Dissecting Arabidopsis lateral root development

Trends in Plant Science 8, 165-171 DOI: 10.1016/s1360-1385(03)00051-7

Citation Report

#	Article	IF	CITATIONS
1	Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. Journal of Experimental Botany, 2003, 55, 27-34.	2.4	347
2	IBR5, a Dual-Specificity Phosphatase-Like Protein Modulating Auxin and Abscisic Acid Responsiveness in Arabidopsis. Plant Cell, 2003, 15, 2979-2991.	3.1	150
3	ROOT DEVELOPMENT Lateral Root Initiation. , 2003, , 1101-1107.		9
4	The role of SEUSS in auxin response and floral organ patterning. Development (Cambridge), 2004, 131, 4697-4707.	1.2	77
5	Roles for Class III HD-Zip and KANADI Genes in Arabidopsis Root Development. Plant Physiology, 2004, 135, 2261-2270.	2.3	146
6	Transcript profiling of early lateral root initiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5146-5151.	3.3	190
7	Relocalization of the PIN1 Auxin Efflux Facilitator Plays a Role in Phototropic Responses. Plant Physiology, 2004, 134, 28-31.	2.3	146
8	nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response. Plant Physiology, 2004, 136, 3692-3702.	2.3	111
9	Developmental anatomy and auxin response of lateral root formation in Ceratopteris richardii. Journal of Experimental Botany, 2004, 55, 685-693.	2.4	48
10	Plant G Proteins, Phytohormones, and Plasticity: Three Questions and a Speculation. Science Signaling, 2004, 2004, re20-re20.	1.6	47
11	Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development (Cambridge), 2004, 131, 389-400.	1.2	258
12	Arabidopsis pdr2reveals a phosphate-sensitive checkpoint in root development. Plant Journal, 2004, 37, 801-814.	2.8	241
13	The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant Journal, 2004, 40, 772-782.	2.8	201
14	Disclosing the subterranean treasury of plants. Trends in Biotechnology, 2004, 22, 379-381.	4.9	3
15	Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Current Opinion in Plant Biology, 2004, 7, 719-731.	3.5	211
16	Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 2004, 218, 900-905.	1.6	483
17	Rescue of defective auxin-mediated gene expression and root meristem function by inhibition of ethylene signalling in sterol biosynthesis mutants of Arabidopsis. Planta, 2004, 219, 773-83.	1.6	28
18	The transparent testa4 Mutation Prevents Flavonoid Synthesis and Alters Auxin Transport and the Response of Arabidopsis Roots to Gravity and Light[W]. Plant Cell, 2004, 16, 1191-1205.	3.1	356

#	Article	IF	CITATIONS
19	Genetic Responses to Phosphorus Deficiency. Annals of Botany, 2004, 94, 323-332.	1.4	269
20	From weeds to crops: genetic analysis of root development in cereals. Trends in Plant Science, 2004, 9, 42-48.	4.3	313
21	Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science, 2004, 9, 548-555.	4.3	254
23	Hormones and Signals: Identification and Description of Signalling Molecules. , 2005, , 6-41.		0
24	Balance between cell division and differentiation during plant development. International Journal of Developmental Biology, 2005, 49, 467-477.	0.3	32
26	Auxin regulation of cell cycle and its role during lateral root initiation. Physiologia Plantarum, 2005, 123, 139-146.	2.6	40
27	Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 2005, 28, 67-77.	2.8	791
28	Marking cell lineages in living tissues. Plant Journal, 2005, 42, 444-453.	2.8	141
29	NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant Journal, 2005, 43, 118-130.	2.8	415
30	ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant Journal, 2005, 43, 47-56.	2.8	356
31	Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal, 2005, 44, 195-207.	2.8	305
32	Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant Journal, 2005, 44, 382-395.	2.8	236
33	Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant Journal, 2005, 44, 396-408.	2.8	163
34	A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant Journal, 2005, 44, 633-645.	2.8	99
35	Coupling cell proliferation and development in plants. Nature Cell Biology, 2005, 7, 535-541.	4.6	134
36	Osmotic regulation of root system architecture. Plant Journal, 2005, 43, 17-28.	2.8	258
37	Hormonal control of the plant cell cycle. Physiologia Plantarum, 2005, 123, 173-183.	2.6	122
38	Morphogenic effects of abiotic stress: reorientation of growth in seedlings. Environmental and Experimental Botany, 2005, 53, 299-314.	2.0	153

#	Article	IF	CITATIONS
39	Expression of SERK family receptor-like protein kinase genes in rice. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 253-258.	2.4	60
40	Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theoretical and Applied Genetics, 2005, 110, 742-753.	1.8	146
41	Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh Planta, 2005, 222, 98-106.	1.6	73
42	Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase 1 protein is present in sporophytic and gametophytic cells and undergoes endocytosis. Protoplasma, 2005, 226, 55-65.	1.0	44
43	Effect of auxins and plant oligosaccharides on root formation and elongation growth of mung bean hypocotyls. Plant Growth Regulation, 2005, 46, 1-9.	1.8	29
44	Regulation of lateral root formation by auxin signaling in Arabidopsis. Plant Biotechnology, 2005, 22, 393-399.	0.5	5
46	Cell-to-Cell Signalling: Short and Long Distance. , 2005, , 42-75.		0
47	Population Diversity of Cell Types and Target Identification in Higher Plants. , 2005, , 76-97.		ο
48	Flexibility of Cell Types and the Target Cell Status. , 2005, , 98-116.		0
49	Terminally Committed Cell Types and the Target Status. , 2005, , 117-145.		0
50	The Mechanisms of Target Cell Perception and Response to Specific Signals. , 2005, , 146-178.		0
51	Hormone Action and the Relief of Repression. , 2005, , 179-197.		Ο
52	The Phenomenon of Hormonal Cross-Talk. , 2005, , 198-204.		0
54	Nutritive stress and cytokinin status in Norway spruce seedlings (Picea abies L. Karst.). Annals of Forest Science, 2005, 62, 449-453.	0.8	2
55	Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. American Journal of Botany, 2005, 92, 1675-1683.	0.8	70
56	A Role for Auxin Redistribution in the Responses of the Root System Architecture to Phosphate Starvation in Arabidopsis. Plant Physiology, 2005, 138, 2061-2074.	2.3	295
57	Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thaliana Â. Plant Cell, 2005, 17, 3035-3050.	3.1	309
58	Ubiquitin-Mediated Proteolysis. To Be in the Right Place at the Right Moment during Nodule Development. Plant Physiology, 2005, 137, 1197-1204.	2.3	39

#	Article	IF	CITATIONS
59	GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 2005, 56, 2433-2442.	2.4	168
60	Characterization of the Lotus japonicus Symbiotic Mutant lot1 That Shows a Reduced Nodule Number and Distorted Trichomes. Plant Physiology, 2005, 137, 1261-1271.	2.3	31
61	Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. Plant Cell, 2005, 17, 1090-1104.	3.1	466
62	Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiology, 2005, 137, 209-219.	2.3	230
63	Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell, 2005, 18, 40-54.	3.1	851
64	Crown rootless1, Which Is Essential for Crown Root Formation in Rice, Is a Target of an AUXIN RESPONSE FACTOR in Auxin Signaling. Plant Cell, 2005, 17, 1387-1396.	3.1	415
65	The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13693-13698.	3.3	345
66	MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Letters, 2005, 579, 5399-5406.	1.3	202
67	Regulation of Root Growth by Plant Hormones—Roles for Auxin and Gibberellin. Critical Reviews in Plant Sciences, 2005, 24, 249-265.	2.7	262
68	Identification of Quantitative Trait Loci That Regulate Arabidopsis Root System Size and Plasticity. Genetics, 2006, 172, 485-498.	1.2	77
70	Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. Journal of Experimental Botany, 2006, 57, 2227-2235.	2.4	40
71	Cell Cycle Regulation in Plant Development. Annual Review of Genetics, 2006, 40, 77-105.	3.2	704
72	Nitric Oxide Functions as Intermediate in Auxin, Abscisic Acid, and Lipid Signaling Pathways. Plant Cell Monographs, 2006, , 113-130.	0.4	11
73	Legume nodulation: successful symbiosis through short- and long-distance signalling. Functional Plant Biology, 2006, 33, 707.	1.1	83
74	The Balance between Cell Division and Endoreplication Depends on E2FC-DPB, Transcription Factors Regulated by the Ubiquitin-SCFSKP2A Pathway in Arabidopsis. Plant Cell, 2006, 18, 2224-2235.	3.1	206
75	Identification of Drought Tolerance Determinants by Genetic Analysis of Root Response to Drought Stress and Abscisic Acid. Plant Physiology, 2006, 142, 1065-1074.	2.3	366
76	Root architecture: Influence of metameric organization and emission of lateral roots. Plant Biosystems, 2006, 140, 307-320.	0.8	9
77	The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Letters, 2006, 580, 1094-1102.	1.3	353

