Ischemia–Reperfusion–induced Lung Injury

American Journal of Respiratory and Critical Care Medicine 167, 490-511

DOI: 10.1164/rccm.200207-670so

Citation Report

#	Article	IF	CITATIONS
1	Acute lung injury. , 0, , 203-210.		0
2	The Pathology of Lung Transplantation. , 0, , 156-182.		0
3	Lung transplantation for emphysema. Chest Surgery Clinics of North America, 2003, 13, 651-667.	0.7	10
4	Primary Graft Failure. Chest, 2003, 124, 1190-1192.	0.8	4
5	Anesthetic concerns in lung transplant. Current Opinion in Organ Transplantation, 2003, 8, 249-251.	1.6	3
6	Cytokine mRNA expression in unilateral ischemic-reperfused rat lung with salt solution supplemented with low-endotoxin or standard bovine serum albumin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L137-L142.	2.9	13
7	Strategies to increase limited donor resources. European Respiratory Journal, 2004, 23, 477-482.	6.7	48
8	p38mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L826-L833.	2.9	16
9	Transbronchial administration of adenoviral-mediated interleukin-10 gene to the donor improves function in a pig lung transplant model. Gene Therapy, 2004, 11, 1786-1796.	4.5	69
10	Twenty-year experience of lung transplantation at a single center: influence of recipient diagnosis on long-term survival. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 1493-1501.	0.8	135
11	Update on anesthesia for lung transplantation. Seminars in Anesthesia, 2004, 23, 34-41.	0.3	6
12	Anesthetic implications for lung transplantation. Anesthesiology Clinics, 2004, 22, 767-788.	1.4	19
13	Occurence of lipid bodies in canine type II pneumocytes during hypothermic lung ischemia. The Anatomical Record, 2004, 277A, 287-297.	1.8	10
14	Trasplante pulmonar en ratas. Un modelo viable de estudio experimental. Archivos De Bronconeumologia, 2004, 40, 438-442.	0.8	9
15	Lung Transplantation in Rats: a Viable Experimental Model. Archivos De Bronconeumologia, 2004, 40, 438-442.	0.8	8
16	Critical Care Medicine inAJRCCM2003. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 239-253.	5.6	3
17	Medium-term results of extracorporeal membrane oxygenation for severe acute lung injury after lung transplantation. Journal of Heart and Lung Transplantation, 2004, 23, 979-984.	0.6	59
18	Endobronchial Gene Transfer of Soluble Type I Interleukin-1 Receptor Ameliorates Lung Graft Ischemia-Reperfusion Injury. Annals of Thoracic Surgery, 2004, 78, 1932-1939.	1.3	9

#	Article	IF	CITATIONS
19	Bronchiolitis obliterans syndrome: Pathogenesis and management. Seminars in Thoracic and Cardiovascular Surgery, 2004, 16, 350-355.	0.6	33
20	Surgical considerations in lung transplantation: transplant operation and early postoperative management. Respiratory Care Clinics of North America, 2004, 10, 473-504.	0.5	17
21	The clinical relevance of defining the mechanism for altered gut permeability in a "two-hit―model of injury and infection*. Critical Care Medicine, 2004, 32, 2356-2357.	0.9	15
22	The use of protocols for nutritional support is definitely needed in the intensive care unit*. Critical Care Medicine, 2004, 32, 2354-2355.	0.9	16
23	Impact of intensivists on outcome of critically ill neurologic and neurosurgical patients*. Critical Care Medicine, 2004, 32, 2363-2364.	0.9	4
24	The efficacy of drotrecogin alfa depends on severity of illness*. Critical Care Medicine, 2004, 32, 2347.	0.9	9
25	Granulocyte colony stimulating factor: Just another neuroprotectant?*. Critical Care Medicine, 2004, 32, 2357-2358.	0.9	3
26	Increased expression of nitric oxide synthase in human lung transplants after nitric oxide inhalation1. Transplantation, 2004, 77, 886-890.	1.0	11
27	Therapy of ventilator-associated pneumonia: What more can we do to use less antibiotics?*. Critical Care Medicine, 2004, 32, 2344-2345.	0.9	12
28	Delirium in the intensive care unit is bad: What is the confusion?*. Critical Care Medicine, 2004, 32, 2352-2354.	0.9	11
29	New insight from the interplay between nitric oxide and glucocorticoids*. Critical Care Medicine, 2004, 32, 2362-2363.	0.9	4
30	Incident reporting in the information age*. Critical Care Medicine, 2004, 32, 2349-2350.	0.9	1
31	Futility in stroke care—Still a concept in progress*. Critical Care Medicine, 2004, 32, 2365-2366.	0.9	0
32	Direct lung injury by bacteria: Clarifying the tools of the trade*. Critical Care Medicine, 2004, 32, 2360-2361.	0.9	6
33	Bringing order to chaos*. Critical Care Medicine, 2004, 32, 2346.	0.9	4
34	Possible Role of Substance P in the Ischemia-Reperfusion Injury in the Isolated Rabbit Lung. Transplantation, 2004, 78, 296-299.	1.0	2
35	Intensive care unit resource utilization by Medicare patients: Margin and mission meet public policy and practice economics*. Critical Care Medicine, 2004, 32, 2351-2352.	0.9	4
36	Activated protein C: Beyond 28 days*. Critical Care Medicine, 2004, 32, 2348-2349.	0.9	2

	Ο ΓΤΑΤΙΟΝ Ι	CITATION REPORT	
#	Article	IF	Citations
37	Afelimomab—Another therapeutic option in sepsis therapy?*. Critical Care Medicine, 2004, 32, 2343-2344.	0.9	32
38	Limiting deleterious cross-talk between failing organs*. Critical Care Medicine, 2004, 32, 2358-2359.	0.9	20
39	Attenuation of Reperfusion-Induced Systemic Inflammation by Preconditioning With Nitric Oxide in an In Situ Porcine Model of Normothermic Lung Ischemia. Chest, 2004, 125, 2253-2259.	0.8	19
40	Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. Journal of Applied Physiology, 2005, 99, 2423-2432.	2.5	31
41	Lung transplantation: donor and recipient critical care aspects. Current Opinion in Critical Care, 2005, 11, 339-344.	3.2	21
42	Overexpression of Human Bcl-2 in Syngeneic Rat Donor Lungs Preserves Posttransplant Function and Reduces Intragraft Caspase Activity and Interleukin-1?? Production. Transplantation, 2005, 79, 762-767.	1.0	15
43	Bone Marrow-Derived Stem-Cell Repopulation Contributes Minimally to the Type II Pneumocyte Pool in Transplanted Human Lungs. Transplantation, 2005, 80, 206-212.	1.0	37
44	Lung Transplantation for Primary Pulmonary Hypertension and Eisenmenger's Syndrome. Journal of Cardiovascular Nursing, 2005, 20, 124-132.	1.1	4
45	Interleukin-10 Gene Therapy Attenuates Pulmonary Tissue Injury Caused by Mesenteric Ischemia-Reperfusion in a Mouse Model. Tohoku Journal of Experimental Medicine, 2005, 207, 133-142.	1.2	5
46	Protection against acute porcine lung ischemia/reperfusion injury by systemic preconditioning via hind limb ischemia. Transplant International, 2005, 18, 198-205.	1.6	51
47	Thrombocytopenia due to hypotension unrelated to infection: shock marrow. International Journal of Clinical Practice, 2005, 59, 782-784.	1.7	5
48	Caspase Inhibition Improves Ischemia-Reperfusion Injury After Lung Transplantation. American Journal of Transplantation, 2005, 5, 292-299.	4.7	80
49	A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 423-428.	0.8	113
50	High central venous pressure is associated with prolonged mechanical ventilation and increased mortality after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 912-918.	0.8	73
51	Evaluation of the oxygenation ratio in the definition of early graft dysfunction after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 180-186.	0.8	29
52	Adenosine A2A receptor activation reduces inflammation and preserves pulmonary function in an in vivo model of lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1137-1143.	0.8	70
53	Hyperoxic ventilation exacerbates lung reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1440.e1-1440.e8.	0.8	23
54	Ischemia-reperfusion Injury of the Lung: Role of Surfactant. , 2005, , 49-62.		1

#	Article	IF	CITATIONS
55	Surfactant pretreatment ameliorates ischemia-reperfusion injury of the lung. European Journal of Cardio-thoracic Surgery, 2005, 27, 774-782.	1.4	22
56	Aprotinin attenuated ischemia–reperfusion injury in an isolated rat lung model after 18-hours preservation. European Journal of Cardio-thoracic Surgery, 2005, 28, 581-587.	1.4	16
57	Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. European Journal of Cardio-thoracic Surgery, 2005, 27, 379-383.	1.4	138
58	Pulmonary ischaemia-reperfusion injury: role of apoptosis. European Respiratory Journal, 2005, 25, 356-363.	6.7	103
59	Lung Allograft Ischemic Time. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 673-674.	5.6	6
60	Graft Ischemic Time and Outcome of Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 786-791.	5.6	184
61	Effects of Cold Preservation on the Lung Mechanical Properties in Rats. European Surgical Research, 2005, 37, 85-91.	1.3	6
62	Neutrophil Elastase Inhibitor Ameliorates Reperfusion Injury in a Canine Model of Lung Transplantation. European Surgical Research, 2005, 37, 274-280.	1.3	13
63	Massive brain injury enhances lung damage in an isolated lung model of ventilator-induced lung injury*. Critical Care Medicine, 2005, 33, 1077-1083.	0.9	104
64	CXCR2/CXCR2 Ligand Biology during Lung Transplant Ischemia-Reperfusion Injury. Journal of Immunology, 2005, 175, 6931-6939.	0.8	92
65	TNFα-Induced Long Pentraxin PTX3 Expression in Human Lung Epithelial Cells via JNK. Journal of Immunology, 2005, 175, 8303-8311.	0.8	166
66	Endogenous Calcitonin Gene-related Peptide Protects Human Alveolar Epithelial Cells through Protein Kinase Clµ and Heat Shock Protein*. Journal of Biological Chemistry, 2005, 280, 20325-20330.	3.4	34
67	The Effect of Anti-inflammatory Properties of Mycophenolate Mofetil on the Development of Lung Reperfusion Injury. Journal of Heart and Lung Transplantation, 2005, 24, 2235-2242.	0.6	27
68	Noninfectious Pulmonary Complications After Lung Transplantation. Clinics in Chest Medicine, 2005, 26, 613-622.	2.1	15
69	Anesthetic Considerations for Lung Volume Reduction Surgery and Lung Transplantation. Thoracic Surgery Clinics, 2005, 15, 143-157.	1.0	19
70	Obliterative bronchiolitis or chronic lung allograft rejection: A basic science review. Journal of Heart and Lung Transplantation, 2005, 24, 3-19.	0.6	35
71	Long-Term Observation After Simultaneous Lung and Intra–Bone Marrow–Bone Marrow Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 1415-1423.	0.6	26
72	Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part II: Definition. A Consensus Statement of the International Society for Heart and Lung Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 1454-1459.	0.6	724

#	Article	IF	CITATIONS
73	Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part V: Predictors and Outcomes. Journal of Heart and Lung Transplantation, 2005, 24, 1483-1488.	0.6	110
74	Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part III: Donor-Related Risk Factors and Markers. Journal of Heart and Lung Transplantation, 2005, 24, 1460-1467.	0.6	138
75	Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part I: Introduction and Methods. Journal of Heart and Lung Transplantation, 2005, 24, 1451-1453.	0.6	115
76	Report of the ISHLT Working Group on Primary Lung Graft Dysfunction Part VI: Treatment. Journal of Heart and Lung Transplantation, 2005, 24, 1489-1500.	0.6	117
77	Disruption of Iron Homeostasis in the Lungs of Transplant Patients. Journal of Heart and Lung Transplantation, 2005, 24, 1821-1827.	0.6	20
78	Activation of Mitogen-activated Protein Kinases During Human Lung Transplantation. Journal of Heart and Lung Transplantation, 2005, 24, 2079-2085.	0.6	18
79	Independent Ventilation of the Graft and Native Lungs In Vivo After Rat Lung Transplantation. Annals of Thoracic Surgery, 2005, 79, 2169-2171.	1.3	14
80	Cyclosporine Modulates the Response to Hypoxia-Reoxygenation in Pulmonary Artery Endothelial Cells. Annals of Thoracic Surgery, 2005, 79, 1010-1016.	1.3	23
81	Œdème pulmonaire neurogénique. Praticien En Anesthesie Reanimation, 2006, 10, 14-20.	0.0	0
82	A3 adenosine receptors and mitogen-activated protein kinases in lung injury following in vivo reperfusion. Critical Care, 2006, 10, R65.	5.8	50
83	Crosstalk Between Thrombosis and Inflammation in Lung Reperfusion Injury. Annals of Thoracic Surgery, 2006, 81, 1061-1067.	1.3	31
84	Cytokine Profile After Lung Transplantation: Correlation With Allograft Injury. Annals of Thoracic Surgery, 2006, 81, 1844-1850.	1.3	61
85	Interleukin-6 Regulation of Direct Lung Ischemia Reperfusion Injury. Annals of Thoracic Surgery, 2006, 82, 472-478.	1.3	12
86	Invited commentary. Annals of Thoracic Surgery, 2006, 82, 478-479.	1.3	0
87	Venovenous Extracorporeal Life Support After Pulmonary Endarterectomy: Indications, Techniques, and Outcomes. Annals of Thoracic Surgery, 2006, 82, 2139-2145.	1.3	102
88	Nitroglycerin Reperfusion Reduces Ischemia-Reperfusion Injury in Non-Heart-Beating Donor Lungs. Journal of Heart and Lung Transplantation, 2006, 25, 110-119.	0.6	37
89	Validation of the Proposed International Society for Heart and Lung Transplantation Grading System for Primary Graft Dysfunction After Lung Transplantation. Journal of Heart and Lung Transplantation, 2006, 25, 371-378.	0.6	127
90	Impact of Warm Ischemia on Different Leukocytes in Bronchoalveolar Lavage From Mouse Lung: Possible New Targets to Condition the Pulmonary Graft From the Non–Heart-Beating Donor. Journal of Heart and Lung Transplantation, 2006, 25, 839-846.	0.6	17

#	Article	IF	CITATIONS
91	Toll-like Receptor and Cytokine Gene Expression in the Early Phase of Human Lung Transplantation. Journal of Heart and Lung Transplantation, 2006, 25, 1317-1323.	0.6	55
92	Nitric oxide donor-induced persistent inhibition of cell adhesion protein expression and NFκB activation in endothelial cells. Nitric Oxide - Biology and Chemistry, 2006, 15, 103-113.	2.7	39
93	Intraluminal injection of short chain fatty acids diminishes intestinal mucosa injury in experimental ischemia-reperfusion. Acta Cirurgica Brasileira, 2006, 21, 21-25.	0.7	18
94	Changes in lung permeability after chronic pulmonary artery obstruction. Journal of Applied Physiology, 2006, 100, 1224-1229.	2.5	17
95	Strain-specific differences in sensitivity to ischemia-reperfusion lung injury in mice. Journal of Applied Physiology, 2006, 100, 1590-1595.	2.5	35
96	<i>In Situ</i> Cooling in a Lung Hilar Clamping Model of Ischemia-Reperfusion Injury. Experimental Biology and Medicine, 2006, 231, 1410-1420.	2.4	7
97	Src protein tyrosine kinase family and acute inflammatory responses. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L129-L141.	2.9	148
98	Modification of the Arterial Anastomotic Technique Improves Survival in a Porcine Single Lung Transplant Model. Acta Chirurgica Belgica, 2006, 106, 450-457.	0.4	5
99	Cytosolic Phospholipase A2 Inhibition Attenuates Ischemia-Reperfusion Injury in an Isolated Rat Lung Model. Transplantation, 2006, 81, 1700-1707.	1.0	22
100	Depletion of Pulmonary Intravascular Macrophages Prevents Hyperacute Pulmonary Xenograft Dysfunction. Transplantation, 2006, 81, 1157-1164.	1.0	28
101	Lung Transplantation: Current Status and Challenges. Transplantation, 2006, 81, 1609-1615.	1.0	21
102	Update of early respiratory failure in the lung transplant recipient. Current Opinion in Critical Care, 2006, 12, 19-24.	3.2	32
103	PREVENTION OF ISCHEMIA REPERFUSION INJURY BY POSITIVE PULMONARY VENOUS PRESSURE IN ISOLATED RAT LUNG. Shock, 2006, 25, 66-72.	2.1	7
104	Hemorrhage Causes Interalveolar Perfusion Maldistribution in the Lungs of Anesthetized Rats. Journal of Trauma, 2006, 60, 158-163.	2.3	9
105	PROTECTIVE EFFECTS OF PRAVASTATIN IN MURINE LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 793-797.	1.9	63
106	Procedure-induced Inflammation and Endothelial Cell Activation in an Artificially Ventilated and Circulated Porcine Double-Lung Model. Artificial Organs, 2006, 30, 922-928.	1.9	5
107	Inflammatory Response to Pulmonary Ischemia–Reperfusion Injury. Surgery Today, 2006, 36, 205-214.	1.5	111
108	Pre-Implantation Multiple Cytokine mRNA Expression Analysis of Donor Lung Grafts Predicts Survival After Lung Transplantation in Humans. American Journal of Transplantation, 2006, 6, 544-551.	4.7	112

