pH as a Trigger of Peptide $\hat{I}^2\mbox{-}Sheet$ Self-Assembly and R and Isotropic Phases

Journal of the American Chemical Society 125, 9619-9628 DOI: 10.1021/ja021047i

Citation Report

#	Article	IF	CITATIONS
3	Self-Assembling Peptide Polyelectrolytel ² -Sheet Complexes Form Nematic Hydrogels. Angewandte Chemie - International Edition, 2003, 42, 5603-5606.	7.2	131
4	Effects of pH and Calcium Ions on the Conformational Transitions in Silk Fibroin Using 2D Raman Correlation Spectroscopy and13C Solid-State NMRâ€. Biochemistry, 2004, 43, 11302-11311.	1.2	150
5	Self-assembling peptides and proteins for nanotechnological applications. Current Opinion in Structural Biology, 2004, 14, 480-486.	2.6	435
6	Anion-Directed Self-Assembly of Coordination Polymer into Tunable Secondary Structure. Journal of the American Chemical Society, 2004, 126, 7009-7014.	6.6	174
7	Bioprocess-centered molecular design (BMD) for the efficient production of an interfacially active peptide. Biotechnology and Bioengineering, 2004, 87, 912-923.	1.7	16
8	Designed Self-Assembledβ-Sheet Peptide Fibrils as Templates for Silica Nanotubes. Advanced Functional Materials, 2004, 14, 31-37.	7.8	115
9	ParallelÎ ² -Sheet Assemblies at Interfaces. ChemPhysChem, 2004, 5, 747-750.	1.0	45
10	Fabrication of Nanofibers with Uniform Morphology by Self-Assembly of Designed Peptides. Chemistry - A European Journal, 2004, 10, 2789-2794.	1.7	71
11	Salt-Triggered Peptide Folding and Consequent Self-Assembly into Hydrogels with Tunable Modulus. Macromolecules, 2004, 37, 7331-7337.	2.2	382
12	The formation of spherulites by amyloid fibrils of bovine insulin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14420-14424.	3.3	232
13	Controlling Wall Thickness of Silica Nanotubes within 4-nm Precision. Chemistry Letters, 2004, 33, 504-505.	0.7	24
14	Construction of Polypeptide-based Nano-template. Polymer Journal, 2004, 36, 665-673.	1.3	7
15	Construction and Control of Self-Assembly of Amyloid and Fibrous Peptides. Bulletin of the Chemical Society of Japan, 2005, 78, 572-590.	2.0	12
16	Self-assembly of ionic-complementary peptides: a physicochemical viewpoint. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 261, 3-24.	2.3	115
17	Design of model systems for amyloid formation: lessons for prediction and inhibition. Current Opinion in Structural Biology, 2005, 15, 57-63.	2.6	46
18	Peptides as novel smart materials. Current Opinion in Structural Biology, 2005, 15, 453-463.	2.6	226
19	Structure and stability of \hat{l}^2 -pleated sheets. Journal of Computational Chemistry, 2005, 26, 1155-1168.	1.5	68
20	Design and Application of Selfâ€Assembled Low Molecular Weight Hydrogels. European Journal of Organic Chemistry, 2005, 2005, 3615-3631.	1.2	541

#	Article	IF	CITATIONS
21	?-Helical Polypeptide Microcapsules Formed by Emulsion-Templated Self-Assembly. Chemistry - A European Journal, 2005, 11, 1574-1578.	1.7	41
22	New proteins in a materials world. Current Opinion in Biotechnology, 2005, 16, 416-421.	3.3	34
23	An SEM Study Of The Effect of Altering the Reaction pH on Fluoride Catalysed Silica Sol-Gel Templating Of Self-Assembling Peptide Fibrils. Materials Research Society Symposia Proceedings, 2005, 897, 1.	0.1	0
24	Self-assembly of peptides and its potential applications. , 2005, , 421-474.		4
25	Rational design of oligopeptide organizers for the formation of poly(ethylene oxide) nanofibers. Chemical Communications, 2005, , 2814.	2.2	122
26	Helical Nanofibers from Aqueous Self-Assembly of an Oligo(p-phenylene)-Based Molecular Dumbbell. Journal of the American Chemical Society, 2005, 127, 9668-9669.	6.6	121
27	Helical Organization of m-Linked Rigid Polymers with Pendant Flexible Dendrons. Macromolecules, 2005, 38, 2050-2052.	2.2	17
28	Coassembly of Amphiphiles with Opposite Peptide Polarities into Nanofibers. Journal of the American Chemical Society, 2005, 127, 1193-1200.	6.6	303
29	Controlling the Morphology of Cross β-Sheet Assemblies by Rational Design. Journal of the American Chemical Society, 2005, 127, 8562-8570.	6.6	41
30	Polypeptide Multilayer Films. Biomacromolecules, 2005, 6, 2895-2913.	2.6	98
31	Controlled Self-Assembly of Carbohydrate Conjugate Rodâ^'Coil Amphiphiles for Supramolecular Multivalent Ligands. Journal of the American Chemical Society, 2005, 127, 16333-16337.	6.6	210
32	The Internal Dynamic Modes of Charged Self-Assembled Peptide Fibrils. Langmuir, 2005, 21, 3733-3737.	1.6	35
33	The binding of thioflavin-T to amyloid fibrils: localisation and implications. Journal of Structural Biology, 2005, 149, 30-37.	1.3	644
34	The Mechanism of Amyloid Spherulite Formation by Bovine Insulin. Biophysical Journal, 2005, 88, 2013-2021.	0.2	116
35	Responsive Molecular Gels. , 2006, , 895-927.		8
36	Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine, 2006, 1, 189-199.	1.7	79
37	Peptide-Based Viscoelastic Matrices for Drug Delivery and Tissue Repair. BioDrugs, 2006, 20, 263-269.	2.2	28

#	Article	IF	Citations
40	Enzyme-Triggered Self-Assembly of Peptide Hydrogels via Reversed Hydrolysis. Journal of the American Chemical Society, 2006, 128, 1070-1071.	6.6	476
41	Self-assembling β-Sheet Tape Forming Peptides. Supramolecular Chemistry, 2006, 18, 435-443.	1.5	80
42	Optical Microscopy of Growing Insulin Amyloid Spherulites on Surfaces In Vitro. Biophysical Journal, 2006, 90, 1043-1054.	0.2	67
43	Self-Assembling Peptide Gels. , 2006, , 99-130.		7
44	A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chemical Communications, 2006, , 1497.	2.2	204
45	Self-Assembling Peptideâ^'Polymer Conjugates Comprising (d-alt-l)-Cyclopeptides as Aggregator Domains. Macromolecules, 2006, 39, 7831-7838.	2.2	111
46	Lyotropic Liquid Crystals from Designed Helical β-Peptides. Journal of the American Chemical Society, 2006, 128, 8730-8731.	6.6	80
47	Fibril Formation by Triblock Copolymers of Silklike β-Sheet Polypeptides and Poly(ethylene glycol). Macromolecules, 2006, 39, 2989-2997.	2.2	66
48	Template Based on Nano-Patterns of Polypeptide LB Film. Kobunshi Ronbunshu, 2006, 63, 781-790.	0.2	0
49	Hydrogels Constructed via β-Hairpin Peptide Self-Assembly. ACS Symposium Series, 2006, , 284-297.	0.5	2
50	Two-Dimensional Ordered Î ² -Sheet Lipopeptide Monolayers. Journal of the American Chemical Society, 2006, 128, 13959-13966.	6.6	33
51	The Formation of Nematic Liquid Crystal Phases by Hen Lysozyme Amyloid Fibrils. Journal of the American Chemical Society, 2006, 128, 14740-14741.	6.6	83
52	Electrochemical screening of self-assembling β-sheet peptides using supported phospholipid monolayers. Medical Engineering and Physics, 2006, 28, 944-955.	0.8	14
53	Self-assembling peptides as injectable lubricants for osteoarthritis. Journal of Biomedical Materials Research - Part A, 2006, 78A, 236-246.	2.1	65
54	Solvents with Similar Bulk Properties Induce Distinct Supramolecular Architectures. ChemPhysChem, 2006, 7, 816-819.	1.0	64
55	Metal-triggered Nanofiber Formation of His-containing Î ² -Sheet Peptide. Supramolecular Chemistry, 2006, 18, 397-403.	1.5	16
56	Biofunctional design of elastin-like polymers for advanced applications in nanobiotechnology. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 269-286.	1.9	78
57	Peptide Nanomaterials: Self-assembling Peptides as Building Blocks for Novel Materials. , 0, , 171-183.		6

