Diffusion in metallic glasses and supercooled melts

Reviews of Modern Physics 75, 237-280

DOI: 10.1103/revmodphys.75.237

Citation Report

#	Article	IF	CITATIONS
1	Atomistic Theory of Bulk Metallic Glass Formation. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
2	Diffusion and Relaxation in Glasses and their Melts. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
3	Possible resolution of the Kauzmann paradox in supercooled liquids. Physical Review E, 2003, 68, 011505.	2.1	83
4	Diffusion and isotope effect in bulk-metallic glass-forming Pd–Cu–Ni–P alloys from the glass to the equilibrium melt. Journal of Materials Research, 2003, 18, 2688-2696.	2.6	26
5	Temperature dependence of positron annihilation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Journal of Materials Research, 2003, 18, 2021-2024.	2.6	25
6	Fast diffusion in ZrTiCuNiBe melts. Applied Physics Letters, 2003, 83, 3894-3896.	3.3	61
7	Diffusion in a Metallic Melt at the Critical Temperature of Mode Coupling Theory. Physical Review Letters, 2003, 90, 195502.	7.8	75
8	In situSynchrotron Study of Phase Transformation Behaviors in Bulk Metallic Glass by Simultaneous Diffraction and Small Angle Scattering. Physical Review Letters, 2003, 91, 265501.	7.8	97
9	Amorphous-to-Cu51Zr14phase transformation in Cu60Ti20Zr20alloy. Journal of Physics Condensed Matter, 2003, 15, 8703-8712.	1.8	12
10	High electronic excitation-induced crystallization in Fe73.5Cu1Nb3Si13.5B9amorphous alloy: II. Carbon cluster irradiation. Journal of Physics Condensed Matter, 2004, 16, 1563-1575.	1.8	5
11	High-pressure suppression of crystallization in the metallic supercooled liquidZr41Ti14Cu12.5Ni10Be22.5: Influence of viscosity. Physical Review B, 2004, 70, .	3.2	11
12	Thermal and radiation-enhanced diffusion in the bulk metallic glassNi23Zr62Al15. Physical Review B, 2004, 69, .	3.2	6
13	Self-Diffusion in Liquid Interfaces. Physical Review Letters, 2004, 92, 095901.	7.8	9
14	Iron self-diffusion in amorphousFeZrâ^•Fe57Zrmultilayers measured by neutron reflectometry. Physical Review B, 2004, 70, .	3.2	40
15	Diffusion and jump-length distribution in liquid and amorphousCu33Zr67. Physical Review B, 2004, 70, .	3.2	50
16	Viscosity of network liquids within Doremus approach. Journal of Applied Physics, 2004, 95, 3803-3810.	2.5	49
17	Interface diffusion and amorphous intergranular layers in nanocrystalline Fe90Zr7B3. Journal of Applied Physics, 2004, 95, 5075-5080.	2.5	16
18	Self-Diffusion in Chemically Homogeneous Multilayers Using Neutron and Nuclear Resonance Reflectivity. Materials Research Society Symposia Proceedings, 2004, 840, Q1.7.1.	0.1	0

#	Article	IF	Citations
19	Viscosity of oxide melts in the Doremus model. JETP Letters, 2004, 79, 85-87.	1.4	4
20	Thermodynamics of crystalline nanonucleus formation from liquid phase. Journal of Structural Chemistry, 2004, 45, S31-S35.	1.0	4
21	What is the real driving force of bilayer ion beam mixing?. Nuclear Instruments & Methods in Physics Research B, 2004, 226, 517-530.	1.4	16
22	Diffusion in a model metallic glass: Heterogeneity and ageing. Physical Chemistry Chemical Physics, 2004, 6, 3654-3658.	2.8	20
23	Vibrations and relaxations in a soft sphere glass: boson peak and structure factors. Journal of Physics Condensed Matter, 2004, 16, S2659-S2670.	1.8	48
24	Simulation of crystallization and glass formation of binary Pd–Ag metal alloys. Journal of Non-Crystalline Solids, 2004, 342, 6-11.	3.1	16
25	Iron self-diffusion in nanocrystalline FeZr thin films. Journal of Non-Crystalline Solids, 2004, 343, 39-47.	3.1	14
26	Molecular-dynamics study of the local symmetry changes in metallic liquids. Phase Transitions, 2004, 77, 89-100.	1.3	0
27	Diffusion in metallic glasses and undercooled metallic melts. International Journal of Materials Research, 2004, 95, 956-960.	0.8	3
28	Excess free volume in metallic glasses measured by X-ray diffraction. Acta Materialia, 2005, 53, 1611-1619.	7.9	344
29	Point Defects in Metals. , 2005, , 1855-1876.		3
30	Chemical diffusion in bulk glass-forming Pd40Cu30Ni10P20 melts. Scripta Materialia, 2005, 53, 1395-1400.	5.2	19
31	Self-diffusion in nanoscale structures measured by neutron reflectometry. Journal of Phase Equilibria and Diffusion, 2005, 26, 458-465.	1.4	4
32	Iron Self-Diffusion in Chemically Homogeneous Multilayers. Defect and Diffusion Forum, 2005, 237-240, 548-553.	0.4	4
33	Self-Diffusion of Iron in Nano-Crystalline Iron Nitride. Materials Science Forum, 2005, 480-481, 557-564.	0.3	0
34	Pressure-temperature-time-transition diagram in a strong metallic supercooled liquid. Europhysics Letters, 2005, 71, 611-617.	2.0	5
35	Microscopic Mechanism of Water Diffusion in Glucose Glasses. Physical Review Letters, 2005, 95, 045701.	7.8	70
36	Fe diffusion in amorphous and nanocrystalline alloys studied using nuclear resonance reflectivity. Physical Review B, 2005, 72, .	3.2	37

#	Article	IF	CITATIONS
37	Atomic dynamics in molecular dynamics simulations of glassy CuTi thin films. Applied Physics Letters, 2005, 86, 061913.	3.3	8
38	Heterogeneous dynamics on the microsecond scale in simulatedNi0.5Zr0.5metallic melts far below the glass temperature. Physical Review E, 2005, 71, 031505.	2.1	23
39	Molecular dynamics sampling scheme realizing multiple distributions. Physical Review E, 2005, 71, 046708.	2.1	5
40	Nanocrystallization and amorphization induced by reactive nitrogen sputtering in iron and permalloy. Physical Review B, 2005, 72, .	3.2	60
41	Structural influence on atomic hopping and electronic states of Pd-based bulk metallic glasses. Applied Physics Letters, 2005, 86, 072104.	3.3	13
42	Strings and interstitials in liquids, glasses and crystals. Europhysics Letters, 2005, 71, 625-631.	2.0	91
43	Cooperative Dynamics and Self-Diffusion in Superheated Crystals. Journal of Physical Chemistry B, 2005, 109, 15291-15296.	2.6	12
44	The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. Journal of Physics Condensed Matter, 2005, 17, R1143-R1182.	1.8	344
45	Diffusion in Metallic Glasses and Supercooled Melts. , 2005, , 249-282.		4
46	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503.	7.8	8
46 47	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503. Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972.	7.8 45.6	8
46 47 48	Dynamics of Probes in Model Classy Matrices. Physical Review Letters, 2006, 97, 145503. Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972. LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674.	7.8 45.6 1.9	8 1,053 38
46 47 48 49	Dynamics of Probes in Model Classy Matrices. Physical Review Letters, 2006, 97, 145503. Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972. LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674. Formation and deformation of metallic glasses: Atomistic theory. Intermetallics, 2006, 14, 882-887.	7.8 45.6 1.9 3.9	8 1,053 38 65
46 47 48 49 50	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503.Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972.LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674.Formation and deformation of metallic glasses: Atomistic theory. Intermetallics, 2006, 14, 882-887.Effect of pressure on photo-induced interdiffusion in amorphous chalcogenide nanomultilayers. Journal of Non-Crystalline Solids, 2006, 352, 1591-1594.	7.8 45.6 1.9 3.9 3.1	8 1,053 38 65 3
46 47 48 49 50 51	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503.Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972.LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674.Formation and deformation of metallic glasses: Atomistic theory. Intermetallics, 2006, 14, 882-887.Effect of pressure on photo-induced interdiffusion in amorphous chalcogenide nanomultilayers. Journal of Non-Crystalline Solids, 2006, 352, 1591-1594.Diffusion in a binary amorphous metal: Pair-correlation in Cu33Zr67. Journal of Non-Crystalline Solids, 2006, 352, 5093-5097.	 7.8 45.6 1.9 3.9 3.1 3.1 	8 1,053 38 65 3
 46 47 48 49 50 51 52 	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503. Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972. LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674. Formation and deformation of metallic glasses: Atomistic theory. Intermetallics, 2006, 14, 882-887. Effect of pressure on photo-induced interdiffusion in amorphous chalcogenide nanomultilayers. Journal of Non-Crystalline Solids, 2006, 352, 1591-1594. Diffusion in a binary amorphous metal: Pair-correlation in Cu33Zr67. Journal of Non-Crystalline Solids, 2006, 352, 5093-5097. Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes. Journal of Non-Crystalline Solids, 2006, 352, 5147-5155.	 7.8 45.6 1.9 3.9 3.1 3.1 3.1 	8 1,053 38 65 3 9 23
 46 47 48 49 50 51 52 53 	Dynamics of Probes in Model Glassy Matrices. Physical Review Letters, 2006, 97, 145503.Colloquium: The glass transition and elastic models of glass-forming liquids. Reviews of Modern Physics, 2006, 78, 953-972.LOCAL ORDER OF LIQUID AND UNDERCOOLED TRANSITION METAL BASED SYSTEMS: AB INITIO MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 2006, 20, 655-674.Formation and deformation of metallic glasses: Atomistic theory. Intermetallics, 2006, 14, 882-887.Effect of pressure on photo-induced interdiffusion in amorphous chalcogenide nanomultilayers. Journal of Non-Crystalline Solids, 2006, 352, 1591-1594.Diffusion in a binary amorphous metal: Pair-correlation in Cu33Zr67. Journal of Non-Crystalline Solids, 2006, 352, 5093-5097.Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes. Journal of Non-Crystalline Solids, 2006, 352, 5147-5155.Influence of thermal treatment upon the diffusion characteristics of Mo in Fe76Mo8Cu1B15 alloy. Journal of Non-Crystalline Solids, 2006, 352, 5271-5278.	 7.8 45.6 1.9 3.9 3.1 3.1 3.1 3.1 	8 1,053 38 65 3 9 9 73