	CITATION	Report	
#	Article	IF	Citations
109	Intraoperative Detection of Cell Injury and Cell Death with an 800 nm Near-Infrared Fluorescent Annexin V Derivative. American Journal of Transplantation, 2006, 6, 2321-2331.	4.7	15
110	Glycine intravenous donor preconditioning is superior to glycine supplementation to low-potassium dextran flush preservation and improves graft function in a large animal lung transplantation model after 24 hours of cold ischemia. Journal of Thoracic and Cardiovascular Surgery, 2006, 131, 724-729.	0.8	15
111	Inhaled nitric oxide reduces ischemia-reperfusion injury in rat lungs from non–heart-beating donors. Journal of Thoracic and Cardiovascular Surgery, 2006, 132, 132-139.	0.8	26
112	Overview of Lung Transplantation and Criteria for Selection of Candidates. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 441-469.	2.1	34
113	The Role of Cytokines during the Pathogenesis of Ventilator-Associated and Ventilator-Induced Lung Injury. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 350-364.	2.1	105
114	Current Status of Lung Transplantation. , 2006, 333, 105-130.		2
115	Gene Therapy in Lung Transplantation. Current Gene Therapy, 2006, 6, 439-458.	2.0	11
116	The degree of oxidative stress is associated with major adverse effects after lung resection: A prospective study. European Journal of Cardio-thoracic Surgery, 2006, 29, 591-595.	1.4	106
117	Activation of the stress protein response prevents the development of pulmonary edema by inhibiting VEGF cell signaling in a model of lung ischemiaâ€reperfusion injury in rats. FASEB Journal, 2006, 20, 1519-1521.	0.5	46
118	Ventilator-Induced Lung Injury. , 0, , .		4
119	MCI-186 (edaravone), a free radical scavenger, attenuates ischemia–reperfusion injury and activation of phospholipase A2 in an isolated rat lung model after 18h of cold preservation. European Journal of Cardio-thoracic Surgery, 2006, 29, 304-311.	1.4	18
120	Stereological analysis of acute lung injury. European Respiratory Review, 2006, 15, 115-121.	7.1	21
121	Influence of Inflated Lung Pressure on Lung Mechanical Properties during Cold Storage in Rats. European Surgical Research, 2006, 38, 48-53.	1.3	5
122	Lung Transplantation for Pulmonary Arterial Hypertension. , 2006, , 119-131.		1
123	Surfactant alterations and treatment of lung transplant ischemia–reperfusion injury. Journal of Organ Dysfunction, 2006, 2, 221-229.	0.3	2
124	Addition of a neutrophil elastase inhibitor to the organ flushing solution decreases lung reperfusion injury in rat lung transplantation. European Journal of Cardio-thoracic Surgery, 2007, 32, 791-795.	1.4	10
125	Early Trends in PaO 2 /Fraction of Inspired Oxygen Ratio Predict Outcome in Lung Transplant Recipients With Severe Primary Graft Dysfunction. Chest, 2007, 132, 991-997.	0.8	29
126	Association of Protein C and Type 1 Plasminogen Activator Inhibitor with Primary Graft Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 69-74.	5.6	66

ARTICLE IF CITATIONS Integrin αvl²5 Regulates Lung Vascular Permeability and Pulmonary Endothelial Barrier Function. 127 2.9 119 American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 377-386. Biomarkers of lung injury in primary graft dysfunction following lung transplantation. Biomarkers 1.4 in Medicine, 2007, 1, 285-291. Outcome of lung transplanted patients with primary graft dysfunction. European Journal of 129 1.4 52 Cardio-thoracic Surgery, 2007, 31, 75-82. Impact of Immediate Primary Lung Allograft Dysfunction on Bronchiolitis Obliterans Syndrome. 380 American Journal of Respiratory and Critical Care Medicine, 2007, 175, 507-513. Preconditioning and protection against ischaemia-reperfusion in non-cardiac organs: a place for 131 1.7 36 volatile anaesthetics? European Journal of Anaesthesiology, 2007, 24, 733-745. NONISCHEMIC LUNG INJURY BY MEDIATORS FROM UNILATERAL ISCHEMIC REPERFUSED LUNG. Shock, 2007, 2.1 27, 84-90. ATTENUATION OF REPERFUSION LUNG INJURY AND APOPTOSIS BY A2A ADENOSINE RECEPTOR ACTIVATION IS 133 ASSOCIATED WITH MODULATION OF Bcl-2 AND Bax EXPRESSION AND ACTIVATION OF EXTRACELLULAR 2.1 47 SIGNAL-REGULATED KINASES. Shock, 2007, 27, 266-273. Lung transplantation. Current Opinion in Anaesthesiology, 2007, 20, 21-26. 2.0 134 135 Primary graft dysfunction. Current Opinion in Organ Transplantation, 2007, 12, 473-478. 1.6 5 Evaluation of Hypoxemia and Respiratory Failure in the Early Period After Lung Transplantation. Clinical Pulmonary Medicine, 2007, 14, 99-105. Evaluation of the Oxygenation Ratio as Long-Term Prognostic Marker After Lung Transplantation. 137 0.6 14 Transplantation Proceedings, 2007, 39, 2422-2424. Pulmonary Macrophage Inhibition and Inhaled Nitric Oxide Attenuate Lung Ischemia-Reperfusion 138 1.3 Injury. Annals of Thoracic Surgery, 2007, 84, 247-253. Intragraft DPP IV Inhibition Attenuates Post-transplant Pulmonary Ischemia/Reperfusion Injury After 139 0.6 33 Extended Ischemia. Journal of Heart and Lung Transplantation, 2007, 26, 174-180. Results of Clinical Lung Transplant From Uncontrolled Non-Heart-Beating Donors. Journal of Heart 140 149 and Lung Transplantation, 2007, 26, 529-534. Extracorporeal Membrane Oxygenation for Primary Graft Dysfunction After Lung Transplantation: Analysis of the Extracorporeal Life Support Organization (ELSO) Registry. Journal of Heart and Lung 141 0.6 169 Transplantation, 2007, 26, 472-477. Resolution of Severe Ischemia–Reperfusion Injury Post–Lung Transplantation After Administration of 142 44 Endobronchial Surfactant. Journal of Heart and Lung Transplantation, 2007, 26, 850-856. Hepatocyte Growth Factor Prevents Pulmonary Ischemiaâ€"Reperfusion Injury in Mice. Journal of Heart 143 0.6 16 and Lung Transplantation, 2007, 26, 935-943. N-Acetyl Cysteine Pre-treatment Attenuates Inflammatory Changes in the Warm Ischemic Murine Lung. 144 Journal of Heart and Lung Transplantation, 2007, 26, 1326-1332

#	Article	IF	CITATIONS
145	N-Acetylcysteine Attenuates Lung Ischemia–Reperfusion Injury After Lung Transplantation. Annals of Thoracic Surgery, 2007, 84, 240-246.	1.3	50
146	Lung ischemia–reperfusion injury: implications of oxidative stress and platelet–arteriolar wall interactions. Archives of Physiology and Biochemistry, 2007, 113, 1-12.	2.1	115
147	Surgical Therapies for Pulmonary Arterial Hypertension. Clinics in Chest Medicine, 2007, 28, 187-202.	2.1	9
149	Length of pressure-controlled reperfusion is critical for reducing ischaemia-reperfusion injury in an isolated rabbit lung model. Journal of Cardiothoracic Surgery, 2007, 2, 54.	1.1	17
152	Modificação da técnica de alotransplante pulmonar unilateral em ratos * . Jornal Brasileiro De Pneumologia, 2007, 33, 448-453.	0.7	5
153	Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L162-L169.	2.9	48
154	Morte encefálica, cuidados ao doador de órgãos e transplante de pulmão. Revista Brasileira De Terapia Intensiva, 2007, 19, 74-84.	0.3	8
155	Impact of preservation solution on the extent of blood-air barrier damage and edema formation in experimental lung transplantation. Anatomical Record, 2007, 290, 491-500.	1.4	17
156	Neurogenic pulmonary edema. Acta Anaesthesiologica Scandinavica, 2007, 51, 447-455.	1.6	250
157	Hypothermic preservation of lung allograft inhibits cytokine-induced chemoattractant-1, endothelial leucocyte adhesion molecule, vascular cell adhesion molecule-1 and intracellular adhesion molecule molecule-1 expression. Clinical and Experimental Immunology, 2007, 149, 364-371.	2.6	14
158	Triptolide inhibits NF-κB activation and reduces injury of donor lung induced by ischemia/reperfusion. Acta Pharmacologica Sinica, 2007, 28, 1919-1923.	6.1	19
161	Carbon Monoxide Protects Rat Lung Transplants From Ischemiaâ€Reperfusion Injury via a Mechanism Involving p38 MAPK Pathway. American Journal of Transplantation, 2007, 7, 2279-2290.	4.7	94
162	Impact of donors aged 60 years or more on outcome after lung transplantation: Results of an 11-year single-center experience. Journal of Thoracic and Cardiovascular Surgery, 2007, 133, 525-531.	0.8	92
164	One-lung ventilation: For how long?. Journal of Thoracic and Cardiovascular Surgery, 2007, 134, 405-410.	0.8	47
165	Pyrrolidine Dithiocarbamate Reduces Lung Injury Caused by Mesenteric Ischemia/Reperfusion in a Rat Model. World Journal of Surgery, 2007, 31, 1707-1715.	1.6	19
166	Ventilator-induced lung injury (VILI) promotes ischemia/reperfusion lung injury (I/R) and NF-kB antibody attenuates both injuries. Resuscitation, 2008, 79, 147-154.	3.0	40
167	Impact of Human Donor Lung Gene Expression Profiles on Survival after Lung Transplantation: A Case-Control Study. American Journal of Transplantation, 2008, 8, 2140-2148.	4.7	43
168	Late Primary Graft Dysfunction After Lung Transplantation and Bronchiolitis Obliterans Syndrome. American Journal of Transplantation, 2008, 8, 2454-2462.	4.7	132

#	Article	IF	CITATIONS
169	Additive protection against lung ischemia-reperfusion injury by adenosine A2A receptor activation before procurement and during reperfusion. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 156-165.	0.8	52
171	Platelet activation in the postoperative period after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 679-684.	0.8	18
172	Stress-activated protein kinase inhibition to ameliorate lung ischemia reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 656-665.	0.8	29
174	Comparison between adult and infant lung injury in a rabbit ischemia-reperfusion model. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 352-359.	0.8	8
175	Endothelial cell apoptosis in chronically obstructed and reperfused pulmonary artery. Respiratory Research, 2008, 9, 19.	3.6	24
176	Ischemia of the lung causes extensive long-term pulmonary injury: an experimental study. Respiratory Research, 2008, 9, 28.	3.6	24
177	Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells. Respiratory Research, 2008, 9, 5.	3.6	20
178	Effect of Hypertonic Saline Pre-treatment on Ischemia–Reperfusion Lung Injury in Pig. Journal of Heart and Lung Transplantation, 2008, 27, 1023-1030.	0.6	15
179	Priming Donor Lungs With Thioredoxin-1 Attenuates Acute Allograft Injury in a Rat Model of Lung Transplantation. Journal of Heart and Lung Transplantation, 2008, 27, 1142-1149.	0.6	9
180	Successful Sub-zero Non-freezing Preservation of Rat Lungs at â^2°C Utilizing a New Supercooling Technology. Journal of Heart and Lung Transplantation, 2008, 27, 1150-1157.	0.6	26
181	Adenosine A2A Activation Attenuates Nontransplantation Lung Reperfusion Injury. Journal of Surgical Research, 2008, 149, 3-8.	1.6	12
182	Heme oxygenase-1 upregulation significantly inhibits TNF-α and Hmgb1 releasing and attenuates lipopolysaccharide-induced acute lung injury in mice. International Immunopharmacology, 2008, 8, 792-798.	3.8	64
183	Ventilation During Cardiopulmonary Bypass: Impact on Cytokine Response and Cardiopulmonary Function. Annals of Thoracic Surgery, 2008, 85, 154-162.	1.3	62
184	Alveolar Macrophage Secretory Products Augment the Response of Rat Pulmonary Artery Endothelial Cells to Hypoxia and Reoxygenation. Annals of Thoracic Surgery, 2008, 85, 1056-1060.	1.3	20
185	Late Retrograde Perfusion of Donor Lungs Does Not Decrease the Severity of Primary Graft Dysfunction. Annals of Thoracic Surgery, 2008, 86, 1123-1129.	1.3	14
186	Alveolar Macrophage Secretory Products Effect Type 2 Pneumocytes Undergoing Hypoxia-Reoxygenation. Annals of Thoracic Surgery, 2008, 86, 1774-1779.	1.3	14
187	Invited Commentary. Annals of Thoracic Surgery, 2008, 86, 1779-1780.	1.3	0
188	Manipulations of core temperatures in ischemia–reperfusion lung injury in rabbits. Pulmonary Pharmacology and Therapeutics, 2008, 21, 285-291.	2.6	8

#	Article	IF	Citations
189	Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs. Pulmonary Pharmacology and Therapeutics, 2008, 21, 418-429.	2.6	14
190	Exercise training reduces pulmonary ischaemia-reperfusion-induced inflammatory responses. European Respiratory Journal, 2008, 31, 645-649.	6.7	30
191	Pathogenesis, Management, and Consequences of Primary Graft Dysfunction. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 165-172.	0.6	23
192	Bronchiolitis Obliterans Syndrome: Alloimmune-Dependent and -Independent Injury with Aberrant Tissue Remodeling. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 173-182.	0.6	84
194	Chemokines and Transplant Vasculopathy. Circulation Research, 2008, 103, 454-466.	4.5	33
195	The Effect of Direct Hemoperfusion with a Polymyxin B-Immobilized Fiber Column (DHP-PMX Therapy) on Pulmonary Ischemia-Reperfusion Injury in a Canine Model. Journal of Investigative Surgery, 2008, 21, 127-132.	1.3	5
196	PULMONARY CONTUSION AND FLAIL CHEST. , 2008, , 269-277.		5
197	Acute lung injury and cell death: how many ways can cells die?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L632-L641.	2.9	197
198	Sivelestat attenuates postoperative pulmonary dysfunction after total arch replacement under deep hypothermia. European Journal of Cardio-thoracic Surgery, 2008, 34, 798-804.	1.4	23
199	The lectin-like domain of thrombomodulin protects against ischaemia-reperfusion lung injury. European Respiratory Journal, 2008, 32, 862-870.	6.7	26
200	Keratinocyte growth factor prevents intra-alveolar oedema in experimental lung isografts. European Respiratory Journal, 2008, 31, 21-28.	6.7	10
201	Effects of curcumin or dexamethasone on lung ischaemia-reperfusion injury in rats. European Respiratory Journal, 2008, 33, 398-404.	6.7	41
202	Activated Protein C: An Emerging Therapeutic Agent in the Prevention of Ischemia-Reperfusion Injury. Journal of Reconstructive Microsurgery, 2008, 24, 361-367.	1.8	6
203	Dietary flaxseed enhances antioxidant defenses and is protective in a mouse model of lung ischemia-reperfusion injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L255-L265.	2.9	55
204	Thioredoxin as a biomarker for graft rejection in lung transplant recipients. Biomarkers, 2008, 13, 486-495.	1.9	13
205	Preventive effects of curcumin and dexamethasone on lung transplantation-associated lung injury in rats. Critical Care Medicine, 2008, 36, 1205-1213.	0.9	29
206	Donor Dopamine Treatment Limits Pulmonary Oedema and Inflammation in Lung Allografts Subjected to Prolonged Hypothermia. Transplantation, 2008, 85, 1449-1455.	1.0	8
207	The Use of Surfactant in Lung Transplantation. Transplantation, 2008, 86, 1554-1559.	1.0	27

