Complementary Roles of Farnesoid X Receptor, Pregnar Androstane Receptor in Protection against Bile Acid To

Journal of Biological Chemistry 278, 45062-45071 DOI: 10.1074/jbc.m307145200

Citation Report

#	Article	IF	CITATIONS
1	Effect of two 5-HT6 receptor antagonists on the rat liver: a molecular approach. Pharmacogenomics Journal, 2003, 3, 320-334.	0.9	32
2	Molecular aspects of bile formation and cholestasis. Trends in Molecular Medicine, 2003, 9, 558-564.	3.5	94
3	CAR, Driving into the Future. Molecular Endocrinology, 2004, 18, 1589-1598.	3.7	137
4	Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice. Journal of Biological Chemistry, 2004, 279, 22250-22257.	1.6	211
5	A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion. Human Molecular Genetics, 2004, 13, 881-892.	1.4	91
6	The Constitutive Androstane Receptor and Pregnane X Receptor Function Coordinately to Prevent Bile Acid-induced Hepatotoxicity. Journal of Biological Chemistry, 2004, 279, 49517-49522.	1.6	211
7	Nuclear Receptor Signaling in the Control of Cholesterol Homeostasis. Circulation Research, 2004, 95, 660-670.	2.0	111
8	Ligand-activated Pregnane X Receptor Interferes with HNF-4 Signaling by Targeting a Common Coactivator PGC-11±. Journal of Biological Chemistry, 2004, 279, 45139-45147.	1.6	194
9	Enhanced Acetaminophen Toxicity by Activation of the Pregnane X Receptor. Toxicological Sciences, 2004, 82, 374-380.	1.4	95
10	PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicology and Applied Pharmacology, 2004, 199, 251-265.	1.3	186
11	The nuclear bile acid receptor FXR as a novel therapeutic target in cholestatic liver diseases: Hype or hope?. Hepatology, 2004, 40, 260-263.	3.6	19
12	Regulation of Drug Transporters by the Farnesoid X Receptor in Mice. Molecular Pharmaceutics, 2004, 1, 281-289.	2.3	30
13	Hepatic CCAAT/Enhancer Binding Protein α Mediates Induction of Lipogenesis and Regulation of Glucose Homeostasis in Leptin-Deficient Mice. Molecular Endocrinology, 2004, 18, 2751-2764.	3.7	78
14	Detoxification of Lithocholic Acid, A Toxic Bile Acid: Relevance to Drug Hepatotoxicity. Drug Metabolism Reviews, 2004, 36, 703-722.	1.5	229
15	Effect of serum cholesterol on the mRNA content of amyloid precursor protein in rat livers. Toxicology Letters, 2004, 150, 157-166.	0.4	2
16	The enterohepatic nuclear receptors are major regulators of the enterohepatic circulation of bile salts. Annals of Medicine, 2004, 36, 482-491.	1.5	41
17	The ABC Transporters MDR1 and MRP2: Multiple Functions in Disposition of Xenobiotics and Drug Resistance. Drug Metabolism Reviews, 2004, 36, 669-701.	1.5	114
18	Genomic and non-genomic interactions of PPARα with xenobiotic-metabolizing enzymes. Trends in Endocrinology and Metabolism, 2004, 15, 324-330.	3.1	33