#	ARTICLE	IF	Citations
58	Bioinspired functional block copolymers. Soft Matter, 2007, 3, 394-408.	1.2	212
59	Design and application of stimulus-responsive peptide systems. Protein Engineering, Design and Selection, 2007, 20, 155-161.	1.0	89
60	Peptide-Guided Organization of Peptideâ^'Polymer Conjugates:Â Expanding the Approach from Oligo- to Polymers. Macromolecules, 2007, 40, 9224-9232.	2.2	73
61	Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross-β Fibrils. Australian Journal of Chemistry, 2007, 60, 333.	0.5	60
62	Glycoconjugate Nanoribbons from the Self-Assembly of Carbohydrateâ `Peptide Block Molecules for Controllable Bacterial Cell Cluster Formation. Biomacromolecules, 2007, 8, 1404-1408.	2.6	66
63	Self-assembling Peptide Scaffolds Promote Enamel Remineralization. Journal of Dental Research, 2007, 86, 426-430.	2.5	293
64	Assembly via Hydrogen Bonds of Low Molar Mass Compounds into Supramolecular Polymers. Advances in Polymer Science, 2007, , 79-112.	0.4	169
66	One-dimensional self-assembly of a rational designed β-structure peptide. Biopolymers, 2007, 86, 23-31.	1.2	27
67	Cell-Penetrating-Peptide-Coated Nanoribbons for Intracellular Nanocarriers. Angewandte Chemie - International Edition, 2007, 46, 3475-3478.	7.2	100
68	Peptide Fibrillization. Angewandte Chemie - International Edition, 2007, 46, 8128-8147.	7.2	564
71	A Smart Supramolecular Hydrogel Exhibiting pH-Modulated Viscoelastic Properties. Advanced Functional Materials, 2007, 17, 1837-1843.	7.8	91
72	Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides. Tetrahedron, 2007, 63, 7457-7467.	1.0	100
73	Molecular dynamics study of structural properties of -sheet assemblies formed by synthetic de novo oligopeptides. Physica A: Statistical Mechanics and Its Applications, 2007, 373, 455-476.	1.2	12
74	Peptide aerogels comprising self-assembling nanofibrils. Micro and Nano Letters, 2007, 2, 24.	0.6	25
75	Tunable Bacterial Agglutination and Motility Inhibition by Selfâ€Assembled Glycoâ€Nanoribbons. Chemistry - an Asian Journal, 2007, 2, 1363-1369.	1.7	36
76	Elastic deformation and failure in protein filament bundles: Atomistic simulations and coarse-grained modeling. Biomaterials, 2008, 29, 3152-3160.	5.7	9
77	Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions. Journal of Chemical Sciences, 2008, 120, 155-162.	0.7	2
78	Exploiting Enzymatic (Reversed) Hydrolysis in Directed Selfâ€Assembly of Peptide Nanostructures. Small, 2008, 4, 279-287.	5.2	145

#	Article	IF	CITATIONS
79	Sequence shuffle controls morphological consequences in a selfâ€assembling tetrapeptide. Journal of Peptide Science, 2008, 14, 118-126.	0.8	28
80	How Metal Ions Affect Amyloid Formation: Cu ²⁺ ―and Zn ²⁺ â€Sensitive Peptides. ChemBioChem, 2008, 9, 531-536.	1.3	53
81	Rigid–Flexible Block Molecules Based on a Laterally Extended Aromatic Segment: Hierarchical Assembly into Single Fibers, Flat Ribbons, and Twisted Ribbons. Chemistry - A European Journal, 2008, 14, 6957-6966.	1.7	47
82	Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials. Angewandte Chemie - International Edition, 2008, 47, 4062-4069.	7.2	521
83	Lateral Association of Cylindrical Nanofibers into Flat Ribbons Triggered by "Molecular Glue― Angewandte Chemie - International Edition, 2008, 47, 6375-6378.	7.2	64
84	Hydrogel Scaffolds of Amphiphilic and Acidic <i>β</i> â€Sheet Peptides. Advanced Functional Materials, 2008, 18, 2889-2896.	7.8	45
85	Fmocâ€Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked βâ€5heets. Advanced Materials, 2008, 20, 37-41.	11.1	855
88	Electronically controlled pH gradients and proton oscillations. Organic Electronics, 2008, 9, 303-309.	1.4	31
89	Biochemical enhancement of transdermal delivery with magainin peptide: Modification of electrostatic interactions by changing pH. International Journal of Pharmaceutics, 2008, 362, 20-28.	2.6	34
90	Supramolecular Polymerization of Peptides and Peptide Derivatives: Nanofibrous Materials. , 0, , 359-393.		1
91	Composites with Micro- and Nano-Structure. Computational Methods in Applied Sciences (Springer), 2008, , .	0.1	6
92	The cooperative self-assembly of 25 and 23kDa amelogenins. Journal of Structural Biology, 2008, 164, 314-321.	1.3	29
93	Expression and purification of a nanostructure-forming peptide. Journal of Biotechnology, 2008, 135, 85-91.	1.9	19
94	Rapid Free Energy Calculation of Peptide Self-Assembly by REMD Umbrella Sampling. Journal of Physical Chemistry B, 2008, 112, 13493-13498.	1.2	22
95	Possibilities for â€~smart' materials exploiting the self-assembly of polypeptides into fibrils. Soft Matter, 2008, 4, 647.	1.2	56
96	Common motifs in protein self-assembly. Faraday Discussions, 2008, 139, 265.	1.6	29
97	Self-Assembled Peptide Nanofibers. , 2008, , 27-68.		5
98	Amyloid-like Behavior in Abiotic, Amphiphilic Foldamers. Journal of the American Chemical Society, 2008, 130, 1517-1524.	6.6	83

