Palaeoflood records for the Red River, Manitoba, Canad tree-ring signatures

Holocene
13,547-555
DOI: 10.1191/0959683603hl645rp

Citation Report

\#	Article	IF	Citations
2	Ancient oak climate proxies from the agricultural heartland. Eos, 2004, 85, 483.	0.1	1
3	Spatial Patterns of Preinstrumental Moisture Variability in the Southern Canadian Cordillera. Journal of Climate, 2005, 18, 2847-2863.	3.2	17
4	Paleolimnological Evidence of Terrestrial and Lacustrine Environmental Change in Response to European Settlement of the Red River Valley, Manitoba and North Dakota*. GÃ ©ographie Physique Et Quaternaire, 2005, 59, 263-275.	0.2	3
5	Pervasive and long-term forcing of Holocene river instability and flooding in Great Britain by centennial-scale climate change. Holocene, 2005, 15, 937-943.	1.7	109
6	Long Hydroclimate Records from Tree-Rings in Western Canada: Potential, Problems and Prospects. Canadian Water Resources Journal, 2006, 31, 205-228.	1.2	12
7	Paleoenvironmental Perspectives on Drought in Western Canada â€" Introduction. Canadian Water Resources Journal, 2006, 31, 197-204.	1.2	9
8	The application of palaeohydrology in river management. Catena, 2006, 66, 169-183.	5.0	38
9	Reconstructing past rockfall activity with tree rings: Some methodological considerations. Dendrochronologia, 2006, 24, 1-15.	2.2	114
10	A Review of Studies Dealing with Tree Rings and Rockfall Activity: The Role of Dendrogeomorphology in Natural Hazard Research. Natural Hazards, 2006, 39, 51-70.	3.4	67
11	Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Canadian Journal of Forest Research, 2006, 36, 2317-2330.	1.7	82

12 DENDROCHRONOLOGY. , 2007, , 459-465. 7
13 Paleoflood hydrology: Origin, progress, prospects. Geomorphology, 2008, 101, 1-13. 2.6 195
14 A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia, 2008, 26, 173-183. 2.2 55
Tree-ring analysis in natural hazards research â€" an overview. Natural Hazards and Earth System
Sciences, 2008, 8, 187-202.3.636116 The Tree-Ring Record of Drought on the Canadian Prairiesa,b. Journal of Climate, 2009, 22, 689-710.

\#	Article	IF	Citations
20	Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology, 2010, 118, 383-392.	2.6	106
21	Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic. Clobal and Planetary Change, 2010, 70, 117-124.	3.5	37
22	Tree Rings and Natural Hazards. Advances in Global Change Research, 2010, , .	1.6	90
23	Spring flood reconstruction from continuous and discrete tree ring series. Water Resources Research, 2011, 47, .	4.2	23
24	Response of Anatomical Features of Broadlesf Tree Root in Karst Area to Soil Erosion. Procedia Engineering, 2011, 18, 232-239.	1.2	6
25	Anomalous earlywood vessel lumen area in black ash (Fraxinus nigra Marsh.) tree rings as a potential indicator of forest fires. Dendrochronologia, 2011, 29, 109-114.	2.2	22
26	Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia, 2011, 29, 171-175.	2.2	107
27	Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology, 2011, 403, 103-115.	5.4	93
28	Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrological Processes, 2011, 25, 970-979.	2.6	91
29	Waniyetu WÃ³ wapi: Native American Records of Weather and Climate. Bulletin of the American Meteorological Society, 2011, 92, 583-592.	3.3	13
30	Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, 2012, 63, 3271-3277.	4.8	92
32	Searching for useful non-systematic tree-ring data sources for flood hazard analysis using GIS tools. Catena, 2012, 92, 130-138.	5.0	5