#	Article	IF	CITATIONS
55	Dynamics of phason diffusion in icosahedral Al–Pd–Mn quasicrystals. Acta Materialia, 2006, 54, 3233-3240.	7.9	25
56	Interface contributions to anelasticity in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 442, 283-286.	5.6	0
57	Pressure dependence of the ionic conductivity of Na- and Na–Rb borate glasses. Solid State Ionics, 2006, 177, 963-969.	2.7	17
58	Thermal spike model of track formation in YBa2Cu3O7â^'x. Physics of Particles and Nuclei Letters, 2006, 3, 18-26.	0.4	1
59	A Finite-Deformation Constitutive Model of Bulk Metallic Glass Plasticity. Computational Mechanics, 2006, 37, 194-204.	4.0	88
60	Thermal stability of nanometer range Ti/Ni multilayers. Thin Solid Films, 2006, 515, 2213-2219.	1.8	40
61	Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al. Journal of Phase Equilibria and Diffusion, 2006, 27, 614-621.	1.4	24
62	Iron self-diffusion inFeZrâ^•Fe57Zrmultilayers measured by neutron reflectometry: Effect of applied compressive stress. Physical Review B, 2006, 74, .	3.2	18
63	Nitrogen Diffusion in Amorphous Silicon Nitride Isotope Multilayers Probed by Neutron Reflectometry. Physical Review Letters, 2006, 96, 055901.	7.8	49
64	Codiffusion of P32 and Co57 in glass-forming Pd43Cu27Ni10P20 alloy and its relation to viscosity. Applied Physics Letters, 2006, 89, 121917.	3.3	18
65	Structural Aspects of Metallic Glasses. MRS Bulletin, 2007, 32, 629-634.	3.5	162
66	Self-Diffusion in Covalent Amorphous Solids – A Comparative Study Using Neutron Reflectometry and SIMS. Defect and Diffusion Forum, 2007, 263, 51-56.	0.4	3
67	Enhanced diffusivity in supercooled liquids. New Journal of Physics, 2007, 9, 36-36.	2.9	53
68	Structural relaxation and self-diffusion in covalent amorphous solids: Silicon nitride as a model system. Journal of Applied Physics, 2007, 102, .	2.5	13
69	Liquid-to-glass transition in bulk glass-formingCu60Ti20Zr20alloy by molecular dynamics simulations. Physical Review E, 2007, 75, 061501.	2.1	30
70	Reversible atomic processes as basic mechanisms of the glass transition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12962-12965.	7.1	21
71	Calorimetric study of the crystallization kinetics ofCu47Ti33Zr11Ni8Si1metallic glass. Physical Review B, 2007, 75, .	3.2	23
72	Diffusion in Bulk Glass Forming Alloys– from the Glass to the Equilibrium Melt. Defect and Diffusion Forum, 2007, 266, 109-118.	0.4	Ο

#	Article	lF	CITATIONS
73	Atomic Dynamics in Metallic Liquids and Glasses. Materials Transactions, 2007, 48, 1729-1733.	1.2	11
74	Self-diffusion and interdiffusion inAl80Ni20melts: Simulation and experiment. Physical Review B, 2007, 75, .	3.2	116
75	Molecular dynamics simulation of viscosity in supercooled liquid and glassy AgCu alloy. Journal of Non-Crystalline Solids, 2007, 353, 3332-3337.	3.1	18
76	Diffusion in bulk-metallic glass-forming Pd–Cu–Ni–P alloys: From the glass to the equilibrium melt. Journal of Non-Crystalline Solids, 2007, 353, 3285-3289.	3.1	22
77	Glass transition and viscosity in metallic glasses and liquids. Journal of Alloys and Compounds, 2007, 434-435, 110-114.	5.5	23
78	Crystallization of amorphous Zr60Al15Ni25 alloy. Intermetallics, 2007, 15, 1013-1019.	3.9	20
79	High-Resolution Experimental Methods. , 0, , 707-860.		1
81	Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. Science, 2007, 315, 353-356.	12.6	647
82	Deformation kinetics in Zr-based bulk metallic glasses and its dependence on temperature and strain-rate sensitivity. Philosophical Magazine Letters, 2007, 87, 695-704.	1.2	63
83	Diffusion Mechanisms. Springer Series in Solid-state Sciences, 2007, , 95-104.	0.3	1
84	Isotope Effect of Diffusion. Springer Series in Solid-state Sciences, 2007, , 151-159.	0.3	0
85	The development of microstructure in a rapidly solidified Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 103-109.	5.6	13
86	Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification. Journal of the Mechanics and Physics of Solids, 2007, 55, 1236-1273.	4.8	76
87	Hydrogen-induced crystallization of an amorphous metal. Scripta Materialia, 2007, 56, 609-612.	5.2	3
88	Self-diffusion of Pd, Cu and Ni in Pd-based equilibrium melts. Scripta Materialia, 2007, 57, 477-480.	5.2	29
89	Study of air oxidation of amorphous Zr65Cu17.5Ni10Al7.5 by X-ray photoelectron spectroscopy (XPS). Journal of Materials Science, 2007, 42, 9037-9044.	3.7	11
90	Glass Formation, Phase Equilibria, and Thermodynamic Assessment of the Al-Ce-Co System Assisted by First-Principles Energy Calculations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2540-2551.	2.2	20
91	Study of nano-scale diffusion in thin films and multilayers. Hyperfine Interactions, 2008, 182, 23-30.	0.5	5

#	Article	IF	CITATIONS
92	Microstructure of Cu60Zr20Ti20 bulk metallic glass rolled at different strain rates. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 394-399.	0.2	4
93	Structural Relaxation of La55Al25Ni10Cu10 Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1953-1957.	2.2	29
94	Fe and N diffusion in nitrogen-rich FeN measured using neutron reflectometry. Pramana - Journal of Physics, 2008, 71, 1085-1089.	1.8	1
95	How to measure atomic diffusion processes in the sub-nanometer range. Acta Materialia, 2008, 56, 464-470.	7.9	40
96	Diffusion in metallic glasses: Analysis from the atomic bond defect perspective. Acta Materialia, 2008, 56, 3550-3557.	7.9	31
97	Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?. Acta Materialia, 2008, 56, 5875-5893.	7.9	148
98	Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science, 2008, 322, 1816-1819.	12.6	321
99	Ordered clusters and free volume in a Zr–Ni metallic glass. Applied Physics Letters, 2008, 93, .	3.3	56
100	Liquid Al80Cu20: Atomic diffusion and viscosity. Applied Physics Letters, 2008, 93, .	3.3	42
101	Atomic diffusion mechanisms in a binary metallic melt. Europhysics Letters, 2008, 82, 66001.	2.0	63
102	Microstructure and magnetic properties of bulk nanocomposite magnets prepared by crystallizing amorphous Nd _{3.6} Pr _{5.4} Fe ₈₀ Co ₃ B ₇ Nb ₁ under high pressure. Journal Physics D: Applied Physics, 2008, 41, 195010.	2.8	11
103	Transition from a single-ion to a collective diffusion mechanism in alkali borate glasses. Journal of Non-Crystalline Solids, 2008, 354, 328-332.	3.1	18
104	Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe–Co–Zr–Mo–W–B alloys. Journal of Alloys and Compounds, 2008, 459, 203-208.	5.5	15
105	Molecular dynamics of shear transformation zones in metallic glasses. Intermetallics, 2008, 16, 658-661.	3.9	14
106	Bulk Metallic Glasses. , 2008, , .		76
107	Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior. Journal of Chemical Physics, 2008, 128, 144505.	3.0	3
108	On the pressure evolution of dynamic properties of supercooled liquids. Journal of Physics Condensed Matter, 2008, 20, 244103.	1.8	29
109	Solid-state phase separation in Zr–Y–Al–Co metallic glass. Journal of Materials Research, 2008, 23, 828-832.	2.6	5

		CITATION REI	PORT	
#	Article		IF	CITATIONS
110	Pressure-induced preferential growth of nanocrystals in amorphous Nd ₉ Fe ₈₅ B ₆ . Nanotechnology, 2008, 19, 285603.		2.6	23
111	Atomic Mobility and Strain Localization in Amorphous Metals. Physical Review Letters, 2008, 075901.	100,	7.8	22
112	Nanoscale diffusion in amorphous <mml:math inline"="" xmlns:mml="http://www.w3.org/1998/Math/M
display="><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext>Physical Review B, 2008, 78, .</mml:mrow></mml:msub></mml:mrow></mml:math>	athML" l:mrow> <mml:mrow></mml:mrow>	മ്മമ്പി:mn	> ∂ 5
113	Fast and slow dynamics in Pr60Ni10Cu20Al10 melts as seen by neutron scattering. Journal o Physics, 2008, 103, 013509.	F Applied	2.5	19
114	Deformation processes in an amorphous nanometer-sized metallic particle. Physical Review E	, 2008, 77,	3.2	14
115	Merging of the α and β relaxations and aging via the Johari–Goldstein modes in rapidly qu metallic glasses. Applied Physics Letters, 2008, 92, .	enched	3.3	93
116	Segregation-controlled nanocrystallization in an Al–Ni–La metallic glass. Applied Physics 2008, 92, .	Letters,	3.3	33
117	Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mtext><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mtext><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mtext><mml:mtext><mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml="http:><mml:mtext><mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml="http:><mml:mtext></mml:mtext></mml:mtext></mml="http:></mml:mtext><mml:mtext></mml:mtext><mml:mtext></mml:mtext><mml:mtext></mml:mtext><td>:mrow> < mml:mrow></td><td><<mark>3:2</mark> <mml:mn:< td=""><td>⊳⋬ð</td></mml:mn:<></td></mml:math>	:mrow> < mml:mrow>	< <mark>3:2</mark> <mml:mn:< td=""><td>⊳⋬ð</td></mml:mn:<>	⊳⋬ð
118	Low-frequency transient dynamic clusters in simulated amorphousNi0.5Zr0.5around the glas temperature. Physical Review E, 2008, 78, 041503.	S	2.1	5
119	Atomic bond fluctuations and crossover to potential-energy-landscape-influenced regime in supercooled liquid. Physical Review E, 2008, 78, 041202.		2.1	13
120	Activation volume for nanocrystal growth in amorphous Nd9Fe85B6. Journal of Applied Phys 104, 086103.	cs, 2008,	2.5	6
121	Effects of compression cycles on the atomic mobility in metallic glasses. Physical Review B, 2	009, 79, .	3.2	8
122	Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts. Physic Review B, 2009, 79, .	al	3.2	49
123	Improvement of computer simulation models for metallic melts via quasielastic neutron scat case study of liquid titanium. Physical Review B, 2009, 80, .	tering: A	3.2	48
124	Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phy Review B, 2009, 79, .	sical	3.2	32
125	Self-diffusion and defect annihilation in nanocrystalline Fe films probed by neutron reflectom Physical Review B, 2009, 80, .	etry.	3.2	26
126	Dynamics of counterions in dendrimer polyelectrolyte solutions. Journal of Chemical Physics, 130, 114903.	2009,	3.0	23
127	Interface properties in sequence permutated Fe–B–Ag multilayers. Journal of Applied Phy 104303.	sics, 2009, 105,	2.5	4