#	Article	IF	CITATIONS
208	Edaravone attenuates ischemia-reperfusion injury by inhibiting oxidative stress in a canine lung transplantation model. Chinese Medical Journal, 2008, 121, 1583-1587.	2.3	4
209	Papel do exercÃcio fÃsico na isquemia/reperfusão pulmonar e resposta inflamatória. Brazilian Journal of Cardiovascular Surgery, 2009, 24, 552-561.	0.6	8
210	Managing complications following lung transplantation. Expert Review of Respiratory Medicine, 2009, 3, 403-423.	2.5	2
211	Surfactant pretreatment decreases long-term damage after ischemia-reperfusion injury of the lungâ^†. European Journal of Cardio-thoracic Surgery, 2009, 35, 304-312.	1.4	10
212	Pre-ischaemic exogenous surfactant reduces pulmonary injury in rat ischaemia/reperfusion. European Respiratory Journal, 2009, 33, 625-633.	6.7	28
213	Controlled antegrade single lung reperfusion during double lung transplant. Interactive Cardiovascular and Thoracic Surgery, 2009, 9, 932-933.	1.1	5
214	Plasma Levels of Receptor for Advanced Glycation End Products, Blood Transfusion, and Risk of Primary Graft Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1010-1015.	5.6	145
215	The Potential Protective Effect of Low Potassium Dextran against Lipid Peroxidation in a Rat Lung Transplantation Model. Thoracic and Cardiovascular Surgeon, 2009, 57, 309-311.	1.0	11
216	Primary Graft Dysfunction. Proceedings of the American Thoracic Society, 2009, 6, 39-46.	3.5	133
217	Lung Transplantation for Cystic Fibrosis. Proceedings of the American Thoracic Society, 2009, 6, 619-633.	3.5	65
218	TERBUTALINE IMPROVES ISCHEMIA-REPERFUSION INJURY AFTER LEFT-SIDED ORTHOTOPIC RAT LUNG TRANSPLANTATION. Experimental Lung Research, 2009, 35, 175-185.	1.2	1
219	Surfactant as salvage therapy in life threatening primary graft dysfunction in lung transplantation. European Journal of Cardio-thoracic Surgery, 2009, 35, 299-303.	1.4	19
220	Novel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L462-L469.	2.9	20
221	Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L52-L63.	2.9	79
222	Does anaesthetic management affect early outcomes after lung transplant? An exploratory analysis. British Journal of Anaesthesia, 2009, 102, 506-514.	3.4	43
223	Lung transplantation: does oxidative stress contribute to the development of bronchiolitis obliterans syndrome?. Transplantation Reviews, 2009, 23, 103-110.	2.9	24
224	Prolonged venoarterial extracorporeal membrane oxygenation after transplantation restores functional integrity of severely injured lung allografts and prevents the development of pulmonary graft failure in a pig model. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1493-1498.	0.8	9
225	Long-acting oral phosphodiesterase inhibition preconditions against reperfusion injury in an experimental lung transplantation model. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1249-1257.	0.8	13

#	Article	IF	CITATIONS
226	Apyrase treatment prevents ischemia–reperfusion injury in rat lung isografts. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 752-759.	0.8	21
227	In vitro modeling of nonhypoxic cold ischemia–reperfusion simulating lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 760-767.	0.8	15
228	Plasma Cytokines and Chemokines in Primary Graft Dysfunction Post-Lung Transplantation. American Journal of Transplantation, 2009, 9, 389-396.	4.7	97
229	Nitric Oxide Ventilation of Rat Lungs from Non-Heart-Beating Donors Improves Posttransplant Function. American Journal of Transplantation, 2009, 9, 2707-2715.	4.7	47
230	Erythropoietin attenuates ischemia–reperfusion induced lung injury by inhibiting tumor necrosis factor.α and matrix metalloproteinase-9 expression. European Journal of Pharmacology, 2009, 602, 406-412.	3.5	29
231	Ebselen Improves Ischemia-Reperfusion Injury After Rat Lung Transplantation. Lung, 2009, 187, 98-103.	3.3	17
232	Effects of Inhaled Nitric Oxide Following Lung Transplantation. Journal of Cardiac Surgery, 2009, 24, 269-274.	0.7	39
233	Failure of IL-8 to assess early reperfusion injury following lung transplantation of cardiac death donor pigs. Transplant International, 2009, 22, 574-582.	1.6	1
234	Risk factors for early primary graft dysfunction after lung transplantation: a registry study. Clinical Transplantation, 2009, 23, 819-830.	1.6	116
235	A double blind, single centre, sub-chronic reperfusion trial evaluating FX06 following haemorrhagic shock in pigs. Resuscitation, 2009, 80, 264-271.	3.0	7
236	Bench-to-bedside review: Inhaled nitric oxide therapy in adults. Critical Care, 2009, 13, 221.	5.8	70
237	Prevention of Ischemia/Reperfusion-Induced Accumulation of Matrix Metalloproteinases in Rat Lung by Preconditioning With Nitric Oxide. Journal of Surgical Research, 2009, 152, 198-208.	1.6	16
238	Cell-Cell Junctions and Vascular Endothelial Growth Factor in Rat Lung as Affected by Ischemia/Reperfusion and Preconditioning With Inhaled Nitric Oxide. Journal of Surgical Research, 2009, 157, 30-42.	1.6	10
239	Post-ischemic Infusion of Atrial Natriuretic Peptide Attenuates Warm Ischemia–Reperfusion Injury in Rat Lung. Journal of Heart and Lung Transplantation, 2009, 28, 628-634.	0.6	15
240	Activated Protein C in Ischemia-Reperfusion Injury After Experimental Lung Transplantation. Journal of Heart and Lung Transplantation, 2009, 28, 1180-1184.	0.6	11
241	Cholinergic agonists may produce preservation of myocardial ischaemia/reperfusion injury. Medical Hypotheses, 2009, 73, 312-314.	1.5	7
242	Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respiratory Research, 2009, 10, 58.	3.6	70
243	Functional Repair of Human Donor Lungs by IL-10 Gene Therapy. Science Translational Medicine, 2009, 1, 4ra9.	12.4	258

		CITATION REPORT		
#	Article		IF	CITATIONS
244	Lung Donor Selection and Management. Proceedings of the American Thoracic Society	r, 2009, 6, 28-38.	3.5	195
245	Pharmacologic Modulation of Alveolar Liquid Clearance in Transplanted Lungs by Phen FK506. Annals of Thoracic Surgery, 2009, 88, 958-964.	tolamine and	1.3	2
246	Hard Top Soft Bottom Microfluidic Devices for Cell Culture and Chemical Analysis. Ana Chemistry, 2009, 81, 3714-3722.	lytical	6.5	104
247	Update on Donor Assessment, Resuscitation, and Acceptance Criteria, Including Novel Techniques—Non–Heart-Beating Donor Lung Retrieval and Ex Vivo Donor Lung Per Surgery Clinics, 2009, 19, 261-274.	fusion. Thoracic	1.0	77
248	The impact of ischaemia–reperfusion on the blood vessel. European Journal of Anaes 26, 537-547.	thesiology, 2009,	1.7	78
249	Effects of Administration of Intravenous Naloxone on Gas Exchange in Brain-Dead Lung Progress in Transplantation, 2009, 19, 267-271.	g Donors.	0.7	6
250	Management of the Patient Undergoing Lung Transplantation. Critical Care Nursing Qu 32, 49-57.	Jarterly, 2009,	0.8	11
251	Bβ15-42 (FX06) reduces pulmonary, myocardial, liver, and small intestine damage in a hemorrhagic shock and reperfusion*. Critical Care Medicine, 2009, 37, 598-605.	pig model of	0.9	71
252	Recipient Treatment With l-Arginine Attenuates Donor Lung Injury Associated With He Shock. Transplantation, 2009, 87, 1602-1608.	morrhagic	1.0	3
253	Growth Factors and Cytokines in Acute Lung Injury. , 2011, 1, 81-104.			24
254	The contribution of airway and lung tissue ischemia to primary graft dysfunction. Curre Organ Transplantation, 2010, 15, 552-557.	ent Opinion in	1.6	20
255	Contribution of Toll-Like Receptor Activation to Lung Damage After Donor Brain Death Transplantation, 2010, 90, 732-739.		1.0	15
256	Inhaled Hydrogen Gas Therapy for Prevention of Lung Transplant-Induced Ischemia/Rep in Rats. Transplantation, 2010, 90, 1344-1351.	perfusion Injury	1.0	123
257	Effects of medium and hypothermic temperatures on preservation of isolated porcine t Reproduction, Fertility and Development, 2010, 22, 523.	iestis cells.	0.4	19
258	Carbon monoxide reduces pulmonary ischemia–reperfusion injury in miniature swine Thoracic and Cardiovascular Surgery, 2010, 139, 1594-1601.	. Journal of	0.8	24
259	Prevention of lung ischemia–reperfusion injury by short hairpin RNA–mediated cas silencing. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 758-764.	pase-3 gene	0.8	17
260	Antibodies to Self-Antigens Predispose to Primary Lung Allograft Dysfunction and Chro Annals of Thoracic Surgery, 2010, 90, 1094-1101.	nic Rejection.	1.3	114
261	Ischaemic post-conditioning protects lung from ischaemia–reperfusion injury by up-r haeme oxygenase-1. Injury, 2010, 41, 510-516.	egulation of	1.7	13

#	Article	IF	CITATIONS
262	Receptor for Advanced Glycation End Products in Donor Lungs Is Associated with Primary Graft Dysfunction After Lung Transplantation. American Journal of Transplantation, 2010, 10, 900-907.	4.7	43
263	Impact of Epoxyeicosatrienoic Acids in Lung Ischemia-Reperfusion Injury. Microcirculation, 2010, 17, 137-146.	1.8	13
264	Protective role of Coenzyme Q ₁₀ in two models of rat lung injury. ANZ Journal of Surgery, 2010, 80, 265-270.	0.7	7
265	CORMs protect endothelial cells during cold preservation, resulting in inhibition of intimal hyperplasia after aorta transplantation in rats. Transplant International, 2010, 23, 1144-1153.	1.6	13
266	Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1283-H1299.	3.2	307
267	The Closer we Look the more we See? Quantitative Microscopic Analysis of the Pulmonary Surfactant System. Cellular Physiology and Biochemistry, 2010, 25, 027-040.	1.6	72
268	Interleukin-10 Delivery via Mesenchymal Stem Cells: A Novel Gene Therapy Approach to Prevent Lung Ischemia–Reperfusion Injury. Human Gene Therapy, 2010, 21, 713-727.	2.7	75
269	Dynamic investigation of alveolar type II cell function in a long-term survival model of rat lung ischemia-reperfusion injury. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 364-373.	1.2	7
270	Inhibition of glycogen synthase kinase-3β prevents activation of focal adhesion kinase after ischemia/reperfusion of the rat lung. Clinical Hemorheology and Microcirculation, 2010, 46, 169-181.	1.7	3
271	Pre-ischaemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting-enzyme antibodiesâ~†â~†â~†. European Journal of Cardio-thoracic Surgery, 2010, 37, 859-863.	1.4	23
272	Mechanisms behind Local Immunosuppression Using Inhaled Tacrolimus in Preclinical Models of Lung Transplantation. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 403-412.	2.9	21
273	Primary Graft Dysfunction: Definition, Risk Factors, Short- and Long-Term Outcomes. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 161-171.	2.1	125
274	Pulmonary Arterial Hypertension and Lung Transplantation. Seminars in Respiratory and Critical Care Medicine, 2010, 31, 147-160.	2.1	15
275	Pediatric Lung Transplantation. Pediatric Clinics of North America, 2010, 57, 375-391.	1.8	24
276	Exogenous surfactant in ischemia/reperfusion: Effects on endogenous surfactant pools. Journal of Heart and Lung Transplantation, 2010, 29, 327-334.	0.6	23
277	Lipopolysaccharide pre-conditioning is protective in lung ischemia-reperfusion injury. Journal of Heart and Lung Transplantation, 2010, 29, 471-478.	0.6	17
278	Transfusion-related acute lung injury (TRALI) in graft by blood donor antibodies against host leukocytes. Journal of Heart and Lung Transplantation, 2010, 29, 1067-1070.	0.6	5
279	Prevention of primary graft dysfunction in lung transplantation by N-acetylcysteine after prolonged cold ischemia. Journal of Heart and Lung Transplantation, 2010, 29, 1293-1301.	0.6	29

#	Article	IF	CITATIONS
280	Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: The pivotal role of vasoactive intestinal peptide. Peptides, 2010, 31, 585-591.	2.4	41
282	Primary Graft Dysfunction. Clinics in Chest Medicine, 2011, 32, 279-293.	2.1	92
283	Apocynin attenuates ischemia-reperfusion lung injury in an isolated and perfused rat lung model. Translational Research, 2011, 158, 17-29.	5.0	24
284	Protection against lung graft injury from brain-dead donors with carbon monoxide, biliverdin, or both. Journal of Heart and Lung Transplantation, 2011, 30, 460-466.	0.6	22
285	Ischemic Postconditioning Attenuates Lung Reperfusion Injury and Reduces Systemic Proinflammatory Cytokine Release Via Heme Oxygenase 1. Journal of Surgical Research, 2011, 166, e157-e164.	1.6	37
286	Dietary Flaxseed Protects Against Lung Ischemia Reperfusion Injury Via Inhibition of Apoptosis and Inflammation in a Murine Model. Journal of Surgical Research, 2011, 171, e113-e121.	1.6	16
287	Glutamine protects ischemia-reperfusion induced acute lung injury in isolated rat lungs. Pulmonary Pharmacology and Therapeutics, 2011, 24, 153-161.	2.6	25
288	Diazoxide Decreases Ischemia-Reperfusion Injury in a Rat Model of Lung Transplantation. Transplantation Proceedings, 2011, 43, 2510-2516.	0.6	8
289	Experimental Swine Lung Autotransplant Model to Study Lung Ischemia–Reperfusion Injury. Archivos De Bronconeumologia, 2011, 47, 283-289.	0.8	9
290	Technical Modifications of the Orthotopic Lung Transplantation Model in Rats With Brain-Dead Donors. Archivos De Bronconeumologia, 2011, 47, 488-494.	0.8	6
291	Targeted Endothelial Delivery of Nanosized Catalase Immunoconjugates Protects Lung Grafts Donated After Cardiac Death. Transplantation, 2011, 92, 380-387.	1.0	29
292	Maintenance of IKKβ Activity Is Necessary to Protect Lung Grafts From Acute Injury. Transplantation, 2011, 91, 624-631.	1.0	13
293	Effect of Preprocurement Ventilation on Lungs Donated After Cardiac Death in a Canine Lung Transplantation Model. Transplantation, 2011, 92, 864-870.	1.0	8
294	Acute Lung Injury and Pulmonary Vascular Permeability: Use of Transgenic Models. , 2011, 1, 835-882.		27
295	The Effects of Anesthetic Preconditioning with Sevoflurane in an Experimental Lung Autotransplant Model in Pigs. Anesthesia and Analgesia, 2011, 113, 742-748.	2.2	49
296	Emergency granulopoiesis promotes neutrophil-dendritic cell encounters that prevent mouse lung allograft acceptance. Blood, 2011, 118, 6172-6182.	1.4	108
297	A randomized, placebo-controlled trial of aprotinin to reduce primary graft dysfunction following lung transplantation. Clinical Transplantation, 2011, 25, 90-96.	1.6	12
298	Comparing the Performance of Rat Lungs Preserved for 6 or 12 Hours After Perfusion With Low-Potassium Dextran or Histidine–Tryptophan–Ketoglutarate. Transplantation Proceedings, 2011, 43, 1520-1524.	0.6	5