#	Article	IF	CITATIONS
99	Self-Assembly of Nanofiber with Uniform Width from Wheel-Type Trigonal-Î ² -Sheet-Forming Peptide. Biomacromolecules, 2008, 9, 913-918.	2.6	33
100	Solution Behavior of Dendrimer-Coated Rodlike Coordination Polymers. Macromolecules, 2008, 41, 6066-6072.	2.2	25
102	Recombinant Production of Self-Assembling Peptides. Advances in Chemical Engineering, 2009, , 79-117.	0.5	2
103	Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology, 2009, 27, 423-433.	4.9	213
104	Selfâ€Assembling Diblock Copolymers of Poly[<i>N</i> â€(2â€hydroxypropyl)methacrylamide] and a <i>β</i> â€Sheet Peptide. Macromolecular Bioscience, 2009, 9, 36-44.	2.1	36
105	Effects of hydrophobicity and anions on selfâ€assembly of the peptide EMK16â€II. Biopolymers, 2010, 93, 318-329.	1.2	29
106	Bioproduction and characterization of a pH responsive selfâ€assembling peptide. Biotechnology and Bioengineering, 2009, 103, 241-251.	1.7	40
107	The chromatographyâ€free release, isolation and purification of recombinant peptide for fibril selfâ€assembly. Biotechnology and Bioengineering, 2009, 104, 973-985.	1.7	15
108	An orphan dermaseptin from frog skin reversibly assembles to amyloidâ€like aggregates in a pHâ€dependent fashion. FEBS Journal, 2009, 276, 5849-5859.	2.2	24
109	Interaction of Self-Assembling β-Sheet Peptides with Phospholipid Monolayers: The Role of Aggregation State, Polarity, Charge and Applied Field. Langmuir, 2009, 25, 3289-3296.	1.6	23
110	Metal Ion and Anion-Based "Tuning―of a Supramolecular Metallogel. Langmuir, 2009, 25, 8451-8456.	1.6	127
111	Macromolecule-Induced Assembly of Coiled-Coils in Alternating Multiblock Polymers. Biomacromolecules, 2009, 10, 2740-2749.	2.6	30
112	Self-Assembled Hydrogels from Poly[N-(2-hydroxypropyl)methacrylamide] Grafted with β-Sheet Peptides. Biomacromolecules, 2009, 10, 2319-2327.	2.6	33
113	Isolation and Characterization of an Aggregating Peptide from a Tryptic Hydrolysate of Whey Proteins. Journal of Agricultural and Food Chemistry, 2009, 57, 3760-3764.	2.4	21
114	Surface- and Solution-Based Assembly of Amyloid Fibrils for Biomedical and Nanotechnology Applications. Advances in Chemical Engineering, 2009, , 161-209.	0.5	28
115	Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5, 3452.	1.2	240
116	Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation. Soft Matter, 2009, 5, 1237.	1.2	21
117	Self-Assembly of Multidomain Peptides: Sequence Variation Allows Control over Cross-Linking and Viscoelasticity. Biomacromolecules, 2009, 10, 2694-2698.	2.6	227

#	Article	IF	CITATIONS
118	Spontaneous self-assembly of nanospheres from trigonal conjugate of glutathione in water. Soft Matter, 2009, 5, 2463.	1.2	33
119	Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and its Îμ-amino derivatives. Soft Matter, 2009, 5, 1474.	1.2	50
120	Mechanisms and Principles of 1D Self-Assembly of Peptides into β-Sheet Tapes. Advances in Chemical Engineering, 2009, 35, 11-43.	0.5	5
121	Additional Supra-Self-Assembly of Human Serum Albumin under Amyloid-Like-Forming Solution Conditions. Journal of Physical Chemistry B, 2009, 113, 12391-12399.	1.2	34
123	Glutathione Nanosphere: Self-Assembly of Conformation-Regulated Trigonal-Glutathiones in Water. Bulletin of the Chemical Society of Japan, 2010, 83, 880-886.	2.0	22
124	Very strong centrosymmetric [OHO]+ and asymmetric [O-HO]+ hydrogen bonds in a new POM-Based hybrid material. Journal of the Iranian Chemical Society, 2010, 7, 864-874.	1.2	4
125	Self-assembling peptide nanofiber scaffolds for controlled release governed by gelator design and guest size. Journal of Controlled Release, 2010, 147, 392-399.	4.8	33
127	Highly Stable Pleatedâ€6heet Secondary Structure in Assemblies of Amphiphilic α/βâ€Peptides at the Air–Water Interface. Angewandte Chemie - International Edition, 2010, 49, 716-719.	7.2	25
128	Nanofibers Selfâ€assembled from Structural Complementary Boronoâ€decapeptides. Macromolecular Rapid Communications, 2010, 31, 1903-1908.	2.0	21
129	Selfâ€Assembly of a Modified Amyloid Peptide Fragment: pHâ€Responsiveness and Nematic Phase Formation. Macromolecular Bioscience, 2010, 10, 40-48.	2.1	40
130	Secreted production of self-assembling peptides in Pichia pastoris by fusion to an artificial highly hydrophilic protein. Journal of Biotechnology, 2010, 146, 66-73.	1.9	10
131	Interaction of self-assembling β-sheet peptides with phospholipid monolayers: The effect of serine, threonine, glutamine and asparagine amino acid side chains. Electrochimica Acta, 2010, 55, 3368-3375.	2.6	15
132	Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials, 2010, 31, 9395-9405.	5.7	96
133	Hierarchical assembly of diphenylalanine into dendritic nanoarchitectures. Colloids and Surfaces B: Biointerfaces, 2010, 79, 440-445.	2.5	33
134	Emerging peptide nanomedicine to regenerate tissues and organs. Journal of Internal Medicine, 2010, 267, 71-88.	2.7	195
135	Failure of Abeta(1-40) amyloid fibrils under tensile loading. Nature Precedings, 2010, , .	0.1	0
136	Mechanistic Study of Self-Assembling Peptide RADA16-I in Formation of Nanofibers and Hydrogels. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	16
137	Peptide conjugate hydrogelators. Soft Matter, 2010, 6, 3707.	1.2	154

#	Article	IF	CITATIONS
138	Time-Lapse Atomic Force Microscopy Observations of the Morphology, Growth Rate, and Spontaneous Alignment of Nanofibers Containing a Peptide-Amphiphile from the Hepatitis G Virus (NS3 Protein). Journal of Physical Chemistry B, 2010, 114, 620-625.	1.2	5
139	Linear aggregation and liquid-crystalline order: comparison of Monte Carlo simulation and analytic theory. Journal of Materials Chemistry, 2010, 20, 10366.	6.7	63
140	A Reductive Trigger for Peptide Self-Assembly and Hydrogelation. Journal of the American Chemical Society, 2010, 132, 9526-9527.	6.6	203
141	Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates. Multiscale Modeling and Simulation, 2010, 8, 1958-1980.	0.6	4
142	Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter, 2010, 6, 5143.	1.2	298
143	Covalent Cross-Linked Polymer Gels with Reversible Solâ^'Gel Transition and Self-Healing Properties. Macromolecules, 2010, 43, 1191-1194.	2.2	581
144	Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides. Soft Matter, 2010, 6, 1971.	1.2	189
145	The delicate balance between gelation and crystallisation: structural and computational investigations. Soft Matter, 2010, 6, 4144.	1.2	121
146	Stimulus responsive peptide based materials. Chemical Society Reviews, 2010, 39, 3394.	18.7	284
147	Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chemical Science, 2010, 1, 491.	3.7	75
148	Assembly and disassembly of tubular spherulites. Soft Matter, 2010, 6, 1224.	1.2	26
149	A pH-responsive coiled-coil peptide hydrogel. Soft Matter, 2011, 7, 10210.	1.2	60
150	Self-assembling macromolecular chimeras: controlling fibrillization of a β-sheet forming peptide by polymer conjugation. Soft Matter, 2011, 7, 3754.	1.2	23
151	Mechanosensitive peptidegelation: mode of agitation controls mechanical properties and nano-scale morphology. Soft Matter, 2011, 7, 1732-1740.	1.2	63
152	Peptide Synthesis and Self-Assembly. Topics in Current Chemistry, 2011, 310, 27-69.	4.0	39
153	Directed Intermixing in Multicomponent Self-Assembling Biomaterials. Biomacromolecules, 2011, 12, 3549-3558.	2.6	65
154	Formation and Stability of Nanofibers from a Milk-Derived Peptide. Journal of Agricultural and Food Chemistry, 2011, 59, 720-726.	2.4	21
155	Responsive nematic gels from the self-assembly of aqueous nanofibres. Nature Communications, 2011, 2, 459.	5.8	105