ARTICLE IF CITATIONS Functional constraints on the constitutive androstane receptor inferred from human sequence 1.4 13 19 variation and cross-species comparisons. Human Genomics, 2005, 2, 168. Polymorphisms of human nuclear receptors that control expression of drug-metabolizing enzymes. Pharmacogenetics and Genomics, 2005, 15, 371-379. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. 21 3.6 104 Hepatology, 2005, 41, 168-176. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways 295 in mice. Hepatology, 2005, 42, 420-430. A Nuclear Receptor Ligand Down-Regulates Cytosolic Phospholipase A2 Expression to Reduce Bile Acid?Induced Cyclooxygenase 2 Activity in Cholangiocytes: Implications of Anticarcinogenic Action of 23 1.1 7 Farnesoid X Receptor Agonists. Digestive Diseases and Sciences, 2005, 50, 514-524. Transcriptional regulation of hepatobiliary transport systems in health and disease: Implications for a rationale approach to the treatment of intrahepatic cholestasis. Annals of Hepatology, 2005, 4, 77-99. Nuclear Vitamin D Receptor: Structure-Function, Molecular Control of Gene Transcription, and Novel 25 22 Bioactions., 2005, , 219-261. Expression of the Pregnane X Receptor in Mice Antagonizes the Cholic Acid–Mediated Changes in 1.1 26 37 Plasma Lipoprotein Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2164-2169. Role of the nuclear receptor PXR in acetaminophen hepatotoxicity. Drug Metabolism and Disposition, 27 1.7 34 2005, 33, 1827-36. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 3.3 208 102, 2063-2068. INDUCTION OF THE MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN FAMILY OF TRANSPORTERS BY CHEMICAL ACTIVATORS OF RECEPTOR-MEDIATED PATHWAYS IN MOUSE LIVER. Drug Metabolism and Disposition, 29 1.7 244 2005, 33, 956-962. Role of Farnesoid X Receptor in the Enhancement of Canalicular Bile Acid Output and Excretion of Unconjugated Bile Acids: A Mechanism for Protection against Cholic Acid-Induced Liver Toxicity. 1.3 29 Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 759-766. Evolution of the Pregnane X Receptor: Adaptation to Cross-Species Differences in Biliary Bile Salts. $\mathbf{31}$ 3.7 97 Molecular Endocrinology, 2005, 19, 1720-1739. Vitamin D Receptor-dependent Regulation of Colon Multidrug Resistance-associated Protein 3 Gene Expression by Bile Acids. Journal of Biological Chemistry, 2005, 280, 23232-23242. 1.6 Retinoid X Receptor-α-Dependent Transactivation by a Naturally Occurring Structural Variant of 33 1.0 94 Human Constitutive Androstane Receptor (NR113). Molecular Pharmacology, 2005, 68, 1239-1253. Molecular Regulation of Hepatobiliary Transport Systems. Journal of Clinical Gastroenterology, 2005, 34 148 39, S111-S124. Amino Acids Important for Ligand Specificity of the Human Constitutive Androstane Receptor. Journal 35 1.6 52 of Biological Chemistry, 2005, 280, 5960-5971. Enterohepatic transport of bile salts and genetics of cholestasis. Journal of Hepatology, 2005, 43, 1.8 342-357.

#	Article		CITATIONS
37	Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Archives of Biochemistry and Biophysics, 2005, 433, 387-396.	1.4	157
38	Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Archives of Biochemistry and Biophysics, 2005, 433, 397-412.	1.4	229
39	Nuclear Receptor Ligands: Rational and Effective Therapy for Chronic Cholestatic Liver Disease?. Gastroenterology, 2005, 129, 735-740.	0.6	16
40	Coordinate Transcriptional Regulation of Transport and Metabolism. Methods in Enzymology, 2005, 400, 511-530.	0.4	60
41	New Modes of Action for Endocrine-Disrupting Chemicals. Molecular Endocrinology, 2006, 20, 475-482.	3.7	376
42	Phenobarbital Confers its Diverse Effects by Activating the Orphan Nuclear Receptor Car. Drug Metabolism Reviews, 2006, 38, 75-87.	1.5	70
43	Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica, 2006, 36, 1152-1163.	0.5	84
44	Cholesterol Gallstone Susceptibility Loci: A Mouse Map, Candidate Gene Evaluation, and Guide to Human LITH Genes. Gastroenterology, 2006, 131, 1943-1970.	0.6	68
45	Drug-induced changes in P450 enzyme expression at the gene expression level: A new dimension to the analysis of drug–drug interactions. Xenobiotica, 2006, 36, 1013-1080.	0.5	28
46	PXR and CAR: Nuclear Receptors which Play a Pivotal Role in Drug Disposition and Chemical Toxicity. Drug Metabolism Reviews, 2006, 38, 515-597.	1.5	135
47	Susceptibility to cholesterol gallstone formation: Evidence that LITH genes also encode immune-related factors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1133-1147.	1.2	13
48	Inhibition of LXRα signaling by vitamin D receptor: Possible role of VDR in bile acid synthesis. Biochemical and Biophysical Research Communications, 2006, 351, 176-184.	1.0	46
49	Genetic predisposition of cholesterol gallstone disease. Annals of Hepatology, 2006, 5, 140-149.	0.6	11
50	Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7A1 gene. BMC Genetics, 2006, 7, 29.	2.7	32
51	FXR, a multipurpose nuclear receptor. Trends in Biochemical Sciences, 2006, 31, 572-580.	3.7	294
52	Apoptosis and necrosis in the liver: A tale of two deaths?. Hepatology, 2006, 43, S31-S44.	3.6	613
53	Constitutive androstane receptor (CAR) ligand, TCPOBOP, attenuates Fas-induced murine liver injury by altering Bcl-2 proteins. Hepatology, 2006, 44, 252-262.	3.6	54
54	THE ROLE OF PREGNANE X RECEPTOR IN 2-ACETYLAMINOFLUORENE-MEDIATED INDUCTION OF DRUG TRANSPORT AND -METABOLIZING ENZYMES IN MICE. Drug Metabolism and Disposition, 2006, 34, 405-409.	1.7	47