# 299	ARTICLE Comparison Between Perfadex and Locally Manufactured Low-Potassium Dextran Solution for Pulmonary Preservation in an Ex Vivo Isolated Lung Perfusion Model. Transplantation Proceedings, 2011, 43, 84-88.	IF 0.6	CITATIONS
300	Procedimiento de autotrasplante pulmonar en el cerdo como modelo experimental para el estudio del sÃndrome de isquemia-reperfusión. Archivos De Bronconeumologia, 2011, 47, 283-289.	0.8	8
301	Modificaciones técnicas del modelo de trasplante pulmonar ortotópico en ratas con donantes en muerte cerebral. Archivos De Bronconeumologia, 2011, 47, 488-494.	0.8	5
302	Lung water assessment in isolated lung perfusion model via reactance monitoring. , 2011, 2011, 47-50.		0
303	lschemia and reperfusion—from mechanism to translation. Nature Medicine, 2011, 17, 1391-1401.	30.7	2,524
304	Estradiol Worsens the Syndrome of Ischemia-Reperfusion Injury in an Experimental Lung Transplantation Model. Lung, 2011, 189, 251-255.	3.3	7
305	Dynamic changes of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) on pulmonary injury induced by ischemia–reperfusion in rats. Irish Journal of Medical Science, 2011, 180, 483-488.	1.5	4
306	Oxygenated Perfluorocarbons Protect the Intestine From the Ischemia/Reperfusion Injury in Rabbits. Vascular and Endovascular Surgery, 2011, 45, 426-432.	0.7	3
307	Beneficial effects of synthetic KL4 surfactant in experimental lung transplantation. European Respiratory Journal, 2011, 37, 925-932.	6.7	15
308	Elevated Pulmonary Artery Pressure Is a Risk Factor for Primary Graft Dysfunction Following Lung Transplantation for Idiopathic Pulmonary Fibrosis. Chest, 2011, 139, 782-787.	0.8	85
309	Intraoperative lung edema monitoring by microwave reflectometryâ~†. Interactive Cardiovascular and Thoracic Surgery, 2011, 12, 540-544.	1.1	7
310	Immediate postoperative inflammatory response predicts long-term outcome in lung-transplant recipients. Interactive Cardiovascular and Thoracic Surgery, 2012, 15, 603-607.	1.1	16
311	Modulation of monocyte chemoattractant protein-1 expression by ischaemic preconditioning in a lung autotransplant model. European Journal of Cardio-thoracic Surgery, 2012, 41, 933-939.	1.4	7
312	Update on lung transplantation: programmes, patients and prospects. European Respiratory Review, 2012, 21, 271-305.	7.1	36
313	Ex Vivo Adenoviral Vector Gene Delivery Results in Decreased Vector-associated Inflammation Pre- and Post–lung Transplantation in the Pig. Molecular Therapy, 2012, 20, 1204-1211.	8.2	101
314	Nitric Oxide and L-Arginine Deficiency in Cystic Fibrosis. Current Pharmaceutical Design, 2012, 18, 726-736.	1.9	47
315	Reconditioning Lungs Donated After Cardiac Death Using Short-Term Hypothermic Machine Perfusion. Transplantation, 2012, 94, 999-1004.	1.0	14
316	Preoperative Echocardiographic-Defined Moderate–Severe Pulmonary Hypertension Predicts Prolonged Duration of Mechanical Ventilation Following Lung Transplantation for Patients with COPD. Lung, 2012, 190, 635-643.	3.3	11

#	Article	IF	Citations
317	Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats. Journal of Surgical Research, 2012, 178, 81-91.	1.6	39
318	Inhaled hydrogen sulfide improves graft function in an experimental model of lung transplantation. Journal of Surgical Research, 2012, 178, 593-600.	1.6	22
319	Plasma monocyte chemotactic protein-1 levels at 24 hours are a biomarker of primary graft dysfunction after lung transplantation. Translational Research, 2012, 160, 435-442.	5.0	26
320	Lung Transplantation for Interstitial Lung Disease. Clinics in Chest Medicine, 2012, 33, 179-189.	2.1	8
321	Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice. Nature Communications, 2012, 3, 649.	12.8	162
322	Peculiar mechanisms of graft recovery through anti-inflammatory responses after rat lung transplantation from donation after cardiac death. Transplant Immunology, 2012, 26, 133-139.	1.2	4
323	Suppression of cardiac allograft vasculopathy in mice by inhibition of CC-motif chemokine receptor 5. Transplant Immunology, 2012, 26, 128-132.	1.2	2
324	TRPV1 Agonist Capsaicin Attenuates Lung Ischemia-Reperfusion Injury in Rabbits. Journal of Surgical Research, 2012, 173, 153-160.	1.6	42
325	Hydrogen-Rich Saline Attenuates Lung Ischemia-Reperfusion Injury in Rabbits. Journal of Surgical Research, 2012, 174, e11-e16.	1.6	20
326	Histologic and functional evaluation of lungs reconditioned by ex vivo lung perfusion. Journal of Heart and Lung Transplantation, 2012, 31, 305-309.	0.6	32
327	Reconditioning of lungs donated after circulatory death with normothermic ex vivo lung perfusion. Journal of Heart and Lung Transplantation, 2012, 31, 187-193.	0.6	46
328	Searching for novel molecular targets of chronic rejection in an orthotopic experimental lung transplantation model. Journal of Heart and Lung Transplantation, 2012, 31, 213-221.	0.6	10
329	Revisiting the pathologic finding of diffuse alveolar damage after lung transplantation. Journal of Heart and Lung Transplantation, 2012, 31, 354-363.	0.6	70
330	Alveolar preservation with high inflation pressure and intermediate oxygen concentration reduces ischemia-reperfusion injury of the lung. Journal of Heart and Lung Transplantation, 2012, 31, 531-537.	0.6	5
331	Intratracheal administration of p38α short-hairpin RNA plasmid ameliorates lung ischemia-reperfusion injury in rats. Journal of Heart and Lung Transplantation, 2012, 31, 655-662.	0.6	25
332	Physiologic assessment of the ex vivo donor lung for transplantation. Journal of Heart and Lung Transplantation, 2012, 31, 1120-1126.	0.6	107
333	Hydrogen saline is protective for acute lung ischaemia/reperfusion injuries in rats. Heart Lung and Circulation, 2012, 21, 556-563.	0.4	20
334	Risk Factors and Survival Impact of Primary Graft Dysfunction After Lung Transplantation in a Single Institution. Transplantation Proceedings, 2012, 44, 2462-2468.	0.6	31

ARTICLE IF CITATIONS Highâ€Altitude Pulmonary Edema. , 2012, 2, 2753-2773. 335 121 Angiogenesis Inhibitor Vasohibin-1 Enhances Stress Resistance of Endothelial Cells via Induction of 2.5 SOD2 and SIRT1. PLoS ONE, 2012, 7, e46459. 337 Pulmonary Transplantation and Ischemia-Reperfusion Injury., 2012, , . 3 A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection. Clinical and Experimental Immunology, 2011, 167, 158-168. Interplay of endothelial and inducible nitric oxide synthases modulates the vascular response to 340 3.8 15 ischaemía–reperfusion in the rabbit lung. Acta Physiologica, 2012, 204, 331-343. Suppression of NF-Î⁰B pathway by crocetin contributes to attenuation of lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology, 2012, 674, 391-396. 3.5 108 Donor Type Impact on Ischemia-Reperfusion Injury After Lung Transplantation. Annals of Thoracic 342 1.3 7 Surgery, 2012, 93, 913-920. Preoperative Recipient Cytokine Levels Are Associated With Early Lung Allograft Dysfunction. Annals of Thoracic Surgery, 2012, 93, 1843-1849. 1.3 The Fate of Patients on the Waiting List for Lung Transplantation in Korea. Transplantation 344 0.6 23 Proceedings, 2012, 44, 865-869. Protective Effect of Melatonin on Liver Ischemia-Reperfusion Induced Pulmonary Microvascular Injury 345 in Rats. Transplantation Proceedings, 2012, 44, 962-965. Therapeutic effect of surfactant inhalation during warm ischemia in an isolated rat lung perfusion 346 1.6 10 model. Transplant International, 2012, 25, 1096-1105. Metabolism of hyperpolarized $[1\hat{a} \in \sup 13 < \sup C]$ pyruvate in the isolated perfused rat lung $\hat{a} \in a$ ischemia study. NMR in Biomedicine, 2012, 25, 1113-1118. 347 2.8 Remifentanil ameliorates intestinal ischemia-reperfusion injury. BMC Gastroenterology, 2013, 13, 69. 348 2.0 47 Protective effect of edaravone for tourniquet-induced ischemia-reperfusion injury on skeletal muscle 349 in murine hindlimb. BMC Musculoskeletal Disorders, 2013, 14, 113. Systemic Administration of FC-77 Dampens Ischemia–Reperfusion-Induced Acute Lung Injury in Rats. 350 12 3.8 Inflammation, 2013, 36, 1383-1392. Sivelestat Prevents Cytoskeletal Rearrangements in Neutrophils Resulting from Lung Re-expansion Following One-Lung Ventilation During Thoracic Surgery. Inflammation, 2013, 36, 1479-1484. The impact of prolonged cold preservation on the graft function and gene expression levels in an 352 1.53 experimental lung transplantation model. Surgery Today, 2013, 43, 81-87. Effect of a Vascular Endothelial Cadherin Antagonist in a Rat Lung Transplant Model. Annals of 1.3 Thoracic Surgery, 2013, 95, 1028-1033.

#	Article	IF	CITATIONS
354	A physiologic and biochemical profile of clinically rejected lungs on a normothermic exÂvivo lung perfusion platform. Journal of Surgical Research, 2013, 183, 75-83.	1.6	17
355	Endobronchial perfluorocarbon administration decreases lung injury in an experimental model of ischemia and reperfusion. Journal of Surgical Research, 2013, 183, 835-840.	1.6	12
356	Effect of inhaled tacrolimus on ischemia reperfusion injury in rat lung transplant model. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 1213-1219.	0.8	14
357	Gene Set Enrichment Analysis Identifies Key Innate Immune Pathways in Primary Graft Dysfunction After Lung Transplantation. American Journal of Transplantation, 2013, 13, 1898-1904.	4.7	66
358	Therapeutic role of toll-like receptor modification in cardiovascular dysfunction. Vascular Pharmacology, 2013, 58, 231-239.	2.1	22
359	Donor management and lung preservation for lung transplantation. Lancet Respiratory Medicine,the, 2013, 1, 318-328.	10.7	93
360	Adenosine A3 Receptor Activation Attenuates Lung Ischemia-Reperfusion Injury. Annals of Thoracic Surgery, 2013, 95, 1762-1767.	1.3	29
361	Inhibition of hydrogen sulfide generation contributes to lung injury after experimental orthotopic lung transplantation. Journal of Surgical Research, 2013, 182, e25-e33.	1.6	22
362	Participation of autophagy in lung ischemia–reperfusion injury inÂvivo. Journal of Surgical Research, 2013, 182, e79-e87.	1.6	35
363	Hydrogen inhalation decreases lung graft injury in brain-dead donor rats. Journal of Heart and Lung Transplantation, 2013, 32, 251-258.	0.6	30
364	Ischemic postconditioning downregulates Egr-1 expression and attenuates postischemic pulmonary inflammatory cytokine release and tissue injury in rats. Journal of Surgical Research, 2013, 181, 204-212.	1.6	14
365	Lung Ischemia Reperfusion Injury. Seminars in Cardiothoracic and Vascular Anesthesia, 2013, 17, 28-43.	1.0	97
366	Short-term inhalation of nitric oxide inhibits activations of toll-like receptor 2 and 4 in the lung after ischemia-reperfusion injury in mice. Journal of Huazhong University of Science and Technology [Medical Sciences], 2013, 33, 219-223.	1.0	10
367	Respiratory Regulation - The Molecular Approach. Advances in Experimental Medicine and Biology, 2013, , .	1.6	2
368	Nebulized nitrite protects rat lung grafts from ischemia reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1108-1116.e1.	0.8	19
369	Sodium hydrosulfide alleviates lung inflammation and cell apoptosis following resuscitated hemorrhagic shock in rats. Acta Pharmacologica Sinica, 2013, 34, 1515-1525.	6.1	28
370	Immunotargeting of the Pulmonary Endothelium via Angiotensin-Converting-Enzyme in Isolated Ventilated and Perfused Human Lung. Advances in Experimental Medicine and Biology, 2013, 756, 203-212.	1.6	9
371	Sevoflurane suppresses tumour necrosis factor-α-induced inflammatory responses in small airway epithelial cells after anoxia/reoxygenation. British Journal of Anaesthesia, 2013, 110, 637-645.	3.4	29

#	Article	IF	CITATIONS
372	Timing of Heparin and Thrombus Formation in Donor Lungs after Cardiac Death. Thoracic and Cardiovascular Surgeon, 2013, 61, 246-250.	1.0	9
373	Primary Graft Dysfunction. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 305-319.	2.1	117
374	Flush at room temperature followed by storage on ice creates the best lung graft preservation in rats. Transplant International, 2013, 26, 751-760.	1.6	5
375	Early Plasma Soluble Receptor for Advanced Glycation End-Product Levels Are Associated With Bronchiolitis Obliterans Syndrome. American Journal of Transplantation, 2013, 13, 754-759.	4.7	17
376	Partial removal of the pulmonary artery in video-assisted thoracic surgery for non-small cell lung cancer. Journal of Biomedical Research, 2013, 27, 310.	1.6	4
377	Protective Effect of Surfactant Inhalation against Warm Ischemic Injury in an Isolated Rat Lung Ventilation Model. PLoS ONE, 2013, 8, e72574.	2.5	3
378	Ischemia-Reperfusion Lung Injury Is Attenuated in MyD88-Deficient Mice. PLoS ONE, 2013, 8, e77123.	2.5	24
379	Preoperative Cardiac Variables of Diastolic Dysfunction and Clinical Outcomes in Lung Transplant Recipients. Journal of Transplantation, 2013, 2013, 1-9.	0.5	3
380	Lung Re-Expansion Following One-Lung Ventilation Induces Neutrophil Cytoskeletal Rearrangements in Rats. Annals of Thoracic and Cardiovascular Surgery, 2014, 20, 276-283.	0.8	5
381	Pathology of Lung Transplantation. , 2014, , 694-706.		0
382	Attenuation of Lung Ischemia-Reperfusion Injury by Rho-Associated Kinase Inhibition in a Rat Model of Lung Transplantation. Annals of Thoracic and Cardiovascular Surgery, 2014, 20, 359-364.	0.8	6
383	Current Status of Lung Transplantation. , 2014, , 649-669.		0
384	Lung xenotransplantation: recent progress and current status. Xenotransplantation, 2014, 21, 496-506.	2.8	15
385	Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death and Disease, 2014, 5, e1330-e1330.	6.3	74
386	Optimal Lung Inflation Techniques in a Rat Lung Transplantation Model: A Revisit. Thoracic and Cardiovascular Surgeon, 2014, 62, 427-433.	1.0	3
387	Incidence and severity of primary graft dysfunction after lung transplantation using rejected grafts reconditioned with ex vivo lung perfusionâ€. European Journal of Cardio-thoracic Surgery, 2014, 46, 789-793.	1.4	55
388	Lung transplantation from initially rejected donors after ex vivo lung reconditioning: the French experienceâ€. European Journal of Cardio-thoracic Surgery, 2014, 46, 794-799.	1.4	97

