Oxidative Stress and Acute Lung Injury

American Journal of Respiratory Cell and Molecular Biology 29, 427-431

DOI: 10.1165/rcmb.f278

Citation Report

#	Article	IF	CITATIONS
1	Lung Inflammation as a Therapeutic Target in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 377-381.	1.4	100
2	SERUM FERRITIN ELEVATION AND ACUTE LUNG INJURY IN RATS SUBJECTED TO HEMORRHAGE: REDUCTION BY MEPACRINE TREATMENT. Experimental Lung Research, 2004, 30, 571-584.	0.5	7
3	Syndrome de détresse respiratoire aiguë. EMC - Pneumologie, 2004, 1, 143-186.	0.2	3
4	Stem cells and repair of lung injuries. Respiratory Research, 2004, 5, 6.	1.4	64
5	Heme oxygenase-1 induction by hemin protects against gut ischemia/reperfusion injury1,2. Journal of Surgical Research, 2004, 118, 53-57.	0.8	116
6	Augmented lung injury due to interaction between hyperoxia and mechanical ventilation*. Critical Care Medicine, 2004, 32, 2496-2501.	0.4	240
7	Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. European Journal of Cardio-thoracic Surgery, 2005, 27, 379-383.	0.6	138
9	Role of 15-DeoxyΔ12,14Prostaglandin J2and Nrf2 Pathways in Protection against Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1260-1266.	2.5	111
10	Acute hypoxia simultaneously induces the expression of gp91phox and endothelial nitric oxide synthase in the porcine pulmonary artery. Thorax, 2005, 60, 305-313.	2.7	56
11	Antioxidative role of urinary trypsin inhibitor in acute lung injury induced by lipopolysaccharide. International Journal of Molecular Medicine, 2005, 16, 1029.	1.8	9
12	Propriétés antioxydantes de l'albumine dans le choc septique. Praticien En Anesthesie Reanimation, 2005, 9, 20-23.	0.0	0
14	Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radical Research, 2006, 40, 665-672.	1.5	70
15	Epidermal fatty acid-binding protein is increased in rat lungs following in vivo treatment with keratinocyte growth factor. International Journal of Biochemistry and Cell Biology, 2006, 38, 279-287.	1.2	9
16	Recombinant human thioredoxin suppresses lipopolysaccharide-induced bronchoalveolar neutrophil infiltration in rat. Life Sciences, 2006, 79, 1170-1177.	2.0	48
17	Oxidative Stress and Respiratory Disease. , 2006, , 673-685.		1
18	Antibiotic cycling in intensive care units: The value of organized chaos?*. Critical Care Medicine, 2006, 34, 549-551.	0.4	11
19	Toll: Another piece to the puzzle of understanding neutrophil migration impairment in polymicrobial sepsis*. Critical Care Medicine, 2006, 34, 567-569.	0.4	0
20	Unlocking (perhaps unblocking) the microcirculation in sepsis*. Critical Care Medicine, 2006, 34, 561-562.	0.4	4

~			_		
C1	ΤΔΤ	10N	- IS ₽	PO	PT

#	Article	IF	CITATIONS
21	How does your garden grow? The fertile fields of accountability in practice*. Critical Care Medicine, 2006, 34, 558-559.	0.4	0
22	The role of inducible nitric oxide synthase in the evolution of myocardial (dys)function during resuscitated septic shock: The missing loop*. Critical Care Medicine, 2006, 34, 545-547.	0.4	3
23	Ten things we hate about subarachnoid hemorrhage (or, the taming of the aneurysm)*. Critical Care Medicine, 2006, 34, 571-574.	0.4	5
24	Backrest elevation for the prevention of ventilator-associated pneumonia: Back to the real world?*. Critical Care Medicine, 2006, 34, 559-561.	0.4	17
25	Can ventilator mode reduce ventilator-induced lung injury?*. Critical Care Medicine, 2006, 34, 565-566.	0.4	4
26	Intensive care unit sedation: Waking up clinicians to the gap between research and practice*. Critical Care Medicine, 2006, 34, 556-557.	0.4	43
27	Optimizing ventilatory support of the potential organ donor during evolving brain death: Maximizing lung availability for transplantation*. Critical Care Medicine, 2006, 34, 548-549.	0.4	8
28	SOAP and sepsis—Analyzing what comes out in the wash*. Critical Care Medicine, 2006, 34, 552-554.	0.4	8
29	Vasopressin: Multitalented hormone among the shock hormones?*. Critical Care Medicine, 2006, 34, 562-564.	0.4	51
30	More antioxidants in sepsis: Still paved with uncertainties*. Critical Care Medicine, 2006, 34, 569-571.	0.4	7
31	Endocan or endothelial cell-specific molecule-1: A novel prognostic marker of sepsis?*. Critical Care Medicine, 2006, 34, 574-575.	0.4	21
32	Tidal volumes used in acute lung injury: Why the persistent gap between intended and actual clinical behavior?*. Critical Care Medicine, 2006, 34, 543-544.	0.4	3
33	Standby…cardiac arrest…standby…cardiac arrest*. Critical Care Medicine, 2006, 34, 554-555.	0.4	2
34	Is impaired capillary perfusion a marker of tissue hypoxia and a hallmark of incipient circulatory shock?*. Critical Care Medicine, 2006, 34, 566-567.	0.4	7
35	Antithrombotic therapies for sepsis: A need for more studies*. Critical Care Medicine, 2006, 34, 538-541.	0.4	24
36	Severity of illness scoring in fulminant hepatic failure*. Critical Care Medicine, 2006, 34, 551-552.	0.4	0
37	Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat*. Critical Care Medicine, 2006, 34, 471-477.	0.4	101
38	Are vasopressin levels increased or decreased in septic shock?*. Critical Care Medicine, 2006, 34, 542-543.	0.4	11