#	ARTICLE	IF	CITATIONS
78	Role of Cytokinin and Auxin in Shaping Root Architecture: Regulating Vascular Differentiation, Lateral Root Initiation, Root Apical Dominance and Root Gravitropism. Annals of Botany, 2006, 97, 883-893.	1.4	554
79	Isolation of a novel lateral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Science, 2006, 170, 70-77.	1.7	38
80	A novel role for abscisic acid emerges from underground. Trends in Plant Science, 2006, 11, 434-439.	4.3	241
82	Induction of Lateral Root Structure Formation on Petunia Roots: A Novel Effect of GMI1000 Ralstonia solanacearum Infection Impaired in Hrp Mutants. Molecular Plant-Microbe Interactions, 2006, 19, 597-606.	1.4	50
83	Roots and the Architecture of Root Systems. , 0, , 18-44.		7
84	Expression characteristics of GFP driven by NAC1 promoter and its responses to auxin and gibberellin*. Progress in Natural Science: Materials International, 2006, 16, 701-705.	1.8	2
85	Genetic Control of Root System Properties. , 0, , 253-285.		1
86	Auxin Biology and Biosynthesis. Recent Advances in Phytochemistry, 2006, , 287-305.	0.5	0
87	The maizeViviparous10/Viviparous13locus encodes theCnx1gene required for molybdenum cofactor biosynthesis. Plant Journal, 2006, 45, 250-263.	2.8	41
88	Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Plant Journal, 2006, 46, 436-447.	2.8	69
89	PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant Journal, 2006, 48, 380-389.	2.8	156
90	Modelling the rhizosphere: a review of methods for â€~upscaling' to the whole-plant scale. European Journal of Soil Science, 2006, 57, 13-25.	1.8	86
91	PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant Journal, 2006, 48, 933-946.	2.8	151
92	Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. Journal of Experimental Botany, 2006, 57, 581-588.	2.4	235
93	Integration of Abscisic Acid Signalling into Plant Responses. Plant Biology, 2006, 8, 314-325.	1.8	201
94	Lateral Root Initiation or the Birth of a New Meristem. Plant Molecular Biology, 2006, 60, 871-887.	2.0	248
95	Auxin Flow in Anther Filaments is Critical for Pollen Grain Development through Regulating Pollen Mitosis. Plant Molecular Biology, 2006, 61, 215-226.	2.0	93
96	Organic substances in xylem sap delivered to above-ground organs by the roots. Journal of Plant Research, 2006, 119, 179-187.	1.2	66

#	Article	IF	CITATIONS
97	Barley anther culture: effects of annual cycle and spike position on microspore embryogenesis and albinism. Plant Cell Reports, 2006, 25, 375-381.	2.8	45
98	Expression of NAC1 up-stream regulatory region and its relationship to the lateral root initiation induced by gibberellins and auxins. Science in China Series C: Life Sciences, 2006, 49, 429-435.	1.3	8
99	Integrating hormone signaling and patterning mechanisms in plant development. Current Opinion in Plant Biology, 2006, 9, 28-34.	3.5	52
100	Auxin Immunolocalization Implicates Vesicular Neurotransmitter-Like Mode of Polar Auxin Transport in Root Apices. Plant Signaling and Behavior, 2006, 1, 122-133.	1.2	91
101	The POLARIS Peptide of Arabidopsis Regulates Auxin Transport and Root Growth via Effects on Ethylene Signaling. Plant Cell, 2006, 18, 3058-3072.	3.1	146
102	Tissue-specific expression of tomato Ribonuclease LX during phosphate starvation-induced root growth. Journal of Experimental Botany, 2006, 57, 3717-3726.	2.4	34
103	G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development. Plant Physiology, 2006, 141, 243-256.	2.3	219
104	Ectopic Expression of Pumpkin Gibberellin Oxidases Alters Gibberellin Biosynthesis and Development of Transgenic Arabidopsis Plants. Plant Physiology, 2006, 140, 528-536.	2.3	47
105	Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patterning, Density and Predictability. Annals of Botany, 2006, 97, 903-915.	1.4	163
106	Armadillo-related proteins promote lateral root development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1621-1626.	3.3	90
107	Differential Roles of Arabidopsis Heterotrimeric G-Protein Subunits in Modulating Cell Division in Roots. Plant Physiology, 2006, 141, 887-897.	2.3	165
108	TheMedicago truncatulaCRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction withSinorhizobium meliloti. Plant Cell, 2006, 18, 2680-2693.	3.1	467
109	Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development (Cambridge), 2007, 134, 681-690.	1.2	540
110	The Growing Family of Plant Cyclin-Dependent Kinases with Multiple Functions in Cellular and Developmental Regulation. , 0, , 1-30.		15
111	Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of Experimental Botany, 2007, 59, 93-109.	2.4	394
112	The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis. PLoS Biology, 2007, 5, e222.	2.6	302
113	The E2FC-DPB Transcription Factor Controls Cell Division, Endoreplication and Lateral Root Formation in a SCFSKP2A- Dependent Manner. Plant Signaling and Behavior, 2007, 2, 273-274.	1.2	9
114	Coordination of Cell Division and Differentiation. Plant Cell Monographs, 2007, , 377-393.	0.4	0

#	Article	IF	CITATIONS
115	Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root. Plant Physiology, 2007, 145, 575-588.	2.3	144
116	The <i>Arabidopsis</i> Transcription Factor MYB77 Modulates Auxin Signal Transduction. Plant Cell, 2007, 19, 2440-2453.	3.1	337
117	Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca Â. Plant Physiology, 2007, 144, 1852-1862.	2.3	84
118	How the Environment Regulates Root Architecture in Dicots. Advances in Botanical Research, 2007, 46, 35-74.	0.5	23
119	Lateral root emission in woody taproots ofFraxinus ornusL Plant Biosystems, 2007, 141, 204-213.	0.8	8
120	Modification of root architecture in woody plants is possible for the presence of two different mechanisms of lateral root production: The effect of slope inSpartium junceumL. seedlings. Plant Biosystems, 2007, 141, 502-511.	0.8	13
121	Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. Journal of Experimental Botany, 2007, 58, 279-289.	2.4	46
122	CRM1/BIG-Mediated Auxin Action Regulates Arabidopsis Inflorescence Development. Plant and Cell Physiology, 2007, 48, 1275-1290.	1.5	51
123	Stress-induced morphogenic responses: growing out of trouble?. Trends in Plant Science, 2007, 12, 98-105.	4.3	641
124	Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12, 474-481.	4.3	608
125	Hormone signalling and root development: an update on the latest Arabidopsis thaliana research. Functional Plant Biology, 2007, 34, 163.	1.1	9
126	Developmental Biology. , 2008, , 283-333.		3
127	ARF7 and ARF19 Regulate Lateral Root Formation via Direct Activation of LBD/ASL Genes in Arabidopsis. Plant Cell, 2007, 19, 118-130.	3.1	805
128	Strategies of Plants to Adapt to Mineral Stresses in Problem Soils. Advances in Agronomy, 2007, 96, 65-132.	2.4	48
129	Auxinâ€Mediated Lateral Root Formation in Higher Plants. International Review of Cytology, 2007, 256, 111-137.	6.2	166
130	Control of seed and root development by WIPK-activated transcription factor, NtWIF in tobacco plants. Plant Biotechnology, 2007, 24, 307-314.	0.5	2
131	Involvement of cytokinins in adventitious and lateral root formation. Plant Root, 2007, 1, 27-33.	0.3	23
132	Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant Journal, 2007, 51, 1-17.	2.8	112

#	Article	IF	CITATIONS
133	Metabolomics integrated with transcriptomics: assessing systems response to sulfurâ€deficiency stress. Physiologia Plantarum, 2008, 132, 190-198.	2.6	122
134	The cell-cycle promoter cdc2aAt from Arabidopsis thaliana is induced in the lateral roots of the actinorhizal tree Allocasuarina verticillata during the early stages of the symbiotic interaction with Frankia. Physiologia Plantarum, 2007, 130, 409-417.	2.6	8
135	Disruption ofAtOCT1, an organic cation transporter gene, affects root development and carnitine-related responses in Arabidopsis. Plant Journal, 2007, 51, 154-164.	2.8	41
136	A protein phosphatase 2A catalytic subunit is a negative regulator of abscisic acid signalling ¹ . Plant Journal, 2007, 51, 763-778.	2.8	102
137	Carbon Monoxide Promotes Lateral Root Formation in Rapeseed. Journal of Integrative Plant Biology, 2007, 49, 1070-1079.	4.1	67
138	Apical diameter and branching density affect lateral root elongation rates in banana. Environmental and Experimental Botany, 2007, 59, 243-251.	2.0	24
139	Common regulatory themes in meristem development and whole-plant homeostasis. Current Opinion in Plant Biology, 2007, 10, 44-51.	3.5	77
140	Mathematical model of auxin distribution in the plant root. Russian Journal of Developmental Biology, 2007, 38, 374-382.	0.1	8
141	Hidden Branches: Developments in Root System Architecture. Annual Review of Plant Biology, 2007, 58, 93-113.	8.6	474
142	Reactive oxygen species mediate IAA-Induced ethylene production in mungbean (Vigna radiata L.) hypocotyls. Journal of Plant Biology, 2007, 50, 18-23.	0.9	17
143	Ecological and population genetics research imperatives for transgenic trees. Tree Genetics and Genomes, 2007, 3, 119-133.	0.6	30
144	Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 2007, 226, 1183-1194.	1.6	168
145	p-Chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings. Journal of Plant Research, 2008, 121, 107-114.	1.2	8
146	Demarcation of the cortical division zone in dividing plant cells. Cell Biology International, 2008, 32, 178-187.	1.4	29
147	The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biology, 2008, 10, 946-954.	4.6	715
148	Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 2008, 179, 595-614.	3.5	280
149	Specialization of CDC27 function in the <i>Arabidopsis thaliana</i> anaphaseâ€promoting complex (APC/C). Plant Journal, 2008, 53, 78-89.	2.8	74
150	Degradation of the cyclinâ€dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant Journal, 2008, 53, 705-716.	2.8	97