33 Dendrohydrology in 2050: Challenges and Opportunities. , 2012, , 355-362. 5
34 Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 2013, 110, 32-43. 5.0 559.26 Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods andMegafloods. , 2013, , 511-527.

```25
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 39 & DENDROCHRONOLOGY. , 2013, , 453-458. & & 2 \\
\hline 40 & Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiology, 2014, 34, 1079-1089. & 3.1 & 6 \\
\hline 41 & Discussion of â€œlmpact of Storm Water Recharge Practices on Boston Groundwater Elevationsâ€•by Brian F. Thomas and Richard M. Vogel. Journal of Hydrologic Engineering - ASCE, 2014, 19, 274-275. & 1.9 & 0 \\
\hline 42 & Discussion of â€œUncertainty of the Assumptions Required for Estimating the Regulatory Flood: Red River of the Northâ€ by Paul E. Todhunter. Journal of Hydrologic Engineering - ASCE, 2014, 19, 275-276. & 1.9 & 3 \\
\hline 43 & Discussion of â€œStorm Centering Approach for Flood Predictions from Large Watershedsâ€•by James C. Y. Guo. Journal of Hydrologic Engineering - ASCE, 2014, 19, 270-272. & 1.9 & 0 \\
\hline 44 & Closure to â€œStorm Centering Approach for Flood Predictions from Large Watershedsâ€ by James C. Y. Guo. Journal of Hydrologic Engineering - ASCE, 2014, 19, 272-274. & 1.9 & 0 \\
\hline 45 & Chronology of processes in high-gradient channels of medium-high mountains and their influence on the properties of alluvial fans. Geomorphology, 2014, 206, 288-298. & 2.6 & 29 \\
\hline 46 & R. S. Sigafoosâ \(€^{T M}\) S 1961 and 1964 papers on botanical evidence of paleofloods. Progress in Physical Geography, 2015, 39, 405-411. & 3.2 & 2 \\
\hline
\end{tabular}
Flash floods in the Tatra Mountain streams: Frequency and triggers. Science of the Total
Environment, 2015, 511, 639-648.
8.0
\(48 \quad\)\begin{tabular}{l} 
Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System. \\
Journal of Hydrology, 2015, 529, 468-479.
\end{tabular}

Frequency, predisposition, and triggers of floods in flysch Carpathians: regional study using dendrogeomorphic methods. Geomorphology, 2015, 234, 243-253.
2.6

46
Soil Erosion Characteristics According to Tree-rings in a Karst Area. Journal of Resources and
Ecology, 2015, 6, 257-262.

Radial growth responses of four oak species to climate in eastern and central North America.
Canadian Journal of Forest Research, 2015, 45, 793-804.
1.7

21

A multi-century tree-ring record of spring flooding on the Mississippi River. Journal of Hydrology,
5.4

38
2015, 529, 490-498.

A review of flood records from tree rings. Progress in Physical Geography, 2015, 39, 794-816.
3.2

93

Streamflow variability over the 1881 €̂ "2011 period in northern QuÃ@bec: comparison of hydrological
54 reconstructions based on tree rings and geopotential height field reanalysis. Climate of the Past,
3.4

17
2016, 12, 1785-1804.

Fire Regime in Marginal Jack Pine Populations at Their Southern Limit of Distribution, Riding Mountain
2.1

6

\footnotetext{
Continuous earlywood vessels chronologies in floodplain ring-porous species can improve
56 dendrohydrological reconstructions of spring high flows and flood levels. Journal of Hydrology,
5.4 2016, 534, 377-389.
}

30
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 57 & Tree-ring-based estimates of long-term seasonal precipitation in the Souris River Region of Saskatchewan, North Dakota and Manitoba. Canadian Water Resources Journal, 2016, 41, 412-428. & 1.2 & 13 \\
\hline 58 & Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S.. Water Resources Research, 2016, 52, 3866-3880. & 4.2 & 26 \\
\hline 60 & Regional reconstruction of flash flood history in the Guadarrama range (Central System, Spain). Science of the Total Environment, 2016, 550, 406-417. & 8.0 & 33 \\
\hline 61 & Assessing the impact of climate change on the frequency of floods in the Red River basin. Canadian Water Resources Journal, 2016, 41, 331-342. & 1.2 & 6 \\
\hline 62 & Regional flood-frequency reconstruction for Kullu district, Western Indian Himalayas. Journal of Hydrology, 2017, 546, 140-149. & 5.4 & 40 \\
\hline 63 & Habitat age influences metacommunity assembly and species richness in successional pond ecosystems. Ecosphere, 2017, 8, e01871. & 2.2 & 23 \\
\hline 64 & Dendroecology. Ecological Studies, 2017, , . & 1.2 & 29 \\