		CITATION REPORT		
#	Article		IF	CITATIONS
156	Synthetic Strategies for the Design of Peptide/Polymer Conjugates. Polymer Reviews, 2	2011, 51, 214-234.	5.3	77
158	Lyotropic Liquid Crystals Formed from ACHC-Rich \hat{l}^2 -Peptides. Journal of the American (2011, 133, 13604-13613.	Chemical Society,	6.6	56
159	A facile process for the asymmetric synthesis of β-trifluoromethylated β-amino ketone ketone enolates to sulfinylimine. Organic and Biomolecular Chemistry, 2011, 9, 1402.	s via addition of	1.5	51
160	Designed peptides as model self-assembling nanosystems: characterization and potent applications. Therapeutic Delivery, 2011, 2, 193-204.	tial biomedical	1.2	23
161	Structure Analysis of an Amyloid-Forming Model Peptide by a Systematic Glycine and F Biomacromolecules, 2011, 12, 2988-2996.	Proline Scan.	2.6	20
162	Peptide nanotubes: molecular organisations, self-assembly mechanisms and application 2011, 7, 9583.	ns. Soft Matter,	1.2	140
163	Bisthiocarbohydrazones as Colorimetric and "Turn on―Fluorescent Chemosensors Recognition of Fluoride. Industrial & Engineering Chemistry Research, 2011, 50, 1	s for Selective 2379-12383.	1.8	33
164	Design of self-assembling peptides and their biomedical applications. Nanomedicine, 2	011, 6, 1621-1643.	1.7	105
165	Enzymatic Cross-Linking of a Nanofibrous Peptide Hydrogel. Biomacromolecules, 2011	, 12, 82-87.	2.6	95
167	Self–Assembled Peptide Nanostructures for Biomedical Applications: Advantages an	d Challenges. , 0, , .		15
168	Micro and nanotechnologies for bioengineering regenerative medicine scaffolds. Interr Journal of Biomedical Engineering and Technology, 2011, 5, 266.	national	0.2	5
169	Self-Assembling Peptides: Potential Role in Tumor Targeting. Current Pharmaceutical B 2011, 12, 1089-1100.	iotechnology,	0.9	37
170	Self-Assembling Peptides: Implications for Patenting in Drug Delivery and Tissue Engine Patents on Drug Delivery and Formulation, 2011, 5, 24-51.	eering. Recent	2.1	48
171	Influence of End-Capping on the Self-Assembly of Model Amyloid Peptide Fragments. Jo Physical Chemistry B, 2011, 115, 2107-2116.	burnal of	1.2	52
172	Tuning β-Sheet Peptide Self-Assembly and Hydrogelation Behavior by Modification of S Hydrophobicity and Aromaticity. Biomacromolecules, 2011, 12, 2735-2745.	Sequence	2.6	169
173	Polymorphism of Amino Acidâ€Based Dendrons: From Organogels to Microcrystals. Ch Journal, 2011, 6, 1163-1170.	emistry - an Asian	1.7	23
174	Lyotropic phase behaviour of dilute, aqueous hen lysozyme amyloid fibril dispersions. Jo Materials Science, 2011, 46, 3687-3692.	ournal of	1.7	7
175	Protein Spherulites for Sustained Release of Interferon: Preparation, Characterization a Evaluation. Journal of Pharmaceutical Sciences, 2011, 100, 1913-1922.	ind in vivo	1.6	17

#	Article	IF	CITATIONS
178	Modular Design in Natural and Biomimetic Soft Materials. Angewandte Chemie - International Edition, 2011, 50, 9026-9057.	7.2	195
179	Direct Observation of Timeâ€Resolved Polymorphic States in the Selfâ€Assembly of Endâ€Capped Heptapeptides. Angewandte Chemie - International Edition, 2011, 50, 5495-5498.	7.2	119
180	Synthesis and Selfâ€Assembly of Oligo(<i>p</i> â€phenylenevinylene) Peptide Conjugates in Water. Chemistry - A European Journal, 2011, 17, 2044-2047.	1.7	39
181	Sheetâ€Like Assemblies of Charged Amphiphilic α/βâ€Peptides at the Air–Water Interface. Chemistry - A European Journal, 2011, 17, 14857-14866.	1.7	29
182	Failure of $A^{12}(1-40)$ amyloid fibrils under tensile loading. Biomaterials, 2011, 32, 3367-3374.	5.7	62
183	Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds. Biomaterials, 2011, 32, 5341-5353.	5.7	51
184	Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles. Journal of Colloid and Interface Science, 2011, 356, 131-137.	5.0	59
185	Helical architectures from self-assembly of chiral polymers and block copolymers. Progress in Polymer Science, 2011, 36, 376-453.	11.8	138
187	- Manipulation of Self-Assembled Peptide Nanostructures. , 2012, , 139-160.		0
188	- Biomedical Applications of Assembled Peptide and Protein Micro- or Nanostructures. , 2012, , 193-244.		0
189	Formation of α-Helical Nanofibers by Mixing β-Structured and α-Helical Coiled Coil Peptides. Biomacromolecules, 2012, 13, 3542-3551.	2.6	14
190	Fibril Formation by Short Synthetic Peptides. Sub-Cellular Biochemistry, 2012, 65, 29-51.	1.0	6
191	Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link. Soft Matter, 2012, 8, 8388.	1.2	56
192	A new hydrogel from an amino acid-based perylene bisimide and its semiconducting, photo-switching behaviour. RSC Advances, 2012, 2, 11053.	1.7	53
193	Hydrogen bond directed self-assembly of cyclic dipeptide derivatives: gelation and ordered hierarchical architectures. RSC Advances, 2012, 2, 5539.	1.7	58
194	Effect of Peptide and Guest Charge on the Structural, Mechanical and Release Properties of Î ² -Sheet Forming Peptides. Langmuir, 2012, 28, 16196-16206.	1.6	63
195	Adsorption, Folding, and Packing of an Amphiphilic Peptide at the Air/Water Interface. Journal of Physical Chemistry B, 2012, 116, 2198-2207.	1.2	13
196	Ion diode logics for pH control. Lab on A Chip, 2012, 12, 2507.	3.1	55

#	Article	IF	CITATIONS
197	Self-Assembly of Bifunctional Patchy Particles with Anisotropic Shape into Polymers Chains: Theory, Simulations, and Experiments. Macromolecules, 2012, 45, 1090-1106.	2.2	72
198	Physical Gelation of Polypeptide–Polyelectrolyte–Polypeptide (ABA) Copolymer in Solution. Macromolecules, 2012, 45, 6201-6209.	2.2	10
199	End-to-End Self-Assembly of RADA 16-I Nanofibrils in Aqueous Solutions. Biophysical Journal, 2012, 102, 1617-1626.	0.2	48
200	Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polymer Chemistry, 2012, 3, 18-33.	1.9	225
201	Design of Biomolecules for Nanoengineered Biomaterials for Regenerative Medicine. Methods in Molecular Biology, 2012, 811, 39-49.	0.4	29
202	Spherulites. Chemical Reviews, 2012, 112, 1805-1838.	23.0	343
203	Rational Molecular Design of Complementary Selfâ€Assembling Peptide Hydrogels. Advanced Healthcare Materials, 2012, 1, 640-645.	3.9	47
204	Review selfâ€assembly of amphipathic βâ€sheet peptides: Insights and applications. Biopolymers, 2012, 98, 169-184.	1.2	199
205	Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels. Chemical Communications, 2012, 48, 7934.	2.2	32
206	From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnology Advances, 2012, 30, 593-603.	6.0	189
207	Structure and hydrogel formation studies on homologs of a lactoglobulin-derived peptide. Biophysical Chemistry, 2012, 163-164, 1-10.	1.5	12
208	Selfâ€Assembling Peptides as Cellâ€Interactive Scaffolds. Advanced Functional Materials, 2012, 22, 456-468.	7.8	124
209	The Robust Hydrogel Hierarchically Assembled from a pH Sensitive Peptide Amphiphile Based on Silk Fibroin. Biomacromolecules, 2013, 14, 2733-2738.	2.6	53
210	pH‣witchable Ampholytic Supramolecular Copolymers. Angewandte Chemie - International Edition, 2013, 52, 10097-10101.	7.2	110
212	Hierarchical self-assembly of a Î ² -amyloid peptide derivative. Journal of Materials Chemistry B, 2013, 1, 668-675.	2.9	37
213	Self-assembly for the synthesis of functional biomaterials. Acta Materialia, 2013, 61, 912-930.	3.8	209
214	Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. British Dental Journal, 2013, 215, E6-E6.	0.3	149
215	Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. Journal of the American Chemical Society, 2013, 135, 15565-15578.	6.6	112