#	Article	IF	CITATIONS
151	SKP2A, an Fâ€box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant Journal, 2008, 53, 828-841.	2.8	69
152	MicroRNA166 controls root and nodule development in <i>Medicago truncatula</i> . Plant Journal, 2008, 54, 876-887.	2.8	298
153	Mitochondrial respiratory pathways modulate nitrate sensing and nitrogenâ€dependent regulation of plant architecture in <i>Nicotiana sylvestris</i> . Plant Journal, 2008, 54, 976-992.	2.8	58
154	Ethylene regulates lateral root formation and auxin transport in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 175-187.	2.8	294
155	Phosphorus nutrition of terrestrial plants. Plant Ecophysiology, 2008, , 51-81.	1.5	146
158	Mineral Nutrition. , 2008, , 255-320.		27
159	Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation. Plant Science, 2008, 174, 165-173.	1.7	39
160	Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.). Plant Science, 2008, 175, 272-282.	1.7	42
161	The plant CDK inhibitor NtKIS1a interferes with dedifferentiation, is specifically down regulated during development and interacts with a JAB1 homolog. Plant Science, 2008, 175, 513-523.	1.7	10
162	Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. Journal of Experimental Botany, 2008, 59, 3443-3452.	2.4	113
163	The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, 2008, , .	1.5	52
164	Diarch Symmetry of the Vascular Bundle in Arabidopsis Root Encompasses the Pericycle and Is Reflected in Distich Lateral Root Initiation. Plant Physiology, 2008, 146, 140-148.	2.3	163
165	Elongation Changes of Exploratory and Root Hair Systems Induced by Aminocyclopropane Carboxylic Acid and Aminoethoxyvinylglycine Affect Nitrate Uptake and <i>BnNrt2.1</i> and <i>BnNrt1.1</i> Transporter Gene Expression in Oilseed Rape. Plant Physiology, 2008, 146, 1928-1940.	2.3	59
166	Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Functional Plant Biology, 2008, 35, 253.	1.1	68
167	Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development (Cambridge), 2008, 135, 3345-3354.	1.2	196
168	Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. Journal of Experimental Botany, 2008, 59, 55-66.	2.4	134
169	Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene. Journal of Experimental Botany, 2008, 59, 2361-2370.	2.4	11
170	Effects of Conditional IPT-Dependent Cytokinin Overproduction on Root Architecture of Arabidopsis Seedlings. Plant and Cell Physiology, 2008, 49, 570-582.	1.5	76

#	Article	IF	CITATIONS
171	Root System Architecture in <i>Arabidopsis</i> Grown in Culture Is Regulated by Sucrose Uptake in the Aerial Tissues. Plant Cell, 2008, 20, 2643-2660.	3.1	133
172	Aerobic Nitric Oxide Production by <i>Azospirillum brasilense</i> Sp245 and Its Influence on Root Architecture in Tomato. Molecular Plant-Microbe Interactions, 2008, 21, 1001-1009.	1.4	194
173	Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation. Plant Cell, 2008, 19, 3889-3900.	3.1	498
174	Armadillo Repeat Proteins: Versatile Regulators of Plant Development and Signalling. , 2007, , 299-314.		3
175	A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. Functional Plant Biology, 2008, 35, 92.	1.1	15
176	Auxin: at the root of nodule development?. Functional Plant Biology, 2008, 35, 651.	1.1	134
177	An Auxin Transport-Based Model of Root Branching in Arabidopsis thaliana. PLoS ONE, 2008, 3, e3673.	1.1	74
178	Expression of PIN Genes in Rice (Oryza sativa L.): Tissue Specificity and Regulation by Hormones. Molecular Plant, 2009, 2, 823-831.	3.9	185
179	Phenotyping of Arabidopsis Mutants for Developmental Effects of Gene Deletions. Methods in Molecular Biology, 2009, 479, 17-34.	0.4	4
180	The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 2009, 4, 701-712.	1.2	472
181	Mechanical Stimuli Modulate Lateral Root Organogenesis. Plant Physiology, 2009, 151, 1855-1866.	2.3	130
182	<i>LBD18/ASL20</i> Regulates Lateral Root Formation in Combination with <i>LBD16/ASL18</i> Downstream of <i>ARF7</i> and <i>ARF19</i> in Arabidopsis. Plant Physiology, 2009, 151, 1377-1389.	2.3	246
183	<i>Arabidopsis ASA1</i> Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation Â. Plant Cell, 2009, 21, 1495-1511.	3.1	312
184	Spatiotemporal aspect of cytokinin-auxin interaction in hormonal regulation of the root meristem. Plant Signaling and Behavior, 2009, 4, 156-157.	1.2	6
185	The Arabidopsis Cell Division Cycle. The Arabidopsis Book, 2009, 7, e0120.	0.5	139
186	Knockdown of <i>CELL DIVISION CYCLE16</i> Reveals an Inverse Relationship between Lateral Root and Nodule Numbers and a Link to Auxin in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2009, 151, 1155-1166.	2.3	52
187	<i>Arabidopsis</i> N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein–Mediated Pathway. Plant Cell, 2009, 21, 3591-3609.	3.1	87
188	Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. Journal of Experimental Botany, 2009, 60, 4137-4149.	2.4	50

	CITATION	Report	
#	Article	IF	Citations
189	Phosphate Availability Alters Lateral Root Development in <i>Arabidopsis</i> by Modulating Auxin Sensitivity via a Mechanism Involving the TIR1 Auxin Receptor. Plant Cell, 2009, 20, 3258-3272.	3.1	471
190	The Ectomycorrhizal Fungus <i>Laccaria bicolor</i> Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling. Plant Physiology, 2009, 151, 1991-2005.	2.3	244
191	Division plane determination during plant somatic cytokinesis. Current Opinion in Plant Biology, 2009, 12, 745-751.	3.5	54
192	Feeling green: mechanosensing in plants. Trends in Cell Biology, 2009, 19, 228-235.	3.6	150
193	Hormone interactions during lateral root formation. Plant Molecular Biology, 2009, 69, 437-449.	2.0	390
194	Abscisic acid (ABA) inhibition of lateral root formation involves endogenous ABA biosynthesis in Arachis hypogaea L Plant Growth Regulation, 2009, 58, 173-179.	1.8	43
195	Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell and Environment, 2009, 32, 158-169.	2.8	319
196	Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown <i>in vitro</i> . Plant Journal, 2009, 57, 626-644.	2.8	339
197	EZâ€R <scp>hizo</scp> : integrated software for the fast and accurate measurement of root system architecture. Plant Journal, 2009, 57, 945-956.	2.8	228
198	Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 Multidrug Resistanceâ€like transporter. Plant Journal, 2009, 60, 91-101.	2.8	50
199	Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Research, 2009, 19, 1110-1119.	5.7	145
200	Humic substances induce lateral root formation and expression of the early auxin-responsive <i>IAA19</i> gene and DR5 synthetic element in <i>Arabidopsis</i> . Plant Biology, 2009, 12, 604-14.	1.8	99
201	The D-type cyclin CYCD4;1 modulates lateral root density in <i>Arabidopsis</i> by affecting the basal meristem region. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22528-22533.	3.3	73
202	Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 2009, 114, 329-342.	2.3	316
203	Arabidopsis lateral root development: an emerging story. Trends in Plant Science, 2009, 14, 399-408.	4.3	681
204	A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. Journal of Plant Physiology, 2009, 166, 1934-1945.	1.6	76
205	Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. Aquatic Toxicology, 2009, 92, 122-130.	1.9	56
206	Effects of Potassium Deficiency on Root Growth of Cotton Seedlings and Its Physiological Mechanisms. Acta Agronomica Sinica, 2009, 35, 718-723.	0.3	21

#	Article	IF	CITATIONS
207	The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant Physiology, 2009, 151, 275-289.	2.3	510
208	Albinism in Plants: A Major Bottleneck in Wide Hybridization, Androgenesis and Doubled Haploid Culture. Critical Reviews in Plant Sciences, 2009, 28, 393-409.	2.7	76
209	Coronatineâ€induced lateralâ€root formation in cotton (<i>Gossypium hirsutum</i>) seedlings under potassiumâ€sufficient and â€deficient conditions in relation to auxin. Journal of Plant Nutrition and Soil Science, 2009, 172, 435-444.	1.1	25
210	Lateral Root Formation. , 0, , 83-126.		10
211	Legume Root Architecture: A Peculiar Root System. , 0, , 239-287.		5
212	Effect of Nutrient Availability on Root System Development. , 0, , 288-324.		3
213	Fern Root Development. , 0, , 192-208.		4
214	When Plants Socialize: Symbioses and Root Development. , 0, , 209-238.		9
216	Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta, 2010, 231, 1025-1036.	1.6	173
217	The tensor-based model for growth and cell divisions of the root apex. II. Lateral root formation. Planta, 2010, 232, 1207-1218.	1.6	20
218	The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta, 2010, 232, 1455-1470.	1.6	110
219	Auxin and Abscisic Acid Responses of Auxin Response Factor 3 in Arabidopsis Lateral Root Development. Journal of Plant Biology, 2010, 53, 150-154.	0.9	18
221	Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant and Soil, 2010, 328, 191-201.	1.8	68
222	Phenotypic plasticity of the coarse root system of Prosopis flexuosa, a phreatophyte tree, in the Monte Desert (Argentina). Plant and Soil, 2010, 330, 447-464.	1.8	44
223	Screening of genes associated with dedifferentiation and effect of LBD29 on pericycle cells in Arabidopsis thaliana. Plant Growth Regulation, 2010, 62, 127-136.	1.8	15
224	Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology, 2010, 28, 149-156.	9.4	332
225	The soybean root-specific protein kinase GmWNK1 regulates stress-responsive ABA signaling on the root system architecture. Plant Journal, 2010, 64, 230-242.	2.8	50
227	Glucose Attenuation of Auxin-Mediated Bimodality in Lateral Root Formation Is Partly Coupled by the Heterotrimeric G Protein Complex. PLoS ONE, 2010, 5, e12833.	1.1	45