#	Article	IF	CITATIONS
55	Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter.α/β in the adaptive response to bile acids. American Journal of Physiology - Renal Physiology, 2006, 290, G923-G932.	1.6	154
56	CHARACTERIZATION OF TRANSPORT PROTEIN EXPRESSION IN MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN (MRP) 2-DEFICIENT RATS. Drug Metabolism and Disposition, 2006, 34, 556-562.	1.7	105
57	Constitutive Androstane Receptor (CAR) as a Potential Sensing Biomarker of Persistent Organic Pollutants (POPs) in Aquatic Mammal: Molecular Characterization, Expression Level, and Ligand Profiling in Baikal Seal (Pusa sibirica). Toxicological Sciences, 2006, 94, 57-70.	1.4	33
58	FXR: a target for cholestatic syndromes?. Expert Opinion on Therapeutic Targets, 2006, 10, 409-421.	1.5	49
59	ROLE OF MRP2 IN THE HEPATIC DISPOSITION OF MYCOPHENOLIC ACID AND ITS GLUCURONIDE METABOLITES: EFFECT OF CYCLOSPORINE. Drug Metabolism and Disposition, 2006, 34, 261-266.	1.7	100
60	Functional Inhibitory Cross-talk between Constitutive Androstane Receptor and Hepatic Nuclear Factor-4 in Hepatic Lipid/Glucose Metabolism Is Mediated by Competition for Binding to the DR1 Motif and to the Common Coactivators, GRIP-1 and PGC-11±. Journal of Biological Chemistry, 2006, 281, 14537-14546.	1.6	170
61	Estrogen Receptor α Mediates 17α-Ethynylestradiol Causing Hepatotoxicity*. Journal of Biological Chemistry, 2006, 281, 16625-16631.	1.6	140
62	Disposition and Sterol-Lowering Effect of Ezetimibe in Multidrug Resistance-Associated Protein 2-Deficient Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1293-1299.	1.3	31
63	Regulation of mRNA Expression of Xenobiotic Transporters by the Pregnane X Receptor in Mouse Liver, Kidney, and Intestine. Drug Metabolism and Disposition, 2006, 34, 1863-1867.	1.7	67
64	The Pregnane X Receptor Gene-Humanized Mouse: A Model for Investigating Drug-Drug Interactions Mediated by Cytochromes P450 3A. Drug Metabolism and Disposition, 2007, 35, 194-200.	1.7	131
65	CAR2 Displays Unique Ligand Binding and RXRα Heterodimerization Characteristics. Drug Metabolism and Disposition, 2007, 35, 428-439.	1.7	40
66	The Flame Retardants, Polybrominated Diphenyl Ethers, Are Pregnane X Receptor Activators. Toxicological Sciences, 2007, 97, 94-102.	1.4	129
67	The Nuclear Receptor Constitutively Active/Androstane Receptor Regulates Type 1 Deiodinase and Thyroid Hormone Activity in the Regenerating Mouse Liver. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 307-313.	1.3	37
68	Importance of Hepatic Induction of Constitutive Androstane Receptor and Other Transcription Factors That Regulate Xenobiotic Metabolism and Transport. Drug Metabolism and Disposition, 2007, 35, 1806-1815.	1.7	72
69	Some Experimental Models of Liver Damage. , 0, , 119-137.		15
70	Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochemical Journal, 2007, 407, 373-381.	1.7	103
71	Role of plasma and liver cholesterol- and lipoprotein-metabolism determinants in LpX formation in the mouse. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 979-988.	1.1	12
72	Targeting farnesoid X receptor for liver and metabolic disorders. Trends in Molecular Medicine, 2007,	3.5	179

#	Article		CITATIONS
73	Clinical Hepatotoxicity. Regulation and Treatment with Inducers of Transport and Cofactors. Molecular Pharmaceutics, 2007, 4, 895-910.	2.3	22
74	Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. Journal of Lipid Research, 2007, 48, 2664-2672.	2.0	473
75	Crystal Structure of the Pregnane X Receptor-Estradiol Complex Provides Insights into Endobiotic Recognition. Molecular Endocrinology, 2007, 21, 1028-1038.	3.7	86
76	Identification of Genes Implicated in Methapyrilene-Induced Hepatotoxicity by Comparing Differential Gene Expression in Target and Nontarget Tissue. Environmental Health Perspectives, 2007, 115, 572-578.	2.8	20
77	Aryl-hydrocarbon receptor activation regulates constitutive androstane receptor levels in murine and human liver. Hepatology, 2007, 46, 209-218.	3.6	69
78	Regulation of human liver Î'-aminolevulinic acid synthase by bile acids. Hepatology, 2007, 46, 1960-1970.	3.6	23
79	Comparison of homology models and X-ray structures of the nuclear receptor CAR: Assessing the structural basis of constitutive activity. Journal of Molecular Graphics and Modelling, 2007, 25, 644-657.	1.3	20
80	Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. British Journal of Pharmacology, 2007, 151, 367-376.	2.7	109
81	Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver International, 2007, 27, 920-929.	1.9	103
82	Effect of ?-asarone and a derivative on lipids, bile flow and Na+/K+-ATPase in ethinyl estradiol-induced cholestasis in the rat. Fundamental and Clinical Pharmacology, 2007, 21, 81-8.	1.0	8
83	Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell, 2007, 6, 453-470.	3.0	119
84	Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 283-308.	1.9	275
85	Regulation of hepatic bile acid transporters Ntcp and Bsep expression. Biochemical Pharmacology, 2007, 74, 1665-1676.	2.0	77
86	Transporters in the intestine limiting drug and toxin absorption. Journal of Physiology and Biochemistry, 2007, 63, 75-81.	1.3	19
87	Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Archiv European Journal of Physiology, 2007, 453, 745-752.	1.3	82
88	Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 873, 209-217.	1.2	223
89	The Tangle of Nuclear Receptors that Controls Xenobiotic Metabolism and Transport: Crosstalk and Consequences. Annual Review of Pharmacology and Toxicology, 2008, 48, 1-32.	4.2	263
90	Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nature Medicine, 2008, 14, 828-836.	15.2	163