#	Article	IF	CITATIONS
39	Role of Toll-like receptor 4 for the pathogenesis of acute lung injury in Gram-negative sepsis. European Journal of Anaesthesiology, 2006, 23, 1041-1048.	0.7	41
41	Vitamin E down-modulates mitogen-activated protein kinases, nuclear factor-κB and inflammatory responses in lung epithelial cells. Clinical and Experimental Immunology, 2006, 147, 359-369.	1.1	46
43	Heme oxygenase-1: a new drug target in oxidative tissue injuries in critically ill conditions. Drug Development Research, 2006, 67, 130-153.	1.4	7
44	Proteome Analysis of Oxidative Stress: Glutathionyl Hemoglobin in Diabetic and Uremic Patients. , 2006, , 651-667.		3
45	The degree of oxidative stress is associated with major adverse effects after lung resection: A prospective study. European Journal of Cardio-thoracic Surgery, 2006, 29, 591-595.	0.6	106
46	Antioxidant intake, CSTM1 polymorphism and pulmonary function in healthy young adults. European Respiratory Journal, 2006, 27, 282-288.	3.1	21
47	REGULATION OF LUNG INFLAMMATION IN THE MODEL OF IGG IMMUNE-COMPLEX INJURY. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 215-242.	9.6	51
48	RhoG Regulates the Neutrophil NADPH Oxidase. Journal of Immunology, 2006, 176, 5314-5320.	0.4	37
49	Constitutive NADPH oxidase and increased mitochondrial respiratory chain activity regulate chemokine gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1143-L1155.	1.3	20
50	Protection of echinacoside against acute lung injury caused by oleic acid in rats. Free Radical Research, 2007, 41, 798-805.	1.5	17
51	The effect of tocopherol on serum lipid profile in pulmonary emphysema induced by hypercholesterolemic diet. Acta Veterinaria, 2007, 57, 303-320.	0.2	3
52	Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: evidence for underlying toxicological mechanisms. Human and Experimental Toxicology, 2007, 26, 697-703.	1.1	88
53	CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respiratory Research, 2007, 8, 72.	1.4	69
54	The Efficacy of α-lipoic Acid on the Endotoxin-induced Acute Lung Injury. Tuberculosis and Respiratory Diseases, 2007, 62, 105.	0.7	2
55	The Endothelium in Acute Respiratory Distress Syndrome. , 0, , 1178-1192.		1
56	Protective effect of α-tocopherol on oxidative stress in experimental pulmonary fibrosis in rats. Cell Biochemistry and Function, 2007, 25, 633-637.	1.4	29
57	Protein glutathionylation and oxidative stress. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 855, 59-65.	1.2	50
58	Does leflunomide attenuate the sepsis-induced acute lung injury?. Pediatric Surgery International, 2008, 24, 899-905.	0.6	20

#	Article	IF	CITATIONS
59	Peroxiredoxin 6 as an antioxidant enzyme: Protection of lung alveolar epithelial type II cells from H ₂ O ₂ â€induced oxidative stress. Journal of Cellular Biochemistry, 2008, 104, 1274-1285.	1.2	99
60	Acute Lung Injury: Acute Respiratory Distress Syndrome. , 2008, , 28-41.		0
61	Protective efficiacy of taurine against pulmonary edema progression: experimental study. Journal of Cardiothoracic Surgery, 2008, 3, 57.	0.4	14
62	Therapeutic Effect of Hyperoxygenated Solution on Acute Lung Injury Induced by Oleic Acid. European Surgical Research, 2008, 41, 37-43.	0.6	11
63	Effects of melatonin in an experimental model of ventilator-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L820-L827.	1.3	32
64	N-Acetylcysteine attenuates acute lung injury induced by fat embolism*. Critical Care Medicine, 2008, 36, 565-571.	0.4	57
65	Reciprocal backcross mice confirm major loci linked to hyperoxic acute lung injury survival time. Physiological Genomics, 2009, 38, 158-168.	1.0	11
66	Leukocyte Elastase Induces Lung Epithelial Apoptosis via a PAR-1–, NF-κB–, and p53-Dependent Pathway. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 742-755.	1.4	63
67	Activation of the Liver X Receptor Prevents Lipopolysaccharide-induced Lung Injury. Journal of Biological Chemistry, 2009, 284, 30113-30121.	1.6	39
68	Effects of dietary glutamine supplementation on lung injury induced by lipopolysaccharide administration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L288-L295.	1.3	21
69	HYPEROXIA-INDUCED LUNG INJURY IS DOSE DEPENDENT IN WISTAR RATS. Experimental Lung Research, 2009, 35, 713-728.	0.5	34
70	Desferrioxamine attenuates minor lung injury following surgical acute liver failure. European Respiratory Journal, 2009, 33, 1429-1436.	3.1	29
71	Association of human NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphism with development of acute lung injury. Journal of Cellular and Molecular Medicine, 2009, 13, 1784-1791.	1.6	23
72	Redox imbalance provokes deactivation of macrophages in sepsis. Proteomics - Clinical Applications, 2009, 3, 1000-1009.	0.8	9
73	Attenuation of LPS-induced iNOS expression by 1,5-anhydro-d-fructose. Biochemical and Biophysical Research Communications, 2009, 387, 42-46.	1.0	11
74	Systemic oxidative stress in patients with pulmonary sarcoidosis. Pulmonary Pharmacology and Therapeutics, 2009, 22, 603-607.	1.1	23
75	Thoracoscopic Bleb Resection Using Two-Lung Ventilation Anesthesia With Low Tidal Volume for Primary Spontaneous Pneumothorax. Annals of Thoracic Surgery, 2009, 87, 880-885.	0.7	19
76	Attenuating effect of taurine on lipopolysaccharide-induced acute lung injury in hamsters. Pharmacological Research, 2009, 60, 418-428.	3.1	33