# 228	ARTICLE Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Research, 2010, 38, 1382-1391.	IF 6.5	CITATIONS
229	Cytokinin Regulation of Auxin Synthesis in <i>Arabidopsis</i> Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction Â. Plant Cell, 2010, 22, 2956-2969.	3.1	247
230	Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics. Journal of Biological Chemistry, 2010, 285, 23309-23317.	1.6	114
231	Roles of Arabidopsis Patatin-Related Phospholipases A in Root Development Are Related to Auxin Responses and Phosphate Deficiency. Molecular Plant, 2010, 3, 524-538.	3.9	97
232	Auxin transport in maize roots in response to localized nitrate supply. Annals of Botany, 2010, 106, 1019-1026.	1.4	57
233	Chitinase-Like Protein CTL1 Plays a Role in Altering Root System Architecture in Response to Multiple Environmental Conditions Â. Plant Physiology, 2010, 152, 904-917.	2.3	77
234	Characterization of <i>drr1</i> , an Alkamide-Resistant Mutant of Arabidopsis, Reveals an Important Role for Small Lipid Amides in Lateral Root Development and Plant Senescence. Plant Physiology, 2010, 152, 1659-1673.	2.3	36
235	Plant Hormones. , 2010, , 9-125.		6
237	To what extent may changes in the root system architecture of Arabidopsis thaliana grown under contrasted homogenous nitrogen regimes be explained by changes in carbon supply? A modelling approach. Journal of Experimental Botany, 2010, 61, 2157-2169.	2.4	18
238	Plant Phosphatidylcholine-Hydrolyzing Phospholipases C NPC3 and NPC4 with Roles in Root Development and Brassinolide Signaling in Arabidopsis thaliana. Molecular Plant, 2010, 3, 610-625.	3.9	67
239	Arabidopsis RING E3 Ligase XBAT32 Regulates Lateral Root Production through Its Role in Ethylene Biosynthesis Â. Plant Physiology, 2010, 153, 1587-1596.	2.3	99
240	Root Development. , 2010, , 71-90.		1
241	Amino Compound-Containing Lipids: a Novel Class of Signals Regulating Plant Development. , 2010, , 209-226.		1
242	Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Developmental Cell, 2010, 18, 927-937.	3.1	870
243	Changes in auxin distribution patterns during lateral root development in rice. Plant Science, 2010, 178, 531-538.	1.7	15
244	Root System Architecture. Advances in Botanical Research, 2010, 55, 75-117.	0.5	34
246	Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. Lab on A Chip, 2010, 10, 2147.	3.1	82
247	Gibberellins Regulate Lateral Root Formation in <i>Populus</i> through Interactions with Auxin and Other Hormones Â. Plant Cell, 2010, 22, 623-639.	3.1	221

ARTICLE IF CITATIONS # MicroRNAs in Plant Roots: Current Understanding and Future Perspectives. RNA Technologies, 2011, 249 0.2 1 269-284. Distinct modes of adventitious rooting in <i>Arabidopsis thaliana</i>. Plant Biology, 2012, 14, 100-109. 1.8 Shootâ€supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root 251 2.8 90 emergence in <i>Arabidopsis</i>. Plant, Cell and Environment, 2011, 34, 933-946. Water supply and not nitrate concentration determines primary root growth in <i>Arabidopsis</i> Plant, Cell and Environment, 2011, 34, 1630-1638. Sending mixed messages: auxin-cytokinin crosstalk in roots. Current Opinion in Plant Biology, 2011, 14, 253 3.5 103 10-16. Signals and mechanisms affecting vesicular trafficking during root growth. Current Opinion in Plant Biology, 2011, 14, 571-579. 254 3.5 EST-Based Approach for Dissecting Root Architecture in Barley Using Mutant Traits of Other Species., 255 3 2011, 11-72. Impact of the Environment on Root Architecture in Dicotyledoneous Plants., 2011, , 113-132. 256 Phenotyping for Root Traits and Their Improvement Through Biotechnological Approaches for 257 6 Sustaining Črop Productivity., 2011, , 205-232. Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato. BioMetals, 1.8 2011, 24, 181-191. MicroRNAs as regulators of root development and architecture. Plant Molecular Biology, 2011, 77, 259 2.0 117 47-58. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 260 1.6 233, 209-216. The influence of cytokinin–auxin cross-regulation on cell-fate determination in Arabidopsis thaliana 261 0.8 40 root development. Journal of Theoretical Biology, 2011, 283, 152-167. Rice Gene OsDSR-1 Promotes Lateral Root Development in Arabidopsis Under High-Potassium 16 Conditions. Journal of Plant Biology, 2011, 54, 180-189. SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis Â Â. Plant 263 2.3163 Physiology, 2011, 155, 384-398. Cytokinin and Auxin Interactions in Plant Development: Metabolism, Signalling, Transport and Gene 264 Expression. Current Protein and Peptide Science, 2011, 12, 137-147. The <i>Arabidopsis</i> D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2 Modulate Auxin-Induced 265 3.1111 Lateral Root Formation. Plant Cell, 2011, 23, 641-660. Multiple Facets of <i>Arabidopsis </i>Seedling Development Require & amp; #x2028; Indole-3-Butyric 3.1 Acid–Derived Auxin. Plant Cell, 2011, 23, 984-999.

#	Article	IF	CITATIONS
267	Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany, 2011, 108, 407-418.	1.4	313
268	Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany, 2011, 62, 4215-4228.	2.4	187
270	Physiological Effects of the Synthetic Strigolactone Analog GR24 on Root System Architecture in Arabidopsis: Another Belowground Role for Strigolactones? Â Â Â. Plant Physiology, 2011, 155, 721-734.	2.3	534
271	BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. Journal of Experimental Botany, 2011, 62, 4675-4689.	2.4	61
272	Serotonin, a Tryptophan-Derived Signal Conserved in Plants and Animals, Regulates Root System Architecture Probably Acting as a Natural Auxin Inhibitor in Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 490-508.	1.5	109
273	Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in <i>Arabidopsis</i> and Tobacco Â. Plant Cell, 2011, 22, 3905-3920.	3.1	417
274	Modeling a Cortical Auxin Maximum for Nodulation: Different Signatures of Potential Strategies. Frontiers in Plant Science, 2012, 3, 96.	1.7	44
275	Principal growth directions in development of the lateral root in Arabidopsis thaliana. Annals of Botany, 2012, 110, 491-501.	1.4	10
276	Repression of early lateral root initiation events by transient water deficit in barley and maize. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1534-1541.	1.8	36
277	Root system architecture: insights from <i>Arabidopsis</i> and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1441-1452.	1.8	366
278	LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Annals of Botany, 2012, 110, 1-10.	1.4	82
279	Auxin and Epigenetic Regulation of <i>SKP2B</i> , an F-Box That Represses Lateral Root Formation Â. Plant Physiology, 2012, 160, 749-762.	2.3	74
280	To Divide and to Rule; Regulating Cell Division in Roots During Post-embryonic Growth. Progress in Botany Fortschritte Der Botanik, 2012, , 57-80.	0.1	5
281	Biochemical and Functional Responses of Arabidopsis thaliana Exposed to Cadmium, Copper and Zinc. Environmental Pollution, 2012, , 239-263.	0.4	1
282	Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. Planta, 2012, 236, 1227-1237.	1.6	84
283	Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims). Plant Cell, Tissue and Organ Culture, 2012, 111, 69-78.	1.2	30
284	Localized Iron Supply Triggers Lateral Root Elongation in <i>Arabidopsis</i> by Altering the AUX1-Mediated Auxin Distribution Â. Plant Cell, 2012, 24, 33-49.	3.1	167
285	ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Science, 2012, 184, 63-74.	1.7	39