#	Article	IF	CITATIONS
91	Molecular bases of the fetal liver–placenta–maternal liver excretory pathway for cholephilic compounds. Liver International, 2008, 28, 435-454.	1.9	24
92	Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental-fetal unit in cholestasis during pregnancy. Toxicology and Applied Pharmacology, 2008, 232, 327-336.	1.3	13
93	Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clinical Science, 2008, 114, 567-588.	1.8	42
94	Regulation of Transporters by Nuclear Hormone Receptors: Implications during Inflammation. Molecular Pharmaceutics, 2008, 5, 67-76.	2.3	57
95	Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica, 2008, 38, 725-777.	0.5	29
96	Insights into Ligand-Elicited Activation of Human Constitutive Androstane Receptor Based on Novel Agonists and Three-Dimensional Quantitative Structureâ^Activity Relationship. Journal of Medicinal Chemistry, 2008, 51, 7181-7192.	2.9	34
97	A Double Transgenic Mouse Model Expressing Human Pregnane X Receptor and Cytochrome P450 3A4. Drug Metabolism and Disposition, 2008, 36, 2506-2512.	1.7	56
98	Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. Journal of Lipid Research, 2008, 49, 1682-1691.	2.0	37
99	Perfluorocarboxylic Acids Induce Cytochrome P450 Enzymes in Mouse Liver through Activation of PPAR-α and CAR Transcription Factors. Toxicological Sciences, 2008, 106, 29-36.	1.4	83
100	Farnesoid X Receptor Protects Liver Cells from Apoptosis Induced by Serum Deprivation in Vitro and Fasting in Vivo. Molecular Endocrinology, 2008, 22, 1622-1632.	3.7	55
101	Hepatobiliary ABC transporters: physiology, regulation and implications for disease. Frontiers in Bioscience - Landmark, 2009, 14, 4904.	3.0	20
102	Cholesterol Feeding Prevents Hepatic Accumulation of Bile Acids in Cholic Acid-Fed Farnesoid X Receptor (FXR)-Null Mice: FXR-Independent Suppression of Intestinal Bile Acid Absorption. Drug Metabolism and Disposition, 2009, 37, 338-344.	1.7	20
103	Di(2-ethylhexyl) phthalate Is a Highly Potent Agonist for the Human Constitutive Androstane Receptor Splice Variant CAR2. Molecular Pharmacology, 2009, 75, 1005-1013.	1.0	68
104	A Concentration Addition Model for the Activation of the Constitutive Androstane Receptor by Xenobiotic Mixtures. Toxicological Sciences, 2009, 107, 93-105.	1.4	57
105	Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice. American Journal of Physiology - Renal Physiology, 2009, 297, G419-G433.	1.6	52
106	Farnesoid X Receptor Deficiency Induces Nonalcoholic Steatohepatitis in Low-Density Lipoprotein Receptor-Knockout Mice Fed a High-Fat Diet. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 116-122.	1.3	174
107	Constitutive Androstane Receptor-Mediated Changes in Bile Acid Composition Contributes to Hepatoprotection from Lithocholic Acid-Induced Liver Injury in Mice. Drug Metabolism and Disposition, 2009, 37, 1035-1045.	1.7	58
108	Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. Current Pharmacogenomics and Personalized Medicine, 2009, 7, 81-105	0.2	116