\hline 65 & Deciphering Dendroecological Fingerprints of Geomorphic Process Activity. Ecological Studies, 2017, , 279-303. & 1.2 & 0 \\
\hline
\end{tabular}

Extreme flood event reconstruction spanning the last century in the El Bibane Lagoon (southeastern) Tj ETQq0 00 rgß \({ }_{3}\)

Improving Flood Maps in Ungauged Fluvial Basins with Dendrogeomorphological Data. An Example

Longâ€derm Hydroclimatic Patterns in the Truckeeâ€€arson Basin of the Eastern Sierra Nevada, USA.
\(70 \quad\) Water Resources Research, 2019, 55, 5559-5574.
4.2

17

Design considerations for riverine floods in a changing climate â€ "A review. Journal of Hydrology,
5.4

87
2019, 574, 557-573.

Spatial variation in oak (<i>Quercus</i>spp.) radial growth responses to drought stress in eastern
North America. Canadian Journal of Forest Research, 2019, 49, 986-993.
1.7

6

Interpreting historical, botanical, and geological evidence to aid preparations for future floods.
\(6.5 \quad 77\)
Wiley Interdisciplinary Reviews: Water, 2019, 6, el318.
77

A record of flooding on the White River, Arkansas derived from tree-ring anatomical variability and
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & \\
\hline 76 & Magnetic detection of paleoflood layers in stalagmites and implications for historical land use changes. Earth and Planetary Science Letters, 2020, 530, 115946. & 4.4 & 11 \\
\hline 77 & Quantitative Paleoflood Hydrology. , 2020, & & 6 \\
\hline 78 & Flash flood reconstruction in the Eastern Mediterranean: Regional tree ring-based chronology and assessment of climate triggers on the island of Crete. Journal of Arid Environments, 2020, 177, 104135. & 2.4 & 13 \\
\hline 79 & Impacts of climatic variability on northward flowing rivers in North America, using a paired basin approach. River Research and Applications, 2020, 36, 1296-1306. & 1.7 & 0 \\
\hline 80 & Tree growth in the aftermath of A flood: A tree-ring based reconstruction of the impacts of the 1996-Biescas catastrophe. Dendrochronologia, 2021, 65, 125783. & 2.2 & 7 \\
\hline 81 & Intra-annual dendrogeomorphic dating and climate linkages of flood events in headwaters of central Europe. Science of the Total Environment, 2021, 763, 142953. & 8.0 & 6 \\
\hline 82 & Hazardous Processes: Flooding. , 2022, , 715-743. & & 2 \\
\hline 83 & Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada. Global and Planetary Change, 2021, 199, 103444. & 3.5 & 16 \\
\hline 84 & Spatial coherency of the spring flood signal among major river basins of eastern boreal Canada inferred from flood rings. Journal of Hydrology, 2021, 596, 126084. & 5.4 & 8 \\
\hline 85 & Floodplain forest structure and the recent decline of Carya illinoinensis (Wangenh.) K. Koch (northern pecan) at its northern latitudinal range margin, Upper Mississippi River System, USA. Forest Ecology and Management, 2021, 496, 119454. & 3.2 & 2 \\
\hline 86 & Are periodic (intra-annual) tangential bands of vessels in diffuse-porous tree species the equivalent of flood rings in ring-porous species? Reproducibility and cause. Dendrochronologia, 2021, 70, 125889. & 2.2 & 4 \\
\hline 87 & Flooding, Structural Flood Control Measures, and Recent Geomorphic Research along the Red River, Manitoba, Canada. , 2015, , 87-117. & & 6 \\
\hline 88 & Red River Valley, Manitoba: The Geomorphology of a Low-Relief, Flood-Prone Prairie Landscape. World Geomorphological Landscapes, 2017, , 143-155. & 0.3 & 3 \\
\hline 89 & Whither Dendrogeomorphology?. Advances in Clobal Change Research, 2010, , 495-502. & 1.6 & 1 \\
\hline
\end{tabular}

Flood Ring Evidence and its Application to Paleoflood Hydrology of the Red River and Assiniboine River in Manitoba*. GÃ ©ographie Physique Et Quaternaire, 0, 56, 181-190.

Earlywood Vessels in Black Ash (Fraxinus nigra Marsh.) Trees Show Contrasting Sensitivity to
Hydroclimate Variables According to Flood Exposure. Frontiers in Plant Science, 2021, 12, 754596.
\(3.6 \quad 6\)

Flood signals in tree-ring ĺ'180 \(^{\prime}\) and wood anatomical parameters of Lagerstroemia speciosa:
Environment, 2022, 809, 151125.

Mountains, Poland. Advances in Clobal Change Research, 2010, , 263-275.

Simulating the Impacts of Changes in Precipitation Timing and Intensity on Tree Growth. Geophysical
106 Addressing multiple perspectives in studying environmental changes in forest landscapes during the modernization period (18thâ \(€^{" 19} 19\) centuries). Infrastructure Asset Management, 0, , .```