~			~		
C1	ΤΑΤΙ	ON	NE	DO	DT
\sim				. F O	

#	Article	IF	CITATIONS
286	Auxin regulates aquaporin function to facilitate lateral root emergence. Nature Cell Biology, 2012, 14, 991-998.	4.6	323
287	Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. Journal of Plant Physiology, 2012, 169, 1102-1111.	1.6	20
290	Brassica carinata CIL1 mediates extracellular ROS production during auxin- and ABA-regulated lateral root development. Journal of Plant Biology, 2012, 55, 361-372.	0.9	8
291	Endocytic Trafficking towards the Vacuole Plays a Key Role in the Auxin Receptor SCFTIR-Independent Mechanism of Lateral Root Formation in A. thaliana. Molecular Plant, 2012, 5, 1195-1209.	3.9	14
292	Multiscale modelling of auxin transport in the plant-root elongation zone. Journal of Mathematical Biology, 2012, 65, 743-785.	0.8	26
293	Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, 2012, , .	0.5	20
294	The Plant Family Brassicaceae. Environmental Pollution, 2012, , .	0.4	33
296	Structural and Functional Characterization of the Protein Kinase Mps1 in Arabidopsis thaliana. PLoS ONE, 2012, 7, e45707.	1.1	13
297	Root branching: mechanisms, robustness, and plasticity. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 329-343.	5.9	32
298	Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Research, 2012, 22, 581-597.	5.7	120
299	Control of <i>Arabidopsis</i> Root Development. Annual Review of Plant Biology, 2012, 63, 563-590.	8.6	558
300	A plant microRNA regulates the adaptation of roots to drought stress. FEBS Letters, 2012, 586, 1742-1747.	1.3	118
301	Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress. Physiologia Plantarum, 2012, 146, 39-52.	2.6	38
302	Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regulation, 2012, 66, 129-136.	1.8	33
303	Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer) Tj ETQq0 0 0 rgB	T /Overloo 1.0	ck
304	Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma, 2012, 249, 187-195.	1.0	72
305	dhm1, an Arabidopsis mutant with increased sensitivity to alkamides shows tumorous shoot development and enhanced lateral root formation. Plant Molecular Biology, 2013, 81, 609-625.	2.0	3
306	Root growth in biopores—evaluation with in situ endoscopy. Plant and Soil, 2013, 371, 179-190.	1.8	64

#	ARTICLE	IF	CITATIONS
307	<i>Os<scp>ORC</scp>3</i> is required for lateral root development in rice. Plant Journal, 2013, 74, 339-350.	2.8	45
308	Progress and Opportunities of Doubled Haploid Production. SpringerBriefs in Plant Science, 2013, , .	0.4	16
309	Fruit Load and Root Development in Field-Grown Loquat Trees (Eriobotrya japonica Lindl). Journal of Plant Growth Regulation, 2013, 32, 281-290.	2.8	11
310	Mathematical modelling of the uptake and transport of salt in plant roots. Journal of Theoretical Biology, 2013, 336, 132-143.	0.8	16
311	Correlation between hormonal homeostasis and morphogenic responses in <i>Arabidopsis thaliana</i> seedlings growing in a Cd/Cu/Zn multiâ€pollution context. Physiologia Plantarum, 2013, 149, 487-498.	2.6	79
312	Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, 2013, 18, 459-467.	4.3	142
313	Symbiotic Endophytes. Soil Biology, 2013, , .	0.6	6
314	Abiotic Stress Tolerance Induced by Endophytic PGPR. Soil Biology, 2013, , 151-163.	0.6	19
315	<i>Arabidopsis</i> ROPâ€interactive CRIB motif ontaining protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development. Plant, Cell and Environment, 2013, 36, 945-955.	2.8	15
316	Heuristic Aspect of the Lateral Root Initiation Index: A Case Study of the Role of Nitric Oxide in Root Branching. Applications in Plant Sciences, 2013, 1, 1300029.	0.8	10
317	Adaptive Plasticity of Salt-Stressed Root Systems. , 2013, , 169-201.		37
318	A viral <scp>RNA</scp> silencing suppressor interferes with abscisic acidâ€mediated signalling and induces drought tolerance in <i><scp>A</scp>rabidopsis thaliana</i> . Molecular Plant Pathology, 2013, 14, 158-170.	2.0	108
319	Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system. Acta Physiologiae Plantarum, 2013, 35, 657-665.	1.0	19
320	Auxin: a master regulator in plant root development. Plant Cell Reports, 2013, 32, 741-757.	2.8	233
321	Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant, Cell and Environment, 2013, 36, 909-919.	2.8	192
322	Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV) or Exposed to Cadmium. International Journal of Molecular Sciences, 2013, 14, 6889-6902.	1.8	80
323	Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5235-5240.	3.3	213
324	Regulation of Arabidopsis root development by small signaling peptides. Frontiers in Plant Science, 2013, 4, 352.	1.7	43

#	Article	IF	CITATIONS
325	Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. Journal of Experimental Botany, 2013, 64, 2725-2737.	2.4	31
326	Androgenesis: A Fascinating Doubled Haploid Production Process. SpringerBriefs in Plant Science, 2013, , 7-44.	0.4	4
327	Cross–talk between nitric oxide and Ca2+in elevated CO2-induced lateral root formation. Plant Signaling and Behavior, 2013, 8, e23106.	1.2	5
328	Form matters: morphological aspects of lateral root development. Annals of Botany, 2013, 112, 1643-1654.	1.4	18
329	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	2.3	288
331	Cellular Patterning of the Root Meristem: Genes and Signals. , 2013, , 56-81.		2
332	POLARIS. , 2013, , 40-45.		0
333	Systems approaches to study root architecture dynamics. Frontiers in Plant Science, 2013, 4, 537.	1.7	16
334	Vermicompost as a component in potting mixes for growth promotion in ornamental plants. Rwanda Journal, 2013, 28, .	0.3	1
335	Respuestas morfogénicas de las raÃces de Arabidopsis thaliana (Magnoliophyta: Brassicales) al estrés de Cr(VI). Revista Chilena De Historia Natural, 2013, 86, 207-219.	0.5	2
336	Environmental, developmental, and genetic factors controlling root system architecture. Biotechnology and Genetic Engineering Reviews, 2014, 30, 95-112.	2.4	18
337	Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 2014, 240, 667-678.	1.6	95
338	Cell wall properties play an important role in the emergence of lateral root primordia from the parent root. Journal of Experimental Botany, 2014, 65, 2057-2069.	2.4	28
339	Genetic and gene expression analysis of dm1, a dwarf mutant from Cucurbita maxima Duch. ex Lam, based on the AFLP method. Canadian Journal of Plant Science, 2014, 94, 293-302.	0.3	6
340	Hypocotyl adventitious root organogenesis differs from lateral root development. Frontiers in Plant Science, 2014, 5, 495.	1.7	122
341	<i>At</i> <scp>MYB</scp> 93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytologist, 2014, 203, 1194-1207.	3.5	79
342	Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experimental Botany, 2014, 65, 169-183.	2.4	85
343	The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 1403-1413.	2.4	97

#	Article	IF	CITATIONS
344	Hormonal Response and Root Architecture in Arabidopsis thaliana Subjected to Heavy Metals. International Journal of Plant Biology, 2014, 5, 5226.	1.1	14
345	Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants. Annals of Botany, 2014, 113, 1083-1105.	1.4	38
346	MiR393 Regulation of Auxin Signaling and Redox-Related Components during Acclimation to Salinity in Arabidopsis. PLoS ONE, 2014, 9, e107678.	1.1	127
347	Various scenarios of the cell pattern formation in Arabidopsis lateral root. Acta Societatis Botanicorum Poloniae, 2014, 83, 85-89.	0.8	2
348	A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant, Cell and Environment, 2014, 37, 488-498.	2.8	65
349	Interaction between HY1 and H2O2 in auxin-induced lateral root formation in Arabidopsis. Plant Molecular Biology, 2014, 85, 49-61.	2.0	58
350	Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiology and Biochemistry, 2014, 76, 44-51.	2.8	125
351	Nonâ€specific phospholipase <scp>C</scp> 5 and diacylglycerol promote lateral root development under mild salt stress in <scp>A</scp> rabidopsis. Plant, Cell and Environment, 2014, 37, 2002-2013.	2.8	69
352	Redox Regulation of Plant Development. Antioxidants and Redox Signaling, 2014, 21, 1305-1326.	2.5	235
353	Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana. Plant Growth Regulation, 2014, 74, 23-31.	1.8	41
354	Low-Oxygen Stress in Plants. Plant Cell Monographs, 2014, , .	0.4	13
355	<i>Trichoderma</i> spp. Improve Growth of <i>Arabidopsis</i> Seedlings Under Salt Stress Through Enhanced Root Development, Osmolite Production, and Na ⁺ Elimination Through Root Exudates. Molecular Plant-Microbe Interactions, 2014, 27, 503-514.	1.4	181
356	Root Engineering. Soil Biology, 2014, , .	0.6	7
357	PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 Regulates Lateral Root Formation via Auxin Signaling in Arabidopsis Â. Plant Physiology, 2014, 165, 880-894.	2.3	47
358	The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. Plant Physiology, 2014, 165, 1105-1119.	2.3	121
359	The molecular path to in vitro shoot regeneration. Biotechnology Advances, 2014, 32, 107-121.	6.0	100
360	Auxin biosynthetic gene <i><scp>TAR</scp>2</i> is involved in low nitrogenâ€mediated reprogramming of root architecture in <scp>A</scp> rabidopsis. Plant Journal, 2014, 78, 70-79.	2.8	193
361	Branching Out in Roots: Uncovering Form, Function, and Regulation. Plant Physiology, 2014, 166, 538-550.	2.3	231