#	ARTICLE	IF	Citations
109	Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics, 2009, 10, 384.	1.2	49
110	Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): A novel signalling pathway sensitive to phthalates. Biochemical Pharmacology, 2009, 77, 1735-1746.	2.0	60
111	Hematopoietically expressed homeobox is a target gene of farnesoid X receptor in chenodeoxycholic acid-induced liver hypertrophy. Hepatology, 2009, 49, 979-988.	3.6	28
112	It's all about bile. Hepatology, 2009, 49, 711-723.	3.6	10
113	Constitutive androstane receptor mediates the induction of drug metabolism in mouse models of type 1 diabetes. Hepatology, 2009, 50, 622-629.	3.6	39
114	Nuclear receptors as therapeutic targets in cholestatic liver diseases. British Journal of Pharmacology, 2009, 156, 7-27.	2.7	143
115	Transcriptional regulation of hepatic stellate cells. Advanced Drug Delivery Reviews, 2009, 61, 497-512.	6.6	97
116	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	13.1	1,309
117	Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Molecular Aspects of Medicine, 2009, 30, 297-343.	2.7	246
118	Hepatic OATP1B Transporters and Nuclear Receptors PXR and CAR: Interplay, Regulation of Drug Disposition Genes, and Single Nucleotide Polymorphisms. Molecular Pharmaceutics, 2009, 6, 1644-1661.	2.3	53
119	The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nuclear Receptor Signaling, 2009, 7, nrs.07001.	1.0	152
120	Current In Vitro High Throughput Screening Approaches to Assess Nuclear Receptor Activation. Current Drug Metabolism, 2010, 11, 806-814.	0.7	31
121	Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Advanced Drug Delivery Reviews, 2010, 62, 1238-1249.	6.6	304
122	Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. , 2010, 126, 228-243.		79
123	Mouse organic solute transporter $\hat{l}\pm$ deficiency enhances renal excretion of bile acids and attenuates cholestasis. Hepatology, 2010, 51, 181-190.	3.6	69
124	Primary sclerosing cholangitis. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2010, 24, 655-666.	1.0	54
125	Efflux Transporters. , 2010, , 557-601.		0
126	Regulation of Hepatobiliary Transporters during Liver Injury. , 2010, , 175-220.		2

#	Article	IF	CITATIONS
127	Constitutive Androstane Receptor. , 2010, , 169-181.		2
128	Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge. Journal of Lipid Research, 2010, 51, 1063-1074.	2.0	41
129	Estrogen modulates transactivations of SXR-mediated liver X receptor response element and CAR-mediated phenobarbital response element in HepG2 cells. Experimental and Molecular Medicine, 2010, 42, 731-738.	3.2	5
130	Intestinal Detoxification Limits the Activation of Hepatic Pregnane X Receptor by Lithocholic Acid. Drug Metabolism and Disposition, 2010, 38, 143-149.	1.7	24
131	2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reverses hyperglycemia in a type II diabetes mellitus rat model by a mechanism unrelated to PPARÎ ³ . Drug and Chemical Toxicology, 2010, 33, 261-268.	1.2	20
132	Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metabolism Reviews, 2010, 42, 482-538.	1.5	60
133	Update on primary sclerosing cholangitis. Digestive and Liver Disease, 2010, 42, 390-400.	0.4	99
134	Alterations in Hepatic mRNA Expression of Phase II Enzymes and Xenobiotic Transporters after Targeted Disruption of Hepatocyte Nuclear Factor 4 Alpha. Toxicological Sciences, 2010, 118, 380-390.	1.4	47
135	Xenobiotic Receptors CAR and PXR. , 2010, , 287-305.		2
136	Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacological Research, 2011, 63, 259-265.	3.1	83
137	Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 867-878.	1.8	75
138	Sterol Regulation of Metabolism, Homeostasis, and Development. Annual Review of Biochemistry, 2011, 80, 885-916.	5.0	122
139	Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. Journal of Hepatology, 2011, 55, 154-161.	1.8	39
140	Nuclear Vitamin D Receptor: Natural Ligands, Molecular Structure–Function, and Transcriptional Control of Vital Genes. , 2011, , 137-170.		12
141	Regulation of Hepatic Cytochromes P450 by Lipids and Cholesterol. Current Drug Metabolism, 2011, 12, 173-185.	0.7	42
142	Constitutive Androstane Receptor Activation Decreases Plasma Apolipoprotein B–Containing Lipoproteins and Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2232-2239.	1.1	31
143	Increased Activation of the Wnt/β-Catenin Pathway in Spontaneous Hepatocellular Carcinoma Observed in Farnesoid X Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 12-21.	1.3	118
144	<i>>Helicobacter hepaticus</i> –Induced Liver Tumor Promotion Is Associated with Increased Serum Bile Acid and a Persistent Microbial-Induced Immune Response. Cancer Research, 2011, 71, 2529-2540.	0.4	25