#	Article	IF	CITATIONS
77	ATTENUATION OF PULMONARY INFLAMMATION AFTER EXPOSURE TO BLAST OVERPRESSURE BY N-ACETYLCYSTEINE AMIDE. Shock, 2009, 32, 325-331.	1.0	49
78	Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death. Journal of Molecular Neuroscience, 2010, 40, 321-331.	1.1	38
79	Extracellular superoxide dismutase attenuates release of pulmonary hyaluronan from the extracellular matrix following bleomycin exposure. FEBS Letters, 2010, 584, 2947-2952.	1.3	11
80	PKC-δ controls the fMLF-induced overproduction of superoxide by neutrophils. Free Radical Biology and Medicine, 2010, 48, 207-215.	1.3	8
81	Protective action of taurine, given as a pretreatment or as a posttreatment, against endotoxin-induced acute lung inflammation in hamsters. Journal of Biomedical Science, 2010, 17, S19.	2.6	22
82	Increased expression of epidermal fatty acidâ€binding protein by alveolar macrophages during acute rejection of rat lungs. Apmis, 2010, 118, 791-800.	0.9	5
83	The role of oxidative stress and effect of alpha-lipoic acid in reexpansion pulmonary edema – an experimental study. Archives of Medical Science, 2010, 6, 848-853.	0.4	17
84	Nitric Oxide, Oxidative Stress, Immune Response and Critical Care. , 2010, , 755-772.		3
85	Nrf2-regulated PPARÎ ³ Expression Is Critical to Protection against Acute Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 170-182.	2.5	184
86	The Impact of Oxidative Stress Levels on the Clinical Effectiveness of Sivelestat in Treating Acute Lung Injury: An Electron Spin Resonance Study. Journal of Trauma, 2010, 68, 796-801.	2.3	2
87	Iron chelation prevents lung injury after major hepatectomy. Hepatology Research, 2010, 40, 841-850.	1.8	9
88	Hydrogen-Rich Saline Protects Against Acute Lung Injury Induced by Extensive Burn in Rat Model. Journal of Burn Care and Research, 2011, 32, e82-e91.	0.2	44
89	Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen. Journal of Applied Physiology, 2011, 111, 95-107.	1.2	11
90	Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL). Food Chemistry, 2011, 126, 1044-1048.	4.2	89
91	Aggravation of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice Lacking Peroxiredoxin I. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 600-609.	1.4	32
92	Severe Physical Exertion, Oxidative Stress, and Acute Lung Injury. Clinical Journal of Sport Medicine, 2011, 21, 537-538.	0.9	8
93	Ascorbate and Deferoxamine Administration after Chlorine Exposure Decrease Mortality and Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 386-392.	1.4	60
94	Acute lung injury prediction score: derivation and validation in a population-based sample. European Respiratory Journal, 2011, 37, 604-609.	3.1	134

#	Article	IF	CITATIONS
95	Endotoxin-induced acute lung injury is dependent upon oxidative response. Inhalation Toxicology, 2011, 23, 918-926.	0.8	14
96	Novel Biphasic Role of LipoxinA ₄ on Expression of Cyclooxygenase-2 in Lipopolysaccharide-Stimulated Lung Fibroblasts. Mediators of Inflammation, 2011, 2011, 1-9.	1.4	11
97	Hyperoxia alters the mechanical properties of alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1235-L1241.	1.3	34
98	GM-CSF provides autocrine protection for murine alveolar epithelial cells from oxidant-induced mitochondrial injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L343-L351.	1.3	34
99	Innate Immunity to H5N1 Influenza Viruses in Humans. Viruses, 2012, 4, 3363-3388.	1.5	39
100	Modulation of the Wound Healing Response Through Oxidation Active Materials. , 2012, , 161-192.		4
101	Targeted Aerosolized Delivery of Ascorbate in the Lungs of Chlorine-Exposed Rats. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 333-341.	0.7	13
102	Engineering Biomaterials for Regenerative Medicine. , 2012, , .		16
103	Targeted Deletion of <i>Nrf2</i> Impairs Lung Development and Oxidant Injury in Neonatal Mice. Antioxidants and Redox Signaling, 2012, 17, 1066-1082.	2.5	92
104	The role of mitochondrial oxidation in endotoxin-induced liver-dependent swine pulmonary edema. Pulmonary Pharmacology and Therapeutics, 2012, 25, 407-412.	1.1	1
105	Time-dependence of lung injury in mice acutely exposed to cylindrospermopsin. Toxicon, 2012, 60, 764-772.	0.8	19
106	Life after death: Lessons in lung injury physiopathology with necropsies on H1N1 infected patients. Medicina Intensiva (English Edition), 2012, 36, 67-68.	0.1	1
107	The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nature Immunology, 2012, 13, 29-34.	7.0	195
108	Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-12.	1.9	199
109	The Effect of Post-Treatment <i>N</i> -Acetylcysteine in LPS-Induced Acute Lung Injury of Rats. Tuberculosis and Respiratory Diseases, 2012, 73, 22.	0.7	15
110	Effect of betulinic acid on neutrophil recruitment and inflammatory mediator expression in lipopolysaccharide-induced lung inflammation in rats. European Journal of Pharmaceutical Sciences, 2012, 46, 106-113.	1.9	43
112	Heterogeneity in apoptotic responses of microvascular endothelial cells to oxidative stress. Journal of Cellular Physiology, 2012, 227, 1899-1910.	2.0	11
113	Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells. Biochemical and Biophysical Research Communications, 2013, 439, 315-320.	1.0	35