#	Article	IF	CITATIONS
128	A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. Journal of Physics Condensed Matter, 2009, 21, 504101.	1.8	28
129	Are There Ways to Synthesize Materials Beyond the Limits of Today?. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1499-1509.	2.2	15
130	Computational Materials Design. Journal of Phase Equilibria and Diffusion, 2009, 30, 418-428.	1.4	9
131	X-ray and neutron studies of nanoscale atomic diffusion in thin films and multilayers. Applied Surface Science, 2009, 256, 552-557.	6.1	7
132	Fe and N self-diffusion in amorphous FeN: A SIMS and neutron reflectivity study. Acta Materialia, 2009, 57, 1263-1271.	7.9	24
133	Nanocrystalline–amorphous transitions in Al–Mo thin films: Bulk and surface evolution. Acta Materialia, 2009, 57, 4296-4303.	7.9	23
134	Transformation, stability and Pourbaix diagrams of high performance corrosion resistant (HPCRM) alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 89-99.	1.6	25
135	Atomic scale calculation of the free volume in Zr2Ni metallic glass. Intermetallics, 2009, 17, 98-103.	3.9	29
136	Investigation of bulk metallic glass structure by means of electron irradiation. Intermetallics, 2009, 17, 246-248.	3.9	17
137	Atomistic simulation of local rearrangements in Ni50Zr50 metallic glasses subjected to compression cycles. Intermetallics, 2009, 17, 688-695.	3.9	9
138	Effects of ion implantation on surface structures and properties for bulk metallic glass. Intermetallics, 2009, 17, 722-726.	3.9	16
139	Volume and viscosity of Zr–Cu–Al glass-forming liquid alloys. Journal of Non-Crystalline Solids, 2009, 355, 317-322.	3.1	40
140	Study of the kinetics of free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glasses during isothermal relaxation by enthalpy relaxation experiments. Journal of Non-Crystalline Solids, 2009, 355, 2616-2621.	3.1	30
141	Critical cooling rate and thermal stability for a Ti–Zr–Ni–Cu–Be metallic glass. Journal of Alloys and Compounds, 2009, 477, 920-924.	5.5	35
142	Quantification of the free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glasses subjected to plastic deformation by calorimetric and dilatometric measurements. Journal of Alloys and Compounds, 2009, 488, 65-71.	5.5	24
143	Bulk anisotropic Nd2Fe14B/Î \pm -Fe nanocomposite magnets prepared by hot-deformation processing of amorphous alloys. Journal of Applied Physics, 2009, 106, .	2.5	9
144	Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys. Philosophical Magazine, 2009, 89, 109-126.	1.6	67
145	From multiply twinned to fcc nanoparticles via irradiation-induced transient amorphization.	2.0	23

#	Article	IF	CITATIONS
146	Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass: molecular dynamics simulations. Journal of Applied Physics, 2009, 106, .	2.5	37
147	Interdependence between glass stability and phase formation sequence during crystallization of Zr _{46.8} Ti _{8.2} Cu _{7.5} Ni ₁₀ Be _{27.5} bulk glass. International Journal of Materials Research, 2010, 101, 601-610.	0.3	1
148	Statistical Mechanics of Metallic Glasses and Liquids. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1628-1633.	2.2	23
149	Processing of Bulk Metallic Glass. Advanced Materials, 2010, 22, 1566-1597.	21.0	853
150	Effect of La content on the room temperature ageing behavior of Al90â^'xNi6La4+x (x=0–3) metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1339-1342.	5.6	3
151	Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Materialia, 2010, 58, 524-530.	7.9	78
152	Kinetic and thermodynamic studies of the fragility of bulk metallic glass forming liquids. Journal of Applied Physics, 2010, 108, .	2.5	84
153	Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr–Cu–Al bulk glass-forming alloys. Philosophical Magazine, 2010, 90, 1955-1968.	1.6	41
154	Analytical model and molecular dynamics simulations of the size dependence of flow stress in amorphous intermetallic nanowires at temperatures near the glass transition. Physical Review B, 2010, 81, .	3.2	15
155	Unified approach to atomic transport phenomena in metallic glasses from the bond deficiency perspective. Physical Review B, 2010, 81, .	3.2	7
156	Dynamic Arrest in Multicomponent Glass-Forming Alloys. Physical Review Letters, 2010, 104, 195901.	7.8	103
157	A numerical investigation of the stability of nanometer-sized amorphous structures. Intermetallics, 2010, 18, 809-814.	3.9	1
158	Evolution of atomic ordering in metallic glasses. Intermetallics, 2010, 18, 2333-2337.	3.9	9
159	Effect of rotational sliding velocity on surface friction and wear behavior in Zr-based bulk metallic glass. Journal of Alloys and Compounds, 2010, 492, L36-L39.	5.5	35
160	Microstructure evolution of Zr60Al15Ni25 bulk metallic glass subjected to rolling at room temperature. Journal of Alloys and Compounds, 2010, 504, S251-S255.	5.5	4
161	Understanding the properties and structure of metallic glasses at the atomic level. Jom, 2010, 62, 70-75.	1.9	67
162	Kinetics of volume and enthalpy relaxation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Pt</mml:mtext></mml:mrow><mml:mrow> metallic glass. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math 	<mmil:mn< td=""><td>>60</td></mmil:mn<>	>60
163	Nanocrystallization in a shear band: An <i>in situ</i> investigation. Applied Physics Letters, 2011, 98, .	3.3	59

	CITATION	Report	
#	Article	IF	Citations
164	Diffusion in Solids under Pressure. Defect and Diffusion Forum, 0, 309-310, 91-112.	0.4	8
165	Dynamics of dilute colloidal suspensions in modulated potentials. Soft Matter, 2011, 7, 2064-2075.	2.7	47
166	Activation volumes for nanocrystal growth in amorphous Nd3.6Pr5.4Fe83Co3B5at different temperatures. Journal Physics D: Applied Physics, 2011, 44, 145001.	2.8	3
167	Corrosion and Oxidation Behavior of Ti-Based Amorphous and Nanocrystalline Alloys. Solid State Phenomena, 2011, 171, 51-66.	0.3	1
168	Mechanical failure and glass transition in metallic glasses. Journal of Alloys and Compounds, 2011, 509, S82-S86.	5.5	33
169	Diffusion and viscous flow in bulk glass forming alloys. Journal of Alloys and Compounds, 2011, 509, S2-S7.	5.5	6
170	Study on corrosion behavior of continuous bulk metallic glass-coated steel wire composite. Intermetallics, 2011, 19, 1913-1918.	3.9	10
171	NMR and dielectric studies of hydrated collagen and elastin: Evidence for a delocalized secondary relaxation. Journal of Non-Crystalline Solids, 2011, 357, 655-663.	3.1	41
172	Quasi-localized vibrations and phonon damping in glasses. Journal of Non-Crystalline Solids, 2011, 357, 501-505.	3.1	21
173	A derivation of the Vogel–Fulcher–Tammann relation for supercooled liquids. Journal of Non-Crystalline Solids, 2011, 357, 334-338.	3.1	23
174	Characterization of the free volume in a Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glass by reverse Monte Carlo simulation and density measurements. Journal of Non-Crystalline Solids, 2011, 357, 1420-1425.	3.1	14
175	Effects of cooling rate on thermal expansion of Cu49Hf42Al9 metallic glass. Transactions of Nonferrous Metals Society of China, 2011, 21, 2031-2036.	4.2	7
176	Reining in Diffusion in Dense Liquids. Physics Magazine, 0, 4, .	0.1	12
177	Iron and nitrogen self-diffusion in non-magnetic iron nitrides. Journal of Applied Physics, 2011, 110, .	2.5	25
178	Heterogeneity and viscosity decoupling in (acetamide+electrolyte) molten mixtures: A model simulation study. Chemical Physics Letters, 2011, 517, 180-185.	2.6	55
179	Tracer Measurements of Atomic Diffusion inside Shear Bands of a Bulk Metallic Glass. Physical Review Letters, 2011, 107, 235503.	7.8	91
180	Icosahedral coordination and atomic rearrangements in deformed metallic glasses. Acta Materialia, 2011, 59, 5961-5969.	7.9	3
181	Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64Zr36 studied by molecular dynamics simulations. Acta Materialia, 2011, 59, 7082-7094.	7.9	34

#	Article	IF	CITATIONS
182	Equilibrium viscosity, enthalpy recovery and free volume relaxation in a Zr44Ti11Ni10Cu10Be25 bulk metallic glass. Acta Materialia, 2011, 59, 4404-4415.	7.9	93
183	Vacancies and atomic processes in intermetallics – From crystals to quasicrystals and bulk metallic glasses. Physica Status Solidi (B): Basic Research, 2011, 248, 2290-2299.	1.5	9
184	Evidence for a liquid–liquid phase transition in metallic fluids observed by electrostatic levitation. Acta Materialia, 2011, 59, 2166-2171.	7.9	77
185	Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study. Journal of the Mechanics and Physics of Solids, 2011, 59, 1552-1575.	4.8	71
186	Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica B: Condensed Matter, 2011, 406, 3089-3097.	2.7	38
187	Molecular dynamics study of structural evolution of aluminum during rapid quenching under different pressures. Physica B: Condensed Matter, 2011, 406, 3745-3751.	2.7	11
188	Structural relaxation as seen by quasielastic neutron scattering on viscous Zr–Ti–Cu–Ni–Be droplets. Journal of Physics Condensed Matter, 2011, 23, 254207.	1.8	8
189	Cu <mmi:math inline"="" xmins:mmi="http://www.w3.org/1998/Math/MathML
display="><mmi:mrow><mmi:msub><mmi:mrow /><mmi:mrow><mmi:mn>33</mmi:mn> <mmi:mo>.</mmi:mo><mmi:mn>3</mmi:mn></mmi:mrow>Dyhamics of "atsingle atom incter fails of letallid glass forming Cu<mmi:math< td=""><td>b>3./2nml:ı</td><td>mrøw></td></mmi:math<></mmi:mrow </mmi:msub></mmi:mrow></mmi:math>	b> 3./2 nml:ı	mr ø w>
190	xmlns:mml="http://www.w3.org/1998/Math/MathML".v display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>60</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> Ti <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	2.1	3
191	display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi>How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?. Journal of Applied Physics, 2011, 110, .</mml:mrow></mml:mrow </mml:msub></mml:mrow>	2.5	23
192	Applications of a general random-walk theory for confined diffusion. Physical Review E, 2011, 83, 011120.	2.1	32
193	Variation of Hardness and Modulus across the Thickness of Zr-Cu-Al Metallic Glass Ribbons. Materials Research Society Symposia Proceedings, 2012, 1520, 1.	0.1	1
194	Nanometer-scale tunnel formation in metallic glass by helium ion irradiation. Applied Physics Letters, 2012, 101, 041901.	3.3	12
195	Correlating the supercooled liquid region width with the fragility parameter in bulk metallic glasses. Applied Physics Letters, 2012, 100, 021906.	3.3	9
196	Contributions of atomic diffusion and plastic deformation to the plasma surface activation assisted diffusion bonding of zirconium-based bulk metallic glass. Applied Physics Letters, 2012, 100, .	3.3	15
198	Synthesis and magnetostrictive properties of Pr(Fe1.95B0.05)1.93 bulk nanocrystalline alloy. Applied Physics Letters, 2012, 101, .	3.3	12
199	Atomic mechanism of flow in simple liquids under shear. Physical Review Letters, 2012, 108, 196001.	7.8	44
200	Time-resolved study of the crystallization dynamics in a metallic glass. Physical Review B, 2012, 86, .	3.2	31