# 145	ARTICLE The impact of cholesterol and its metabolites on drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 387-398.	IF 1.5	CITATIONS
146	Selective Phthalate Activation of Naturally Occurring Human Constitutive Androstane Receptor Splice Variants and the Pregnane X Receptor. Toxicological Sciences, 2011, 120, 381-391.	1.4	79
147	Preliminary Structure-Activity Relationship on Theonellasterol, a New Chemotype of FXR Antagonist, from the Marine Sponge Theonella swinhoei. Marine Drugs, 2012, 10, 2448-2466.	2.2	17
148	The Novel Antibacterial Compound Walrycin A Induces Human PXR Transcriptional Activity. Toxicological Sciences, 2012, 127, 225-235.	1.4	9
149	Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury. Toxicological Sciences, 2012, 127, 451-462.	1.4	18
150	Mechanisms of Hepatocyte Organic Anion Transport. , 2012, , 1485-1506.		4
151	The Orphan Nuclear Receptor DAX-1 Functions as a Potent Corepressor of the Constitutive Androstane Receptor (NR1I3). Molecular Pharmacology, 2012, 82, 918-928.	1.0	14
152	Quantitative NMR-Derived Interproton Distances Combined with Quantum Mechanical Calculations of ¹³ C Chemical Shifts in the Stereochemical Determination of Conicasterol F, a Nuclear Receptor Ligand from <i>Theonella swinhoei</i> . Journal of Organic Chemistry, 2012, 77, 1489-1496.	1.7	81
153	4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity. Steroids, 2012, 77, 484-495.	0.8	40
154	FXR and PXR: Potential therapeutic targets in cholestasis. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 147-158.	1.2	127
155	Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice. Toxicology and Applied Pharmacology, 2012, 263, 131-137.	1.3	23
156	The Decrease in Farnesoid X Receptor, Pregnane X Receptor and Constitutive Androstane Receptor in the Liver after Intestinal Ischemia-Reperfusion. Journal of Pharmacy and Pharmaceutical Sciences, 2012, 15, 616.	0.9	15
157	Mechanisms of Bile Secretion. , 2012, , 47-63.		0
158	Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochemical Pharmacology, 2012, 83, 1112-1126.	2.0	188
159	Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicology in Vitro, 2013, 27, 2049-2060.	1.1	45
160	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
161	The profile of bile acids and their sulfate metabolites in human urine and serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 942-943, 53-62.	1.2	95
162	Modulation of farnesoid X receptor results in post-translational modification of poly (ADP-ribose) polymerase 1 in the liver. Toxicology and Applied Pharmacology, 2013, 266, 260-266.	1.3	7

#	Article	IF	CITATIONS
163	The human constitutive androstane receptor promotes the differentiation and maturation of hepatic-like cells. Developmental Biology, 2013, 384, 155-165.	0.9	15
164	Epigenomic regulation of bile acid metabolism: Emerging role of transcriptional cofactors. Molecular and Cellular Endocrinology, 2013, 368, 59-70.	1.6	24
165	Dysregulated Bile Acid Synthesis, Metabolism and Excretion in a High Fat-Cholesterol Diet-Induced Fibrotic Steatohepatitis in Rats. Digestive Diseases and Sciences, 2013, 58, 2212-2222.	1.1	30
166	Nuclear-receptor–mediated regulation of drug– and bile-acid–transporter proteins in gut and liver. Drug Metabolism Reviews, 2013, 45, 48-59.	1.5	74
167	<i>Sulfotransferase</i> genes: Regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metabolism Reviews, 2013, 45, 441-449.	1.5	41
168	Mechanisms of STAT3 activation in the liver of FXR knockout mice. American Journal of Physiology - Renal Physiology, 2013, 305, G829-G837.	1.6	26
169	Nuclear receptors in bile acid metabolism. Drug Metabolism Reviews, 2013, 45, 145-155.	1.5	140
170	Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicology and Applied Pharmacology, 2013, 272, 299-305.	1.3	42
171	Bile Acid Metabolism and Signaling. , 2013, 3, 1191-1212.		994
172	<i>In vitro</i> evidence of possible influence of scutellarein towards bile acids' metabolism. African Health Sciences, 2013, 13, 556-9.	0.3	2
173	Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. International Journal of Endocrinology, 2014, 2014, 1-13.	0.6	48
174	Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Alimentary Pharmacology and Therapeutics, 2014, 39, 282-301.	1.9	75
175	Impact of New-Generation Lipid Emulsions on Cellular Mechanisms of Parenteral Nutrition–Associated Liver Disease. Advances in Nutrition, 2014, 5, 82-91.	2.9	62
176	Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep â^'/â^' mice. Molecular and Cellular Biochemistry, 2014, 389, 119-132.	1.4	35
177	The Role of Canalicular ABC Transporters in Cholestasis. Drug Metabolism and Disposition, 2014, 42, 546-560.	1.7	65
178	Drug-Induced Perturbations of the Bile Acid Pool, Cholestasis, and Hepatotoxicity: Mechanistic Considerations beyond the Direct Inhibition of the Bile Salt Export Pump. Drug Metabolism and Disposition, 2014, 42, 566-574.	1.7	90
179	Low Dose of Oleanolic Acid Protects against Lithocholic Acid–Induced Cholestasis in Mice: Potential Involvement of Nuclear Factor-E2-Related Factor 2-Mediated Upregulation of Multidrug Resistance-Associated Proteins. Drug Metabolism and Disposition, 2014, 42, 844-852.	1.7	69
180	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680