#	Article	IF	Citations
390	Extracorporeal Venovenous Membrane Oxygenation in the Treatment of Respiratory Insufficiency Following Cardiac Surgery. Journal of Cardiac Surgery, 2014, 29, 270-273.	0.7	4
391	Overview of Clinical Lung Transplantation. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015628-a015628.	6.2	67
392	Effects of exogenous surfactant on the nonâ€heartâ€beating donor lung graft in experimental lung transplantation – a stereological study. Journal of Anatomy, 2014, 224, 594-602.	1.5	7
393	Effects of Cyclosporine A in <i>Ex Vivo</i> Reperfused Pig Lungs. Microcirculation, 2014, 21, 84-92.	1.8	9
394	Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplantation Research, 2014, 3, 19.	1.5	52
395	Hydrogen Preconditioning During Ex Vivo Lung Perfusion Improves the Quality of Lung Grafts in Rats. Transplantation, 2014, 98, 499-506.	1.0	50
396	Histological and immunohistochemical study on the possible protective effect of curcumin on intestinal ischemia/reperfusion-induced lung injury in albino rats. Egyptian Journal of Histology, 2014, 37, 16-23.	0.1	2
397	Longitudinal Analysis of Whole Blood Transcriptomes to Explore Molecular Signatures Associated with Acute Renal Allograft Rejection. Bioinformatics and Biology Insights, 2014, 8, BBI.S13376.	2.0	8
398	Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nature Communications, 2014, 5, 4387.	12.8	100
399	CYP2J2 and EETs Protect against Oxidative Stress and Apoptosis <i>in Vivo</i> and <i>in Vitro</i> Following Lung Ischemia/Reperfusion. Cellular Physiology and Biochemistry, 2014, 33, 1663-1680.	1.6	49
400	Life-threatening Re-expansion Pulmonary Edema. Clinical Pulmonary Medicine, 2014, 21, 46-49.	0.3	1
401	The depletion of donor macrophages reduces ischaemia-reperfusion injury after mouse lung transplantation. European Journal of Cardio-thoracic Surgery, 2014, 45, 703-709.	1.4	14
402	Heavy Alcohol Use in Lung Donors Increases the Risk for Primary Graft Dysfunction. Alcoholism: Clinical and Experimental Research, 2014, 38, 2853-2861.	2.4	24
403	α1-Antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death. Journal of Heart and Lung Transplantation, 2014, 33, 309-315.	0.6	91
404	Alveolar Recruitment Maneuvers for One-Lung Ventilation During Thoracic Anesthesia. Current Anesthesiology Reports, 2014, 4, 160-169.	2.0	12
405	The interaction between Toll-like receptor 4 signaling pathway and hypoxia-inducible factor 1αÂin lung ischemia–reperfusion injury. Journal of Surgical Research, 2014, 188, 290-297.	1.6	26
407	Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L809-L815.	2.9	132
408	Do we need to cool the lung graft after exÂvivo lung perfusion? A preliminary study. Journal of Surgical Research, 2014, 192, 647-655.	1.6	7

#	Article	IF	CITATIONS
409	N-Acetylcysteine administration confers lung protection in different phases of lung ischaemia–reperfusion injury. Interactive Cardiovascular and Thoracic Surgery, 2014, 19, 894-899.	1.1	14
410	Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study. OMICS A Journal of Integrative Biology, 2014, 18, 682-695.	2.0	41
411	Complement System in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 467-473.	2.9	77
412	Lung transplantation for interstitial lung disease. Current Respiratory Care Reports, 2014, 3, 96-102.	0.6	1
413	Mast cells in a murine lung ischemia-reperfusion model of primary graft dysfunction. Respiratory Research, 2014, 15, 95.	3.6	9
414	Angiotensin Receptors as Sensitive Markers of Acute Bronchiole Injury After Lung Transplantation. Lung, 2014, 192, 563-569.	3.3	2
415	Clinical Risk Factors for Primary Graft Dysfunction in a Low-volume Lung Transplantation Center. Transplantation Proceedings, 2014, 46, 2329-2333.	0.6	15
417	Effect of high-frequency chest wall oscillation versus chest physiotherapy on lung function after lung transplant. Applied Nursing Research, 2014, 27, 59-66.	2.2	8
418	Plasmin administration during ex vivo lung perfusion ameliorates lung ischemia–reperfusion injury. Journal of Heart and Lung Transplantation, 2014, 33, 1093-1099.	0.6	30
419	A standardized model of brain death, donor treatment, and lung transplantation for studies on organ preservation and reconditioning. Intensive Care Medicine Experimental, 2014, 2, 12.	1.9	8
420	VEGF-A Blockade Reduces Reperfusion Edema but Favors Arterial Thromboembolism in a Rat Model of Orthotopic Lung Transplantation. Transplantation, 2014, 97, 908-916.	1.0	3
421	Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program. Journal of Visualized Experiments, 2015, , .	0.3	15
422	Cold ischemia-induced autophagy in rat lung tissue. Molecular Medicine Reports, 2015, 11, 2513-2519.	2.4	12
423	Lung Ischemia-Reperfusion is a Sterile Inflammatory Process Influenced by Commensal Microbiota in Mice. Shock, 2015, 44, 272-279.	2.1	49
424	The Effect of Activated Protein C on Attenuation of Ischemia-Reperfusion Injury in a Rat Muscle Flap Model. Annals of Plastic Surgery, 2015, 75, 448-454.	0.9	12
425	Valproic Acid Attenuates Acute Lung Injury Induced by Ischemia–Reperfusion in Rats. Anesthesiology, 2015, 122, 1327-1337.	2.5	59
426	Primary graft dysfunction. Current Opinion in Organ Transplantation, 2015, 20, 506-514.	1.6	96
427	Update on ischemia-reperfusion injury in lung transplantation. Current Opinion in Organ Transplantation, 2015, 20, 515-520.	1.6	73

#	Article	IF	CITATIONS
428	Ex Vivo Perfusion With Adenosine A2A Receptor Agonist Enhances Rehabilitation of Murine Donor Lungs After Circulatory Death. Transplantation, 2015, 99, 2494-2503.	1.0	29
429	Alternative solution for ex vivo lung perfusion, experimental study on donated human lungs non-accepted for transplantation. Acta Cirurgica Brasileira, 2015, 30, 359-365.	0.7	10
430	Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	4.0	186
431	CYP2J2 and EETs Protect Against Lung Ischemia/Reperfusion Injury via Anti-Inflammatory Effects in Vivo and in Vitro. Cellular Physiology and Biochemistry, 2015, 35, 2043-2054.	1.6	45
432	Differential toll-like receptor activation in lung ischemia reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 1653-1661.	0.8	23
433	The role of ex vivo lung perfusion in lung transplantation. Journal of the Intensive Care Society, 2015, 16, 58-63.	2.2	2
434	Association Between Prolonged Graft Ischemia and Primary Graft Failure or Survival Following Lung Transplantation. JAMA Surgery, 2015, 150, 547.	4.3	57
435	A murine model of lung ischemia and reperfusion injury: tricks of the trade. Journal of Surgical Research, 2015, 194, 659-666.	1.6	10
436	β2-Adrenoreceptor Agonist Inhalation During ExÂVivo Lung Perfusion Attenuates Lung Injury. Annals of Thoracic Surgery, 2015, 100, 480-486.	1.3	46
437	Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation. Experimental Lung Research, 2015, 41, 564-575.	1.2	3
438	Ginkgolide B Reduces the Degradation of Membrane Phospholipids to Prevent Ischemia/Reperfusion Myocardial Injury in Rats. Pharmacology, 2015, 96, 233-239.	2.2	25
439	Endoplasmic Reticulum Stress of Neutrophils Is Required for Ischemia/Reperfusion–Induced Acute Lung Injury. Journal of Immunology, 2015, 195, 4802-4809.	0.8	42
440	Post-conditioning with Cyclosporine A after a 24-hour cold ischemia in ex vivo reperfused pig lungs. Experimental Lung Research, 2015, 41, 554-563.	1.2	0
441	Fractal circuit sensors enable rapid quantification of biomarkers for donor lung assessment for transplantation. Science Advances, 2015, 1, e1500417.	10.3	29
442	Urinary Trypsin Inhibitor Attenuates Acute Lung Injury by Improving Endothelial Progenitor Cells Functions. Cellular Physiology and Biochemistry, 2015, 36, 1059-1068.	1.6	10
443	Phosphoenolpyruvate administration protects ischemia–reperfusion injury in isolated rabbit lungs. Journal of Anesthesia, 2015, 29, 635-638.	1.7	3
444	Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 596-602.e3.	0.8	35
445	Geranylgeranylacetone ameliorates lung ischemia/reperfusion injury by HSP70 and thioredoxin redox system: NF-kB pathway involved. Pulmonary Pharmacology and Therapeutics, 2015, 32, 109-115.	2.6	14

#	Article	IF	CITATIONS
446	Melatonin attenuates intestinal ischemia–reperfusion-induced lung injury in rats by upregulating N-myc downstream-regulated gene 2. Journal of Surgical Research, 2015, 194, 273-280.	1.6	24
447	Ascorbic acid prolongs the viability and stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear magnetic resonance. Free Radical Biology and Medicine, 2015, 89, 62-71.	2.9	15
448	Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-16.	4.0	283
449	Functional Roles of Tumor Necrosis Factor-Alpha and Interleukin 1-Beta in Hypoxia and Reoxygenation. Annals of Thoracic Surgery, 2015, 99, 1200-1205.	1.3	15
450	Preventing the NET Negative in Primary Graft Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 368-369.	5.6	2
451	The Role of Donor Chronic Alcohol Abuse in the Development of Primary Graft Dysfunction in Lung Transplant Recipients. American Journal of the Medical Sciences, 2015, 349, 117-123.	1.1	20
452	Role of Toll-Like Receptor-4 in Lung Ischemia-Reperfusion Injury. Annals of Thoracic Surgery, 2015, 99, 1193-1199.	1.3	40
453	Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats. Experimental Biology and Medicine, 2015, 240, 1214-1222.	2.4	26
454	Influence of right ventricular function on the development of primary graft dysfunction after lung transplantation. Journal of Heart and Lung Transplantation, 2015, 34, 1423-1429.	0.6	10
455	Neutrophil Extracellular Traps Are Pathogenic in Primary Graft Dysfunction after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 455-463.	5.6	187
456	The protective effect of hypercapnia on ischemia-reperfusion injury in lungs. Respiratory Physiology and Neurobiology, 2015, 205, 42-46.	1.6	5
457	13.1 Lungentransplantation. , 2016, , .		0
458	Current perspective of lung transplantation. Journal of the Korean Medical Association, 2016, 59, 119.	0.3	10
459	Anti-Vascular Endothelial Growth Factor Antibody Suppresses ERK and NF-κB Activation in Ischemia-Reperfusion Lung Injury. PLoS ONE, 2016, 11, e0159922.	2.5	20
460	Primary Graft Dysfunction and Mortality Following Lung Transplantation: A Role for Proadrenomedullin Plasma Levels. American Journal of Transplantation, 2016, 16, 634-639.	4.7	11
461	Alda-1 Attenuates Lung Ischemia-Reperfusion Injury by Reducing 4-Hydroxy-2-Nonenal in Alveolar Epithelial Cells. Critical Care Medicine, 2016, 44, e544-e552.	0.9	41
462	Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury*. Critical Care Medicine, 2016, 44, e604-e613.	0.9	24
463	Prospective validation of right ventricular role in primary graft dysfunction after lung transplantation. European Respiratory Journal, 2016, 48, 1732-1742.	6.7	5

#	Article	IF	CITATIONS
464	The effect of amifostine on lung ischaemia–reperfusion injury in rats. Interactive Cardiovascular and Thoracic Surgery, 2016, 23, 273-279.	1.1	3
465	Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury. Anesthesia and Analgesia, 2016, 123, 1437-1447.	2.2	31
466	Desflurane inhalation before ischemia increases ischemia–reperfusion-induced vascular leakage in isolated rabbit lungs. SpringerPlus, 2016, 5, 2031.	1.2	4
467	Ischemia reperfusion induced acute lung injury: Using everything and the kitchen sink. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 870-871.	0.8	1
468	Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. Journal of Heart and Lung Transplantation, 2016, 35, 1245-1254.	0.6	85
469	Immediate postoperative extubation in bilateral lung transplantation: predictive factors and outcomes. British Journal of Anaesthesia, 2016, 116, 847-854.	3.4	26
470	Potential benefits of melatonin in organ transplantation: a review. Journal of Endocrinology, 2016, 229, R129-R146.	2.6	27
471	Role of inflammatory cells and adenosine in lung ischemia reoxygenation injury using a model of lung donation after cardiac death. Experimental Lung Research, 2016, 42, 131-141.	1.2	9
472	Resolvin D1 Alleviates the Lung Ischemia Reperfusion Injury via Complement, Immunoglobulin, TLR4, and Inflammatory Factors in Rats. Inflammation, 2016, 39, 1319-1333.	3.8	22
473	Critical Care Management. , 2016, , 244-256.		0
474	Protective Effects of Imatinib on Ischemia/Reperfusion Injury in Rat Lung. Annals of Thoracic Surgery, 2016, 102, 1717-1724.	1.3	11
475	Pulmonary injury at the anhepatic phase without veno-venous bypass in portal hypertensive rats. Clinical and Experimental Hypertension, 2016, 38, 624-630.	1.3	1
476	Attenuation of Lung Ischemia-Reperfusion Injury: Silencing the Fas Gene*. Critical Care Medicine, 2016, 44, 1619-1620.	0.9	3
477	STUDY ON THE PROTECTION OF ISOLATED RABBIT'S PULMONARY ISCHEMIA REPERFUSION INJURY BY ADDING TANSHINONE IIA INTO LOW POTASSIUM DEXTRAN SOLUTION. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650094.	0.7	0
478	ÎV1-1 Reduces Pulmonary Ischemia Reperfusion-Induced Lung Injury by Inhibiting Necrosis and Mitochondrial Localization of PKCδ and p53. American Journal of Transplantation, 2016, 16, 83-98.	4.7	34
479	Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. Journal of Anesthesia, 2016, 30, 755-762.	1.7	44
480	Discussion. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 846-849.	0.8	0
481	Human α1-antitrypsin improves early post-transplant lung function: Pre-clinical studies in a pig lung transplant model. Journal of Heart and Lung Transplantation, 2016, 35, 913-921.	0.6	52

#	Article	IF	CITATIONS
482	Resolvin D1 mitigates energy metabolism disorder after ischemia–reperfusion of the rat lung. Journal of Translational Medicine, 2016, 14, 81.	4.4	25
483	Vascular Endothelial-Cadherin Expression After Reperfusion Correlates With Lung Injury in Rat Lung Transplantation. Annals of Thoracic Surgery, 2016, 101, 2161-2167.	1.3	3
484	TRPV1 and neuropeptide receptor immunoreactivity and expression in the rat lung and brainstem after lung ischemia-reperfusion injury. Journal of Surgical Research, 2016, 203, 183-192.	1.6	13
485	Reduction of ischaemia–reperfusion injury in a rat lung transplantation model by low-concentration GV1001. European Journal of Cardio-thoracic Surgery, 2016, 50, 972-979.	1.4	10
486	Circulating Cell Death Biomarkers May Predict Survival in Human Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 97-105.	5.6	29
487	Graft dysfunction immediately after reperfusion predicts short-term outcomes in living-donor lobar lung transplantation but not in cadaveric lung transplantation. Interactive Cardiovascular and Thoracic Surgery, 2016, 22, 314-320.	1.1	6
488	Inhibition of Toll-like receptor 4 signaling ameliorates lung ischemia–reperfusion injury in acute hyperglycemic conditions. Journal of Heart and Lung Transplantation, 2016, 35, 815-822.	0.6	12
489	Pretreatment with bone marrow–derived mesenchymal stromal cell–conditioned media confers pulmonary ischemic tolerance. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 841-849.	0.8	27
490	Argon and xenon ventilation during prolonged exÂvivo lung perfusion. Journal of Surgical Research, 2016, 201, 44-52.	1.6	23
491	Validating the use of short interfering RNA as a novel technique for cell-specific target gene knockdown in lung ischemia–reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 499-506.	0.8	4
492	Increased Lung Ischemia–Reperfusion Injury in Aquaporin 1–Null Mice Is Mediated via Decreased Hypoxia-Inducible Factor 2α Stability. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 882-891.	2.9	15
493	Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. Journal of Heart and Lung Transplantation, 2016, 35, 242-250.	0.6	18
494	Lung inflation with hydrogen sulfide during the warm ischemia phase ameliorates injury in rat donor lungs via metabolic inhibition after cardiac death. Surgery, 2017, 161, 1287-1298.	1.9	18
495	BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats. Inflammation, 2017, 40, 778-787.	3.8	10
496	Protein biomarkers associated with primary graft dysfunction following lung transplantation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L531-L541.	2.9	37
497	Chemokine Involvement in Lung Injury Secondary to Ischaemia/Reperfusion. Lung, 2017, 195, 333-340.	3.3	16
498	Pathogenetic role of endothelial nitric oxide synthase uncoupling during lung ischaemia–reperfusion injuryâ€. European Journal of Cardio-thoracic Surgery, 2017, 52, 256-263.	1.4	14
499	Targeting of nicotinamide phosphoribosyltransferase enzymatic activity ameliorates lung damage induced by ischemia/reperfusion in rats. Respiratory Research, 2017, 18, 71.	3.6	20

