11, 2501.	1.7	56
282	Disease modifying mitochondrial uncouplers, MP101, and a slow release ProDrug, MP201, in models of Multiple Sclerosis. Neurochemistry International, 2019, 131, 104561.	1.9	7

#	Article	IF	CITATIONS
283	Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. International Journal of Molecular Sciences, 2019, 20, 464.	1.8	29
284	An Evolutionary Perspective on Why Food Overconsumption Impairs Cognition. Trends in Cognitive Sciences, 2019, 23, 200-212.	4.0	60
285	Additive antidepressantâ€like effects of fasting with βâ€estradiol in mice. Journal of Cellular and Molecular Medicine, 2019, 23, 5508-5517.	1.6	12
286	Insulin and Autophagy in Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 491.	1.4	38
287	SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nature Communications, 2019, 10, 1886.	5.8	114
288	Stress and Glucocorticoids as Experience-Dependent Modulators of Huntington's Disease. , 2019, , 243-278.		Ο
289	2,4 Dinitrophenol as Medicine. Cells, 2019, 8, 280.	1.8	68
290	Neuroprotection of Fasting Mimicking Diet on MPTP-Induced Parkinson's Disease Mice via Gut Microbiota and Metabolites. Neurotherapeutics, 2019, 16, 741-760.	2.1	121
291	Hypothalamic gene transfer of BDNF promotes healthy aging in mice. Aging Cell, 2019, 18, e12846.	3.0	33
292	Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion. European Journal of Nutrition, 2019, 58, 423-432.	1.8	41
293	Mechanistic target of rapamycin signaling in mouse models of accelerated aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 64-72.	1.7	9
294	Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron, 2020, 105, 630-644.e9.	3.8	63
295	Therapeutic strategies for ketosis induction and their potential efficacy for the treatment of acute brain injury and neurodegenerative diseases. Neurochemistry International, 2020, 133, 104614.	1.9	30
296	Could metformin be therapeutically useful in Huntington's disease?. Reviews in the Neurosciences, 2020, 31, 297-317.	1.4	8
297	Signaling pathways of dietary energy restriction and metabolism on brain physiology and in age-related neurodegenerative diseases. Mechanisms of Ageing and Development, 2020, 192, 111364.	2.2	6
298	The Mediterranean style diet and cognition. , 2020, , 453-464.		0
299	Long-term consumption of virgin coconut (Cocos nucifera) oil diet impairs learning and memory in CD1 mice. Chinese Herbal Medicines, 2020, 12, 414-420.	1.2	4
300	Caloric Restriction and Ketogenic Diet Therapy for Epilepsy: A Molecular Approach Involving Wnt Pathway and KATP Channels. Frontiers in Neurology, 2020, 11, 584298.	1.1	13

#	Article	IF	CITATIONS
301	Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer's disease: Amelioration by metabolic switching. International Review of Neurobiology, 2020, 154, 191-205.	0.9	10
302	The involvement of neuroimmune cells in adipose innervation. Molecular Medicine, 2020, 26, 126.	1.9	27
303	Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. International Journal of Environmental Research and Public Health, 2020, 17, 4135.	1.2	67
304	Cerebellar Predominant Increase in mRNA Expression Levels of Sirt1 and Sirt3 Isoforms in a Transgenic Mouse Model of Huntington's Disease. Neurochemical Research, 2020, 45, 2072-2081.	1.6	4
305	Evaluation of Biochemical and Epigenetic Measures of Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker in Huntington's Disease Patients. Frontiers in Molecular Neuroscience, 2019, 12, 335.	1.4	41
306	Circadian Influences of Diet on the Microbiome and Immunity. Trends in Immunology, 2020, 41, 512-530.	2.9	49
307	Calorie restriction improves aging-induced impairment of cognitive function in relation to deregulation of corticosterone status and brain regional GABA system. Mechanisms of Ageing and Development, 2020, 189, 111248.	2.2	14
308	Nemo-like kinase reduces mutant huntingtin levels and mitigates Huntington's disease. Human Molecular Genetics, 2020, 29, 1340-1352.	1.4	10
309	Hypothalamic gene transfer of BDNF promotes healthy aging. Vitamins and Hormones, 2021, 115, 39-66.	0.7	1
310	Linking Huntington disease, brain-derived neurotrophic factor, and depressive-like behaviors. , 2021, , 161-177.		2
311	Applying available knowledge and resources to alleviate familial and sporadic neurodegenerative disorders. Progress in Molecular Biology and Translational Science, 2021, 177, 91-107.	0.9	2
312	The Influence of Intermittent Fasting Regimens on the Regulatory Mechanisms of Metabolic Health. Zagazig Veterinary Journal, 2021, 49, 56-66.	0.1	0
313	Molecular and cellular pathways contributing to brain aging. Behavioral and Brain Functions, 2021, 17, 6.	1.4	64
314	Effect of Body Weight on Age at Onset in Huntington Disease. Neurology: Genetics, 2021, 7, e603.	0.9	7
315	Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Research Reviews, 2021, 69, 101358.	5.0	26
316	New Avenues for the Treatment of Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 8363.	1.8	55
317	Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. ENeuro, 2021, 8, ENEURO.0197-21.2021.	0.9	2
318	Gastrointestinal disorders in hyperkinetic movement disorders and ataxia. Parkinsonism and Related Disorders, 2021, 90, 125-133.	1.1	3