#	Article	IF	CITATIONS
201	Effects of Composition on Atomic Structure, Diffusivity, and Viscosity of Liquid Al-Zr Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3471-3480.	2.2	21
202	Shear moduli of two dimensional binary glasses. Soft Matter, 2012, 8, 4132.	2.7	10
203	Relating Dynamic Properties to Atomic Structure in Metallic Glasses. Jom, 2012, 64, 856-881.	1.9	110
204	Modeling aging rates in a simple glass and its melt. Physical Review B, 2012, 85, .	3.2	10
205	Atomic Structure and Structural Stability of Sc ₇₅ Fe ₂₅ Nanoglasses. Nano Letters, 2012, 12, 458-463.	9.1	143
206	Estimation of diffusivity governing primary nanocrystallisation and its relation to thermal stability of amorphous phases. Journal of Non-Crystalline Solids, 2012, 358, 2727-2733.	3.1	9
207	Correlation between <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>β</mml:mi></mml:math> Relaxation and Self-Diffusion of the Smallest Constituting Atoms in Metallic Glasses. Physical Review Letters, 2012, 109, 095508.	7.8	180
208	Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications. Jom, 2012, 64, 772-781.	1.9	144
209	Dynamics of individual colloidal particles in one-dimensional random potentials: a simulation study. Journal of Physics Condensed Matter, 2012, 24, 464116.	1.8	22
210	Atomic Bond Deficiency Defects in Amorphous Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3501-3509.	2.2	2
211	Weak magnetic field-enhanced glass formation in non-ferromagnetic Al-based alloys. Applied Physics Letters, 2012, 100, 231905.	3.3	5
212	Self-Diffusion of Lithium in Amorphous Lithium Niobate Layers. Zeitschrift Fur Physikalische Chemie, 2012, 226, 439-448.	2.8	19
213	Structural Relaxation, Glass Transition, Viscous Formability, and Crystallization of Zr-Cu–Based Bulk Metallic Glasses on Heating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2642-2648.	2.2	11
214	Pitting initiation in Fe-based amorphous coatings. Acta Materialia, 2012, 60, 4152-4159.	7.9	141
215	Study on the reversible Li-insertion of amorphous and partially crystalline Al86Ni8La6 and Al86Ni8Y6 alloys as anode materials for Li-ion batteries. Electrochimica Acta, 2012, 60, 85-94.	5.2	14
216	Direct structural evidence for dynamic heterogeneity in supercooled liquid bulk metallic glass. Scripta Materialia, 2012, 66, 927-930.	5.2	7
217	Effect of electropulsing treatment on the crystallization kinetics of Zr55Ni5Al10Cu30 bulk metallic glass. Thermochimica Acta, 2012, 537, 80-85.	2.7	7
218	Rank-dependent orientational relaxation in an ionic liquid: an all-atom simulation study. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	45

ARTICLE IF CITATIONS # An explanation of the differences in diffusivity of the components of the metallic glass 219 3.0 23 Pd43Cu27Ni10P20. Journal of Chemical Physics, 2013, 138, 094504. The \hat{I}^2 relaxation in metallic glasses: an overview. Materials Today, 2013, 16, 183-191. 14.2 303 Determination of the susceptibility of the shear modulus to the defect concentration in a metallic 221 17 3.1glass. Journal of Non-Crystalline Solids, 2013, 370, 18-20. Effects of Ar ion irradiation on the diffusion bonding joints of Zr55Cu30Ni5Al10 bulk metallic glass to 3.1 aluminum alloy. Journal of Non-Crystalline Solids, 2013, 364, 53-56. Densification and Strain Hardening of a Metallic Glass under Tension at Room Temperature. Physical 223 7.8 131 Review Letters, 2013, 111, 135504. Low-temperature diffusion bonding of pure aluminum. Applied Physics A: Materials Science and 224 2.3 Processing, 2013, 113, 101-104. Relation between the activation energy of oxygen diffusion and the instantaneous shear modulus in propylene carbonate near the glass transition temperature. Journal of Chemical Physics, 2013, 139, 225 3.0 5 114506. The time constant of the spinodal decomposition in Pd41.75Ni41.75P17.5 bulk metallic glasses. Journal 3.1 of Non-Crystalline Solids, 2013, 361, 1-8. Structure, magnetic properties and magnetostriction in NdFe1.9 bulk nanocrystalline alloys. Journal 227 5.5 6 of Alloys and Compounds, 2013, 563, 289-292. Cavitation instabilities in bulk metallic glasses. International Journal of Solids and Structures, 2013, 2.7 50, 1364-1372. A twin cell model for computation of glass transition temperature of quaternary thin film metallic 229 2 3.1glasses. Journal of Non-Crystalline Solids, 2013, 375, 55-61. Decoupling of pronounced beta and alpha relaxations and related mechanical property change. 5.5 Journal of Alloy's and Compounds, 2013, 577, 257-260. Glass Transition by Gelation in a Phase Separating Binary Alloy. Physical Review Letters, 2013, 110, 231 7.8 32 145502. Strong correlation of atomic thermal motion in the first coordination shell of a Cu-Zr metallic 3.3 glass. Applied Physics Letters, 2013, 102, 081901. Local order evolution of liquid Cu during glass transition under different pressures: A molecular 233 2.7 1 dynamics study. Physica B: Condensed Matter, 2013, 408, 6-11. Glass transition temperature of Pd–Cu–Ni–P thin film metallic glass—a 2D approach. Journal of 234 3.1 Non-Crystalline Solids, 2013, 359, 51-55. Contributions of atomic diffusion and plastic deformation to the diffusion bonding of metallic glass 235 3.07 to crystalline aluminum alloy. Computational Materials Science, 2013, 71, 179-183. Modeling and simulation of size effects in metallic glasses with a nonlocal continuum mechanics 1.8 theory. Journal of the Mechanical Behavior of Materials, 2013, 22, 51-66.

#	Article	IF	CITATIONS
237	The influence of pressure on the phase stability of nanocomposite Fe89Zr7B4 during heating from energy dispersive x-ray diffraction. Journal of Applied Physics, 2013, 113, 17A317.	2.5	7
238	Nanocrystallization in spark plasma sintered Fe48Cr15Mo14Y2C15B6 bulk amorphous alloy. Journal of Applied Physics, 2013, 114, .	2.5	18
239	Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses. Journal of Chemical Physics, 2014, 141, 224508.	3.0	3
240	Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK. Physica B: Condensed Matter, 2014, 454, 253-271.	2.7	25
241	Long-range chemical interactions in solid-state reactions: effect of an inert Ag interlayer on the formation of L1 ₀ -FePd in epitaxial Pd(0 0 1)/Ag(0 0 1)/Fe(0 0 1) and Fe(trilayers. Philosophical Magazine, 2014, 94, 2595-2622.	0â £‰ 0â€	:% 9 1)/Ag(0â€
242	Dendrite growth in Cu ₅₀ Zr ₅₀ glass-forming melts, thermodynamics vs. kinetics. Europhysics Letters, 2014, 105, 36001.	2.0	24
243	Materials by design: An experimental and computational investigation on the microanatomy arrangement of porous metallic glasses. Acta Materialia, 2014, 77, 411-422.	7.9	38
244	Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure. Journal of Applied Physics, 2014, 115, 173511.	2.5	3
245	Diffusion and interdiffusion in binary metallic melts. Physical Review B, 2014, 90, .	3.2	46
246	Experimental tests of free-volume tracer diffusion in water and other solvents. Journal of Chemical Physics, 2014, 140, 104507.	3.0	1
247	Compositional origin of unusual <i>Ĵ²</i> -relaxation properties in La-Ni-Al metallic glasses. Journal of Chemical Physics, 2014, 141, 084506.	3.0	65
248	Decoupling of Component Diffusion in a Glass-Forming <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Zr</mml:mi></mml:mrow><mml:mrow><mml Physical Review Letters 2014 113 165901</mml </mml:mrow></mml:msub></mml:mrow></mml:math 	:m1>46.7	5< 7 mml:mr>
249	Diffusion of oxygen in amorphous Al2O3, Ta2O5, and Nb2O5. Journal of Applied Physics, 2014, 116, .	2.5	76
250	The Kinetic Theory of Growth of Zr-Sn Diffusion Layers on Zr 55 Cu 30 Al 10 Ni 5 Metallic Glass. Chinese Physics Letters, 2014, 31, 116102.	3.3	3
251	Coupled relaxation processes in a glass forming ZrTiNiCuBe liquid. Europhysics Letters, 2014, 107, 26001.	2.0	23
252	Diffusion in Glassy Metals. , 0, 1, 125-151.		1
253	The β-relaxation in metallic glasses. National Science Review, 2014, 1, 429-461.	9.5	199
254	Atomic dynamics in binary Zr-Cu liquids. Europhysics Letters, 2014, 107, 46001.	2.0	25

#	ARTICLE	IF	CITATIONS
255	Decomposition of crystal-growth equations in multicomponent melts. Journal of Crystal Growth, 2014, 396, 45-49.	1.5	7
256	On the kinetic and thermodynamic fragility of the Pt60Cu16Co2P22 and Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glasses. Journal of Alloys and Compounds, 2014, 615, S35-S39.	5.5	12
257	A colourimetric and microstructural study of the tarnishing of gold-based bulk metallic glasses. Corrosion Science, 2014, 85, 258-269.	6.6	20
258	Evolution of crystallite size, lattice parameter and internal strain in Al precipitates during high energy ball milling of partly amorphous Al87Ni8La5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 27-33.	5.6	32
259	Nanostructured solids – From nano-glasses to quantum transistors. Nano Today, 2014, 9, 17-68.	11.9	111
260	Sluggish mobility and strong icosahedral ordering in Mg–Zn–Ca liquid and glassy alloys. Acta Materialia, 2014, 67, 266-277.	7.9	21
261	Effect of stress states on the deformation behavior of Cu-based bulk metallic glass in the supercooled liquid region. Journal of Alloys and Compounds, 2014, 586, S31-S35.	5.5	2
262	Computational modelling of submicron-sized metallic glasses. Philosophical Magazine, 2014, 94, 1-19.	1.6	22
263	Pressure dependence of the boson peak in glasses: Correlated and uncorrelated perturbations. Physical Review B, 2014, 89, .	3.2	27
264	Diffusion bonding of a Zr-based metallic glass in its supercooled liquid region. Intermetallics, 2014, 46, 236-242.	3.9	20
265	Modern Simulations by the Molecular Dynamics Method. , 2014, , 245-299.		0
266	Effect of solute atoms on glass-forming ability for Fe–Y–B alloy: An ab initio molecular dynamics study. Acta Materialia, 2014, 77, 96-110.	7.9	24
267	Brief history of the flat glass patent – Sixty years of the float process. World Patent Information, 2014, 38, 50-56.	1.7	20
268	Diffusion in Metals and Alloys. , 2014, , 387-559.		27
269	Nanocrystallization in Ni60Ta40 and Ni60Nb40 metallic glasses below calorimetric glass transition. Journal of Materials Science, 2014, 49, 6007-6011.	3.7	4
270	Direct visualization of free-volume-mediated diffusion in colloidal glass. Scripta Materialia, 2014, 90-91, 21-24.	5.2	3
271	Structure and energetics of Ni from ab initio molecular dynamics calculations. Computational Materials Science, 2014, 89, 242-246.	3.0	16
272	Annealing effect on beta-relaxation in a La-based bulk metallic glass. Journal of Non-Crystalline Solids, 2014, 383, 97-101.	3.1	14