#	Article	IF	CITATIONS
500	Targeting Circulating Leukocytes and Pyroptosis During Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation, 2017, 101, 2841-2849.	1.0	40
501	Time-lapse microscopy of lung endothelial cells under hypoxia. Proceedings of SPIE, 2017, , .	0.8	1
502	Ozone Therapy Protects Against Rejection in a Lung Transplantation Model: A New Treatment?. Annals of Thoracic Surgery, 2017, 104, 458-464.	1.3	10
503	Effects and mechanisms of compound Chinese medicine and major ingredients on microcirculatory dysfunction and organ injury induced by ischemia/reperfusion. , 2017, 177, 146-173.		143
504	Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO ₂ life [®] in pig lung transplantation model. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-8.	2.8	22
505	Primary Graft Dysfunction After Lung Transplantation. Clinics in Chest Medicine, 2017, 38, 641-654.	2.1	55
506	Pharmacologic Protection of Mitochondrial DNA Integrity May Afford a New Strategy for Suppressing Lung Ischemia-Reperfusion Injury. Annals of the American Thoracic Society, 2017, 14, S210-S215.	3.2	12
507	Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species. Advances in Experimental Medicine and Biology, 2017, 967, 195-225.	1.6	29
508	Early Postoperative Problems After Lung Transplantation: First-Year Experiences in Light of the Newly Established National Hungarian Lung Transplantation Program. Transplantation Proceedings, 2017, 49, 1538-1543.	0.6	3
509	Ex vivo administration of trimetazidine improves post-transplant lung function in pig modelâ€. European Journal of Cardio-thoracic Surgery, 2017, 52, 171-177.	1.4	21
510	Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury. Transplantation Proceedings, 2017, 49, 1461-1466.	0.6	13
511	Dexmedetomidine preconditioning protects against lung injury induced by ischemia-reperfusion through inhibition of autophagy. Experimental and Therapeutic Medicine, 2017, 14, 973-980.	1.8	21
512	Budesonide instillation immediately after reperfusion ameliorates ischemia/reperfusion-induced injury in the transplanted lung of rat. Experimental Lung Research, 2017, 43, 439-446.	1.2	2
513	lrisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Science Translational Medicine, 2017, 9, .	12.4	139
514	Ex Vivo Lung Perfusion. Current Transplantation Reports, 2017, 4, 149-158.	2.0	2
515	Improved metabolism and redox state with a novel preservation solution: implications for donor lungs after cardiac death (DCD). Pulmonary Circulation, 2017, 7, 494-504.	1.7	2
516	Protective Effect of Inhaled Rho-Kinase Inhibitor on Lung Ischemia-Reperfusion Injury. Annals of Thoracic Surgery, 2017, 103, 476-483.	1.3	8
517	Postoperative Critical Care of Lung Transplant Patients. , 2017, , 111-124.		1

#	Article	IF	CITATIONS
518	Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Therapy, 2017, 24, 3-11.	4.5	40
519	Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respiratory Research, 2017, 18, 212.	3.6	104
520	Biliverdin Protects the Isolated Rat Lungs from Ischemia-reperfusion Injury via Antioxidative, Anti-inflammatory and Anti-apoptotic Effects. Chinese Medical Journal, 2017, 130, 859-865.	2.3	13
521	Glycyrrhizin Ameliorate Ischemia Reperfusion Lung Injury through Downregulate TLR2 Signaling Cascade in Alveolar Macrophages. Frontiers in Pharmacology, 2017, 8, 389.	3.5	34
522	Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion. Frontiers in Physiology, 2017, 8, 257.	2.8	6
523	Ac2-26, an Annexin A1 Peptide, Attenuates Ischemia-Reperfusion-Induced Acute Lung Injury. International Journal of Molecular Sciences, 2017, 18, 1771.	4.1	43
524	Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	4.0	66
525	Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury. PLoS ONE, 2017, 12, e0187637.	2.5	54
526	Immunoregulatory effects of multipotent adult progenitor cells in a porcine ex vivo lung perfusion model. Stem Cell Research and Therapy, 2017, 8, 159.	5.5	51
527	Technological Advances in Organ Transplantation. , 2017, , .		0
527 528	Technological Advances in Organ Transplantation. , 2017, , . Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097.	1.4	0 47
	Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal	1.4	
528	Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097. Donor Club Cell Secretory Protein G38A Polymorphism Is Associated With a Decreased Risk of Primary		47
528 529	 Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097. Donor Club Cell Secretory Protein G38A Polymorphism Is Associated With a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation. Transplantation, 2018, 102, 1382-1390. Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of 	1.0	47 5
528 529 530	 Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097. Donor Club Cell Secretory Protein G38A Polymorphism Is Associated With a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation. Transplantation, 2018, 102, 1382-1390. Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of Injuries During Ischemia and Reperfusion. Transplantation, 2018, 102, 760-768. Preservation with α1-antitrypsin improves primary graft function of murine lung transplants. Journal 	1.0 1.0	47 5 17
528 529 530 531	 Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097. Donor Club Cell Secretory Protein G38A Polymorphism Is Associated With a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation. Transplantation, 2018, 102, 1382-1390. Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of Injuries During Ischemia and Reperfusion. Transplantation, 2018, 102, 760-768. Preservation with α1-antitrypsin improves primary graft function of murine lung transplants. Journal of Heart and Lung Transplantation, 2018, 37, 1021-1028. Intraoperative extracorporeal membrane oxygenation and the possibility of postoperative prolongation improve survival in bilateral lung transplantation. Journal of Thoracic and 	1.0 1.0 0.6	47 5 17 20
528 529 530 531 532	 Pathophysiology and classification of primary graft dysfunction after lung transplantation. Journal of Thoracic Disease, 2017, 9, 4084-4097. Donor Club Cell Secretory Protein G38A Polymorphism Is Associated With a Decreased Risk of Primary Graft Dysfunction in the French Cohort in Lung Transplantation. Transplantation, 2018, 102, 1382-1390. Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of Injuries During Ischemia and Reperfusion. Transplantation, 2018, 102, 760-768. Preservation with α1-antitrypsin improves primary graft function of murine lung transplants. Journal of Heart and Lung Transplantation, 2018, 37, 1021-1028. Intraoperative extracorporeal membrane oxygenation and the possibility of postoperative prolongation improve survival in bilateral lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2193-2206.e3. Imatinib Is Protective Against Ischemia-Reperfusion Injury in an ExÂVivo Rabbit Model of Lung Injury. 	1.0 1.0 0.6 0.8	47 5 17 20 167

#	Article	IF	CITATIONS
536	Intravascular donor monocytes play a central role in lung transplant ischaemia-reperfusion injury. Thorax, 2018, 73, 350-360.	5.6	29
537	Apigenin Reduces NF-κB and Subsequent Cytokine Production as Protective Effect in a Rodent Animal Model of Lung Ischemia-Reperfusion Injury. Journal of Investigative Surgery, 2018, 31, 96-106.	1.3	8
538	Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. Journal of Heart and Lung Transplantation, 2018, 37, 283-291.	0.6	48
539	Comparison of two strategies for ex vivo lung perfusion. Journal of Heart and Lung Transplantation, 2018, 37, 292-298.	0.6	23
540	Procalcitonin accurately predicts lung transplant adults with low risk of pulmonary graft dysfunction and intensive care mortality. Journal of Critical Care, 2018, 44, 142-147.	2.2	8
541	Early Graft Dysfunction After Lung Transplantation. Current Pulmonology Reports, 2018, 7, 176-187.	1.3	9
542	Irisin Protects Heart Against Ischemia-Reperfusion Injury Through a SOD2-Dependent Mitochondria Mechanism. Journal of Cardiovascular Pharmacology, 2018, 72, 259-269.	1.9	90
543	Cellular and acellular ex vivo lung perfusion preserve functional lung ultrastructure in a large animal model: a stereological study. Respiratory Research, 2018, 19, 238.	3.6	14
544	Inhibition of NKCC1 Modulates Alveolar Fluid Clearance and Inflammation in Ischemia-Reperfusion Lung Injury via TRAF6-Mediated Pathways. Frontiers in Immunology, 2018, 9, 2049.	4.8	19
546	Blood pressure targeting by partial REBOA is possible in severe hemorrhagic shock in pigs and produces less circulatory, metabolic and inflammatory sequelae than total REBOA. Injury, 2018, 49, 2132-2141.	1.7	58
547	Effects of monoacylglycerol lipase inhibitor URB602 on lung ischemia-reperfusion injury in mice. Biochemical and Biophysical Research Communications, 2018, 506, 578-584.	2.1	17
548	Rising to the Challenge of Unmet Need: Expanding the Lung Donor Pool. Current Pulmonology Reports, 2018, 7, 92-100.	1.3	1
549	Lung Transplantation in Interstitial Lung Disease. , 2018, , 107-119.		0
550	Penehyclidine hydrochloride preconditioning provides pulmonary and systemic protection in a rat model of lung ischaemia reperfusion injury. European Journal of Pharmacology, 2018, 839, 1-11.	3.5	9
551	The Biological Role of NADPH Oxidases in Ischemia-Reperfusion Injury Mediated Pulmonary Inflammation. , 2018, , 119-126.		1
552	Cerebral Ischemic Reperfusion Injuries (CIRI). Springer Series in Translational Stroke Research, 2018, , .	0.1	0
553	Lazaroid (U-74389G) ameliorates lung injury due to lipid peroxidation and nitric oxide synthase-dependent reactive oxygen species generation caused by remote systematic ischemia-reperfusion following thoracoabdominal aortic occlusion. International Journal of Surgery, 2018, 55, 156-161.	2.7	1
554	Pig lung transplant survival model. Nature Protocols, 2018, 13, 1814-1828.	12.0	30

#	Article	IF	CITATIONS
555	Ischemia-reperfusion induces death receptor-independent necroptosis via calpain-STAT3 activation in a lung transplant setting. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L595-L608.	2.9	45
556	Cytokine–Ion Channel Interactions in Pulmonary Inflammation. Frontiers in Immunology, 2017, 8, 1644.	4.8	33
557	Cobra Venom Factor-induced complement depletion protects against lung ischemia reperfusion injury through alleviating blood-air barrier damage. Scientific Reports, 2018, 8, 10346.	3.3	16
558	SPRED2 deficiency may lead to lung ischemia–reperfusion injury via ERK1/2 signaling pathway activation. Surgery Today, 2018, 48, 1089-1095.	1.5	18
559	Increased warm ischemia time during vessel harvest decreases the primary patency of cryopreserved conduits in patients undergoing lower extremity bypass. Journal of Vascular Surgery, 2019, 69, 164-173.	1.1	2
560	The relation of oxidative stress and apoptosis to histopathologic alterations in the lungs as a result of global cerebral ischemia. Biotechnic and Histochemistry, 2019, 94, 555-568.	1.3	3
561	Total parenteral nutrition in ex vivo lung perfusion: Addressing metabolism improves both inflammation and oxygenation. American Journal of Transplantation, 2019, 19, 3390-3397.	4.7	24
562	Gas6/Axl signaling attenuates alveolar inflammation in ischemia-reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway. PLoS ONE, 2019, 14, e0219788.	2.5	25
563	HSP70 silencing aggravates apoptosis induced by hypoxia/reoxygenation in vitro. Experimental and Therapeutic Medicine, 2019, 18, 1013-1020.	1.8	12
564	Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. International Journal of Molecular Sciences, 2019, 20, 5034.	4.1	187
565	Mesenchymal stem cell–derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. Journal of Heart and Lung Transplantation, 2019, 38, 1306-1316.	0.6	52
566	Negative impact of recipient SPRED2 deficiency on transplanted lung in a mouse model. Transplant Immunology, 2019, 57, 101242.	1.2	6
567	Mesenchymal Stem Cell Therapy Facilitates Donor Lung Preservation by Reducing Oxidative Damage during Ischemia. Stem Cells International, 2019, 2019, 1-13.	2.5	10
568	Vein Suturing Results in Worse Lung Graft Outcomes Compared to the Cuff Method. European Surgical Research, 2019, 60, 106-116.	1.3	2
569	Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury. Experimental Cell Research, 2019, 376, 227-235.	2.6	30
570	Detection of lung transplant rejection in a rat model using hyperpolarized [1â€ ¹³ C] pyruvateâ€based metabolic imaging. NMR in Biomedicine, 2019, 32, e4107.	2.8	8
571	Protective Effect of Thymosin β4 against Abdominal Aortic Ischemia–Reperfusion-Induced Acute Lung Injury in Rats. Medicina (Lithuania), 2019, 55, 187.	2.0	5
572	Protective effects of hydrogen inhalation during the warm ischemia phase against lung ischemia-reperfusion injury in rat donors after cardiac death. Microvascular Research, 2019, 125, 103885.	2.5	11

#	Article	IF	CITATIONS
573	Targeting F-Box Protein Fbxo3 Attenuates Lung Injury Induced by Ischemia-Reperfusion in Rats. Frontiers in Pharmacology, 2019, 10, 583.	3.5	15
574	Endothelial Glycocalyx Shedding Predicts Donor Organ Acceptability and Is Associated With Primary Graft Dysfunction in Lung Transplant Recipients. Transplantation, 2019, 103, 1277-1285.	1.0	21
575	Elevated pre-transplant left ventricular end-diastolic pressure increases primary graft dysfunction risk in double lung transplant recipients. Journal of Heart and Lung Transplantation, 2019, 38, 710-718.	0.6	12
576	Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals, 2019, 12, 23.	3.8	43
577	Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clinical Science, 2019, 133, 597-609.	4.3	83
578	The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model. Brazilian Journal of Anesthesiology (Elsevier), 2019, 69, 48-57.	0.4	3
579	Hydrogen sulfide attenuates lung ischemia–reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats. Surgery, 2019, 165, 1014-1026.	1.9	19
580	Ulinastatin ameliorates LPSâ€ʻinduced pulmonary inflammation and injury by blocking the MAPK/NFâ€́κB signaling pathways in rats. Molecular Medicine Reports, 2019, 20, 3347-3354.	2.4	16
581	Cytokine Biomarkers as Indicators of Primary Graft Dysfunction, Acute Rejection, and Chronic Lung Allograft Dysfunction in Lung Transplant Recipients: A Review. , 2019, , .		2
582	Mimics of Acute Respiratory Distress Syndrome. Critical Care Nursing Quarterly, 2019, 42, 417-430.	0.8	2
583	Selective Recruitment of Large Lower Lobe Atelectasis on Donor Back Table in Rejected Donor Lungs. Transplantation Direct, 2019, 5, e453.	1.6	6
585	The protective effect of prone lung position on ischemia–reperfusion injury and lung function in an exÂvivo porcine lung model. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 425-433.	0.8	31
586	Discussion. Journal of Vascular Surgery, 2019, 69, 172-173.	1.1	0
587	Primary Graft Dysfunction after Lung Transplantation. Turkish Journal of Anaesthesiology and Reanimation, 2020, 43, 418-423.	0.4	21
588	Commentary: Cross circulation comes full circle (via lung transplantation). Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1654-1655.	0.8	0
589	Enhanced Mitochondrial DNA Repair Resuscitates Transplantable Lungs Donated After Circulatory Death. Journal of Surgical Research, 2020, 245, 273-280.	1.6	9
590	Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 63-72.	5.6	22
591	Perioperative Management of Bleeding and Transfusion for Lung Transplantation. Seminars in Cardiothoracic and Vascular Anesthesia, 2020, 24, 74-83.	1.0	20