		LPORT	
#	Article	IF	CITATIONS
319	Intermittent Fasting Alleviates Cognitive Impairments and Hippocampal Neuronal Loss but Enhances Astrocytosis in Mice with Subcortical Vascular Dementia. Journal of Nutrition, 2021, 151, 722-730.	1.3	7
320	Ganglioside Storage Diseases: On the Road to Management. Advances in Neurobiology, 2014, 9, 485-499.	1.3	7
321	Couch Potato: The Antithesis of Hormesis. , 2010, , 139-151.		1
322	Role of Phosphodiesterases in Huntington's Disease. Advances in Neurobiology, 2017, 17, 285-304.	1.3	11
323	Three Effective Ways to Nurture Our Brain. European Psychologist, 2017, 22, 101-120.	1.8	13
325	Other Noteworthy Papers This Week. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 28nw-28.	0.9	2
326	IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. Journal of Clinical Investigation, 2011, 121, 4070-4081.	3.9	89
327	Increased Body Weight of the BAC HD Transgenic Mouse Model of Huntington's Disease Accounts for Some but Not All of the Observed HD-like Motor Deficits. PLOS Currents, 2013, 5, .	1.4	23
328	Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington's disease. PLOS Currents, 2010, 2, RRN1201.	1.4	60
329	Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. ENeuro, 2018, 5, ENEURO.0431-17.2017.	0.9	65
330	Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington's disease Acta Biochimica Polonica, 2019, 51, 415-430.	0.3	19
331	Eating less suppresses microRNA assassins in the brain. Aging, 2011, 3, 179-180.	1.4	3
332	DNA methylation and cognitive aging. Oncotarget, 2015, 6, 13922-13932.	0.8	55
333	Mitochondrial Biogenesis: A Therapeutic Target for Neurodevelopmental Disorders and Neurodegenerative Diseases. Current Pharmaceutical Design, 2014, 20, 5574-5593.	0.9	175
334	Mechanisms and Effects of Dietary Restriction on CNS and Affective Disorders. Acta Medica Bulgarica, 2020, 47, 55-63.	0.0	2
335	BDNF in Huntingtonâ \in Ms Disease: Role in Pathogenesis and Treatment. , 0, , .		1
336	Huntingtonâ \in ™s Disease: From the Physiological Function of Huntingtin to the Disease. , 0, , .		1
337	Inhibition of PIP4K \hat{I}^3 ameliorates the pathological effects of mutant huntingtin protein. ELife, 2017, 6, .	2.8	49