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
273	Non-Equilibrium Solidification of Undercooled Metallic Melts. Metals, 2014, 4, 196-234.		2.3	65
274	Origin of anomalous diffusion in iron mononitride thin films. Physical Review B, 2015, 92,		3.2	26
275	Universal enthalpy-entropy compensation rule for the deformation of metallic glasses. Ph Review B, 2015, 92, .	ysical	3.2	19
276	Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dyn decoupling, and dynamical clustering. Physical Review B, 2015, 91, .	amical	3.2	88
277	Brownian Motion of Molecular Probes in Supercooled Liquids. Physical Review Letters, 20 224301.	15, 114,	7.8	14
278	Binary rare earth element-Ni/Co metallic glasses with distinctβ-relaxation behaviors. Jourr Physics, 2015, 118, 154902.	al of Applied	2.5	13
279	A computational study of diffusion in a glass-forming metallic liquid. Scientific Reports, 24	015, 5, 10956.	3.3	11
280	Time exponent suppression of growth of the Zr–Sn diffusion layersÂbetween amorpho Zr55Cu30Al10Ni5 and Sn. Journal of Alloys and Compounds, 2015, 646, 243-248.	s	5.5	1
281	Composition Dependence of Dynamic Heterogeneity Time- and Length Scales in [Omim][BF ₄]/Water Binary Mixtures: Molecular Dynamics Simulation Study Physical Chemistry B, 2015, 119, 15683-15695.	. Journal of	2.6	38
282	Diffusion slowdown in the nanostructured liquid Gaâ€Sn alloy. Annalen Der Physik, 2015	527, 248-253.	2.4	4
283	Crystallization Behavior of Amorphous Si ₂ BC ₃ N Ceramic Mono to High Pressure. Journal of the American Ceramic Society, 2015, 98, 3788-3796.	lith Subjected	3.8	16
284	Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds. Crystals, 20	15, 5, 355-375.	2.2	25
285	Diffusion behavior of Ni in Zr48Cu36Ag8Al8 bulk metallic glass within supercooled liquid Transactions of Nonferrous Metals Society of China, 2015, 25, 1171-1175.	region.	4.2	3
286	Dynamic decoupling and local atomic order of a model multicomponent metallic glass-for Journal of Physics Condensed Matter, 2015, 27, 235102.	mer.	1.8	5
287	Diffusion in a Cu-Zr metallic glass studied by microsecond-scale molecular dynamics simu Physical Review B, 2015, 91, .	lations.	3.2	28
288	Evaluating the merit of ALD coating as a barrier against hydrogen degradation in capacito components. RSC Advances, 2015, 5, 50869-50877.	r	3.6	13
289	Diffusion bonding of Zr55Cu30Ni5Al10 bulk metallic glass to Cu with Al as transition laye and Design, 2015, 83, 320-326.	r. Materials	7.0	11
290	Effects of substrate temperature on structure, thermal stability and mechanical property Zr-based metallic glass thin film. Thin Solid Films, 2015, 595, 17-24.	of a	1.8	19

#	Article	IF	CITATIONS
291	Laser-induced diffusion decomposition in Fe–V thin-film alloys. Applied Surface Science, 2015, 336, 380-384.	6.1	2
292	Structural rejuvenation in bulk metallic glasses. Acta Materialia, 2015, 86, 240-246.	7.9	96
293	Impact of W on structural evolution and diffusivity of Ni–W melts: an ab initio molecular dynamics study. Journal of Materials Science, 2015, 50, 1071-1081.	3.7	11
294	Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide) Tj ETQq1 1 Journal of Chemical Physics, 2015, 142, 034505.	0.784314 3.0	rgBT /Ove 69
295	Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries. Nano Energy, 2015, 13, 192-199.	16.0	58
296	Prediction of Diffusion Coefficients in Liquid and Solids. Defect and Diffusion Forum, 0, 364, 182-191.	0.4	10
297	Tribological behaviors of Zr-based bulk metallic glass versus Zr-based bulk metallic glass under relative heavy loads. Intermetallics, 2015, 65, 88-93.	3.9	23
298	Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Materialia, 2015, 97, 75-85.	7.9	62
299	Evidence of liquid–liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature. Nature Communications, 2015, 6, 7696.	12.8	111
300	Effect of surface morphology on the oxidation behavior of bulk metallic glass. Corrosion Science, 2015, 98, 626-633.	6.6	17
301	Computer simulations of glasses: the potential energy landscape. Journal of Physics Condensed Matter, 2015, 27, 293201.	1.8	17
302	Applying Vogel–Fulcher–Tammann relationship in crystallization kinetics of amorphous alloys. Thermochimica Acta, 2015, 607, 9-18.	2.7	5
303	Correlation between diffusion and crystallization behaviors in Ni/Zr48Cu36Ag8Al8 diffusion couple. Journal of Non-Crystalline Solids, 2015, 417-418, 34-38.	3.1	5
304	Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. Journal of Alloys and Compounds, 2015, 638, 197-203.	5.5	26
305	Glass-transition process in an Au-based metallic glass. Journal of Non-Crystalline Solids, 2015, 419, 12-15.	3.1	20
306	Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni. Journal of Chemical Physics, 2015, 142, 084704.	3.0	25
307	Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. Journal of Chemical Physics, 2015, 142, 164506.	3.0	97
308	Concentration-dependent self-diffusion coefficients in amorphous Si _{1â^²} _{<i>x</i>} solid solutions: An interdiffusion study. Journal of Applied Physics, 2015, 117, 165306.	2.5	6

#	Article	IF	Citations
309	Effects of partitioned enthalpy of mixing on glass-forming ability. Journal of Chemical Physics, 2015, 142, 144504.	3.0	6
310	Determination of Pressure Effects on the α → γ Phase Transition and Size of Fe in Nd-Fe-B Spring Exchange Magnets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5002-5010.	2.2	5
311	On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics, 2015, 67, 81-86.	3.9	99
312	Viscous Flow of Glass-Forming Liquids and Glasses. Springer Proceedings in Physics, 2015, , 103-137.	0.2	3
313	Effect of atomic-level stresses on local dynamic and mechanical properties in CuxZr100â^'x metallic glasses: A molecular dynamics study. Intermetallics, 2015, 58, 50-55.	3.9	15
314	The role of local structure in dynamical arrest. Physics Reports, 2015, 560, 1-75.	25.6	338
315	Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015, 81, 72-83.	3.2	81
316	Joining of bulk metallic glass to brass by thick-walled cylinder explosion. Scripta Materialia, 2015, 97, 17-20.	5.2	26
317	Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses. Acta Materialia, 2015, 82, 396-402.	7.9	33
318	Microstructure and magnetostriction of PrFe1.93Zr0.02 nanocrystalline synthesized under high pressure. Journal of Alloys and Compounds, 2015, 619, 195-199.	5.5	4
319	Relationship between grain boundary diffusion in nanocrystals and amorphous microstructure. Surface and Interface Analysis, 2016, 48, 1341-1344.	1.8	1
320	High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt. Journal of Chemical Physics, 2016, 144, 124505.	3.0	35
321	Softening of phonon spectra in metallic glasses. Npj Computational Materials, 2016, 2, .	8.7	7
322	Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials, 2016, 4, .	5.1	20
323	Abnormal correlation between phase transformation and cooling rate for pure metals. Scientific Reports, 2016, 6, 22391.	3.3	20
324	Molecular dynamics study of atomic-level structure in monatomic metallic glass. Journal of Non-Crystalline Solids, 2016, 443, 136-142.	3.1	53
325	Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies. Nanoscale, 2016, 8, 10749-10767.	5.6	26
326	Nuclear Resonance. , 2016, , 1759-1795.		1

#	Article	IF	CITATIONS
327	Shear, dilation, and swap: Mixing in the limit of fast diffusion. Journal of the Mechanics and Physics of Solids, 2016, 96, 48-64.	4.8	10
328	Multilayered scale formation during Zr-based metallic glass oxidation in the supercooled liquid region. Corrosion Science, 2016, 111, 556-567.	6.6	19
329	Oxygen vacancies: The origin of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi>-type conductivity in ZnO. Physical Review B, 2016, 93, .</mml:math 	3.2	244
330	Heterogeneous diffusion, viscosity, and the Stokes-Einstein relation in binary liquids. Physical Review E, 2016, 93, 052607.	2.1	32
331	Self-Diffusion in Amorphous Silicon. Physical Review Letters, 2016, 116, 025901.	7.8	24
332	How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation. Journal of Physical Chemistry B, 2016, 120, 11214-11228.	2.6	24
333	Transport coefficients and mechanical response in hard-disk colloidal suspensions. Chinese Physics B, 2016, 25, 116101.	1.4	1
334	Stable U-based metallic glasses. Journal of Alloys and Compounds, 2016, 684, 75-83.	5.5	13
335	Intrinsic structural defects on medium range in metallic glasses. Intermetallics, 2016, 75, 36-41.	3.9	17
336	Influence of sintering pressure on the crystallization and mechanical properties of BN-MAS composite ceramics. Journal of Materials Science, 2016, 51, 2292-2298.	3.7	20
337	Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state. Materials and Design, 2016, 93, 26-38.	7.0	35
338	Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses. , 0, 6, 59-106.		7
339	Shear band relaxation in a deformed bulk metallic glass. Acta Materialia, 2016, 109, 330-340.	7.9	40
340	Oxidation kinetics of amorphous Al Zr1â^ alloys. Acta Materialia, 2016, 103, 311-321.	7.9	40
341	Oxidation of glassy Ni–Nb–Sn alloys and its influence on the thermodynamics and kinetics of crystallization. Acta Materialia, 2016, 102, 176-186.	7.9	13
342	Divergent strain acceleration effects in metallic glasses. Scripta Materialia, 2017, 130, 229-233.	5.2	12
343	The role of magnetic element Fe in pronounced slow β-relaxation in metallic glasses. Intermetallics, 2017, 84, 148-152.	3.9	12
344	Interdiffusion in amorphous AlxZr1-x alloys. Journal of Applied Physics, 2017, 121, 015302.	2.5	0