#	Article	IF	CITATIONS
114	Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions. Journal of Leukocyte Biology, 2013, 94, 643-656.	1.5	53
115	The antioxidant resveratrol down-regulates inflammation in an in-vitro model of Pseudomonas aeruginosa infection of lung epithelial cells. Canadian Journal of Physiology and Pharmacology, 2013, 91, 248-255.	0.7	16
116	Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction. Redox Biology, 2013, 1, 163-171.	3.9	24
117	The effect of exercise on the oxidative stress induced by experimental lung injury. Life Sciences, 2013, 92, 218-227.	2.0	19
118	The Protective Effects of the Supercritical-Carbon Dioxide Fluid Extract of <i>Chrysanthemum indicum</i> against Lipopolysaccharide-Induced Acute Lung Injury in Mice via Modulating Toll-Like Receptor 4 Signaling Pathway. Mediators of Inflammation, 2014, 2014, 1-13.	1.4	22
119	Preoperative Statin Administration Does Not Protect Against Early Postoperative Acute Respiratory Distress Syndrome. Anesthesia and Analgesia, 2014, 119, 891-898.	1.1	13
120	Modulation of LPS-Stimulated Pulmonary Inflammation by Borneol in Murine Acute Lung Injury Model. Inflammation, 2014, 37, 1148-1157.	1.7	50
121	Effects of OLV preconditioning and postconditioning on lung injury in thoracotomy. Asian Journal of Surgery, 2014, 37, 80-85.	0.2	8
122	Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats. Toxicology and Applied Pharmacology, 2014, 274, 1-6.	1.3	26
123	Oxidative stress during extracorporeal circulation. European Journal of Cardio-thoracic Surgery, 2014, 46, 937-943.	0.6	72
124	Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. International Immunopharmacology, 2014, 22, 371-378.	1.7	86
125	Relationship between neutrophil influx and oxidative stress in alveolar space in lipopolysaccharide-induced lung injury. Respiratory Physiology and Neurobiology, 2014, 191, 75-83.	0.7	18
126	Levels of cytokines in broncho-alveolar lavage fluid, but not in plasma, are associated with levels of markers of lipid peroxidation in breath of ventilated ICU patients. Journal of Breath Research, 2015, 9, 036010.	1.5	12
127	Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	61
128	Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury. Open Respiratory Medicine Journal, 2015, 9, 83-91.	1.3	33
129	Effect of Ambient PM _{2.5} on Lung Mitochondrial Damage and Fusion/Fission Gene Expression in Rats. Chemical Research in Toxicology, 2015, 28, 408-418.	1.7	133
130	Changes in the Concentrations of Mediators of Inflammation and Oxidative Stress in Exhaled Breath Condensate During Liver Transplantation and Their Relations With Postoperative ARDS. Respiratory Care, 2015, 60, 679-688.	0.8	18
131	The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model. Journal of Trace Elements in Medicine and Biology, 2015, 30, 4-10.	1.5	18

# 132	ARTICLE Lipopolysaccharide (LPS) exposure differently affects allergic asthma exacerbations and its amelioration by intranasal curcumin in mice. Cytokine, 2015, 76, 334-342.	IF 1.4	Citations
133	Lung epithelial NOX/DUOX and respiratory virus infections. Clinical Science, 2015, 128, 337-347.	1.8	36
134	Intranasal Curcumin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation, 2015, 38, 1103-1112.	1.7	51
135	Experimental Lung Injury Promotes Changes in Oxidative/Nitrative Status and Inflammatory Markers in Cerebral Cortex of Rats. Molecular Neurobiology, 2015, 52, 1590-1600.	1.9	4
136	Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection. ACS Nano, 2015, 9, 11800-11811.	7.3	207
137	Riboflavin attenuates lipopolysaccharide-induced lung injury in rats. Toxicology Mechanisms and Methods, 2015, 25, 417-423.	1.3	24
138	Platelets in the pathogenesis of acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L915-L923.	1.3	103
139	Betulinic acid negates oxidative lung injury in surgical sepsis model. Journal of Surgical Research, 2015, 193, 856-867.	0.8	20
140	Ulinastatin prevents acute lung injury led by liver transplantation. Journal of Surgical Research, 2015, 193, 841-848.	0.8	9
141	Association of Nrf2 Polymorphism Haplotypes with Acute Lung Injury Phenotypes in Inbred Strains of Mice. Antioxidants and Redox Signaling, 2015, 22, 325-338.	2.5	30
142	Polarisation of Macrophage and Immunotherapy in the Wound Healing. , 2016, , .		1
143	Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology. Viruses, 2016, 8, 124.	1.5	38
144	Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages. International Journal of Molecular Sciences, 2016, 17, 1199.	1.8	38
145	H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation. Cellular Physiology and Biochemistry, 2016, 40, 1603-1612.	1.1	112
146	Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury. Biochemical and Biophysical Research Communications, 2016, 476, 346-351.	1.0	13
147	Predictive biomarkers and metabolic hallmark of postoperative hypoxaemia. Metabolomics, 2016, 12, 1.	1.4	12
148	Dexamethasone Attenuates LPS-induced Acute Lung Injury through Inhibition of NF-κB, COX-2, and Pro-inflammatory Mediators. Immunological Investigations, 2016, 45, 349-369.	1.0	92
149	Activation of Liver X Receptor Attenuates Oleic Acid–Induced Acute Respiratory Distress Syndrome. American Journal of Pathology, 2016, 186, 2614-2622.	1.9	10