ARTICLE IF CITATIONS # Gelling and fluorescent mesogens of quinoxaline analogs. Journal of Materials Chemistry C, 2013, 1, 216 2.7 11 6883. Bionanotechnology application of polypeptides in a hair color product: Selfâ€assembly enables expression, processing, and functionality. Biotechnology Journal, 2013, 8, 247-256. 1.8 Supramolecular Nanofibers of Peptide Amphiphiles for Medicine. Israel Journal of Chemistry, 2013, 53, 218 1.0 63 530-554. Amide I band and photoinduced disassembly of a peptide hydrogel. Chemical Physics Letters, 2013, 580, 1.2 135-140. Solid-State NMR Evidence for Î²-Hairpin Structure within MAX8 Designer Peptide Nanofibers. Biophysical 220 0.2 24 Journal, 2013, 105, 222-230. Supramolecular Construction of Optoelectronic Biomaterials. Accounts of Chemical Research, 2013, 208 46, 1527-1537 222 Self-assembling cyclic systems as drug carriers. Applied Nanoscience (Switzerland), 2013, 3, 515-528. 1.6 2 Supramolecular chemical biology; bioactive synthetic self-assemblies. Organic and Biomolecular 1.5 98 Chemistry, 2013, 11, 219-232. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine, 2013, 8, 224 1.7 110 823-847. Effects of Varied Sequence Pattern on the Self-Assembly of Amphipathic Peptides. Biomacromolecules, 2.6 94 2013, 14, 3267-3277. Mechanical characterization of selfâ€assembling peptide hydrogels by microindentation. Journal of 226 1.6 15 Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 981-990. The effect of pH and calcium ions on the stability of amphiphilic and anionic $\langle i \rangle \hat{l}^2 \langle l \rangle \hat{s} \in s$ heet peptide 1.2 hydrogels. Biopolymers, 2013, 100, 760-772. Self-Assembling Peptide Nanofibrous Scaffolds for Tissue Engineering: Novel Approaches and 229 0.7 66 Strategies for Effective Functional Regeneration. Current Protein and Peptide Science, 2013, 14, 70-84. pH-controlled aggregation polymorphism of amyloidogenic Aβ(16–22): Insights for obtaining peptide tapes and peptide nanotubes, as function of the N-terminal capping moiety. European Journal of Medicinal Chemistry, 2014, 88, 55-65. 2.6 Reversible and Rapid pH-Regulated Self-Assembly of a Poly(ethylene glycol)–Peptide Bioconjugate. 231 1.6 15 Langmuir, 2014, 30, 14250-14256. Shear-Thinning and Rapid-Recovery Peptide Hydrogel for Biomedical Applications. Materials Research 0.1 Society Symposia Proceedings, 2014, 1622, 175-188. 233 Smart Biomaterials. NIMS Monographs, 2014, , . 0.157 Bioactive Supramolecular Peptide Nanofibers for Regenerative Medicine. Advanced Healthcare 234 Materials, 2014, 3, 1357-1376.

#	Article	IF	CITATIONS
235	Self-Assembly-Driven Nematization. Langmuir, 2014, 30, 4814-4819.	1.6	26
236	Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly. Nano Today, 2014, 9, 722-742.	6.2	109
237	A droplet-based pH regulator in microfluidics. Lab on A Chip, 2014, 14, 1917-1922.	3.1	11
238	Tailoring strained oxanorbornane headgroups to dimensionally controlled nanostructures through hydrogen bonding. RSC Advances, 2014, 4, 9762.	1.7	9
239	Self-programmed nanovesicle to nanofiber transformation of a dipeptide appended bolaamphiphile and its dose dependent cytotoxic behaviour. Journal of Materials Chemistry B, 2014, 2, 5272-5279.	2.9	19
240	A "Light-up―1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. Journal of Materials Chemistry B, 2014, 2, 6478-6486.	2.9	16
241	Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. International Journal of Pharmaceutics, 2014, 474, 103-111.	2.6	49
242	Triple Helix Formation in Amphiphilic Discotics: Demystifying Solvent Effects in Supramolecular Self-Assembly. Journal of the American Chemical Society, 2014, 136, 336-343.	6.6	110
243	Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles. Journal of Physical Chemistry C, 2014, 118, 16272-16278.	1.5	52
244	Significances of Nanostructured Hydrogels for Valuable Applications. , 2014, , 273-298.		3
245	Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polymer Chemistry, 2014, 5, 4431-4449.	1.9	159
246	Chimera-Induced Folding: Implications for Amyloidosis. Biomacromolecules, 2014, 15, 2992-3001.	2.6	0
247	Short to ultrashort peptide hydrogels for biomedical uses. Materials Today, 2014, 17, 381-388.	8.3	132
249	3.1 Amino Acids and Peptides in Medicine: Old or New Drugs?. , 2015, , 178-228.		0
250	Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method. Sensing and Bio-Sensing Research, 2015, 5, 8-12.	2.2	4
251	Clustering and Dissolution of Triazole Branched Poly(ethyl methylacrylate). Macromolecular Chemistry and Physics, 2015, 216, 1251-1259.	1.1	1
252	Fabrication of Chiral Materials via Selfâ€Assembly and Biomineralization of Peptides. Chemical Record, 2015, 15, 665-674.	2.9	7
253	Copper(II)â€Mediated Selfâ€Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires. Chemistry - an Asian Journal, 2015, 10, 1953-1958.	1.7	22