ARTICLE IF CITATIONS # Fasting and Caloric Restriction for Healthy Aging and Longevity. Healthy Ageing and Longevity, 2021, , 338 0.2 0 507-523. Mechanisms of Excitotoxicity and Excitoprotection., 2004, , 103-133. 340 Dopamine and Glutamate in Huntington's Disease. , 2005, , 539-565. 3 Molecular Mechanism of Dietary Restriction in Neuroprevention and Neurogenesis: Involvement of 341 1.1 Neurotrophic Factors. Toxicological Research, 2008, 24, 245-251. Murine models of Huntington disease. Future Neurology, 2009, 4, 617-638. 342 0.9 0 Aging of the Nervous System., 2010, , 319-352. Mitochondrial Dysfunction in Brain and Muscle Pathology of Huntington's Disease., 2014, , 3097-3116. 344 0 Evaluation of the Role of Melatonin in Dietary Restriction Effects on Spatial Memory Impairment Induced by Streptozotocin (STZ) in Male Rats. Journal of Advanced Medical Sciences and Applied 345 0.3 Technologies, 2015, 1, 42. Calorie Restriction, Longevity and Cognitive Function. Nutrition and Food Sciences Research, 2016, 3, 346 0.3 3 1-4. 347 Hacking the Code for Reverse-Aging. MOJ Applied Bionics and Biomechanics, 2017, 1, . 0.2 348 How to avoid DAD?. MOJ Applied Bionics and Biomechanics, 2018, 2, . 3 0.2 The Effect of Caloric Restriction and Treadmill Exercise on Reserpine-Induced Catalepsy in a Rat Model 0.4 of Parkinson's Disease. The Neuroscience Journal of Shefaye Khatam, 2018, 6, 45-52. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. 351 7.2 27 Cell Metabolism, 2021, 33, 2142-2173. Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral 2.1 manipulations. Neurotherapeutics, 2004, 1, 111-116. Translating therapies for Huntington's disease from genetic animal models to clinical trials. 353 2.1 1 Neurotherapeutics, 2004, 1, 298-306. Reduced energy intake: the secret to a long and healthy life?. IBS Journal of Science, 2007, 2, 35-39. 354 Therapeutic perspectives for the treatment of Huntington's disease: treating the whole body. 355 0.5 46 Histology and Histopathology, 2008, 23, 237-50. Huntington's Disease: From Mutant Huntingtin Protein to Neurotrophic Factor Therapy. International Journal of Biomedical Science, 2011, 7, 89-100.

#	Article	IF	CITATIONS
358	Dietary Restriction and Glycolytic Inhibition Reduce Proteotoxicity and Extend Lifespan via NHR-49. Current Neurobiology, 2018, 9, 1-7.	1.0	2
359	Illustrated etiopathogenesis of Huntington's disease. , 2022, , 175-214.		0
360	Beneficial Effects on Brain Micro-Environment by Caloric Restriction in Alleviating Neurodegenerative Diseases and Brain Aging. Frontiers in Physiology, 2021, 12, 715443.	1.3	8
361	IKKβ signaling mediates metabolic changes in the hypothalamus of a Huntington disease mouse model. IScience, 2022, 25, 103771.	1.9	3
362	The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radical Biology and Medicine, 2022, 182, 206-218.	1.3	21
364	Environmental stimulation in Huntington disease patients and animal models. Neurobiology of Disease, 2022, 171, 105725.	2.1	8
368	Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington's disease. Histology and Histopathology, 2006, 21, 1217-32.	0.5	28
369	Mechanisms of Mitochondrial Malfunction in Alzheimer's Disease: New Therapeutic Hope. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-28.	1.9	16
370	Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington's disease model in rats: emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology, 2022, 30, 1745-1758.	1.9	12
371	Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Frontiers in Human Neuroscience, 0, 16, .	1.0	4
372	Dietary regulation in health and disease. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	47
373	Role of AMP-activated protein kinase and sirtuins as antiaging proteins. , 2022, , 241-278.		2
374	Time-Restricted Ketogenic Diet in Huntington's Disease: A Case Study. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	6
375	Activityâ€Dependent Induction of Younger Biological Phenotypes. Advanced Biology, 2022, 6, .	1.4	3
376	A Molecular Approach Of The Caloric Restriction And Vitamins For Cancer Prevention. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, .	0.9	0
377	Intermittent fasting protects the nigral dopaminergic neurons from MPTP-mediated dopaminergic neuronal injury in mice. Journal of Nutritional Biochemistry, 2023, 112, 109212.	1.9	5
378	Effects of lifespan-extending interventions on cognitive healthspan. Expert Reviews in Molecular Medicine, 0, , 1-83.	1.6	1
381	The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients, 2022, 14, 5086.	1.7	9

#	Article	IF	CITATIONS
382	$3 \widehat{\epsilon}$ hydroxybutyrate in the brain: Biosynthesis, function, and disease therapy. , 2023, 1, .		5
384	Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Sub-Cellular Biochemistry, 2023, , 341-435.	1.0	2
385	Lifestyle modifications and nutrition in Alzheimer's disease. , 2023, , 13-39.		0
386	Molecular and Biological Factors in Aging. , 2023, , 1-30.		0
387	The Management of Cancer and Depression in People With Intellectual Disabilities. Advances in Psychology, Mental Health, and Behavioral Studies, 2023, , 22-62.	0.1	0
388	Role of protein-rich diet in brain functions. , 2024, , 505-523.		0

0

Molecular and Biological Factors in Aging. , 2024, , 1525-1554.