#	Article	IF	CITATIONS
150	Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Scientific Reports, 2016, 6, 35851.	1.6	65
151	Induction of heme oxygenase-1 by hemin protects lung against orthotopic autologous liver transplantation-induced acute lung injury in rats. Journal of Translational Medicine, 2016, 14, 35.	1.8	38
152	Antioxidant Vitamins and Trace Elements in Critical Illness. Nutrition in Clinical Practice, 2016, 31, 457-474.	1.1	135
153	Suppression of IRG-1 Reduces Inflammatory Cell Infiltration and Lung Injury in Respiratory Syncytial Virus Infection by Reducing Production of Reactive Oxygen Species. Journal of Virology, 2016, 90, 7313-7322.	1.5	47
154	Plasma level of advanced oxidation protein products as a novel biomarker of acute lung injury following cardiac surgery. SpringerPlus, 2016, 5, 231.	1.2	4
155	Cell membrane-formed nanovesicles for disease-targeted delivery. Journal of Controlled Release, 2016, 224, 208-216.	4.8	126
156	Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1–Nrf2/NF-κB signaling pathways. International Immunopharmacology, 2016, 32, 55-61.	1.7	52
158	Exercise and the Immune System. , 2016, , 127-152.		4
159	ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium, 2016, 60, 163-171.	1.1	73
160	Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NF-κB signaling in a murine model. International Immunopharmacology, 2016, 31, 109-115.	1.7	30
161	Study on the Pulmonary Delivery System of Apigenin-Loaded Albumin Nanocarriers with Antioxidant Activity. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2017, 30, 274-288.	0.7	65
162	High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials, 2017, 135, 62-73.	5.7	147
163	Synthesis and evaluation of 2-cyano-3, 12-dioxooleana-1, 9(11)-en-28-oate-13 β , 28-olide as a potent anti-inflammatory agent for intervention of LPS-induced acute lung injury. Chinese Journal of Natural Medicines, 2017, 15, 347-354.	0.7	1
164	Artesunate Protects LPS-Induced Acute Lung Injury by Inhibiting TLR4 Expression and Inducing Nrf2 Activation. Inflammation, 2017, 40, 798-805.	1.7	44
165	Epigenetic regulation of EC-SOD expression in aging lung fibroblasts: Role of histone acetylation. Free Radical Biology and Medicine, 2017, 112, 212-223.	1.3	14
166	Protective effect of hydrogen-saturated saline on acute lung injury induced by oleic acid in rats. Journal of Orthopaedic Surgery and Research, 2017, 12, 134.	0.9	4
167	Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins, 2017, 9, 311.	1.5	42
168	Lung-Protective Ventilation Strategies for Relief from Ventilator-Associated Lung Injury in Patients Undergoing Craniotomy: A Bicenter Randomized, Parallel, and Controlled Trial. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	7

	Сітатіо	n Report	
#	Article	IF	CITATIONS
169	Dysregulation of pulmonary endothelial protein C receptor and thrombomodulin in severe falciparum malaria-associated ARDS relevant to hemozoin. PLoS ONE, 2017, 12, e0181674.	1.1	27
170	Brominated indoles from a marine mollusc inhibit inflammation in a murine model of acute lung injury. PLoS ONE, 2017, 12, e0186904.	1.1	16
171	Protective effects of chebulic acid on alveolar epithelial damage induced by urban particulate matter. BMC Complementary and Alternative Medicine, 2017, 17, 373.	3.7	7
172	HSP27 inhibitor attenuates radiation-induced pulmonary inflammation. Scientific Reports, 2018, 8, 4189.	1.6	16
173	The protective effects of <i>Sauropus spatulifolius</i> on acute lung injury induced by lipopolysaccharide. Journal of the Science of Food and Agriculture, 2018, 98, 4420-4426.	1.7	7
174	A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacological Research, 2018, 129, 44-55.	3.1	119
175	Pretreatment of ferulic acid attenuates inflammation and oxidative stress in a rat model of lipopolysaccharide-induced acute respiratory distress syndrome. International Journal of Immunopathology and Pharmacology, 2018, 31, 039463201775051.	1.0	33
176	Stem cells in lung repair and regeneration: Current applications and future promise. Journal of Cellular Physiology, 2018, 233, 6414-6424.	2.0	17
177	Nephrogenic acute respiratory distress syndrome: A narrative review onÂpathophysiology and treatment. Chinese Journal of Traumatology - English Edition, 2018, 21, 4-10.	0.7	16
178	Activation of M1 macrophages plays a critical role in the initiation of acute lung injury. Bioscience Reports, 2018, 38, .	1.1	71
179	Silymarin mitigates lung impairments in a rat model of acute respiratory distress syndrome. Inflammopharmacology, 2018, 26, 747-754.	1.9	19
180	Oxidation-Reduction Potential in Patients undergoing Transcatheter or Surgical Aortic Valve Replacement. BioMed Research International, 2018, 2018, 1-10.	0.9	8
181	Oxidative Stress and Neonatal Respiratory Extracorporeal Membrane Oxygenation. Frontiers in Physiology, 2018, 9, 1739.	1.3	18
182	Omentin-1 protects against bleomycin-induced acute lung injury. Molecular Immunology, 2018, 103, 96-105.	1.0	23
183	Profiling Acute Oral and Inhalation Toxicity Data Using a Computational Workflow to Screen for Facile Chemical Reactivity. Applied in Vitro Toxicology, 2018, 4, 214-219.	0.6	6
184	Reactive oxygen species stimulated pulmonary epithelial cells mediate the alveolar recruitment of FasL+ killer B cells in LPS-induced acute lung injuries. Journal of Leukocyte Biology, 2018, 104, 1187-1198.	1.5	15
185	Intensive care doctors' preferences for arterial oxygen tension levels in mechanically ventilated patients. Acta Anaesthesiologica Scandinavica, 2018, 62, 1443-1451.	0.7	12
186	Lung epithelial cell-derived IL-25 negatively regulates LPS-induced exosome release from macrophages. Military Medical Research, 2018, 5, 24.	1.9	41