#	ARTICLE	IF	CITATIONS
362	Growth rate distribution in the forming lateral root of arabidopsis. Annals of Botany, 2014, 114, 913-921.	1.4	1
363	Histological characterization of the lateral root primordium development in rice. , 2014, 55, 42.		7
364	Involvement of haem oxygenase-1 in hydrogen peroxide-induced lateral root formation in tomato. Acta Physiologiae Plantarum, 2014, 36, 931-943.	1.0	9
365	On the competitive uptake and transport of ions through differentiated root tissues. Journal of Theoretical Biology, 2014, 340, 1-10.	0.8	18
366	Overexpression of AtbHLH112 suppresses lateral root emergence in Arabidopsis. Functional Plant Biology, 2014, 41, 342.	1.1	12
370	Dâ€Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant Journal, 2015, 84, 244-255.	2.8	123
371	A Novel Pyrimidin-Like Plant Activator Stimulates Plant Disease Resistance and Promotes Growth. PLoS ONE, 2015, 10, e0123227.	1.1	14
372	Functional interpretation and structural insights of Arabidopsis lyrata cytochrome P450 CYP71A13 involved in auxin synthesis. Bioinformation, 2015, 11, 330-335.	0.2	6
373	Water-deficit treatment followed by re-watering stimulates seminal root growth associated with hormone balance and photosynthesis in wheat (Triticum aestivum L.) seedlings. Plant Growth Regulation, 2015, 77, 201-210.	1.8	30
374	β-Cyclodextrin–hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. Plant Cell Reports, 2015, 34, 381-393.	2.8	19
375	Loquat fruit ripening is associated with root depletion. Nutritional and hormonal control. Journal of Plant Physiology, 2015, 177, 51-59.	1.6	6
376	AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta, 2015, 241, 591-602.	1.6	83
377	The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development. Plant Cell, 2015, 27, 44-63.	3.1	441
378	Root explant produces multiple shoot from pericycle in Psoralea corylifolia – a leprosy destroyer medicinal plant. Industrial Crops and Products, 2015, 67, 324-329.	2.5	10
379	Interaction between Glucose and Brassinosteroid during the Regulation of Lateral Root Development in Arabidopsis. Plant Physiology, 2015, 168, 307-320.	2.3	89
380	Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. Journal of Plant Research, 2015, 128, 399-405.	1.2	8
381	Plant adaptations to severely phosphorus-impoverished soils. Current Opinion in Plant Biology, 2015, 25, 23-31.	3.5	157
382	Physiological and Molecular Regulation of Adventitious Root Formation. Critical Reviews in Plant Sciences, 2015, 34, 506-521.	2.7	71

#	Article	IF	CITATIONS
383	AUX1 and PIN2 Protect Lateral Root Formation in Arabidopsis under Fe Stress. Plant Physiology, 2015, 169, pp.00904.2015.	2.3	45
384	Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across <i>Brachypodium distachyon</i> Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments. Plant Physiology, 2015, 168, 953-967.	2.3	44
385	Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana. Current Opinion in Plant Biology, 2015, 23, 31-38.	3.5	101
386	Role of aquaporins in determining transpiration and photosynthesis in waterâ€stressed plants: crop waterâ€use efficiency, growth and yield. Plant, Cell and Environment, 2015, 38, 1785-1793.	2.8	195
387	The Optimal Root Length for <i>Vetiveria zizanioides</i> When Transplanted to Cd Polluted Soil. International Journal of Phytoremediation, 2015, 17, 563-567.	1.7	7
388	Negative Regulators of Messenger RNA and the Role of microRNA for Plant Genetic Engineering. , 2016, , 237-255.		0
389	Abscisic acid content in roots and root characteristics of alfalfa under deficit irrigation. African Journal of Agricultural Research Vol Pp, 2016, 11, 935-940.	0.2	0
390	Modeling Root Zone Effects on Preferred Pathways for the Passive Transport of Ions and Water in Plant Roots. Frontiers in Plant Science, 2016, 7, 914.	1.7	30
391	Growth and changes of endogenous hormones of mulberry roots in a simulated rocky desertification area. Environmental Science and Pollution Research, 2016, 23, 11171-11180.	2.7	9
392	Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. Journal of Integrative Agriculture, 2016, 15, 785-794.	1.7	54
393	Effect of phosphorus starvation on hormone content and growth of barley plants. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	26
394	Analysis the role of arabidopsis CKRC6/ASA1 in auxin and cytokinin biosynthesis. Journal of Plant Biology, 2016, 59, 162-171.	0.9	8
395	<scp>DNA</scp> damage inhibits lateral root formation by upâ€regulating cytokinin biosynthesis genes in <i>Arabidopsis thaliana</i> . Genes To Cells, 2016, 21, 1195-1208.	0.5	11
396	Involvement of glutathione in \hat{l}^2 -cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings. Journal of Plant Physiology, 2016, 204, 92-100.	1.6	14
397	Lateral root emergence in <i>Arabidopsis</i> is dependent on transcription factor LBD29 regulating auxin influx carrier <i>LAX3</i> . Development (Cambridge), 2016, 143, 3340-9.	1.2	111
398	Nitrate Controls Root Development through Post-Transcriptional Regulation of the NRT1.1/NPF6.3 transporter/sensor. Plant Physiology, 2016, 172, pp.01047.2016.	2.3	94
399	Genetic Reprogramming of Plant Cells In Vitro via Dedifferentiation or Pre-existing Stem Cells. , 2016, , 320-339.		2
400	Mechanisms of Hormone Regulation for Drought Tolerance in Plants. , 2016, , 45-75.		10

#	Article	IF	CITATIONS
401	The Intelligent Behavior of Plants. Trends in Plant Science, 2016, 21, 286-294.	4.3	80
402	Water Deficit Enhances C Export to the Roots in <i>Arabidopsis thaliana</i> Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. Plant Physiology, 2016, 170, 1460-1479.	2.3	181
403	The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. Journal of Plant Physiology, 2016, 192, 105-110.	1.6	8
404	Differential responses of primary and lateral roots to indole-3-acetic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid in maize seedlings. Biologia Plantarum, 2016, 60, 367-375.	1.9	16
405	Genetic control of root growth: from genes to networks. Annals of Botany, 2016, 117, 9-24.	1.4	68
406	The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana. Molecular Plant, 2016, 9, 261-270.	3.9	76
407	Reviewing current knowledge on olive (Olea europaea L.) adventitious root formation. Scientia Horticulturae, 2016, 198, 207-226.	1.7	45
408	Morphological and physiological effects of trans-cinnamic acid and its hydroxylated derivatives on maize root types. Plant Growth Regulation, 2016, 78, 263-273.	1.8	27
409	A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2017, 114, 100-110.	2.8	46
410	Poly(ADPâ€ribose) polymerases regulate cell division and development in Arabidopsis roots. Journal of Integrative Plant Biology, 2017, 59, 459-474.	4.1	13
411	Cloning and characterization of auxin efflux carrier genes EcPIN1a and EcPIN1b from finger millet Eleusine coracana L. 3 Biotech, 2017, 7, 51.	1.1	3
412	Supramolecular cation transporters alter root morphology in the Arabidopsis thaliana plant. Inorganica Chimica Acta, 2017, 468, 183-191.	1.2	1
413	Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors. Annals of Botany, 2017, 120, 71-85.	1.4	50
415	Role of Phytohormones and miRNAs in Nitrogen and Sulphur Deficiency Stress Signaling in Plants. , 2017, , 317-340.		3
416	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930.	1.8	162
417	O <scp>pen</scp> S <scp>im</scp> R <scp>oot</scp> : widening the scope and application of root architectural models. New Phytologist, 2017, 215, 1274-1286.	3.5	158
418	The transcription factor <i><scp>OBP</scp>4</i> controls root growth and promotes callus formation. New Phytologist, 2017, 213, 1787-1801.	3.5	34
419	Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	93

#	ARTICLE	IF	CITATIONS
420	Hydrogen Peroxide Is Involved in β-Cyclodextrin-hemin Complex-Induced Lateral Root Formation in Tomato Seedlings. Frontiers in Plant Science, 2017, 8, 1445.	1.7	4
421	BRS1 Function in Facilitating Lateral Root Emergence in Arabidopsis. International Journal of Molecular Sciences, 2017, 18, 1549.	1.8	27
422	Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis. International Journal of Molecular Sciences, 2017, 18, 2084.	1.8	57
423	Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC Plant Biology, 2017, 17, 162.	1.6	84
424	Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?. Annals of Botany, 2018, 122, 873-888.	1.4	21
425	OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 2018, 69, 1095-1107.	2.4	84
426	Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration. Nature Plants, 2018, 4, 108-115.	4.7	100
427	Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annals of Botany, 2018, 121, 1127-1136.	1.4	92
428	Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1761, 47-75.	0.4	9
429	Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. Journal of Experimental Botany, 2018, 69, 229-244.	2.4	86
431	Variation in Root Architecture Attributes at the Onset of Storage Root Formation among Resistant and Susceptible Sweetpotato Cultivars Infected with Meloidogyne incognita. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1924-1929.	0.5	7
439	The Dead Can Nurture: Novel Insights into the Function of Dead Organs Enclosing Embryos. International Journal of Molecular Sciences, 2018, 19, 2455.	1.8	18
440	Expression analysis of IncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity. Molecular Biology Reports, 2018, 45, 1597-1609.	1.0	23
441	OsPIN1b is Involved in Rice Seminal Root Elongation by Regulating Root Apical Meristem Activity in Response to Low Nitrogen and Phosphate. Scientific Reports, 2018, 8, 13014.	1.6	55
443	A theoretical study on the cross-talk of stress regulatory pathways in root cells. Biophysical Chemistry, 2018, 240, 82-87.	1.5	1
444	Ta <scp>WRKY</scp> 51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (<i>Triticum aestivum</i> L.). Plant Journal, 2018, 96, 372-388.	2.8	55
445	Understanding the Phytohormones Biosynthetic Pathways for Developing Engineered Environmental Stress-Tolerant Crops. , 2018, , 417-450.		9
446	A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 2018, 30, 2330-2351.	3.1	107