#	Article	IF	CITATIONS
254	Selfâ€Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Advanced Healthcare Materials, 2015, 4, 2557-2586.	3.9	114
255	Next-generation nanoantibacterial tools developed from peptides. Nanomedicine, 2015, 10, 1643-1661.	1.7	8
256	Implications of protein polymorphism on protein phase behaviour. Soft Matter, 2015, 11, 2036-2045.	1.2	6
257	Encapsulation of 10-Hydroxy Camptothecin in Supramolecular Hydrogel as an Injectable Drug Delivery System. Journal of Pharmaceutical Sciences, 2015, 104, 2266-2275.	1.6	20
258	Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide. Biomacromolecules, 2015, 16, 3792-3801.	2.6	15
259	A comparative study on the selfâ€assembly of an amyloidâ€like peptide at water–solid interfaces and in bulk solutions. Microscopy Research and Technique, 2015, 78, 375-381.	1.2	13
260	Dynamic and Reversible Polymorphism of Self-Assembled Lyotropic Liquid Crystalline Systems Derived from Cyclic Bis(ethynylhelicene) Oligomers. Journal of the American Chemical Society, 2015, 137, 6594-6601.	6.6	48
261	External control of reactions in microdroplets. Scientific Reports, 2015, 5, 11837.	1.6	18
262	The influence of amino acid sequence on structure and morphology of polydiacetylene containing peptide fibres. Soft Matter, 2015, 11, 1335-1344.	1.2	14
263	A Kinetic Study of Ovalbumin Fibril Formation: The Importance of Fragmentation and End-Joining. Biophysical Journal, 2015, 108, 2300-2311.	0.2	28
264	Zn ²⁺ and Cu ²⁺ induced nanosheets and nanotubes in six different lectins by TEM. RSC Advances, 2015, 5, 16828-16836.	1.7	5
265	Peptide self-assembly for nanomaterials: the old new kid on the block. Chemical Society Reviews, 2015, 44, 8288-8300.	18.7	212
266	Nematic phase characterisation of the self-assembling sphere-cylinders based on the theoretically calculated RDFs. European Physical Journal E, 2015, 38, 81.	0.7	1
267	Scaffolded multimers of hIAPP2O–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP2O–29 peptide fragment. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1890-1897.	1.1	11
268	Sol–gel transition of charged fibrils composed of a model amphiphilic peptide. Journal of Colloid and Interface Science, 2015, 437, 244-251.	5.0	21
269	Control and role of pH in peptide–lipid interactions in oriented membrane samples. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 833-841.	1.4	20
270	Adjustable nanofibers self-assembled from an irregular conformational peptide amphiphile. Polymer Chemistry, 2015, 6, 519-524.	1.9	21
271	Generic Concept to Program the Time Domain of Self-Assemblies with a Self-Regulation Mechanism. Nano Letters, 2015, 15, 2213-2219.	4.5	153

ARTICLE IF CITATIONS # Inhibition of peptide aggregation by means of enzymatic phosphorylation. Beilstein Journal of Organic 272 1.3 1 Chemistry, 2016, 12, 2462-2470. Bionanofibers in drug delivery * *Xin Zhao and Lara Yildirimer contributed equally.. , 2016, , 403-445. Negatively Charged Lipid Membranes Catalyze Supramolecular Hydrogel Formation. Journal of the 274 6.6 32 American Chemical Society, 2016, 138, 8670-8673. Synthetic Selfâ€Assembled Materials in Biological Environments. Advanced Materials, 2016, 28, 4576-4592. 11.1 Spatiotemporal control of the creation and immolation of peptide assemblies. Coordination 276 9.5 23 Chemistry Reviews, 2016, 320-321, 2-17. TD-DFT study on the fluoride and copper ion sensing mechanism of pyrene N(4) phenyl thiosemicarbazone. Computational and Theoretical Chemistry, 2016, 1085, 31-39. 1.1 Peptide:glycosaminoglycan hybrid hydrogels as an injectable intervention for spinal disc 278 2.9 23 degeneration. Journal of Materials Chemistry B, 2016, 4, 3225-3231. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture. Nano Letters, 2016, 16, 3379-3384. 279 4.5 280 Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, 2016, , . 0.8 13 Two-Dimensional Peptide and Protein Assemblies. Advances in Experimental Medicine and Biology, 2016, 940, 29-60. Monolithic organic aerogels derived from single amino-acid based supramolecular gels: physical and 282 1.7 16 thermal properties. RSC Advances, 2016, 6, 102198-102205. A structurally self-assembled peptide nano-architecture by one-step electrospinning. Journal of Materials Chemistry B, 2016, 4, 5475-5485. Spatiotemporal Control of Amyloid-Like AÎ² Plaque Formation Using a Multichannel Organic Electronic 284 1.7 4 Device. Macromolecular Materials and Engineering, 2016, 301, 359-363. Engineering responsive supramolecular biomaterials: Toward smart therapeutics. Bioengineering and 48 Translational Medicine, 2016, 1, 252-266. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation. 286 1.2 8 Journal of Physical Chemistry B, 2016, 120, 10243-10257. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chemical Society Reviews, 2016, 45, 4797-4824. Effect of selfâ€assembling peptide P₁₁â€4 on enamel erosion: AFM and SEM studies. Scanning, 288 0.7 20 2016, 38, 344-351. Self-assembled dipeptide-based nanostructures: tiny tots with great applications. Therapeutic Delivery, 289 1.2 2016, 7, 59-62.

#	Article	IF	CITATIONS
290	Different nanostructures caused by competition of intra- and inter- Î ² -sheet interactions in hierarchical self-assembly of short peptides. Journal of Colloid and Interface Science, 2016, 464, 219-228.	5.0	42
291	Electrostatic-Driven Lamination and Untwisting of \hat{I}^2 -Sheet Assemblies. ACS Nano, 2016, 10, 880-888.	7.3	133
292	Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein. Biomacromolecules, 2016, 17, 1716-1726.	2.6	16
293	Self-Assembling Hydrogels. , 2016, , 219-250.		9
294	Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Biomedical Materials (Bristol), 2016, 11, 014103.	1.7	54
295	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477.	23.0	625
296	Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Advanced Drug Delivery Reviews, 2016, 96, 40-53.	6.6	62
297	Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Advanced Drug Delivery Reviews, 2017, 110-111, 137-156.	6.6	69
298	Remineralization of natural early caries lesions in vitro by P ₁₁ â€4 monitored with photothermal radiometry and luminescence. Journal of Investigative and Clinical Dentistry, 2017, 8, e12257.	1.8	41
299	Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomaterials Science, 2017, 5, 613-631.	2.6	93
301	Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Advances, 2017, 7, 27260-27271.	1.7	22
302	Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Acta Biomaterialia, 2017, 55, 183-193.	4.1	32
303	Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. Journal of Dental Research, 2017, 96, 790-797.	2.5	103
304	Programmable assembly of pressure sensors using pattern-forming bacteria. Nature Biotechnology, 2017, 35, 1087-1093.	9.4	94
305	From supramolecular polymers to multi-component biomaterials. Chemical Society Reviews, 2017, 46, 6621-6637.	18.7	311
306	Drug delivery by supramolecular design. Chemical Society Reviews, 2017, 46, 6600-6620.	18.7	551
307	Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules, 2017, 18, 3591-3599.	2.6	34
308	Simple Model of the Effect of Solution Conditions on the Nucleation of Amyloid Fibrils. Journal of Physical Chemistry B, 2017, 121, 8893-8901.	1.2	7

#	Article	IF	CITATIONS
309	Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils. ACS Nano, 2017, 11, 8579-8589.	7.3	48
310	Effects of Self-Assembling Peptide P11-4, Fluorides, and Caries Infiltration on Artificial Enamel Caries Lesions in vitro. Caries Research, 2017, 51, 451-459.	0.9	33
311	pH-sensitivity and Conformation Change of the N-terminal Methacrylated Peptide VK20. MRS Advances, 2017, 2, 2571-2579.	0.5	2
312	Sequence-dependent interactions between model peptides and lipid bilayers. Nuclear Science and Techniques/Hewuli, 2017, 28, 1.	1.3	3
313	Dynamics of Semiflexible Polymer Solutions in the <i>Tightly Entangled</i> Concentration Regime. Macromolecules, 2017, 50, 5611-5618.	2.2	30
314	Controlling supramolecular polymerization through multicomponent selfâ€assembly. Journal of Polymer Science Part A, 2017, 55, 34-78.	2.5	117
315	Oneâ€Pot Synthesis of Freestanding Porous Palladium Nanosheets as Highly Efficient Electrocatalysts for Formic Acid Oxidation. Advanced Functional Materials, 2017, 27, 1603852.	7.8	132
316	Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 176-185.	1.1	20
317	Peptide Self-Assembled Nanostructures for Drug Delivery Applications. Journal of Nanomaterials, 2017, 2017, 1-16.	1.5	61
318	Selfâ€assembling peptide matrix for treatment of dentin hypersensitivity: A randomized controlled clinical trial. Journal of Periodontology, 2018, 89, 653-660.	1.7	13
319	Titrations without the Additions: The Efficient Determination of p <i>K</i> _a Values Using NMR Imaging Techniques. Analytical Chemistry, 2018, 90, 4160-4166.	3.2	23
320	Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions. Biomacromolecules, 2018, 19, 2731-2741.	2.6	64
321	Speeding up Monte Carlo simulation of patchy hard cylinders. European Physical Journal E, 2018, 41, 51.	0.7	10
322	Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery. Biomaterials Science, 2018, 6, 1480-1491.	2.6	37
323	pH-Triggered Peptide Self-Assembly for Targeting Imaging and Therapy toward Angiogenesis with Enhanced Signals. ACS Applied Materials & Interfaces, 2018, 10, 7871-7881.	4.0	33
324	Self-Assembly of Discrete Organic Nanotubes. Bulletin of the Chemical Society of Japan, 2018, 91, 623-668.	2.0	91
325	Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 2018, 42, 58-74.	1.6	143
326	Enhancing bond strength on demineralized dentin by pre-treatment with selective remineralising agents. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 214-221.	1.5	22