#	Article	IF	CITATIONS
345	In situ atomic level observations of Al 2 O 3 forming on surface of metallic glasses. Scripta Materialia, 2017, 136, 68-73.	5.2	9
346	Atomic packing and medium-range order in Ni 3 Al metallic glass. Journal of Non-Crystalline Solids, 2017, 468, 27-33.	3.1	42
347	Influence of Cr on local order and dynamic properties of liquid and undercooled Al–Zn alloys. Journal of Chemical Physics, 2017, 146, .	3.0	16
348	Chemical diffusion of copper in lead telluride. Solid State Ionics, 2017, 303, 119-125.	2.7	7
349	Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules. Scientific Reports, 2017, 7, 45177.	3.3	17
350	Nature of atomic trajectories and convective flow during plastic deformation of amorphous Cu50Zr50 alloy at room temperature-classical molecular dynamics studies. Intermetallics, 2017, 80, 40-47.	3.9	13
351	Free volume: An indicator of the glass-forming ability in binary alloys. AIP Advances, 2017, 7, .	1.3	9
352	Formation of nanocrystals in an amorphous Al 90 Y 10 alloy. Materials Characterization, 2017, 133, 87-93.	4.4	17
353	Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses. Scientific Reports, 2017, 7, 13164.	3.3	11
354	A multi-slice sliding cell technique for diffusion measurements in liquid metals. Review of Scientific Instruments, 2017, 88, 093905.	1.3	9
355	Diffusion in Multicomponent Alloys. , 2017, , 203-237.		2
356	Relaxation Pathways in Metallic Glasses. Jom, 2017, 69, 2171-2177.	1.9	20
357	Hydrogen enhances the radiation resistance of amorphous silicon oxycarbides. Acta Materialia, 2017, 136, 415-424.	7.9	12
358	Role of chemical short-range order in atomic dynamics decoupling. Molecular Simulation, 2017, 43, 1056-1060.	2.0	3
359	Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts. Physical Review B, 2017, 96, .	3.2	13
360	The Possibility of liquid-like and amorphous states existing in nano- and microregions of deformed metallic materials. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1317-1321.	0.6	2
361	Relaxation processes and physical aging in metallic glasses. Journal of Physics Condensed Matter, 2017, 29, 503002.	1.8	86
362	Correlations for Interaction Layer Growth in U-Mo/Al Dispersion Fuels. Defect and Diffusion Forum, 2017, 375, 29-39.	0.4	1

#	Article	IF	CITATIONS
363	Thermal processing and enthalpy storage of a binary amorphous solid: A molecular dynamics study. Journal of Materials Research, 2017, 32, 2668-2679.	2.6	26
364	Coupling between dynamic slowing down and chemical heterogeneity in a metallic undercooled liquid. Physical Review B, 2017, 95, .	3.2	14
365	Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure. Journal of Materials Research, 2017, 32, 2638-2657.	2.6	20
366	High-Throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-Entropy Alloys. Journal of Phase Equilibria and Diffusion, 2017, 38, 457-465.	1.4	83
367	Microstructure and magnetic properties of hot-deformed anisotropic Nd–Fe–B magnets prepared from amorphous precursors with different crystallization proportions. Rare Metals, 2017, 36, 268-276.	7.1	12
368	Diffusion across the glass transition in silicate melts: Systematic correlations, new experimental data for Sr and Ba in calcium-aluminosilicate glasses and general mechanisms of ionic transport. Journal of Non-Crystalline Solids, 2017, 455, 6-16.	3.1	14
369	Strain dependence of diffusion in Zr-based bulk amorphous alloy. Journal of Applied Physics, 2017, 122, 245105.	2.5	4
370	A Novel Approach to Eliminate the Effect of External Stress on Interdiffusivity Measurement. Materials, 2017, 10, 961.	2.9	15
371	On the Fragility of Bulk Metallic Glass Forming Liquids. Entropy, 2017, 19, 483.	2.2	30
372	Rapid and damage-free outgassing of implanted helium from amorphous silicon oxycarbide. Scientific Reports, 2018, 8, 5009.	3.3	13
373	Structural origin of dynamical relaxation in undercooled Cu50Zr50 metallic liquid. Journal of Non-Crystalline Solids, 2018, 492, 33-40.	3.1	4
374	The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids. Scientific Reports, 2018, 8, 2025.	3.3	5
375	Extreme rejuvenation and softening in a bulk metallic glass. Nature Communications, 2018, 9, 560.	12.8	186
376	Diffusion in Materials Science and Technology. , 2018, , 261-275.		0
377	Thermal analysis of directional pressure annealed Fe 78 Si 9 B 13 amorphous ribbons. Thermochimica Acta, 2018, 661, 67-77.	2.7	6
378	String-like collective motion in the <i>$\hat{1}\pm$</i> and <i>$\hat{1}^2$</i> relaxation of a coarse-grained polymer melt. Journal of Chemical Physics, 2018, 148, 104508.	3.0	51
379	Kinetics of interface alloy phase formation at nanometer length scale in ultra-thin films: X-ray and polarized neutron reflectometry. Progress in Materials Science, 2018, 96, 1-50.	32.8	34
380	Nucleation kinetics in Al-Sm metallic glasses. Acta Materialia, 2018, 142, 1-7.	7.9	21

#	Article	IF	CITATIONS
381	Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former. Acta Materialia, 2018, 144, 400-410.	7.9	86
382	Microscopic origin of the logarithmic relaxation in molecular glass-forming liquids. Physical Review B, 2018, 98, .	3.2	2
383	Atomistic origin of stress overshoots and serrations in a CuZr metallic glass. Materialia, 2018, 1, 121-127.	2.7	10
384	Primary radiation damage: A review of current understanding and models. Journal of Nuclear Materials, 2018, 512, 450-479.	2.7	358
385	The influence of short-range structures on atomic caging in glass-forming Cu-Zr-Al melts. Intermetallics, 2018, 102, 114-119.	3.9	7
386	Universal aging characteristics of macroscopically and microscopically dissimilar metallic glasses. Acta Materialia, 2018, 155, 35-42.	7.9	5
387	Combinatorial temperature resistance sensors for the analysis of phase transformations demonstrated for metallic glasses. Acta Materialia, 2018, 156, 486-495.	7.9	11
388	On Mechanisms of "Grain Boundary Slidingâ€; in Light of the Kaibyshev-Valiev Data on Two Limit "Non-Equilibrium―GB States in Deformed Metallic Materials. Defect and Diffusion Forum, 2018, 385, 120-125.	0.4	1
389	Pressure-assisted sintering of Al–Gd–Ni–Co amorphous alloy powders. Materialia, 2018, 2, 157-166.	2.7	13
390	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, 9, 19.	4.4	59
391	A free energy landscape perspective on the nature of collective diffusion in amorphous solids. Acta Materialia, 2018, 157, 165-173.	7.9	33
392	Relationship between the heat effects and shear modulus changes occurring upon heating of a metallic glass into the supercooled liquid state. Journal of Non-Crystalline Solids, 2018, 500, 129-132.	3.1	6
393	Local chemical ordering within the incubation period as a trigger for nanocrystallization of a highly supercooled Ti-based liquid. Materials and Design, 2018, 156, 504-513.	7.0	18
394	Mechanisms for the free volume tuning the mechanical properties of metallic glass through ion irradiation. Intermetallics, 2018, 101, 173-178.	3.9	23
395	Local volume as a robust structural measure and its connection to icosahedral content in a model binary amorphous system. Materialia, 2018, 3, 97-106.	2.7	6
396	Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics, 2018, 101, 133-143.	3.9	12
397	Structure factors in a two-dimensional binary colloidal hard sphere system. Molecular Physics, 2018, 116, 3245-3257.	1.7	22
398	Evolution of nano-porous structure of aluminium-magnesium alloy during multi-axial tensile deformation: Estimation of stress-strain response and dimension-less aspect ratio. Materials Chemistry and Physics, 2018, 220, 50-57.	4.0	2

#	Article	IF	CITATIONS
399	Short-range ordering in metallic supercooled liquids and glasses. Journal of Alloys and Compounds, 2019, 770, 386-394.	5.5	12
400	Dynamics of water in real space and time. Molecular Physics, 2019, 117, 3227-3231.	1.7	5
401	<i>In situ</i> high-temperature nuclear magnetic resonance characterization of structural evolution in pure gallium melt. Physical Review B, 2019, 100, .	3.2	5
402	In-Fiber Production of Laser-Structured Stress-Mediated Semiconductor Particles. ACS Applied Materials & Materials	8.0	8
403	Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106, 100561.	32.8	257
404	The prominent combination of ultrahigh strength and superior tensile plasticity in Cu–Zr nanoglass connected by oxide interfaces: A molecular dynamics study. Journal of Alloys and Compounds, 2019, 801, 318-326.	5.5	18
405	A linear relationship between free volume and annealing temperature in ZrCu metallic glass. Materials Research Express, 2019, 6, 085213.	1.6	1
406	Flash DSC determination of the delay time for primary crystallization and minor alloying effect in marginal Al-based metallic glasses. Thermochimica Acta, 2019, 677, 91-98.	2.7	12
407	Correlation between parameters of Arrhenius-type temperature dependency for effective diffusivity governing glass crystallization. Journal of Non-Crystalline Solids, 2019, 518, 36-42.	3.1	5
408	Lithium ion diffusion mechanism in covalent organic framework based solid state electrolyte. Physical Chemistry Chemical Physics, 2019, 21, 9883-9888.	2.8	28
409	Decreasing activation energy of fast relaxation processes in a metallic glass during aging. Physical Review B, 2019, 99, .	3.2	10
410	Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104, 250-329.	32.8	428
411	High-resolution transmission electron microscopy investigation of diffusion in metallic glass multilayer films. Materials Today Advances, 2019, 1, 100004.	5.2	9
412	Viscosity, relaxation and fragility of the Ca65Mg15Zn20 bulk metallic glass. Intermetallics, 2019, 109, 8-15.	3.9	3
413	Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2019, 104, 53-137.	32.8	44
414	Diffusion kinetics in binary CuZr and NiZr alloys in the super-cooled liquid and glass states studied by nanocalorimetry. Scripta Materialia, 2019, 165, 73-77.	5.2	14
415	Anomalous self-diffusion, structural and energy relaxations and temporal scaling laws in pure tantalum and pure vanadium metallic glasses. Journal of Applied Physics, 2019, 126, 215110.	2.5	1
416	Voronoi volume recovery during plastic deformation in deep-notched metallic glasses. Journal of Alloys and Compounds, 2019, 776, 460-468.	5.5	11

#	Article	IF	CITATIONS
417	Microstructures in the joint of zirconium-based bulk metallic glass and copper. Materials Research Express, 2019, 6, 026511.	1.6	4
418	Activation volume dominated diffusivity of Ni50Al50 melt under extreme conditions. Computational Materials Science, 2020, 171, 109263.	3.0	5
419	Structural study of Ni67Zr33 amorphous alloy: Interatomic space analysis approach. Materials Chemistry and Physics, 2020, 240, 122214.	4.0	2
420	Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review. Journal of Non-Crystalline Solids, 2020, 527, 119753.	3.1	39
421	Heterogeneity in the microstructure and dynamics of tetraalkylammonium hydroxide ionic liquids: insight from classical molecular dynamics simulations and Voronoi tessellation analysis. Physical Chemistry Chemical Physics, 2020, 22, 3466-3480.	2.8	22
422	An analysis of radical diffusion in ionic liquids in terms of free volume theory. Journal of Chemical Physics, 2020, 152, 024502.	3.0	10
423	Dynamic probing of structural evolution for Co50Ni50 metallic glass during pressurized cooling using atomistic simulation. Journal of Molecular Modeling, 2020, 26, 208.	1.8	3
424	Aluminum Alloy Matrix Composite Reinforced with Metallic Glasses Particles Using Hot-Roll Bonding. Russian Journal of Non-Ferrous Metals, 2020, 61, 297-302.	0.6	4
425	Performance of Cu–Ag Thin Films as Diffusion Barrier Layer. Coatings, 2020, 10, 1087.	2.6	2
426	Diffusion in bulk metallic glasses. Applied Physics Letters, 2020, 117, .	3.3	5
427	Changes in short- and medium-range order in metallic liquids during undercooling. MRS Bulletin, 2020, 45, 943-950.	3.5	14
428	Coherent Atomic-Scale Ripples on Metallic Glasses Patterned by Low-Energy Ion Irradiation for Large-Area Surface Structuring. ACS Applied Nano Materials, 2020, 3, 12025-12033.	5.0	4
429	Structure and atomic transport of liquid titanium from a pair potential model. Physical Review B, 2020, 102, .	3.2	3
430	Structure, Thermal Stability, and Magnetism of Ni ₄ N Thin Films. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000294.	2.4	4
431	Expanding the homogeneous regime of deformation in bulk metallic glass by electromigration-induced rejuvenation. Communications Materials, 2020, 1, .	6.9	8
432	Localization model description of the interfacial dynamics of crystalline Cu and Cu64Zr36 metallic glass films. Journal of Chemical Physics, 2020, 153, 124508.	3.0	16
433	Local self-motion of water through the Van Hove function. Physical Review E, 2020, 102, 032604.	2.1	11
434	Molecular dynamics modeling of lithium ion intercalation induced change in the mechanical properties of LixMn2O4. Journal of Chemical Physics, 2020, 153, 164712.	3.0	9

