Biomarkers in Fish from Prince William Sound and the

Environmental Science & amp; Technology 37, 4043-4051 DOI: 10.1021/es0342401

Citation Report

#	Article	IF	CITATIONS
1	Link between exposure of fish (Solea solea) to PAHs and metabolites: Application to the "Erika―oil spill. Aquatic Living Resources, 2004, 17, 329-334.	1.2	39
2	Polycyclic Aromatic Hydrocarbon Sources Related to Biomarker Levels in Fish from Prince William Sound and the Gulf of Alaska. Environmental Science & Technology, 2004, 38, 4928-4936.	10.0	30
3	Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills. Marine Pollution Bulletin, 2005, 50, 705-723.	5.0	116
4	Biomarkers of PAH Exposure in an Intertidal Fish Species from Prince William Sound, Alaska:Â 2004â^'2005. Environmental Science & Technology, 2006, 40, 6513-6517.	10.0	18
5	A hierarchical approach measures the aerial extent and concentration levels of PAH-contaminated shoreline sediments at historic industrial sites in Prince William Sound, Alaska. Marine Pollution Bulletin, 2006, 52, 367-379.	5.0	20
6	Cell and tissue biomarkers in mussel, and histopathology in hake and anchovy from Bay of Biscay after the Prestige oil spill (Monitoring Campaign 2003). Marine Pollution Bulletin, 2006, 53, 287-304.	5.0	125
7	Gene expression in caged juvenile Coho Salmon (Oncorhynchys kisutch) exposed to the waters of Prince William Sound, Alaska. Marine Pollution Bulletin, 2006, 52, 1527-1532.	5.0	7
8	Ecological significance of residual exposures and effects from the <i>Exxon Valdez</i> oil spill. Integrated Environmental Assessment and Management, 2006, 2, 204-246.	2.9	12
9	Use of Biomarkers in Oil Spill Risk Assessment in the Marine Environment. Human and Ecological Risk Assessment (HERA), 2006, 12, 1192-1222.	3.4	34
10	Exposure Elements in Oil Spill Risk and Natural Resource Damage Assessments: A Review. Human and Ecological Risk Assessment (HERA), 2007, 13, 418-448.	3.4	46
11	Applying Ecological Risk Assessment to Environmental Accidents: Harlequin Ducks and the Exxon Valdez Oil Spill. BioScience, 2007, 57, 769-777.	4.9	12
12	Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Marine Pollution Bulletin, 2007, 54, 339-356.	5.0	90
13	Semipermeable membrane devices link site-specific contaminants to effects: Part 1 – Induction of CYP1A in rainbow trout from contaminants in Prince William Sound, Alaska. Marine Environmental Research, 2008, 66, 477-486.	2.5	17
14	Semipermeable membrane devices link site-specific contaminants to effects: PART II – A comparison of lingering Exxon Valdez oil with other potential sources of CYP1A inducers in Prince William Sound, Alaska. Marine Environmental Research, 2008, 66, 487-498.	2.5	22
15	Gene sequences for Cytochromes p450 1A1 and 1A2: The need for biomarker Development in Sea otters (Enhydra lutris). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 151, 336-348.	1.6	7
16	Response to Letter to Editor by P.D. Boehm, D.S. Page and J.M. Neff. Marine Environmental Research, 2009, 67, 259-261.	2.5	0
17	Unlike PAHs from Exxon Valdez Crude Oil, PAHs from Gulf of Alaska Coals are not Readily Bioavailable. Environmental Science & Technology, 2009, 43, 5864-5870.	10.0	26
18	A Quantitative Ecological Risk Assessment of the Toxicological Risks fromExxon ValdezSubsurface Oil Residues to Sea Otters at Northern Knight Island, Prince William Sound, Alaska. Human and Ecological Risk Assessment (HERA), 2010, 16, 727-761.	3.4	23

#	Article	IF	CITATIONS
19	Comment on "Unlike PAHs from <i>Exxon Valdez</i> Crude Oil, PAHs from Gulf of Alaska Coals are not Readily Bioavailable― Environmental Science & Technology, 2010, 44, 2210-2211.	10.0	4
20	Response to Comment on "Unlike PAHs from <i>Exxon Valdez</i> Crude Oil, PAHs from Gulf of Alaska Coals are not Readily Bioavailable― Environmental Science & Technology, 2010, 44, 2212-2213.	10.0	5
21	Assessing Cause–Effect Relationships in Environmental Accidents: Harlequin Ducks and the Exxon Valdez Oil Spill. , 2010, , 131-189.		4
22	Application of a battery of biomarkers in mussel digestive gland to assess long-term effects of the Prestige oil spill in Galicia and the Bay of Biscay: Lysosomal responses. Journal of Environmental Monitoring, 2011, 13, 901.	2.1	21
23	Quantitative Assessment of Current Risks to Harlequin Ducks in Prince William Sound, Alaska, from theExxon ValdezOil Spill. Human and Ecological Risk Assessment (HERA), 2012, 18, 261-328.	3.4	11
24	History of Biomarkers. , 2012, , 15-44.		5
25	Responses of conventional and molecular biomarkers in turbot Scophthalmus maximus exposed to heavy fuel oil no. 6 and styrene. Aquatic Toxicology, 2012, 116-117, 116-128.	4.0	10
26	Post-incident monitoring to evaluate environmental damage from shipping incidents: Chemical and biological assessments. Journal of Environmental Management, 2012, 109, 136-153.	7.8	38
27	Prolonged recovery of sea otters from the Exxon Valdez oil spill? A re-examination of the evidence. Marine Pollution Bulletin, 2013, 71, 7-19.	5.0	6
28	Cytochrome P450 1A (CYP1A) as a biomarker in oil spill assessments. , 2013, , 201-219.		4
29	Obesity and Metabolic Comorbidities: Environmental Diseases?. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-9.	4.0	51
30	The role of biomarkers in the assessment of aquatic ecosystem health. Integrated Environmental Assessment and Management, 2014, 10, 327-341.	2.9	233
31	Monitoring sublethal changes in fish physiology following exposure to a light, unweathered crude oil. Aquatic Toxicology, 2018, 204, 27-45.	4.0	19
32	Advances in forensic techniques for petroleum hydrocarbons. , 2007, , 449-487.		5
34	Ecological Significance of Residual Exposures and Effects from the Exxon Valdez Oil Spill. Integrated Environmental Assessment and Management, 2006, 2, 204.	2.9	35
35	Biomarker for monitoring heavy metal pollution in aquatic environment: An overview toward molecular perspectives. Emerging Contaminants, 2022, 8, 195-205.	4.9	31
36	Ecosystem-level Impacts of Oil Spills: A Review of Available Data with Confidence Metrics for Application to Ecosystem Models. Environmental Modeling and Assessment, 2023, 28, 939-960.	2.2	2