#	Article	IF	CITATIONS
327	Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies. Advanced Healthcare Materials, 2018, 7, 1700930.	3.9	32
328	Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. International Journal of Nanomedicine, 2018, Volume 13, 6717-6733.	3.3	13
329	Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications. Advances in Experimental Medicine and Biology, 2018, 1064, 297-312.	0.8	27
330	Nematic liquid crystals of bifunctional patchy spheres. European Physical Journal E, 2018, 41, 141.	0.7	5
331	Multifunctional Protein Materials and Microreactors using Low Complexity Domains as Molecular Adhesives. ACS Nano, 2018, 12, 9991-9999.	7.3	51
332	Reversible Hierarchical Assembly of Trimeric Coiled-Coil Peptides into Banded Nano- and Microstructures. Journal of the American Chemical Society, 2018, 140, 13028-13033.	6.6	29
333	Understanding the Interplay between Self-Assembling Peptides and Solution Ions for Tunable Protein Nanoparticle Formation. ACS Nano, 2018, 12, 6956-6967.	7.3	20
334	Peptides for Silica Precipitation: Amino Acid Sequences for Directing Mineralization. Protein and Peptide Letters, 2018, 25, 15-24.	0.4	15
335	Peptide-based hydrogels with tunable nanostructures for the controlled release of dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 57-64.	2.3	9
336	Investigating the Structural Stability of RADA16-I Peptide Conjugated to Gold Nanoparticles. International Journal of Peptide Research and Therapeutics, 2019, 25, 753-760.	0.9	0
337	Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications. Macromolecular Bioscience, 2019, 19, e1800221.	2.1	110
338	Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589.	16.0	72
339	A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study. Bone, 2019, 127, 602-611.	1.4	32
340	Theory of self-assembly-driven nematic liquid crystals revised. Liquid Crystals, 2019, 46, 2003-2012.	0.9	1
341	Enantiocomplementary Chiral Polyhydroxyenoate: Chemoenzymatic Synthesis and Helical Structure Control. ACS Macro Letters, 2019, 8, 1188-1193.	2.3	8
342	Residue-Specific Solvation-Directed Thermodynamic and Kinetic Control over Peptide Self-Assembly with 1D/2D Structure Selection. ACS Nano, 2019, 13, 1900-1909.	7.3	40
343	Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules, 2019, 24, 351.	1.7	166
344	Peptide Tectonics: Encoded Structural Complementarity Dictates Programmable Selfâ€Assembly. Advanced Science, 2019, 6, 1802043.	5.6	51

#	Article	IF	CITATIONS
345	Mineralization of magnetic nano-tape in self-organized nanospace composed of nucleopeptides and peptides. CrystEngComm, 2019, 21, 3557-3567.	1.3	17
346	Hierarchical Selfâ€Assembly of Peptides and its Applications in Bionanotechnology. Macromolecular Chemistry and Physics, 2019, 220, 1900085.	1.1	37
347	Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomaterials Science, 2019, 7, 2023-2036.	2.6	122
348	Self-Assembling Multidomain Peptides: Design and Characterization of Neutral Peptide-Based Materials with pH and Ionic Strength Independent Self-Assembly. ACS Biomaterials Science and Engineering, 2019, 5, 977-985.	2.6	42
349	The Self-Assembling Peptide P ₁₁ -4 Prevents Collagen Proteolysis in Dentin. Journal of Dental Research, 2019, 98, 347-354.	2.5	18
350	Investigating the Stability of RADA16 Peptide Nanofibers Using CD Spectra. International Journal of Peptide Research and Therapeutics, 2019, 25, 265-272.	0.9	8
351	Enzymeâ€Instructed Selfâ€Assembly (EISA) and Hydrogelation of Peptides. Advanced Materials, 2020, 32, e1805798.	11.1	193
352	Recent advances in short peptide self-assembly: from rational design to novel applications. Current Opinion in Colloid and Interface Science, 2020, 45, 1-13.	3.4	87
353	Exploring the gel phase of cationic glycylalanylglycine in ethanol/water. I. Rheology and microscopy studies. Journal of Colloid and Interface Science, 2020, 564, 499-509.	5.0	13
354	Thermal Selection of Aqueous Molecular Conformations for Tailored Energetics of Peptide Assemblies at Solid Interfaces. Langmuir, 2020, 36, 318-327.	1.6	7
355	Synthesis of sensitive novel dual Signaling pyridopyrimidine-based fluorescent "turn off― chemosensors for anions determination. Measurement: Journal of the International Measurement Confederation, 2020, 151, 107267.	2.5	10
356	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	2.6	26
357	Prospecting the applications and discovery of peptide hydrogels in food. Trends in Food Science and Technology, 2020, 104, 37-48.	7.8	15
358	Surface Triggered Self-Assembly of Fmoc-Tripeptide as an Antibacterial Coating. Frontiers in Bioengineering and Biotechnology, 2020, 8, 938.	2.0	19
359	Biomimetic peptide enriched nonwoven scaffolds promote calcium phosphate mineralisation. RSC Advances, 2020, 10, 28332-28342.	1.7	7
360	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
361	Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly. Communications Chemistry, 2020, 3, .	2.0	17
362	Self-Assembling Peptides as an Emerging Platform for the Treatment of Metabolic Syndrome. International Journal of Nanomedicine, 2020, Volume 15, 10349-10370.	3.3	13

#	Article	IF	CITATIONS
363	Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health, 2020, 20, 148.	0.8	11
364	Spontaneous Alignment of Selfâ€Assembled Cationic and Amphiphilic βâ€Sheet Peptides. Advanced Materials Interfaces, 2020, 7, 2000332.	1.9	6
365	Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter, 2020, 16, 10029-10045.	1.2	71
366	Supramolecular Hydrogel Induced by Electrostatic Interactions between Polycation and Phosphorylated-Fmoc-Tripeptide. Chemistry of Materials, 2020, 32, 1946-1956.	3.2	43
367	Molecular complementarity and structural heterogeneity within co-assembled peptide β-sheet nanofibers. Nanoscale, 2020, 12, 4506-4518.	2.8	23
368	The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 536.	1.8	86
369	Heat Engine Drives Transport of an Fe ^{II} ₄ L ₄ Cage and Cargo. Advanced Materials, 2020, 32, e1907241.	11.1	30
370	Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Progress in Polymer Science, 2020, 105, 101241.	11.8	128
371	Role of Sheet-Edge Interactions in \hat{l}^2 -sheet Self-Assembling Peptide Hydrogels. Biomacromolecules, 2020, 21, 2285-2297.	2.6	46
372	Self-assembling Peptide P11-4: A Biomimetic Agent for Enamel Remineralization. International Journal of Peptide Research and Therapeutics, 2021, 27, 899-907.	0.9	4
373	Self-assembling peptide P ₁₁ -4 in remineralization of enamel caries – a systematic review of <i>in-vitro</i> studies. Acta Odontologica Scandinavica, 2021, 79, 139-146.	0.9	14
375	Structural and dynamical properties of water in surfactant-like peptide-based nanotubes: Effect of pore size, tube length and charge. Journal of Molecular Liquids, 2021, 323, 115033.	2.3	7
376	Adhesion and whitening effects of P11-4 self-assembling peptide and HAP suspension on bovine enamel. Clinical Oral Investigations, 2021, 25, 3237-3247.	1.4	11
377	Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: An "in vitro―18-month follow-up. Dental Materials, 2021, 37, e276-e289.	1.6	7
378	Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nature Communications, 2021, 12, 3412.	5.8	9
379	Short Peptides as Tunable, Switchable, and Strong Gelators. Journal of Physical Chemistry B, 2021, 125, 6760-6775.	1.2	12
380	Amelogenin Peptide-Chitosan Hydrogel for Biomimetic Enamel Regrowth. Frontiers in Dental Medicine, 2021, 2, .	0.5	8
381	Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38, 101119.	6.2	135