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
592	Mitochondrial DNA Stimulates TLR9-Dependent Neutrophil Extracellular Trap Formation in Prim Graft Dysfunction. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 364-3		2.9	70
593	Intraâ€bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs cl to >60 days and promotes increased porcine lung transplant survival. Xenotransplantation, 27, e12552.		2.8	36
595	Role of donor macrophages after heart and lung transplantation. American Journal of Transplantation, 2020, 20, 1225-1235.		4.7	22
596	Bilateral lung transplantation on intraoperative extracorporeal membrane oxygenator: An observational study. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 320-327.e1.		0.8	99
597	Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplantation, 2020, 29, 096368972095414.		2.5	18
598	Human Lungs Airway Epithelium Upregulate MicroRNA-17 and MicroRNA-548b in Response to Ischemia and Ex Vivo Reperfusion. Transplantation, 2020, 104, 1842-1852.	Cold	1.0	11
599	Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nature Medic 2020, 26, 1102-1113.	ine,	30.7	56
600	Dexmedetomidine Ameliorates Lung Injury Induced by Intestinal Ischemia/Reperfusion by Upre Cannabinoid Receptor 2, Followed by the Activation of the Phosphatidylinositol 3-Kinase/Akt Pa Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.		4.0	19
601	Commentary: A tale of two isoforms in lung ischemia reperfusion injury: One is bad, two is goo Journal of Thoracic and Cardiovascular Surgery, 2020, 162, e158-e159.	d.	0.8	0
602	Impact of allograft ischemic time on long-term survival in lung transplantation: a Swedish monocentric study. Scandinavian Cardiovascular Journal, 2020, 54, 322-329.		1.2	11
603	Preconditioning with rHMGB1 ameliorates lung ischemia–reperfusion injury by inhibiting alve macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. Journal of Translational Me 2020, 18, 301.	eolar edicine,	4.4	42
604	Review 2: Primary graft dysfunction after lung transplant—pathophysiology, clinical considera and therapeutic targets. Journal of Anesthesia, 2020, 34, 729-740.	ations	1.7	14
606	Review of Current Machine Perfusion Therapeutics for Organ Preservation. Transplantation, 20 104, 1792-1803.	20,	1.0	56
607	Consecutive Hypoxia Decreases Expression of NOTCH3, HEY1, CC10, and FOXJ1 via NKX2-1 Downregulation and Intermittent Hypoxia-Reoxygenation Increases Expression of BMP4, NOTC MKI67, OCT4, and MUC5AC via HIF1A Upregulation in Human Bronchial Epithelial Cells. Frontia and Developmental Biology, 2020, 8, 572276.	H1, ers in Cell	3.7	5
608	Expression of Claudin-4 in Lung Ischemia-Reperfusion Injury in Experimental Lung Transplantati Journal of Investigative Surgery, 2020, , 1-10.	on.	1.3	1
609	Ex Vivo Lung Perfusion Improves the Inflammatory Signaling Profile of the Porcine Donor Lung Following Transplantation. Transplantation, 2020, 104, 1899-1905.		1.0	12
610	Induced Pluripotent Stem Cells Attenuate Acute Lung Injury Induced by Ischemia Reperfusion v Suppressing the High Mobility Group Box-1. Dose-Response, 2020, 18, 155932582096934.	ia	1.6	2
611	Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood–Air Ba Hyperpermeability. Frontiers in Pharmacology, 2020, 11, 569251.	arrier	3.5	18

щ	Article	IE	Citations
#	Effects of sevoflurane and propofol anesthesia on intraoperative endothelial cell function in	IF	
612	patients undergoing laparoscopic cholecystectomy. Journal of International Medical Research, 2020, 48, 030006052091840.	1.0	5
613	Bronchiolitis obliterans syndrome and restrictive allograft syndrome after lung transplantation: why are there two distinct forms of chronic lung allograft dysfunction?. Annals of Translational Medicine, 2020, 8, 418-418.	1.7	16
614	Commentary: Every detail counts—different c-Jun N-terminal kinase isoforms perform different functions. Journal of Thoracic and Cardiovascular Surgery, 2020, 162, e157-e158.	0.8	0
615	N6-methyladenosine (m6A) methylation in ischemia–reperfusion injury. Cell Death and Disease, 2020, 11, 478.	6.3	34
616	Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death and Differentiation, 2020, 27, 2635-2650.	11.2	281
617	A potential role of neutrophil extracellular traps (NETs) in kidney acute antibody mediated rejection. Transplant Immunology, 2020, 60, 101286.	1.2	11
618	Hydrogen Sulfide Ameliorates Lung Ischemia-Reperfusion Injury Through SIRT1 Signaling Pathway in Type 2 Diabetic Rats. Frontiers in Physiology, 2020, 11, 596.	2.8	21
619	Role of MIF Cytokine/CD74 Receptor Pathway in Protecting Against Injury and Promoting Repair. Frontiers in Immunology, 2020, 11, 1273.	4.8	93
620	Outside in: Roles of complement in autophagy. British Journal of Pharmacology, 2021, 178, 2786-2801.	5.4	12
621	Increased Arginase Expression and Decreased Nitric Oxide in Pig Donor Lungs after Normothermic Ex Vivo Lung Perfusion. Biomolecules, 2020, 10, 300.	4.0	2
622	Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L580-L591.	2.9	4
623	Potential therapeutic targets for lung repair during human <i>ex vivo</i> lung perfusion. European Respiratory Journal, 2020, 55, 1902222.	6.7	31
624	Imaging indications and findings in evaluation of lung transplant graft dysfunction and rejection. Insights Into Imaging, 2020, 11, 2.	3.4	8
625	An extracellular oxygen carrier during prolonged pulmonary preservation improves post-transplant lung function. Journal of Heart and Lung Transplantation, 2020, 39, 595-603.	0.6	16
626	Expression and regulation of tumor necrosis factor-α-induced protein-8-like 2 is associated with acute lung injury induced by myocardial ischemia reperfusion in diabetic rats. Microvascular Research, 2020, 130, 104009.	2.5	5
627	Early protein expression profile in bronchoalveolar lavage fluid and clinical outcomes in primary graft dysfunction after lung transplantation. European Journal of Cardio-thoracic Surgery, 2020, 58, 379-388.	1.4	4
628	Perfusate adsorption during exÂvivo lung perfusion improves early post-transplant lung function. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e109-e121.	0.8	30
629	Extracellular adenosine 5′-triphosphate in pulmonary disorders. Biochemical Pharmacology, 2021, 187, 114319.	4.4	21

#	Article	IF	CITATIONS
630	Protective effects of pulmonary surfactant on decompression sickness in rats. Journal of Applied Physiology, 2021, 130, 400-407.	2.5	5
631	Evidence of Air Trapping During ExÂVivo Lung Perfusion: A Swine Experimental Lung Imaging and Mechanics Study. Transplantation Proceedings, 2021, 53, 457-465.	0.6	4
632	Cardiopulmonary Resuscitation–associated Lung Edema (CRALE). A Translational Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 447-457.	5.6	22
633	Commentary: The cell without qualities?. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e93.	0.8	0
634	Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 510.	4.1	20
635	Lipoxin A4 attenuates the lung ischaemia reperfusion injury in rats after lung transplantation. Annals of Medicine, 2021, 53, 1143-1152.	3.8	4
636	Benefit of prophylactic bronchodilator with β2 adrenergic agonist in ischemia-reperfusion-induced lung injury. Biocell, 2021, 45, 1201-1211.	0.7	0
637	Commentary: To die or not to die—rescuing lung cells from ischemia–reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, e123-e124.	0.8	0
638	Ex vivo lung perfusion. Journal of Thoracic Disease, 2021, 13, 6602-6617.	1.4	27
639	Intraoperative support during lung transplantation. Journal of Thoracic Disease, 2021, 13, 6576-6586.	1.4	5
640	Preservation solutions for attenuation of ischemia–reperfusion injury in vascularized composite allotransplantation. SAGE Open Medicine, 2021, 9, 205031212110349.	1.8	5
641	A post-preservation vascular flush removes significant populations of donor leukocytes prior to lung transplantation. Transplant Immunology, 2021, 64, 101356.	1.2	0
642	A novel experimental porcine model to assess the impact of differential pulmonary blood flow on ischemia–reperfusion injury after unilateral lung transplantation. Intensive Care Medicine Experimental, 2021, 9, 4.	1.9	5
643	Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl) Tj ETQq1 1 0.784314 rg Pharmaceuticals, 2021, 14, 259.	BT /Overlo 3.8	ock 10 Tf 50
644	Kaempferol Alleviates Oxidative Stress and Apoptosis Through Mitochondria-dependent Pathway During Lung Ischemia-Reperfusion Injury. Frontiers in Pharmacology, 2021, 12, 624402.	3.5	26
645	Ex vivo lung perfusion in lung transplantation. General Thoracic and Cardiovascular Surgery, 2021, 69, 625-630.	0.9	13
646	Epithelium- and endothelium-derived exosomes regulate the alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response. Cell Death and Differentiation, 2021, 28, 2238-2256.	11.2	33
647	Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Archivos De Bronconeumologia, 2021, 57, 479-479.	0.8	2

	CHARC		
#	Article	IF	CITATIONS
648	Ca2+ Signaling by TRPV4 Channels in Respiratory Function and Disease. Cells, 2021, 10, 822.	4.1	17
649	The Effects of Volatile Anesthetics on Lung Ischemia-Reperfusion Injury: Basic to Clinical Studies. Journal of Surgical Research, 2021, 260, 325-344.	1.6	8
650	Ischemia–Reperfusion Injury in Lung Transplantation. Cells, 2021, 10, 1333.	4.1	54
651	Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. International Journal of Molecular Sciences, 2021, 22, 5233.	4.1	8
652	Primary Graft Dysfunction. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 368-379.	2.1	5
653	Lung transplantation using allografts with more than 8 hours of ischemic time: A single-institution experience. Journal of Heart and Lung Transplantation, 2021, 40, 1463-1471.	0.6	10
654	Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells, 2021, 10, 1417.	4.1	10
655	Effect of Intravenous Lidocaine on Inflammatory and Apoptotic Response of Ischemia-Reperfusion Injury in Pigs Undergoing Lung Resection Surgery. BioMed Research International, 2021, 2021, 1-9.	1.9	5
656	Monocytes promote pyroptosis of endothelial cells during lung ischemia-reperfusion via IL-1R/NF-κB/NLRP3 signaling. Life Sciences, 2021, 276, 119402.	4.3	18
657	Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Archivos De Bronconeumologia, 2021, 57, 479-489.	0.8	1
658	Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats. Frontiers in Physiology, 2021, 12, 699344.	2.8	14
659	Inhaled CO2 to Reduce Lung Ischemia and Reperfusion Injuries: Moving Towards Clinical Translation?. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 878-879.	5.6	1
660	Novel Role of miR-18a-5p and Galanin in Rat Lung Ischemia Reperfusion-Mediated Response. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-22.	4.0	4
661	Ferroptosis, a New Insight Into Acute Lung Injury. Frontiers in Pharmacology, 2021, 12, 709538.	3.5	32
662	Factors affecting complications development and mortality after single lung transplant. World Journal of Transplantation, 2021, 11, 320-334.	1.6	1
663	Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Frontiers in Immunology, 2021, 12, 681504.	4.8	14
664	Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells, 2021, 10, 2296.	4.1	6
665	Inflammatory responses in lungs from donation after brain death: Mechanisms and potential therapeutic targets. Journal of Heart and Lung Transplantation, 2021, 40, 890-896.	0.6	11

#	Article	IF	Citations
666	Surfactant therapy in lung transplantation: A systematic review and meta-analysis. Transplantation Reviews, 2021, 35, 100637.	2.9	3
667	Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplantation Direct, 2021, 7, e652.	1.6	27
668	Principles of Pulmonary Protection During Heart Surgery. , 2010, , 431-440.		1
669	Effects of Prostaglandin E1 and Nitroglycerin on Lung Preservation. , 2010, , 81-89.		2
670	Potential role of diacylglycerol kinases in immune-mediated diseases. Clinical Science, 2020, 134, 1637-1658.	4.3	14
671	Lung Injury after <i>In Vivo</i> Â Reperfusion. Anesthesiology, 2008, 109, 269-278.	2.5	13
672	EFFECTS OF THERMAL PRECONDITIONING ON THE ISCHEMIA-REPERFUSION-INDUCED ACUTE LUNG INJURY IN MINIPIGS. Shock, 2007, 28, 615-622.	2.1	18
673	TRPV4 channels are essential for alveolar epithelial barrier function as protection from lung edema. JCI Insight, 2020, 5, .	5.0	28
674	Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight, 2020, 5, .	5.0	21
675	Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight, 2017, 2, .	5.0	55
676	A protective role for microRNA-688 in acute kidney injury. Journal of Clinical Investigation, 2018, 128, 5216-5218.	8.2	12
677	Pretreatment with Erythropoietin Attenuates Lung Ischemia/Reperfusion Injury via Toll-Like Receptor-4/Nuclear Factor-κB (TLR4/NF-κB) Pathway. Medical Science Monitor, 2018, 24, 1251-1257.	1.1	16
678	Recombinant Complement Receptor 2 Radiolabeled with [99mTc(CO)3]+ : A Potential New Radiopharmaceutical for Imaging Activated Complement. PLoS ONE, 2011, 6, e18275.	2.5	13
679	Substantial Increases Occur in Serum Activins and Follistatin during Lung Transplantation. PLoS ONE, 2016, 11, e0140948.	2.5	5
680	Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model. PLoS ONE, 2017, 12, e0171736.	2.5	7
681	Ischemic and Pharmacological Preconditioning. Obshchaya Reanimatologiya, 2011, 7, 59.	1.0	3
682	EXPERIENCE WITH APPLICATION OF EXTRACORPOREAL MEMBRANE OXYGENATION IN DOUBLE LUNG TRANSPLANTATION. Vestnik Transplantologii I Iskusstvennykh Organov, 2014, 16, 66-74.	0.4	4
683	Pretreatment with pentoxifylline attenuates lung injury induced by intestinal ischemia/reperfusion in rats. Acta Cirurgica Brasileira, 2011, 26, 438-444.	0.7	16

#	Article	IF	CITATIONS
684	Pré-condicionamento isquêmico por oclusão seletiva da artéria pulmonar em ratos. Jornal Brasileiro De Pneumologia, 2008, 34, 583-589.	0.7	5
685	Perfusão pulmonar ex vivo: experiência nacional inicial. Jornal Brasileiro De Pneumologia, 2009, 35, 1107-1112.	0.7	13
686	Influência da estratégia ventilatÃ3ria no desempenho funcional de enxertos pulmonares em um modelo experimental de transplante pulmonar unilateral de doadores apÃ3s parada cardiocirculatÃ3ria. Jornal Brasileiro De Pneumologia, 2010, 36, 554-561.	0.7	3
687	Modelo experimental de perfusão pulmonar ex vivo em ratos: avaliação de desempenho de pulmões submetidos à administração de prostaciclina inalada versus parenteral. Jornal Brasileiro De Pneumologia, 2011, 37, 589-597.	0.7	5
688	Modelo experimental de perfusão pulmonar ex vivo em ratos: avaliação histopatológica e de apoptose celular em pulmões preservados com solução de baixo potássio dextrana vs. soluçţo histidina-triptofano-cetoglutarato. Jornal Brasileiro De Pneumologia, 2012, 38, 461-469.	0.7	4
689	Effects of methylprednisolone on inflammatory activity and oxidative stress in the lungs of brain-dead rats. Jornal Brasileiro De Pneumologia, 2013, 39, 173-180.	0.7	7
690	Autologous endothelial progenitor cells improve allograft survival in porcine lung transplantation with prolonged ischemia. Annals of Translational Medicine, 2016, 4, 277-277.	1.7	4
691	Influence of Gender on Ischemia-Reperfusion Injury in Lungs in an Animal Model. Physiological Research, 2016, 65, 953-958.	0.9	3
692	lsoflurane suppresses lung ischemia‑reperfusion injury by inactivating NF‑κB and inhibiting cell apoptosis. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	1.8	5
693	Lung donor selection criteria. Journal of Thoracic Disease, 2014, 6, 1032-8.	1.4	58
694	A porcine ex vivo lung perfusion model with maximal argon exposure to attenuate ischemia-reperfusion injury. Medical Gas Research, 2017, 7, 28.	2.3	8
695	Pretreatment with carnosol in lung ischemia reperfusion-induced renal injury. Turkish Journal of Thoracic and Cardiovascular Surgery, 2014, 22, 816-820.	0.4	1
696	Ventilation during cardiopulmonary bypass did not attenuate inflammatory response or affect postoperative outcomes : cardiovascular topic. Cardiovascular Journal of Africa, 2013, 24, 224-230.	0.4	16
697	The impact of topically applied preservation solutions on the respiratory epithelium of tracheal grafts submitted to cold ischemia: functional and morphological analysis. Clinics, 2013, 68, 702-709.	1.5	5
698	Effect of the systemic administration of methylprednisolone on the lungs of brain-dead donor rats undergoing pulmonary transplantation. Clinics, 2014, 69, 128-133.	1.5	4
699	The Role of Neutrophils in Transplantation. , 2004, , 493-507.		1
700	The Role of Ischemia-Reperfusion Injury in Graft Rejection. , 2004, , 545-572.		0
701	Current Status and Prospects of Lung Transplantation. The Journal of Japan Society for Clinical Anesthesia, 2005, 25, 316-323.	0.0	0