ARTICLE IF CITATIONS # \hat{I}^2 -Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release. American Journal of Physiology - Lung Cellular and 187 1.3 12 Molecular Physiology, 2018, 314, L654-L669. A Broadâ€Spectrum ROSâ€Eliminating Material for Prevention of Inflammation and Drugâ€Induced Organ 5.6 93 Toxicity. Advanced Science, 2018, 5, 1800781. Volatile organic compound signature from co-culture of lung epithelial cell line with 189 1.7 28 <i>Pseudomonas aeruginosa </i>. Analyst, The, 2018, 143, 3148-3155. The Effect of Intravenous Selenium on Oxidative Stress in Critically III Patients with Acute Respiratory Distress Syndrome. Immunological Investigations, 2019, 48, 147-159. <p>Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways</p>. International Journal of Nanomedicine, 2019, 191 3.3 59 Volume 14, 5215-5228. Therapeutic Perspective of Vitamin C and Its Derivatives. Antioxidants, 2019, 8, 247. 2.2 Mitigation of Hydrochloric Acid (HCl)-Induced Lung Injury in Mice by Aerosol Therapy of 193 Surface-Active Nanovesicles Containing Antioxidant and Anti-inflammatory Drugs. ACS Applied Bio 2.34 Materials, 2019, 2, 5379-5389. DNA repair and genomic stability in lungs affected by acute injury. Biomedicine and Pharmacotherapy, 194 2.5 2019, 119, 109412. Corticosteroids in Acute Lung Injury: The Dilemma Continues. International Journal of Molecular 195 93 1.8 Sciences, 2019, 20, 4765. CXCL16/CXCR6 is involved in LPSâ€induced acute lung injury via P38 signalling. Journal of Cellular and 1.6 Molecular Medicine, 2019, 23, 5380-5389. The Protection Potential of Antioxidant Vitamins Against Acute Respiratory Distress Syndrome: a Rat 197 1.7 45 Trial. Inflammation, 2019, 42, 1585-1594. Perioperative Oxygenation Targets in Adults. Current Anesthesiology Reports, 2019, 9, 158-164. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and 199 2.5 33 Mortality. Antioxidants and Redox Signaling, 2019, 31, 1027-1052. Handling Oxygenation Targets in the Intensive Care Unit (HOTâ€ICU)â€"Protocol for a randomised clinical trial comparing a lower vs a higher oxygenation target in adults with acute hypoxaemic respiratory failure. Acta Anaesthesiologica Scandinavica, 2019, 63, 956-965. Peroxiredoxins and Beyond; Redox Systems Regulating Lung Physiology and Disease. Antioxidants and 201 2.524 Redox Signaling, 2019, 31, 1070-1091. Higher versus lower fraction of inspired oxygen or targets of arterial oxygenation for adults 44 admitted to the intensive care unit. The Cochrane Library, 2019, 2019, Surfactant Protein D Dampens Lung Injury by Suppressing NLRP3 Inflammasome Activation and NF-^î[®]B 203 1.0 27 Signaling in Acute Pancreatitis. Shock, 2019, 51, 557-568. PG490-88, a derivative of triptolide, suppresses ischemia/reperfusion-induced lung damage by 204 maintaining tight junction barriers and targeting multiple signaling pathways. International Immunopharmacology, 2019, 68, 17-29.

#	Article	IF	CITATIONS
205	Tannic acid protects against experimental acute lung injury through downregulation of TLR4 and MAPK. Journal of Cellular Physiology, 2019, 234, 6463-6476.	2.0	37
206	Alveolar Macrophage Chemokine Secretion Mediates Neutrophilic Lung Injury in Nox2-Deficient Mice. Inflammation, 2019, 42, 185-198.	1.7	12
207	Dexmedetomidine and Magnesium Sulfate: A Good Combination Treatment for Acute Lung Injury?. Journal of Investigative Surgery, 2019, 32, 331-342.	0.6	16
208	Critical role of mitochondrial oxidative stress in acid aspiration induced ALI in mice. Toxicology Mechanisms and Methods, 2020, 30, 266-274.	1.3	20
209	Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19. Antioxidants, 2020, 9, 894.	2.2	17
210	A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicology Letters, 2020, 333, 115-129.	0.4	5
211	Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	29
212	Hydrogen Peroxide Causes Cell Death via Increased Transcription of HOXB13 in Human Lung Epithelial A549 Cells. Toxics, 2020, 8, 78.	1.6	2
213	Oxygen therapy practices in the acutely ill medical patients: A social media-based nationwide study of clinicians' preferences and summary of current recommendations. Emergency Care Journal, 2020, 16, .	0.2	1
214	Protective Effect of Corynoline in Sepsis-Induced Acute Lung Injury in Rats via Inhibition of NF-Ä,B. Natural Product Communications, 2020, 15, 1934578X2096118.	0.2	2
215	Hypoxia-Inducible Factor-1: A Potential Target to Treat Acute Lung Injury. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	39
216	Applications of Nanomaterials in Human Health. , 2020, , .		21
217	Application of Nanomaterials in Treatment of Microbial and Viral Infections. , 2020, , 173-190.		0
218	Lung Endothelial Transcytosis. , 2020, 10, 491-508.		17
219	Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. Science Advances, 2020, 6, eaaz5466.	4.7	77
220	Mesenchymal stromal cells ameliorate acute lung injury induced by LPS mainly through stanniocalcin-2 mediating macrophage polarization. Annals of Translational Medicine, 2020, 8, 334-334.	0.7	27
221	GDF-15 prevents lipopolysaccharide-mediated acute lung injury via upregulating SIRT1. Biochemical and Biophysical Research Communications, 2020, 526, 439-446.	1.0	17
222	Role of Pseudomonas aeruginosa Glutathione Biosynthesis in Lung and Soft Tissue Infection. Infection and Immunity, 2020, 88, .	1.0	9

#	Article	IF	CITATIONS
223	Higher vsÂLower Oxygenation Strategies in Acutely Ill Adults. Chest, 2021, 159, 154-173.	0.4	40
224	Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. Journal of Biochemistry, 2021, 169, 613-620.	0.9	3

Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2 Infection. Diseases (Basel,) Tj ETQq0.0 rgBT /Overlock $\frac{1}{28}$