		CITATION R	PORT	
#	Article		IF	Citations
435	Surface dynamics measurement on a gold based metallic glass. Applied Physics Letters	, 2020, 116, .	3.3	9
436	Versatile fabrication of bulk metallic glass composites reinforced by dissimilar seconda Materials Science & Engineering A: Structural Materials: Properties, Microstructur Processing, 2020, 791, 139643.	ry phase. e and	5.6	8
437	X-ray photon correlation spectroscopy revealing the change of relaxation dynamics of deformed Pd-based bulk metallic glass. Acta Materialia, 2020, 195, 446-453.	a severely	7.9	13
438	Strain perceptibility of elements on the diffusion in Zr-based amorphous alloys. Scienti 2020, 10, 4575.	fic Reports,	3.3	2
439	Universal correlation between the thermodynamic potentials and some physical quant glasses as a function of cooling rate during molecular dynamics simulation. Journal of Non-Crystalline Solids, 2020, 536, 119999.	ities of metallic	3.1	2
440	Energy storage oscillation of metallic glass induced by high-intensity elastic stimulation Physics Letters, 2020, 116, .	n. Applied	3.3	13
441	Experimental determination of the temperature-dependent Van Hove function in a Zr8 Journal of Chemical Physics, 2020, 152, 074506.	OPt20 liquid.	3.0	15
442	Chemical bonding effects on the brittle-to-ductile transition in metallic glasses. Acta M 188, 273-281.	aterialia, 2020,	7.9	29
443	Element dependence of radiation-induced structural changes in metallic glasses. Journa Non-Crystalline Solids, 2020, 533, 119933.	al of	3.1	3
444	Photo induced self-diffusion and viscosity in amorphous chalcogenide films. Materials I Express, 2020, 7, 016204.	Research	1.6	8
445	Early recrystallization of Ni/Ti multilayer due to disorder in the Ni layer. Journal of Applic 2020, 127, 165304.	2d Physics,	2.5	3
446	Thermo-mechanical processing of a Zr62.5Cu22.5Fe5Al10 glassy alloy as a way to obta ductility. Journal of Alloys and Compounds, 2021, 853, 157138.	ain tensile	5.5	9
447	A new continuum model for viscoplasticity in metallic glasses based on thermodynamic application to creep tests. Journal of the Mechanics and Physics of Solids, 2021, 146, 1	cs and its 104216.	4.8	15
448	An exploratory study on helium mobility in amorphous and crystallized bulk metallic gla of Nuclear Materials, 2021, 543, 152617.	asses. Journal	2.7	2
449	Investigation of atomic diffusion at Ni/Zr 48 Cu 36 Ag 8 Al 8 interfaces in the glass trar temperature. Surface and Interface Analysis, 2021, 53, 135-139.	isition	1.8	1
450	Fast dynamics in a model metallic glass-forming material. Journal of Chemical Physics, 2 084505.	2021, 154,	3.0	32
451	Multiple glass transitions and higher-order replica symmetry breaking of binary mixture Review E, 2021, 103, 022613.	es. Physical	2.1	3
452	Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Motion. Macromolecules, 2021, 54, 3001-3033.	Collective	4.8	38

#	Article	IF	CITATIONS
453	Factors correlating to enhanced surface diffusion in metallic glasses. Journal of Chemical Physics, 2021, 154, 104502.	3.0	6
454	Effect of melt cooling rate on glass transition kinetics and structural relaxation of Vit1 metallic glass. China Foundry, 2021, 18, 118-123.	1.4	6
455	Three-Stage Evolution of the Structure and the Effect of Nonadditive Hardening of Layered Composites of Amorphous Alloys under High-Pressure Torsion. JETP Letters, 2021, 113, 471-476.	1.4	3
456	Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure. , 0, 29, 143-160.		0
457	Dynamic heterogeneity, cooperative motion, and Johari–Goldstein \$\$eta \$\$-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. European Physical Journal E, 2021, 44, 56.	1.6	24
458	Interfacial bonding of CuZr metallic glass via oxide: A molecular dynamics study. Corrosion Science, 2021, 182, 109275.	6.6	9
459	Atomic-level characterization of free volume in the structure of Cu67Zr33 amorphous alloy. Journal of Physics Condensed Matter, 2021, 33, 274001.	1.8	0
460	Glassy and ballistic dynamics in collision cascades in amorphous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">TiO <mml:mn> </mml:mn> </mml:mi </mml:msub> : Combined molecular dynamics and Monte Carlo based studies across energy scales. Physical Review B, 2021, 103</mml:math 	3.2	4
461	Mechanisms of bulk and surface diffusion in metallic glasses determined from molecular dynamics simulations. Acta Materialia, 2021, 209, 116794.	7.9	20
462	Nanoglass and Nanocrystallization Reactions in Metallic Glasses. Frontiers in Materials, 2021, 8, .	2.4	5
463	Wear Behaviors of a Ti-Based Bulk Metallic Glass at Elevated Temperatures. Frontiers in Materials, 2021, 8, .	2.4	1
464	Heterogeneous Orientational Relaxations and Translation–Rotation Decoupling in (Choline Chloride) Tj ETQq1 Relaxation Measurements. Journal of Physical Chemistry B, 2021, 125, 5920-5936.	1 0.78431 2.6	.4 rgBT /Ovei 17
465	Self-diffusion processes in stoichiometric iron mononitride. Journal of Applied Physics, 2021, 129, .	2.5	2
466	Extraordinary Nanocrystalline Pb Whisker Growth from Bi-Mg-Pb Pools in Aluminum Alloy 6026 Moderated through Oriented Attachment. Nanomaterials, 2021, 11, 1842.	4.1	3
467	Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2021, 120, 100819.	32.8	1
468	Atomic diffusivities in amorphous and liquid Cu-Zr: Kirkendall effects and dependence on packing density. Acta Materialia, 2021, 214, 116993.	7.9	6
469	An effective route for tuning microstructure and properties of sintered Nd-Fe-B magnets: Low pressure sintering technology. Journal of Materials Processing Technology, 2021, 294, 117110.	6.3	2
470	Solvent-Assisted Li-Ion Transport and Structural Heterogeneity in Fluorinated Battery Electrolytes. Journal of Physical Chemistry B, 2021, 125, 10551-10561.	2.6	4

#	Article	IF	CITATIONS
471	Real-time high-temperature scanning indentation: Probing physical changes in thin-film metallic glasses. Applied Materials Today, 2021, 24, 101126.	4.3	2
472	Impact of Low Concentration of Strongly Hydrogen-Bonded Water Molecules on the Dynamics of Amorphous Terfenadine: Insights from Molecular Dynamics Simulations and Dielectric Relaxation Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 11292-11307.	2.6	3
473	Under glass transition temperature diffusion bonding of bulk metallic glass and aluminum. Materials Chemistry and Physics, 2021, 269, 124758.	4.0	4
474	Thermal behavior of newly developed Zr33Hf8Ti6Cu32Ni10Co5Al6 high-entropy bulk metallic glass. Journal of Alloys and Compounds, 2022, 892, 162220.	5.5	25
475	Heterogeneous dynamics in [BMIM][PF6]Â+ÂCosolvent binary Mixtures: Does It depend upon cosolvent Polarity?. Journal of Molecular Liquids, 2021, 341, 117342.	4.9	1
476	Nanostructure optimization of Zr-W-Ti metallic glass thin films via multitarget co-sputtering with oblique angle deposition approach. Journal of Alloys and Compounds, 2021, 886, 161265.	5.5	8
477	TEM study of bubble formation in Ti–Ta–Si–Ni metallic glass surface alloy on TiNi SMA substrate during additive thin-film electron-beam synthesis. Vacuum, 2021, 194, 110597.	3.5	7
478	Study of air oxidation of amorphous Zr65Cu17.5Ni10Al7.5 by X-ray photoelectron spectroscopy (XPS). , 2007, 42, 9037.		1
479	Atomistic Theory Of Metallic Liquids and Glasses. , 2008, , 27-55.		5
480	Nuclear Resonance. , 2015, , 1-32.		2
480 481	Nuclear Resonance. , 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40.	0.5	2 8
480 481 482	Nuclear Resonance., 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179.	0.5	2 8 4
480 481 482 483	Nuclear Resonance. , 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179. Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307.	0.5 0.6 2.8	2 8 4 6
480 481 482 483 483	Nuclear Resonance., 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179. Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307. Partial structure factors reveal atomic dynamics in metallic alloy melts. Physical Review Materials, 2017, 1, .	0.5 0.6 2.8 2.4	2 8 4 6 15
480 481 482 483 483 484	Nuclear Resonance., 2015,, 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011,, 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179. Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307. Partial structure factors reveal atomic dynamics in metallic alloy melts. Physical Review Materials, 2017, 1, . Effective Diffusion Coefficients and Thermal Stability of the Structure of Metallic Glass Fe48Co32P14B6. Physics of the Solid State, 2020, 62, 2258-2265.	0.5 0.6 2.8 2.4 0.6	2 8 4 6 15 2
480 481 482 483 483 485 485	Nuclear Resonance., 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179. Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307. Partial structure factors reveal atomic dynamics in metallic alloy melts. Physical Review Materials, 2017, 1, . Effective Diffusion Coefficients and Thermal Stability of the Structure of Metallic Glass Fe48Co32P1486. Physics of the Solid State, 2020, 62, 2258-2265. On Approach to Increase Integration Rate of Double-Gate Heterotransistors. International Journal of Nanoscience, 2017, 16, 1650039.	0.5 0.6 2.8 2.4 0.6	2 8 4 6 15 2
480 481 482 483 483 485 485 485	Nuclear Resonance., 2015, , 1-32. Heat Capacity and Entropy Functions in Strong and Fragile Glass-Formers, Relative to Those of Disordering Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, 2011, , 21-40. Synthesis, Stability and Self-Diffusion in Iron Nitride Thin Films: A Review. Materials Horizons, 2020, , 131-179. Ion beam modification of the Ni-Si solid-phase reaction: The influence of substrate damage and nitrogen impurities introduced by ion implantation. Journal Physics D: Applied Physics, 2021, 54, 015307. Partial structure factors reveal atomic dynamics in metallic alloy melts. Physical Review Materials, 2017, 1, . Effective Diffusion Coefficients and Thermal Stability of the Structure of Metallic Glass Fe48Co32P1486. Physics of the Solid State, 2020, 62, 2258-2265. On Approach to Increase Integration Rate of Double-Gate Heterotransistors. International Journal of Nanoscience, 2017, 16, 1650039. Influence of Substitution of Nickel by Cobalt on Thermal Stability and Microhardness of AlS_[86]\$NI\$_[8]\$CdS_[6]\$ and AlS_[86]\$NI\$_[8]\$Y\$_[6]\$ Alloys with Amorphous and Nanocomposite Structure. Metallofizika I Noveishie Tekhnologii, 2016, 37, 49-65.	0.5 0.6 2.8 2.4 0.6 0.7	2 8 4 6 15 2 2 2