#	Article	IF	CITATIONS
382	Evaluation of the state and shade of white spot lesions after treatment with different remineralizing agents (An in-vivo comparative study) Al-Azhar Journal of Dental Science, 2021, 24, 239-245.	0.0	1
383	Concentration effects on the self-assembly of tyrosine molecules. Physical Chemistry Chemical Physics, 2021, 23, 22620-22628.	1.3	5
384	pH-Responsive Self-Assembly of Amyloid Fibrils for Dual Hydrolase-Oxidase Reactions. ACS Catalysis, 2021, 11, 595-607.	5.5	49
385	CHAPTER 7. Amyloid-Like Peptide Aggregates. RSC Soft Matter, 2020, , 217-268.	0.2	2
386	Peptide Nanomaterials for Drug Delivery Applications. Current Protein and Peptide Science, 2020, 21, 401-412.	0.7	21
387	Tissue engineering for articular cartilage repair $\hat{a} \in $ the state of the art. , 2013, 25, 248-267.		305
388	Custom Design of Protein Particles as Multifunctional Biomaterials. Advanced Functional Materials, 2022, 32, 2108039.	7.8	6
389	Equilibrium and Kinetic Properties of Self-Assembled Cu Nanoparticles: Computer Simulations. Computational Methods in Applied Sciences (Springer), 2008, , 9-25.	0.1	0
390	Smart Nanofibers. NIMS Monographs, 2014, , 189-235.	0.1	0
391	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 0, , 5892-5906.		0
393	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 2017, , 1289-1303.		0
394	Biomimetic Materials. , 2017, , 189-213.		0
395	Self Assembling Peptide P11-4 for Enamel Remineralization: A Biomimetic Approach. Journal of Pharmaceutical Research International, 0, , 83-89.	1.0	1
396	Effectiveness of Self-assembling Peptide P11-4 Compared to Tricalcium Phosphate Fluoride Varnish in Remineralization of White Spot Lesions: A Clinical Randomized Trial. International Journal of Clinical Pediatric Dentistry, 2021, 13, 451-456.	0.3	12
397	Factors Affecting Secondary and Supramolecular Structures of Selfâ€Assembling Peptide Nanocarriers. Macromolecular Bioscience, 2022, 22, e2100347.	2.1	8
398	Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides. Nanomaterials, 2021, 11, 3129.	1.9	2
399	<i>S</i> â€Benzyl cysteine based cyclic dipeptide super hydrogelator: Enhancing efficacy of an anticancer drug via sustainable release. Journal of Peptide Science, 2022, 28, e3403.	0.8	4
400	Efficacy and safety of P11-4 for the treatment of periodontal defects in dogs. Clinical Oral Investigations, 2022, 26, 3151.	1.4	2

#	Article	IF	CITATIONS
401	Self-assembling of nanobionics: from theory to applications. , 2022, , 111-138.		1
402	Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 2021, 13, 42.	3.6	54
403	Acidic and basic self-assembling peptide and peptide-graphene oxide hydrogels: characterisation and effect on encapsulated nucleus pulposus cells. Acta Biomaterialia, 2022, , .	4.1	13
404	Effectiveness of Self-Assembling Peptide (P11-4) in Dental Hard Tissue Conditions: A Comprehensive Review. Polymers, 2022, 14, 792.	2.0	12
405	Adhesion and whitening efficacy of P11-4 self-assembling peptide and HAP suspension after using NaOCl as a pre-treatment agent. BMC Oral Health, 2022, 22, 59.	0.8	1
406	Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. Journal of Molecular Liquids, 2022, 355, 118940.	2.3	3
407	Engineering Î ² -Sheet Peptide Coassemblies for Biomaterial Applications. Journal of Physical Chemistry B, 2021, 125, 13599-13609.	1.2	10
408	Self-assembly peptide P11-4 induces mineralization and cell-migration of odontoblast-like cells. Journal of Dentistry, 2022, 121, 104111.	1.7	3
413	pH- and concentration-dependent supramolecular assembly of a fungal defensin plectasin variant into helical non-amyloid fibrils. Nature Communications, 2022, 13, .	5.8	9
414	Effect of a Self-Assembly Peptide on Surface Roughness and Hardness of Bleached Enamel. Journal of Functional Biomaterials, 2022, 13, 79.	1.8	3
415	Magie oder Wirklichkeit — Aktuelle Konzepte der Remineralisation. Oralprophylaxe Und Kinderzahnheilkunde, 2015, 37, 32-39.	0.1	1
416	The influence of component structural arrangement on peptide vaccine immunogenicity. Biotechnology Advances, 2022, 60, 108029.	6.0	9
417	Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration. Dental Materials, 2022, 38, 1749-1762.	1.6	7
418	EF4K bola-amphiphilic peptide nanomembrane: structural, energetic and dynamic properties using molecular dynamics. Journal of Molecular Liquids, 2022, 368, 120651.	2.3	1
419	Fabrication of silk sericin–anthocyanin nanocoating for chelating and saturation-visualization detection of metal ions. Nanoscale, 2022, 14, 17277-17289.	2.8	13
420	Design of Stimuliâ€Responsive Peptides and Proteins. Advanced Functional Materials, 2023, 33, .	7.8	10
421	pH-feedback systems to program autonomous self-assembly and material lifecycles. Chemical Communications, 2023, 59, 1125-1144.	2.2	14
422	Covalently Selfâ€Assembled Peptideâ€Based Hydrolase Mimic for Realizing Exceptional Catalytic Longevity in Foreign Environments. Small Structures, 2023, 4, .	6.9	0

#	Article	IF	CITATIONS
423	Thermally Responsive Materials. , 2016, , 55-93.		0
424	Applications of Supramolecular Materials in Real World: A Mini Review. Asian Journal of Chemistry, 2023, 35, 305-315.	0.1	1
425	Insight into the development of versatile dentin bonding agents to increase the durability of the bonding interface. Frontiers in Dental Medicine, 0, 4, .	0.5	0
426	A Facile and Versatile Approach to Construct Photoactivated Peptide Hydrogels by Regulating Electrostatic Repulsion. ACS Nano, 2023, 17, 5536-5547.	7.3	12
427	Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS Nano, 2023, 17, 8004-8025.	7.3	28
434	β-Sheet and β-Hairpin Peptide Nanomaterials. , 2023, , 53-86.		0
436	Self-assembling peptides for managing white spot lesions: a systematic review and meta-analysis. European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry, 2023, 24, 519-531.	0.7	0