#	Article	IF	CITATIONS
181	Impaired bile acid handling and aggravated liver injury in mice expressing a hepatocyte-specific RXRα variant lacking the DNA-binding domain. Journal of Hepatology, 2014, 60, 362-369.	1.8	8
183	Caffeine increases Nr1i3 expression and potentiates the effects of its ligand, TCPOBOP, in mice liver. Brazilian Journal of Pharmaceutical Sciences, 2015, 51, 295-303.	1.2	1
184	Small-molecule modulators of the constitutive androstane receptor. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 1099-1114.	1.5	29
185	Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Advances in Pharmacology, 2015, 74, 263-302.	1.2	210
186	Farnesoid X Receptor Antagonizes JNK Signaling Pathway in Liver Carcinogenesis by Activating SOD3. Molecular Endocrinology, 2015, 29, 322-331.	3.7	38
187	Bile acid activated receptors are targets for regulation of integrity of gastrointestinal mucosa. Journal of Gastroenterology, 2015, 50, 707-719.	2.3	23
188	Maternal bile acid transporter deficiency promotes neonatal demise. Nature Communications, 2015, 6, 8186.	5.8	34
189	Expression of CYP3A in chronic ethanol-fed mice is mediated by endogenous pregnane X receptor ligands formed by enhanced cholesterol metabolism. Archives of Toxicology, 2015, 89, 579-589.	1.9	10
190	Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Scientific Reports, 2016, 6, 38694.	1.6	28
191	Mechanism for Increased Expression of UGT2B in the Liver of Mice with Neuropathic Pain. Biological and Pharmaceutical Bulletin, 2016, 39, 1809-1814.	0.6	2
192	Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nature Communications, 2016, 7, 10713.	5.8	227
193	Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. Cancer Cell, 2016, 30, 909-924.	7.7	360
194	Differential modulation of FXR activity by chlorophacinone and ivermectin analogs. Toxicology and Applied Pharmacology, 2016, 313, 138-148.	1.3	8
195	Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver. Toxicological Sciences, 2016, 151, 403-418.	1.4	19
196	Nuclear Receptor Regulation. , 2017, , 43-59.		0
197	The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Molecular Aspects of Medicine, 2017, 56, 34-44.	2.7	119
198	Bile Acid-Induced Liver Injury in Cholestasis. , 2017, , 143-172.		5
199	Activation of Constitutive Androstane Receptor Prevents Cholesterol Gallstone Formation. American Journal of Pathology, 2017, 187, 808-818.	1.9	28

ARTICLE IF CITATIONS # The FXR Agonist, Obeticholic Acid, Suppresses HCC Proliferation & amp; Metastasis: Role of IL-6/STAT3 200 1.6 45 Signalling Pathway. Scientific Reports, 2017, 7, 12502. Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in 1.0 Gastroenterology, 2018, 34, 404-412 The Role of Cholesterol in the Pathogenesis of Hypertension-Associated Nonalcoholic 202 0 Steatohepatitis., 2018,,. Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. Journal of Clinical and Translational Research, 2018, 4, 1-46. Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with 204 1.8 34 Impact on Health and Diseases. International Journal of Molecular Sciences, 2018, 19, 3630. Efflux Transporters., 2018,, 617-666. 206 Constitutive Androstane Receptor., 2018, , 148-160. 0 Regulation of Hepatobiliary Transporters During Liver Injury., 2018, , 215-276. 208 Mechanisms of Hepatocyte Organic Anion Transport., 2018, , 957-979. 2 209 Marine Ligands of the Pregnane X Receptor (PXR): An Overview. Marine Drugs, 2019, 17, 554. 2.2 Why Bile Acids Are So Important in Non-Alcoholic Fatty Liver Disease (NAFLD) Progression. Cells, 2019, 210 1.8 89 8, 1358. 211 Targeting FXR in Cholestasis. Handbook of Experimental Pharmacology, 2019, 256, 299-324. Anticholestatic mechanisms of ursodeoxycholic acid in lipopolysaccharide-induced cholestasis. 212 2.0 15 Biochemical Pharmacology, 2019, 168, 48-56. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunology, 2019, 12, 2.7 192 851-861 The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. 214 13.1 185 Physiological Reviews, 2019, 99, 1153-1222. Identification of FDA-approved drugs targeting the Farnesoid X Receptor. Scientific Reports, 2019, 9, 2193. Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal 216 1.4 33 Bacteria and Alters Bile Acid Homeostasis. Toxicological Sciences, 2019, 168, 40-60. Wnt/βâ€Catenin Signaling Plays a Protective Role in the Mdr2 Knockout Murine Model of Cholestatic Liver Disease. Hepatology, 2020, 71, 1732-1749.