	Сіт	CITATION REPORT		
# 702	ARTICLE Pulmonary Edema in Organ Donors and Lung Transplant Recipients: Is there a Role for Beta-adrenergic		IF 0.1	CITATIONS
703	Agonists?. Yearbook of Intensive Care and Emergency Medicine, 2006, , 366-373. Trasplante. , 2006, , 525-541.			0
706	Transplantation Pathology. , 2008, , 831-865.			0
708	Inhaled Nitric Oxide Therapy in Adult Cardiac Surgery. , 2009, , 511-519.			0
709	Inhaled Nitric Oxide Therapy in Adult Cardiac Surgery. , 2009, , 511-519.			0
710	Post-pneumonectomy Pulmonary Edema. , 2009, , 473-482.			0
711	Pérdida de glutatión desde pulmones de conejo en solución de preservación para trasplante: Efec clÃnicos y funcionales a corto plazo. Revista Chilena De Enfermedades Respiratorias, 2009, 25, .	tos	0.0	0
712	Post-pneumonectomy Pulmonary Edema. , 2009, , 473-482.			2
713	A3 Adenosine Receptor in the Pulmonary System. , 2010, , 209-233.			0
714	Ischemic Preconditioning and Lung Preservation. , 2010, , 223-234.			1
715	Kontrollierte Reperfusion mit kalter Buckberg Lösung verbessert die Organprotektion beim Non Heart Beating Donor (NHBD) – Untersuchungen am isoliert perfundierten Schweinelungenlappen. Langenbecks Archiv Ful^r Chirurgie Supplement, 2010, , 185-187.	:	0.0	0
716	High-Altitude Pulmonary Edema. , 2011, , 871-888.			2
717	Animal Models of Increased Lung Vascular Permeability. , 2011, , 471-484.			0
718	Impact of topically-applied ipd-giucose on tracheal mucociliary clearance after warm and cold ischemia: short communication. Clinics, 2011, 66, 347-349.		1.5	1
719	Effect of anisodamine on lung edema after ischemia-reperfusion in rabbits. Zhonghua Laonian Duoqiguan Jibing Zazhi, 2011, 10, 344-347.		0.0	0
720	Cardiopulmonary Consequences of Post Thoracic Surgery Pulmonary Hypertension: Cause or Consequence of Lung Edema?. Journal of Clinical & Experimental Cardiology, 2013, 04, .		0.0	0
721	Inflammation and Vasomotricity During Reperfusion. , 0, , .			0
722	Experience with Inhaled Iloprost Used in the Surgical Treatment of Chronic Postthromboembolic Pulmonary Hypertension. Obshchaya Reanimatologiya, 2013, 9, 35.		1.0	Ο

#	ARTICLE	IF	CITATIONS
724	Ex Vivo Organ Repair (Drug and Gene Delivery). , 2017, , 235-259.		0
725	Physiologic and Epigenetic Changes with Pulmonary Vascular Injury After Lung Transplantation. , 2018, , 161-182.		0
726	Management of the Donor and Recipient: Surgical Management. , 2018, , 113-137.		0
727	Controlled Reperfusion Against Ischemia Reperfusion Injury. Springer Series in Translational Stroke Research, 2018, , 231-243.	0.1	Ο
728	Investigation of the preventive effect of proanthocyanidin in ischemia-reperfusion injury in lung transplantation: An experimental study. Turkish Journal of Thoracic and Cardiovascular Surgery, 2018, 26, 606-613.	0.4	0
729	Protective effect of nicorandil on collapse‑induced lung injury in rabbits by inhibiting apoptosis. International Journal of Molecular Medicine, 2019, 44, 725-736.	4.0	2
731	Lung Transplantation: Justification for aÂParadigm Change. , 2020, , 277-297.		0
732	Management of Primary Graft Dysfunction: Lung Transplantation Surgery. , 2021, , 149-169.		0
733	Postoperative Complications and Management. , 2020, , 913-940.		0
734	Ischemia-Reperfusion and Oxidative Stress-Induced Lung Injury. , 2020, , 87-101.		0
735	Therapeutic effects of syringaldehyde on spinal cord ischemia in rabbits. Journal of King Abdulaziz University, Islamic Economics, 2020, 41, 341-350.	1.1	1
736	Trapianto polmonare e broncoscopia. , 2007, , 343-354.		0
737	Pulmonary Edema in Organ Donors and Lung Transplant Recipients: Is there a Role for Beta-adrenergic Agonists?. , 2006, , 366-373.		0
738	Longitudinal analysis of whole blood transcriptomes to explore molecular signatures associated with acute renal allograft rejection. Bioinformatics and Biology Insights, 2014, 8, 17-33.	2.0	6
739	The influence of lung ischemia-reperfusion injury on myocardium. International Journal of Clinical and Experimental Medicine, 2014, 7, 4780-6.	1.3	1
740	Ex situ reimplantation technique, in central lung tumors. Annals of Translational Medicine, 2015, 3, 178.	1.7	2
741	Post-conditioning through lower limb ischemia-reperfusion can alleviate lung ischemia-reperfusion injury. International Journal of Clinical and Experimental Medicine, 2015, 8, 14953-61.	1.3	6
742	Is adalimumab protective in ischemia-reperfusion injury in lung?. Iranian Journal of Basic Medical Sciences, 2015, 18, 1093-9.	1.0	6

# 743	ARTICLE The role of autophagy in lung ischemia/reperfusion injury after lung transplantation in rats. American Journal of Translational Research (discontinued), 2016, 8, 3593-602.	IF 0.0	Citations 8
744	NOX2 is involved in CB2-mediated protection against lung ischemia-reperfusion injury in mice. International Journal of Clinical and Experimental Pathology, 2020, 13, 277-285.	0.5	4
745	Impact of anastomosis time during lung transplantation on primary graft dysfunction. American Journal of Transplantation, 2022, 22, 1418-1429.	4.7	9
746	Clinical significance of donor lung weight at procurement and during ex vivo lung perfusion. Journal of Heart and Lung Transplantation, 2022, , .	0.6	4
747	Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells, 2022, 11, 826.	4.1	13
748	A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells, 2022, 11, 745.	4.1	5
749	Lidocaine attenuates hypoxia/reoxygenationâ€ʻinduced inflammation, apoptosis and ferroptosis in lung epithelial cells by regulating the p38 MAPK pathway. Molecular Medicine Reports, 2022, 25, .	2.4	17
750	Cold but not too cold: advances in hypothermic and normothermic organ perfusion. Korean Journal of Transplantation, 2022, 36, 2-14.	0.1	0
751	Specialized Proresolving Lipid Meditators Agonistic to Formyl Peptide Receptor Type 2 Attenuate Ischemia-reperfusion Injury in Rat Lung. Transplantation, 2022, 106, 1159-1169.	1.0	7
752	Empagliflozin Protects against Pulmonary Ischemia/Reperfusion Injury via an Extracellular Signal-Regulated Kinases 1 and 2-Dependent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2022, 380, 230-241.	2.5	13
753	Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells, 2022, 11, 91.	4.1	9
776	Altered purine metabolism at reperfusion affects clinical outcome in lung transplantation. Thorax, 2023, 78, 249-257.	5.6	3
777	Optimal temperature of graft preservation after ex vivo gene transfer in lung isografts. Acta Medica Okayama, 2008, 62, 297-302.	0.2	0
780	KGF-2 Protects against Lung Ischemia-Reperfusion Injury by Inhibiting Inflammation-Induced Damage to Endothelial Barrier Function. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-12.	1.2	1
782	Lung Biomolecular Profile and Function of Grafts from Donors after Cardiocirculatory Death with Prolonged Donor Warm Ischemia Time. Journal of Clinical Medicine, 2022, 11, 3066.	2.4	4
783	The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: a systematic review and meta-analysis of preclinical evidence. Inflammopharmacology, 2022, 30, 1259-1276.	3.9	4
784	Effect of saline infusion for the maintenance of blood volume on pulmonary gas exchange during temporary abdominal aortic occlusion. Brazilian Journal of Medical and Biological Research, 2007, 40, 333-341.	1.5	0
785	Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. Journal of Inflammation Research, 0, Volume 15, 3501-3546.	3.5	14

#	Article	IF	CITATIONS
786	Mortality risk factors in patients on waiting list for lung transplantation between 2005 and 2018: A single institutional experience. Journal of the Formosan Medical Association, 2022, , .	1.7	1
787	The Impact of General Anesthesia on Redox Stability and Epigenetic Inflammation Pathways: Crosstalk on Perioperative Antioxidant Therapy. Cells, 2022, 11, 1880.	4.1	2
788	Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury. Cell Death and Disease, 2022, 13, .	6.3	12
789	Maresin-1 and its receptors RORα/LGR6 as potential therapeutic target for respiratory diseases. Pharmacological Research, 2022, 182, 106337.	7.1	9
790	Endothelial TRPV4 channels in lung edema and injury. Current Topics in Membranes, 2022, , 43-62.	0.9	6
791	The role of neutrophil extracellular traps in acute lung injury. Frontiers in Immunology, 0, 13, .	4.8	44
792	Postoperative Intensive Care Management of Aortic Repair. Journal of Personalized Medicine, 2022, 12, 1351.	2.5	4
793	Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. EBioMedicine, 2022, 83, 104210.	6.1	21
794	Evaluation of 10°C as the optimal storage temperature for aspiration-injured donor lungs in a large animal transplant model. Journal of Heart and Lung Transplantation, 2022, 41, 1679-1688.	0.6	9
795	Inhibition of the cGAS-STING Pathway Attenuates Lung Ischemia/Reperfusion Injury via Regulating Endoplasmic Reticulum Stress in Alveolar Epithelial Type II Cells of Rats. Journal of Inflammation Research, 0, Volume 15, 5103-5119.	3.5	16
796	Protective effects of curcumin on ischemia/reperfusion injury. Phytotherapy Research, 2022, 36, 4299-4324.	5.8	10
797	Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells, 2022, 11, 2907.	4.1	11
798	Lungentransplantation. Springer Reference Medizin, 2022, , 1-13.	0.0	0
799	Follistatin-like 1 and Biomarkers of Neutrophil Activation Are Associated with Poor Short-Term Outcome after Lung Transplantation on VA-ECMO. Biology, 2022, 11, 1475.	2.8	0
800	THE PRESENT AND FUTURE OF EX-VIVO LUNG PERFUSION. , 2022, 1, 21-27.		1
801	The mechanism and biomarker function of Cavin-2 in lung ischemia-reperfusion injury. Computers in Biology and Medicine, 2022, 151, 106234.	7.0	1
803	Evaluation of Tissue Ischemia/Reperfusion Injury in Lung Recipients Supported by Intraoperative Extracorporeal Membrane Oxygenation: A Single-Center Pilot Study. Cells, 2022, 11, 3681.	4.1	1
804	Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Molecular and Cellular Biochemistry, 2023, 478, 1533-1559.	3.1	1

#	Article	IF	CITATIONS
805	Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Frontiers in Physiology, 0, 13, .	2.8	3
806	Evaluation of the effects of empagliflozin on acute lung injury in rat intestinal ischemia–reperfusion model. Journal of Endocrinological Investigation, 2023, 46, 1017-1026.	3.3	3
807	Effect of intraoperative support mode on circulating inflammatory biomarkers after lung transplantation surgery. Artificial Organs, 2023, 47, 749-760.	1.9	2
808	Primary graft dysfunction grade 3 following pediatric lung transplantation is associated with chronic lung allograft dysfunction. Journal of Heart and Lung Transplantation, 2023, 42, 669-678.	0.6	2
811	Inhibition of DNA methylation attenuates lung ischemia–reperfusion injury after lung transplantation. Journal of International Medical Research, 2023, 51, 030006052311535.	1.0	0
812	Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines, 2023, 11, 689.	3.2	6
813	Major Complications of Lung Transplant Surgery. , 2023, , 609-620.		0
814	Effect of targeted coagulopathy management and 5% albumin as volume replacement therapy during lung transplantation on allograft function: a secondary analysis of a randomized clinical trial. BMC Pulmonary Medicine, 2023, 23, .	2.0	5
815	Primary graft dysfunction following lung transplantation: From pathogenesis to future frontiers. World Journal of Transplantation, 0, 13, 58-85.	1.6	5
816	Thoracic organ machine perfusion: A review of concepts with a focus on reconditioning therapies. , 0, 2, .		0
817	Individualized flow-controlled versus conventional pressure-controlled ventilation in on-pump heart surgery (FLOWVENTIN HEARTSURG): study protocol for a randomized controlled trial. Trials, 2023, 24, .	1.6	0
818	Building Basic and Clinical Research Around Lung Transplantation. Organ and Tissue Transplantation, 2023, , 1-21.	0.0	0
819	Liproxstatin-1 Alleviates Lung Transplantation-induced Cold Ischemia–Reperfusion Injury by Inhibiting Ferroptosis. Transplantation, 2023, 107, 2190-2202.	1.0	5
820	Melatonin attenuates lung ischemia-reperfusion injury through SIRT3 signaling-dependent mitophagy in type 2 diabetic rats. Experimental Lung Research, 2023, 49, 101-115.	1.2	2
822	Biometric Profiling to Quantify Lung Injury Through Ex Vivo Lung Perfusion Following Warm Ischemia. ASAIO Journal, 2023, 69, e368-e375.	1.6	2
823	Network pharmacology and molecular docking to explore Polygoni Cuspidati Rhizoma et Radix treatment for acute lung injury. World Journal of Clinical Cases, 0, 11, 4579-4600.	0.8	0
824	Establishment of a Rat Model of Capillary Leakage Syndrome Induced by Cardiopulmonary Resuscitation After Cardiac Arrest. Current Medical Science, 0, , .	1.8	0
825	Effects of penehyclidine hydrochloride combined with dexmedetomidine on pulmonary function in patients undergoing heart valve surgery: a double-blind, randomized trial. BMC Anesthesiology, 2023, 23, .	1.8	0

#	Article	IF	CITATIONS
826	Lungentransplantation. Springer Reference Medizin, 2023, , 509-521.	0.0	0
827	Cytokines Removal During Ex-Vivo Lung Perfusion: Initial Clinical Experience. Transplant International, 0, 36, .	1.6	4
829	Use of Extracorporeal Membrane Oxygenation (ECMO) After Surgery: Management of Primary Graft Dysfunction (PGD). Organ and Tissue Transplantation, 2023, , 1-31.	0.0	0
830	The hemodynamic interplay between pulmonary ischemia-reperfusion injury and right ventricular function in lung transplantation: A translational porcine model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	2.9	0
831	Therapeutic benefits of nitric oxide in lung transplantation. Biomedicine and Pharmacotherapy, 2023, 167, 115549.	5.6	0
832	Recovery of extracorporeal lungs using cross-circulation with injured recipient swine. Journal of Thoracic and Cardiovascular Surgery, 2023, , .	0.8	0
833	CCR5 drives NK cell-associated airway damage in pulmonary ischemia-reperfusion injury. JCI Insight, 0, ,	5.0	0
834	Single Lung Transplant for Secondary Pulmonary Hypertension: The Right Option for the Right Patient. Journal of Clinical Medicine, 2023, 12, 6789.	2.4	Ο
835	Preparation and Evaluation of Preventive Effects of Inhalational and Intraperitoneal Injection of Myrtenol Loaded Nano-Niosomes on Lung Ischemia-Reperfusion Injury in Rats. Journal of Pharmaceutical Sciences, 2024, 113, 85-94.	3.3	1
836	Lung Donor Selection and Management: An Updated Review. OBM Transplantation, 2023, 07, 1-54.	0.2	Ο
837	β-aminoisobutyrics acid, a metabolite of BCAA, activates the AMPK/Nrf-2 pathway to prevent ferroptosis and ameliorates lung ischemia-reperfusion injury. Molecular Medicine, 2023, 29, .	4.4	1
839	Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflammation Research, 2024, 73, 393-405.	4.0	0
840	Donor and recipient risk factors for the development of primary graft dysfunction following lung transplantation. Frontiers in Immunology, 0, 15, .	4.8	0
841	NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants, 2024, 13, 219.	5.1	0
842	Thyroid hormone protects human lung epithelial cells from cold preservation and warm reperfusion-induced injury. Journal of Translational Medicine, 2024, 22, .	4.4	0
843	The impact and relevance of techniques and fluids on lung injury in machine perfusion of lungs. Frontiers in Immunology, 0, 15, .	4.8	0
844	Two single lung transplantations from one donor: lung twinning in the LAS era. Respiratory Research, 2024, 25, .	3.6	0
845	Identification Biomarkers and Molecular Mechanisms Involved in Lung Transplant Rejection, and Drug Repurposing: A Systems Biology Study. Journal of Advances in Medical and Biomedical Research, 2023, 31, 525-535.	0.2	0