226	Recent advances in dead cell clearance during acute lung injury and repair. Faculty Reviews, 2021, 10, 33.	1.7	9
227	Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. Journal of Inflammation Research, 2021, Volume 14, 657-687.	1.6	14
228	Anti-Inflammatory Effect Fraction of Bletilla striata and Its Protective Effect on LPS-Induced Acute Lung Injury. Mediators of Inflammation, 2021, 2021, 1-16.	1.4	12
229	Potential Antioxidative, Antiâ€inflammatory and Immunomodulatory Effects of Ghrelin, an Endogenous Peptide from the Stomach in SARS-CoV2 Infection. International Journal of Peptide Research and Therapeutics, 2021, 27, 1875-1883.	0.9	10
230	The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells, 2021, 10, 897.	1.8	97
231	Resveratrol-Loaded Lipid-Core Nanocapsules Modulate Acute Lung Inflammation and Oxidative Imbalance Induced by LPS in Mice. Pharmaceutics, 2021, 13, 683.	2.0	7
232	The Association of Respiratory Viruses with Oxidative Stress and Antioxidants. Implications for the COVID-19 Pandemic. Current Pharmaceutical Design, 2021, 27, 1618-1627.	0.9	22
233	L-carnitine alleviated acute lung injuries induced by potassium dichromate in rats: involvement of Nrf2/HO-1 signaling pathway. Heliyon, 2021, 7, e07207.	1.4	26
234	A Peptide Inhibitor of Peroxiredoxin 6 Phospholipase A2 Activity Significantly Protects against Lung Injury in a Mouse Model of Ventilator Induced Lung Injury (VILI). Antioxidants, 2021, 10, 925.	2.2	10
235	Epidemiologic evidence linking oxidative stress and pulmonary function in healthy populations. Chronic Diseases and Translational Medicine, 2021, 7, 88-99.	0.9	6
236	Handling oxygenation targets in ICU patients with COVIDâ€19—Protocol and statistical analysis plan in the HOTâ€COVID trial. Acta Anaesthesiologica Scandinavica, 2021, 65, 1497-1504.	0.7	5
237	Protocatechuic acid attenuates lipopolysaccharideâ€induced septic lung injury in mice: The possible role through suppressing oxidative stress, inflammation and apoptosis. Journal of Food Biochemistry, 2021, 45, e13915.	1.2	9
238	Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches – Pulmonary Disease/Asthma. Frontiers in Physiology, 2021, 12, 727806.	1.3	30
239	Redox Role of ROS and Inflammation in Pulmonary Diseases. Advances in Experimental Medicine and Biology, 2021, 1304, 187-204.	0.8	42
240	PROTECTION FROM ACUTE AND CHRONIC LUNG DISEASES BY CURCUMIN. Advances in Experimental Medicine and Biology, 2007, 595, 379-405.	0.8	46

# 241	ARTICLE Introduction. Advances in Experimental Medicine and Biology, 2020, 1238, 1-10.	IF 0.8	CITATIONS
242	Respiratory Syncytial Virus-Induced Oxidative Stress in Lung Pathogenesis. , 2020, , 297-330.		8
243	Oxidative Stress in Experimental Models of Acute Lung Injury. , 2020, , 25-57.		4
244	Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury. Journal of General Virology, 2015, 96, 2939-2950.	1.3	24
245	Sodium Butyrate Protects against Severe Burn-Induced Remote Acute Lung Injury in Rats. PLoS ONE, 2013, 8, e68786.	1.1	31
246	Detoxification of Mitochondrial Oxidants and Apoptotic Signaling Are Facilitated by Thioredoxin-2 and Peroxiredoxin-3 during Hyperoxic Injury. PLoS ONE, 2017, 12, e0168777.	1.1	18
247	Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS ONE, 2017, 12, e0171165.	1.1	14
248	Effects of transrectal medicinal ozone in horses - clinical and laboratory aspects. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2020, 72, 56-64.	0.1	3
249	4-Hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget, 2015, 6, 41508-41521.	0.8	39
251	Effects of methyl palmitate and lutein on LPS-induced acute lung injury in rats. World Journal of Respirology, 2013, 3, 20.	0.5	8
252	Inhibition of Peroxiredoxin 6 PLA2 Activity Decreases Oxidative Stress and the Severity of Acute Lung Injury in the Mouse Cecal Ligation and Puncture Model. Antioxidants, 2021, 10, 1676.	2.2	6
253	The role of eosinophilic leukocytes in pathogenesis of bronchial asthma. Journal of Medical Biochemistry, 2004, 23, 333-341.	0.1	1
254	Air Pollutants, Epithelial Surfaces, and Lung Disease. , 2005, , 185-222.		2
255	Induction and modulation of inflammatory networks by bacterial protein toxins. , 2006, , 887-918.		Ο
257	Mechanical Ventilation During General Anesthesia. , 2008, , 320-336.		0
258	Acute Lung Injury: Injury from Drugs. , 2008, , 18-27.		0
259	Serum Trace Elements in Coronary Artery Bypass Graft Surgery: The Relationship Between Trace Element Supplementation and Period of Mechanical Ventilation in a Randomized Double-Blind Placebo-Controlled Trial. Jundishapur Journal of Natural Pharmaceutical Products, 2019, 14, .	0.3	1
260	THE MORPHOLOGY OF THE LUNGS AT THE EXPERIMENTAL ACUTE INJURY AND ITS PHARMACOCORRECTION. Morphological Newsletter, 2020, 28, 64-73.	0.0	0

#	Article	IF	CITATIONS
261	Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model. Journal of Ethnopharmacology, 2022, 284, 114789.	2.0	3
262	Longâ€ŧerm cognitive and pulmonary functions following a lower versus a higher oxygenation target in the HOTâ€ICU trial: protocol and statistical analysis plan. Acta Anaesthesiologica Scandinavica, 2022, 66, 282-287.	0.7	3
263	Assessment of Protection Offered by The Nrf2 Pathway Against Hyperoxia-Induced Acute Lung Injury In Nrf2 Knockout Rats. Shock, 2021, Publish Ahead of Print, .	1.0	5
264	Effects of sevoflurane preconditioning on lung injury during one lung ventilation. International Journal of Clinical and Experimental Medicine, 2015, 8, 13634-8.	1.3	6
265	Effects of gamma oryzanol on factors of oxidative stress and sepsis-induced lung injury in experimental animal model. Iranian Journal of Basic Medical Sciences, 2015, 18, 1257-63.	1.0	14
266	Poldip2/Nox4 Mediates Lipopolysaccharide-Induced Oxidative Stress and Inflammation in Human Lung Epithelial Cells. Mediators of Inflammation, 2022, 2022, 1-29.	1.4	6
267	Therapeutic role of flavonoids in lung inflammatory disorders. Phytomedicine Plus, 2022, 2, 100221.	0.9	6
268	Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal?. Biomedicines, 2022, 10, 823.	1.4	9
269	Oxidative stress-induced endothelial dysfunction and decreased vascular nitric oxide in COVID-19 patients. EBioMedicine, 2022, 77, 103893.	2.7	48
270	The suppressive effects of Mer inhibition on inflammatory responses in the pathogenesis of LPS-induced ALI/ARDS. Science Signaling, 2022, 15, eabd2533.	1.6	12
271	Protective effect of Amomum Roxb. essential oils in lipopolysaccharide-induced acute lung injury mice and its metabolomics. Journal of Ethnopharmacology, 2022, 290, 115119.	2.0	11
272	Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nature Communications, 2021, 12, 7094.	5.8	53
273	Fe-Curcumin Nanozyme-Mediated Reactive Oxygen Species Scavenging and Anti-Inflammation for Acute Lung Injury. ACS Central Science, 2022, 8, 10-21.	5.3	97
274	Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Frontiers in Physiology, 2021, 12, 781874.	1.3	24
275	Long-term mortality and health-related quality of life of lower versus higher oxygenation targets in ICU patients with severe hypoxaemia. Intensive Care Medicine, 2022, 48, 714-722.	3.9	8
278	Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation. Immune Network, 2022, 22, e18.	1.6	5
279	Ameliorating effect of rutin against diclofenac-induced cardiac injury in rats with underlying function of FABP3, MYL3, and ANP. Drug and Chemical Toxicology, 2023, 46, 597-608.	1.2	5
280	Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation, 0, , .	1.7	0