		CITATION R	PORT	
#	Article		IF	CITATIONS
218	Vitamin D and evolution: Pharmacologic implications. Biochemical Pharmacology, 2020, 12	73, 113595.	2.0	68
219	Bile Acids and FXR: Novel Targets for Liver Diseases. Frontiers in Medicine, 2020, 7, 544.		1.2	105
220	Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells, 20	020, 9, 2306.	1.8	22
221	The Thyromimetic Sobetirome (GC-1) Alters Bile Acid Metabolism in a Mouse Model of Hep Cholestasis. American Journal of Pathology, 2020, 190, 1006-1017.	patic	1.9	3
222	Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microl Nutrients, 2020, 12, 3709.	biome.	1.7	28
223	Systems Toxicology Approaches Reveal the Mechanisms of Hepatotoxicity Induced by Dios Male Mice. Chemical Research in Toxicology, 2020, 33, 1389-1402.	sbulbin B in	1.7	6
224	The effects, underlying mechanism and interactions of dexamethasone exposure during pr maternal bile acid metabolism. Toxicology Letters, 2020, 332, 97-106.	egnancy on	0.4	5
226	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological Revie 101, 683-731.	ews, 2021,	13.1	184
227	Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Depend Independent Signaling. Frontiers in Pharmacology, 2021, 12, 643857.	dent and	1.6	20
228	Vitamin D and the risk for cancer: A molecular analysis. Biochemical Pharmacology, 2022, 3	196, 114735.	2.0	36
229	Nonalcoholic Fatty Liver Disease (NAFLD) Name Change: Requiem or Reveille?. Journal of C Translational Hepatology, 2021, 000, 000-000.	linical and	0.7	3
230	Colon cancer checks in when bile acids check out: the bile acid–nuclear receptor axis in c cancer. Essays in Biochemistry, 2021, 65, 1015-1024.	colon	2.1	10
233	Mechanisms of Hepatocyte Organic Anion Transport. , 2006, , 1463-1481.			2
234	Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cl Journal of Clinical Investigation, 2011, 121, 86-95.	holestasis.	3.9	100
236	Circadian Dysregulation Disrupts Bile Acid Homeostasis. PLoS ONE, 2009, 4, e6843.		1.1	110
237	A PXR-Mediated Negative Feedback Loop Attenuates the Expression of CYP3A in Response Agonist Pregnenalone-16α-Carbonitrile. PLoS ONE, 2011, 6, e16703.	e to the PXR	1.1	24
238	Role of nuclear receptor CAR in carbon tetrachloride-induced hepatotoxicity. World Journa Gastroenterology, 2005, 11, 5966.	l of	1.4	19
239	Mechanisms of Bile Secretion. , 2006, , 67-85.			1

ARTICLE IF CITATIONS # PXR mediated cardiac protection after sepsis through TLR4 modulation pathway. American Journal of 0.0 0 244 BioMedicine, 0, , 569-581. Bile Acids and Bilirubin in Liver Immunology., 2020, , 103-124. 245 247 Actions of Nuclear Receptors., 2006, , 273-292. 0 Role of polymorphisms in genes involved in bile acid detoxification pathways in primary sclerosing 248 cholangitis., 0, , 226-237. Contributions of bile acids to gastrointestinal physiology as receptor agonists and modifiers of ion 249 1.6 11 channels. American Journal of Physiology - Renal Physiology, 2022, 322, G201-G222. Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochemical Pharmacology, 2022, 197, 114905. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. 252 3.5 58 Trends in Molecular Medicine, 2022, 28, 223-236. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2022, 253 1.7 9 50, 1010-1018. The role of the colonic microbiota and bile acids in colorectal cancer. Current Opinion in 254 1.0 5 Gastroenterology, 2022, 38, 179-188. Beyond PXR and CAR, Regulation of Xenobiotic Metabolism by other Nuclear Receptors., 0, , 275-300. Vitamin D in the Context of Evolution. Nutrients, 2022, 14, 3018. 256 21 1.7 Nuclear Receptors in Energy Metabolism. Advances in Experimental Medicine and Biology, 2022, , 61-82. 0.8 Metabolomic-based investigation of Yinlan alleviating hyperlipidemia by inhibiting blood stasis and phlegm turbidity through the PXR-CYP3A4-ABCB1-FXR pathway. Arabian Journal of Chemistry, 2022, 15, 258 2.3 2 104272. NOX as a Therapeutic Target in Liver Disease. Antioxidants, 2022, 11, 2038. 259 2.2 16 Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and 260 1.7 17 Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients, 2022, 14, 4950. Vitamin D: A master example of nutrigenomics. Redox Biology, 2023, 62, 102695. 3.9 The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile 262 acid and arachidonic acid metabolisms in the liver. Ecotoxicology and Environmental Safety, 2023, 252, 2.9 3 114573. Bile Acids and Biliary Fibrosis. Cells, 2023, 12, 792. 1.8

ARTICLE

IF CITATIONS