#	Article	IF	Citations
447	<i>GhSTOP1</i> , a C2H2 type zinc finger transcription factor is essential for aluminum and proton stress tolerance and lateral root initiation in cotton. Plant Biology, 2019, 21, 35-44.	1.8	32
448	Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in <i>Arabidopsis</i> . Plant Biology, 2019, 21, 103-108.	1.8	43
449	TRANSPORTER OF IBA1 Links Auxin and Cytokinin to Influence Root Architecture. Developmental Cell, 2019, 50, 599-609.e4.	3.1	37
450	Lateral Root Formation in Arabidopsis: A Well-Ordered LRexit. Trends in Plant Science, 2019, 24, 826-839.	4.3	109
451	ABCG36/PEN3/PDR8 Is an Exporter of the Auxin Precursor, Indole-3-Butyric Acid, and Involved in Auxin-Controlled Development. Frontiers in Plant Science, 2019, 10, 899.	1.7	22
452	Interactions between abscisic acid and other hormones. Advances in Botanical Research, 2019, 92, 255-280.	0.5	9
453	Hydrogen peroxide is involved in methane-induced tomato lateral root formation. Plant Cell Reports, 2019, 38, 377-389.	2.8	20
454	Plant miniature greenhouse. Sensors and Actuators A: Physical, 2019, 298, 111572.	2.0	4
455	Interplay of Auxin and Cytokinin in Lateral Root Development. International Journal of Molecular Sciences, 2019, 20, 486.	1.8	111
456	Auxin Modulated Initiation of Lateral Roots Is Linked to Pericycle Cell Length in Maize. Frontiers in Plant Science, 2019, 10, 11.	1.7	52
457	LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biology, 2019, 19, 46.	1.6	84
458	Abscisic Acid Regulates Auxin Distribution to Mediate Maize Lateral Root Development Under Salt Stress. Frontiers in Plant Science, 2019, 10, 716.	1.7	66
459	Effects of soil compaction on plant growth, nutrient absorption, and root respiration in soybean seedlings. Environmental Science and Pollution Research, 2019, 26, 22835-22845.	2.7	23
460	The tomato MADS-box gene SIMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Reports, 2019, 38, 951-963.	2.8	14
461	CmTCP20 Plays a Key Role in Nitrate and Auxin Signaling-Regulated Lateral Root Development in Chrysanthemum. Plant and Cell Physiology, 2019, 60, 1581-1594.	1.5	13
462	miR393s regulate salt stress response pathway in <i>Arabidopsis thaliana</i> through scaffold protein RACK1A mediated ABA signaling pathways. Plant Signaling and Behavior, 2019, 14, 1600394.	1.2	27
463	Lateral Root Primordium Morphogenesis in Angiosperms. Frontiers in Plant Science, 2019, 10, 206.	1.7	61
464	Specific roles of Os4BClu10, Os6BClu24, and Os9BClu33 in seed germination, root elongation, and drought tolerance in rice. Planta, 2019, 249, 1851-1861.	1.6	17

#	Article	IF	CITATIONS
465	Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis. Frontiers in Microbiology, 2019, 10, 515.	1.5	17
466	Lateral Root Initiation in the Parental Root Meristem of Cucurbits: Old Players in a New Position. Frontiers in Plant Science, 2019, 10, 365.	1.7	14
467	Signaling Molecules in Ecophysiological Response Mechanisms of Salt-Stressed Plants. , 2019, , 1-18.		3
468	A MAPK cascade downstream of IDA–HAE/HSL2 ligand–receptor pair in lateral root emergence. Nature Plants, 2019, 5, 414-423.	4.7	90
469	Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in Microbiology, 2018, 9, 3262.	1.5	39
470	The Root Cap Cuticle: A Cell Wall Structure for Seedling Establishment and Lateral Root Formation. Cell, 2019, 176, 1367-1378.e8.	13.5	103
471	NO and ROS implications in the organization of root system architecture. Physiologia Plantarum, 2020, 168, 473-489.	2.6	26
472	The evolution of root branching: increasing the level of plasticity. Journal of Experimental Botany, 2019, 70, 785-793.	2.4	64
473	l-Cysteine desulfhydrase-dependent hydrogen sulfide is required for methane-induced lateral root formation. Plant Molecular Biology, 2019, 99, 283-298.	2.0	52
474	Anatomical and hormonal description of rootlet primordium development along white lupin cluster root. Physiologia Plantarum, 2019, 165, 4-16.	2.6	15
475	Auxin abolishes <scp>SHI</scp> â€ <scp>RELATED SEQUENCE</scp> 5â€mediated inhibition of lateral root development in Arabidopsis. New Phytologist, 2020, 225, 297-309.	3.5	20
476	Auxin signaling modulates <i><scp>LATERAL ROOT PRIMORDIUM</scp>1</i> (<i><scp>LRP</scp>1</i>) expression during lateral root development in Arabidopsis. Plant Journal, 2020, 101, 87-100.	2.8	57
477	Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis. Journal of Experimental Botany, 2020, 71, 778-792.	2.4	7
478	Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency. Agronomy, 2020, 10, 1796.	1.3	5
479	From one cell to many: Morphogenetic field of lateral root founder cells in <i>Arabidopsis thaliana</i> is built by gradual recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20943-20949.	3.3	34
480	The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. Planta, 2020, 252, 52.	1.6	9
481	A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis. Frontiers in Plant Science, 2020, 11, 1239.	1.7	15
482	Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis. Physiology and Molecular Biology of Plants, 2020, 26, 1187-1199.	1.4	15

#	Article	IF	CITATIONS
483	Crop Load Influences Growth and Hormone Changes in the Roots of "Red Fuji―Apple. Frontiers in Plant Science, 2020, 11, 665.	1.7	4
484	Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. Plant Molecular Biology, 2020, 103, 303-320.	2.0	41
485	Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings. Environmental Pollution, 2020, 262, 114224.	3.7	26
486	Effects of 24-epibrassinolide and 28-homobrassinolide on iron plaque formation and the uptake of As and Cd by rice seedlings (Oryza sativa L.) in solution culture. Environmental Technology and Innovation, 2020, 19, 100802.	3.0	6
487	SAUR15 Promotes Lateral and Adventitious Root Development via Activating H ⁺ -ATPases and Auxin Biosynthesis. Plant Physiology, 2020, 184, 837-851.	2.3	33
488	A malectin domain kinesin functions in pollen and seed development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 1828-1841.	2.4	19
489	Early developmental plasticity of lateral roots in response to asymmetric water availability. Nature Plants, 2020, 6, 73-77.	4.7	23
490	Two receptorâ€like protein kinases, MUSTACHES and MUSTACHESâ€LIKE, regulate lateral root development in <i>Arabidopsis thaliana</i> . New Phytologist, 2020, 227, 1157-1173.	3.5	27
491	Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). BMC Plant Biology, 2020, 20, 182.	1.6	22
492	Reprogramming of Cell Fate During Root Regeneration by Transcriptional and Epigenetic Networks. Frontiers in Plant Science, 2020, 11, 317.	1.7	33
493	Apple SUMO E3 ligase MdSIZ1 facilitates SUMOylation of MdARF8 to regulate lateral root formation. New Phytologist, 2021, 229, 2206-2222.	3.5	16
494	Rapid nitrogen fixation contributes to a similar growth and photosynthetic rate of <i>Robinia pseudoacacia</i> supplied with different levels of nitrogen. Tree Physiology, 2021, 41, 177-189.	1.4	7
495	MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Molecular Plant, 2021, 14, 285-297.	3.9	57
496	Auxin-Regulated Lateral Root Organogenesis. Cold Spring Harbor Perspectives in Biology, 2021, 13, a039941.	2.3	30
497	Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18—A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum. Frontiers in Microbiology, 2021, 12, 628376.	1.5	53
498	Genome-wide identification of HSF family in peach and functional analysis of <i>PpHSF5</i> involvement in root and aerial organ development. PeerJ, 2021, 9, e10961.	0.9	17
499	Small compounds targeting tyrosine phosphorylation of Scaffold Protein Receptor for Activated C Kinase1A (RACK1A) regulate auxin mediated lateral root development in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2021, 16, 1899488.	1.2	6
500	Adaptive Mechanisms of Root System of Rice for Withstanding Osmotic Stress. , 0, , .		2