ARTICLE

IF CITATIONS

489 Effect of Chemical Confinement on the mechanical relaxation spectra of poly(ethene-co-methacrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

491	Study of nano-scale diffusion in thin films and multilayers. , 2008, , 23-30.		Ο
492	Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 136401.	0.5	1
494	X-Ray Photon Correlation Spectroscopy Revealing the Change of Relaxation Dynamics of a Severely Deformed Pd-Based Bulk Metallic Glass. SSRN Electronic Journal, 0, , .	0.4	0
495	Aluminum alloy matrix composite reinforced with metallic glasses particles using hot-roll bonding. Russian Journal of Non-Ferrous Metals, 2020, , 39-46.	0.1	0
496	Nuclear Resonance. , 2020, , 2251-2287.		0
497	Point Defects in Metals. , 2005, , 1855-1876.		0
498	Revealing the crystallization kinetics and phase transitions in Mg65Zn30Ca5 metallic glass by nanocalorimetry. Journal of Alloys and Compounds, 2022, 899, 163353.	5.5	9
499	Tailoring the Diffusion Depth and Microstructure of Nd-Fe-B Magnets by Low-Pressure Grain Boundary Diffusion Process. SSRN Electronic Journal, 0, , .	0.4	0
500	Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. Physical Review Letters, 2022, 128, 075501.	7.8	13
501	Influence of Oxidation on Structure, Performance, and Application of Metallic Glasses. Advanced Materials, 2022, 34, e2110365.	21.0	10
502	Conductive Tracks in Carbon Implanted Titania Nanotubes: Atomicâ€6cale Insights from Experimentally Based Ab Initio Molecular Dynamics Modeling. Advanced Theory and Simulations, 0, , 2200063.	2.8	1
503	Ex-situ study of diffusion in liquid Al–Cu melts under a transverse magnetic field using X-ray imaging. Philosophical Magazine Letters, 2022, 102, 151-159.	1.2	3
504	Low-temperature relaxation behavior of a bulk metallic glass leading to improvement of both strength and plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142841.	5.6	4
505	Thermoplasticity of metallic glasses: Processing and applications. Progress in Materials Science, 2022, 127, 100941.	32.8	26
506	Long-range-diffusion-assisted but interface-controlled crystallization of a Mg-Ni-Mm glass below its glass-transition temperature. Journal of Alloys and Compounds, 2022, 909, 164732.	5.5	2
507	Diffusion in Metallic Glasses and in Oxide Glasses - An Overview. Defect and Diffusion Forum, 0, 413, 109-124.	0.4	0
508	Viscosity and transport in a model fragile metallic glass. Physical Review Materials, 2021, 5, .	2.4	4

#	Article	IF	CITATIONS
509	Correlating the Annealing Temperature Dependence of the Structural Inhomogeneity and the Diffusion in Zr-Ti-Cu-Ni-Be Glassy System. Solid State Phenomena, 0, 330, 11-15.	0.3	1
510	Evolution of surface relief gratings in As20Se80 amorphous chalcogenide films under laser illumination. Journal of Non-Crystalline Solids, 2022, 588, 121611.	3.1	2
511	The relationship between inter-diffusion and self-diffusion of different liquid metals studied by molecular dynamics simulations. Physica B: Condensed Matter, 2022, 638, 413844.	2.7	0
512	Self-Diffusion in Nanoscale Structures Measured by Neutron Reflectometry. Journal of Phase Equilibria and Diffusion, 2005, 26, 458-465.	1.4	0
513	The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems. International Journal of Molecular Sciences, 2022, 23, 5316.	4.1	1
514	Recent Advances in Understanding Diffusion in Multiprincipal Element Systems. Annual Review of Materials Research, 2022, 52, 383-409.	9.3	11
515	Diffusion in metallic glasses and undercooled metallic melts. International Journal of Materials Research, 2022, 95, 956-960.	0.3	0
516	Effect of Trace Al Addition on the Structural and Kinetic Inhomogeneity in a Cu-Zr Based Metallic Class. SSRN Electronic Journal, 0, , .	0.4	0
517	Tailoring the diffusion depth and microstructure of RE-Fe-B magnets by low-pressure grain boundary diffusion process. Journal of Alloys and Compounds, 2022, 923, 166361.	5.5	3
518	Ubiquity of the kinetic compensation effect: A consequence of the existence of a maximum in energy dissipation. Journal of Applied Physics, 2022, 132, .	2.5	1
519	Local atomic structure evolution of liquid gadolinium and yttrium during solidification: An ab initio study. Journal of Rare Earths, 2022, , .	4.8	0
520	Exploring the Dynamic Heterogeneity at the Interface of a Protein in Aqueous Ionic Liquid Solutions. Journal of Physical Chemistry B, 2022, 126, 7271-7285.	2.6	2
521	Relating dynamic free volume to cooperative relaxation in a glass-forming polymer composite. Journal of Chemical Physics, 2022, 157, 131101.	3.0	1
522	Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in Relationship with Their Properties. Materials, 2022, 15, 7285.	2.9	16
523	Influence from connection of atomic clusters on the second peak splitting of pair distribution function in metallic glasses. Journal of Non-Crystalline Solids, 2023, 600, 122021.	3.1	1
524	Point-defect avalanches mediate grain boundary diffusion. Communications Materials, 2022, 3, .	6.9	12
525	Physical Metallurgical Bonding Layer Formed between Fe80Si9B11 Metallic Glass and Crystalline Aluminum in Rolled Composite Plate by High-Pressure Torsion at Room Temperature. Metals, 2022, 12, 1929.	2.3	0
526	Diffusion of boron in an amorphous iron-boron alloy. Journal of Non-Crystalline Solids, 2023, 601, 122070.	3.1	1

#	Article	IF	CITATIONS
527	Structure and Chemical State of Oxide Films Formed on Crystalline TiNi Alloy and Glassy Ti-Ni-Ta-Si Surface Alloy. Journal of Materials Engineering and Performance, 0, , .	2.5	1
528	Dynamics of lattice random walk within regions composed of different media and interfaces. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023, 013201.	2.3	3
529	Fundamental links between shear transformation, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si58.svg" display="inline" id="d1e288"><mml:mi>î²</mml:mi> relaxation, and string-like motion in metallic glasses. Acta Materialia, 2023, 246, 118701.</mml:math 	7.9	8
530	Investigation of microstructural development of liquid Nb in dependence of cooling rate: Molecular dynamics simulation study. Vacuum, 2023, 210, 111821.	3.5	2
531	A criterion of rejuvenation of metallic glasses based on chemical composition. Materials Letters, 2023, 334, 133755.	2.6	0
532	Diffusion Coefficient of a Brownian Particle in Equilibrium and Nonequilibrium: Einstein Model and Beyond. Entropy, 2023, 25, 42.	2.2	11
533	Thermal oxidation of metallic glasses. , 2023, , 89-129.		0
534	Thermal atomic layer etching of cobalt using plasma chlorination and chelation with hexafluoroacetylacetone. Applied Surface Science, 2023, 619, 156751.	6.1	1
535	Nucleation kinetics model for primary crystallization in Al–Y–Fe metallic glass. Journal of Chemical Physics, 2023, 158, .	3.0	4
536	Oxygen diffusion in glassy propylene carbonate: Energetics and spatial correlation of jump rates. Journal of Non-Crystalline Solids, 2023, 606, 122191.	3.1	0
537	Diffusion in Materials Science and Technology. , 2023, , 279-292.		0
538	High-pressure and high-temperature induced densely discontinuous nanoprecipitates in multi-principle element alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 880, 145275.	5.6	1
539	Investigation of structural phase transformation of Al metallic glass under uniaxial compression strain by molecular dynamics simulation. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
540	Crystallization kinetics, microstructure evolution, and mechanical responses of Cr-Co alloys. Modelling and Simulation in Materials Science and Engineering, 2023, 31, 085001.	2.0	0
541	Amorphous Alloys of the Fe–Co–Cr–B–Si System as a Base for Designing Nanostructured Hard Magnetic Materials. Physics of Metals and Metallography, 2023, 124, 537-543.	1.0	0
542	Nanoscale effect on the formation of the amorphous Ni silicide by rapid thermal annealing from crystalline and pre-amorphized silicon. Acta Materialia, 2024, 262, 119430.	7.9	1
543	Mechanical property evaluation of thin film metallic glasses via molecular dynamics and finite element analyses. Journal of Non-Crystalline Solids, 2024, 624, 122695.	3.1	0
544	Unveiling glass forming ability patterns in bulk metallic glasses via advanced machine learning approaches. Journal of Non-Crystalline Solids, 2024, 624, 122710.	3.1	1

IF ARTICLE CITATIONS # Diffusion in Metallic Glass-Forming Systems: A Description of the Kink Behavior Observed in the 545 0.3 0 Temperature Dependence. Solid State Phenomena, 0, 353, 143-148. On polymorphic crystal growth in a Ti-Ni-Cu-Fe system metallic glass at the glass-transition temperature. Scripta Materialia, 2024, 242, 115927. 546 5.2 Enhanced diffusion in thin-film Cu-Zr nanoglasses. Acta Materialia, 2024, 265, 119634. 547 7.9 0 Anomalous temperature dependence of elastic limit in metallic glasses. Nature Communications, 2024, 548 Dynamic Correlations in Disordered Systems: Implications for High-Temperature Superconductivity. 549 1.8 0 Condensed Matter, 2024, 9, 12. Surface diffusion on a palladium-based metallic glass. Applied Physics Letters, 2024, 124, . 3.3 Achieving high strength and pseudo-ductility in Bf/Cu composite enabled by 3D-Gr@B4C interface-modified layer. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2024, 898, 146364. 551 5.6 0 Better understand the crystallization dynamics of ZrCu TFMGs: Benefits of combining global and 5.5 local in situ approaches. Journal of Alloys and Compounds, 2024, 987, 174233. 553 Oxygen tracer diffusion in amorphous hafnia films for resistive memory. Materials Horizons, 0, , . 12.2 0

CITATION REPORT