#	Article	IF	CITATIONS
281	Mitochondria and their potential role in acute lung injury (Review). Experimental and Therapeutic Medicine, 2022, 24, .	0.8	5
283	Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. Journal of Inflammation Research, 0, Volume 15, 3501-3546.	1.6	14
284	Inhaled D-Limonene minimizes acute lung injury and reduces oxidative stress induced by smoke in rats. Phytomedicine Plus, 2022, 2, 100308.	0.9	2
285	Polyphyllin I alleviates lipopolysaccharide-induced inflammation reduces pyroptosis in BEAS-2B and HPAEC cells by inhibiting NF-I®B signaling. Allergologia Et Immunopathologia, 2022, 50, 23-30.	1.0	1
286	Characterization of Platelet Biologic Markers in the Early Pathogenesis of Postoperative Acute Respiratory Distress Syndrome. , 2022, 4, e0728.		0
287	Pathologically triggered in situ aggregation of nanoparticles for inflammation-targeting amplification and therapeutic potentiation. Acta Pharmaceutica Sinica B, 2023, 13, 390-409.	5.7	9
288	G6PD deficiency: imbalance of functional dichotomy contributing to the severity of COVID-19. Future Microbiology, 0, , .	1.0	5
289	Ventilator-induced lung injury results in oxidative stress response and mitochondrial swelling in a mouse model. Laboratory Animal Research, 2022, 38, .	1.1	6
290	Usage of Nanoparticles to Alter Neutrophils' Function for Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 3676-3689.	2.6	5
291	Exhaled Aldehydes as Biomarkers for Lung Diseases: A Narrative Review. Molecules, 2022, 27, 5258.	1.7	12
292	In vivo molecular imaging stratifies rats with different susceptibilities to hyperoxic acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, O, , .	1.3	0
293	Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. Biomolecules, 2022, 12, 1308.	1.8	6
294	Effects of tocilizumab and dexamethasone on the downregulation of proinflammatory cytokines and upregulation of antioxidants in the lungs in oleic acid-induced ARDS. Respiratory Research, 2022, 23, .	1.4	8
295	The mitochondrial calcium uniporter of pulmonary type 2 cells determines severity of acute lung injury. Nature Communications, 2022, 13, .	5.8	7
296	Endothelial function in acute phase of coronavirus infection. Kardiologiya I Serdechno-Sosudistaya Khirurgiya, 2022, 15, 501.	0.1	0
297	Melatonin Suppresses LPS-Induced Oxidative Stress in Dendritic Cells for Inflammatory Regulation via the Nrf2/HO-1 Axis. Antioxidants, 2022, 11, 2012.	2.2	7
298	YAP1 silencing attenuated lung injury/fibrosis but worsened diaphragmatic function by regulating oxidative stress and inflammation response in mice. Free Radical Biology and Medicine, 2022, 193, 485-498.	1.3	6
299	Relationship between intraoperative tidal volume and acute kidney injury following off-pump coronary artery bypass grafting: A retrospective observational study. Medicine (United States), 2022, 101, e31563.	0.4	0

#	Article	IF	CITATIONS
300	Validation of volatile metabolites of pulmonary oxidative injury: a bench to bedside study. ERJ Open Research, 2023, 9, 00427-2022.	1.1	4
301	Ayurveda-based phytochemical composition attenuates lung inflammation and precipitates pharmacokinetic interaction with favipiravir: an <i>inÂvivo</i> investigation using disease-state of acute lung injury. Natural Product Research, 2023, 37, 3758-3765.	1.0	1
302	Peptide-guided delivery improves the therapeutic efficacy and safety of glucocorticoid drugs for treating acute lung injury. Molecular Therapy, 2023, 31, 875-889.	3.7	3
303	Protection from acute lung injury by a peptide designed to inhibit the voltage-gated proton channel. IScience, 2023, 26, 105901.	1.9	0
304	Pulmonary inflammation, oxidative stress, and fibrosis in a mouse model of cholestasis: the potential protective properties of the dipeptide carnosine. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 1129-1142.	1.4	1
305	Molecular Imaging of Pulmonary Inflammation in Users of Electronic and Combustible Cigarettes: A Pilot Study. Journal of Nuclear Medicine, 2023, 64, 797-802.	2.8	8
306	Combination of pioglitazone, a PPARÎ ³ agonist, and synthetic surfactant B-YL prevents hyperoxia-induced lung injury in adult mice lung explants. Pulmonary Pharmacology and Therapeutics, 2023, 80, 102209.	1.1	0
308	The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. Ecotoxicology and Environmental Safety, 2023, 254, 114702.	2.9	6