#	Article	IF	CITATIONS
501	In vitro induction of tetraploid and resulting trait variation in Populus alba × Populus glandulosa clone 84ÂK. Plant Cell, Tissue and Organ Culture, 2021, 146, 285-296.	1.2	17
502	Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. Frontiers in Plant Science, 2021, 12, 660274.	1.7	49
503	A live imaging system to analyze spatiotemporal dynamics of RNA polymerase II modification in Arabidopsis thaliana. Communications Biology, 2021, 4, 580.	2.0	5
504	Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao. Plants, 2021, 10, 967.	1.6	4
505	Auxin: An emerging regulator of tuber and storage root development. Plant Science, 2021, 306, 110854.	1.7	34
506	Lateral Root Initiation and the Analysis of Gene Function Using Genome Editing with CRISPR in Arabidopsis. Genes, 2021, 12, 884.	1.0	16
507	Coumarin Interferes with Polar Auxin Transport Altering Microtubule Cortical Array Organization in Arabidopsis thaliana (L.) Heynh. Root Apical Meristem. International Journal of Molecular Sciences, 2021, 22, 7305.	1.8	9
508	The Steroid Saponin Protodioscin Modulates Arabidopsis thaliana Root Morphology Altering Auxin Homeostasis, Transport and Distribution. Plants, 2021, 10, 1600.	1.6	2
509	Rhizobacterial <i>Bacillus mycoides</i> functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. Journal of Applied Microbiology, 2022, 132, 1260-1274.	1.4	10
510	Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in â€~Qingzhen 1' apple plants. Plant Cell, Tissue and Organ Culture, 0, , 1.	1.2	9
511	The Same against Many: AtCML8, a Ca2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens. International Journal of Molecular Sciences, 2021, 22, 10469.	1.8	7
512	Nitric oxide (NO) and lateral root development in plants under stress. , 2022, , 319-329.		2
513	Ceramides mediate positional signals in <i>Arabidopsis thaliana</i> protoderm differentiation. Development (Cambridge), 2021, 148, .	1.2	21
514	Dynamics and Structure of the Preprophase Band and the Phragmoplast. , 2006, , 23-40.		2
515	From Cell Division to Organ Shape: Nitric Oxide Is Involved in Auxin-Mediated Root Development. , 2006, , 123-136.		5
516	Heterotrimeric G-Proteins and Cell Division in Plants. Signaling and Communication in Plants, 2010, , 155-176.	0.5	2
517	Signalling and Communication in the Actinorhizal Symbiosis. Signaling and Communication in Plants, 2012, , 73-92.	0.5	4
518	The Development of the Maize Root System: Role of Auxin and Ethylene. Soil Biology, 2014, , 75-103.	0.6	11

#	Article	IF	CITATIONS
519	Biogenesis of Adventitious Roots and Their Involvement in the Adaptation to Oxygen Limitations. Plant Cell Monographs, 2014, , 299-312.	0.4	5
520	The POLARIS Peptide. , 2006, , 23-27.		1
522	A Novel Mechanism Underlying Multi-walled Carbon Nanotube-Triggered Tomato Lateral Root Formation: the Involvement of Nitric Oxide. Nanoscale Research Letters, 2020, 15, 49.	3.1	16
523	Nutrients as Regulators of Root Morphology and Architecture. Books in Soils, Plants, and the Environment, 2007, , 135-150.	0.1	1
524	Characterization of Three Key MicroRNAs in Rice Root Architecture under Drought Stress using In silico Analysis and Quantitative Real-time PCR. Biosciences, Biotechnology Research Asia, 2014, 11, 555-565.	0.2	7
525	A Fasciclin-Like Arabinogalactan-Protein (FLA) Mutant of Arabidopsis thaliana, fla1, Shows Defects in Shoot Regeneration. PLoS ONE, 2011, 6, e25154.	1.1	82
526	Post-Transcriptional Silencing of Flavonol Synthase mRNA in Tobacco Leads to Fruits with Arrested Seed Set. PLoS ONE, 2011, 6, e28315.	1.1	73
527	Variation in Virus Symptom Development and Root Architecture Attributes at the Onset of Storage Root Initiation in †Beauregard' Sweetpotato Plants Grown with or without Nitrogen. PLoS ONE, 2014, 9, e107384.	1.1	30
528	The dead, hardened floral bracts of dispersal units of wild wheat function as storage for active hydrolases and in enhancing seedling vigor. PLoS ONE, 2017, 12, e0177537.	1.1	16
529	Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer. PLoS ONE, 2017, 12, e0189715.	1.1	40
530	Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4. International Journal of Developmental Biology, 2008, 52, 953-961.	0.3	25
531	Multiplication of hybrid aspen (Populus tremula L. x P. tremuloides Michx.) from cuttings. Dissertationes Forestales, 2006, 2006, .	0.1	2
532	Effect of indole-3-butyric acid on root formation in Alnus glutinosa microcuttings. Silva Fennica, 2012, 46, .	0.5	16
533	Ãcido indolbutÃ⊧ico em diferentes diâmetros na estaquia de Luehea divaricata. Ciencia Rural, 2008, 38, 1624-1629.	0.3	4
534	Constitutive overexpression of GmDof17-1, a putative DOF transcription factor from soybean causing growth inhibition in tobacco. Scientia Agricola, 2014, 71, 44-51.	0.6	2
535	Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. Oeno One, 2016, 41, 141.	0.7	14
536	Characterization of Lateral Root Development at the Onset of Storage Root Initiation in â€~Beauregard' Sweetpotato Adventitious Roots. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 961-968.	0.5	48
537	Variation in Nitrogen Rate and Local Availability Alter Root Architecture Attributes at the Onset of Storage Root Initiation in â€~Beauregard' Sweetpotato. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 808-815.	0.5	30

	C	CITATION REPORT		
#	Article		IF	CITATIONS
539	Effect of Potassium Deficiency on Root Growth of Cotton (<1>Gossypium hirsutum 1 L.) Seedlings and Its Physiological Mechanisms Involved. Acta Agronomica Sinica(China), 2009, 35, 718-723.		0.1	7
540	Comparison of Root Characteristics and Sugar Components in Root and Leaf at Early Growth Phase Sweet Potato Varieties with Significant Difference in Valid Storage Root Number. Acta Agronomica Sinica(China), 2016, 42, 131.	of	0.1	8
541	Modeling the Rhizosphere. Books in Soils, Plants, and the Environment, 2007, , 331-370.		0.1	1
544	Arabidopsis PIP5K2 Is Involved in Lateral Root Development Through Regulating Auxin Accumulation Springer Theses, 2014, , 29-43.		0.0	Ο
545	Phosphate (Pi) Uptake. , 2015, , 25-42.			2
546	Morphological characteristics of root development in a high-yielding strawberry cultivar (<i>Fragaria</i> × <i>ananassa</i> Duch.) â€~Benihoppe' grown under dry fog cultivation syste Research, 2018, 27, 95-100.	em. Root	0.1	0
551	Rooting biostimulants for Coffea arabica L. cuttings. Coffee Science, 0, 15, 1-9.		0.5	0
552	Trichoderma as Biostimulant: Factors Responsible for Plant Growth Promotion. Soil Biology, 2020, , 287-309.		0.6	1
555	Role of Auxin and Nitrate Signaling in the Development of Root System Architecture. Frontiers in Plant Science, 2021, 12, 690363.		1.7	19
556	Live Plant Cell Tracking: Fiji plugin to analyze cell proliferation dynamics and understand morphogenesis. Plant Physiology, 2022, 188, 846-860.		2.3	5
558	Serotonin and Melatonin: Role in Rhizogenesis, Root Development and Signaling. Signaling and Communication in Plants, 2021, , 307-332.		0.5	3
560	Extrato de tiririca como enraizador de estacas de mini ixora. Research, Society and Development, 20 9, e2439108383.	20,	0.0	0
561	Ambientes e concentrações de extrato de tiririca no enraizamento de estacas de figueira. Researc Society and Development, 2020, 9, e41591110052.	h,	0.0	0
562	Lignite derived humic products and cattle manure biochar are effective soil amendments in cadmium contaminated and uncontaminated soils. Environmental Advances, 2022, 8, 100186.		2.2	4
564	Soil amendment with a humic substance and arbuscular mycorrhizal Fungi enhance coal mine reclamation. Science of the Total Environment, 2022, 823, 153696.		3.9	14
565	The BTB protein MdBT2 recruits auxin signaling components to regulate adventitious root formation in apple. Plant Physiology, 2022, 189, 1005-1020.		2.3	13
566	Root-Derived Endophytic Diazotrophic Bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Frontiers in Microbiology, 2021, 12, 77470)7.	1.5	17
567	From Cell Division to Organ Shape: Nitric Oxide Is Involved in Auxin-Mediated Root Development. , 0 123-136.			0

ARTICLE IF CITATIONS Plant growthâ€promoting rhizobacterium <i>Pseudomonas</i> sp. CM11 specifically induces lateral 584 3.5 14 roots. New Phytologist, 2022, 235, 1575-1588. Genetic regulation of lateral root development. Plant Signaling and Behavior, 2023, 18, . 1.2 AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. 586 7 3.6 International Journal of Biological Macromolecules, 2022, 214, 290-300. Role of cytokinins in adventitious root formation., 2023,, 239-249. Perfluorooctanoic acid and perfluorooctane sulfonic acid inhibit plant growth through the modulation of phytohormone signalling pathways: Evidence from molecular and genetic analysis in Arabidopsis. Science of the Total Environment, 2022, 851, 158287. 589 3.9 3 Cellular and ultrastructural alterations of Arabidopsis thaliana roots in response to exogenous 1.0 trans-aconitic acid. Acta Physiologiae Plantarum, 2022, 44, . Combined full-length transcriptomic and metabolomic analysis reveals the regulatory mechanisms of 591 1.7 2 adaptation to salt stress in asparagus. Frontiers in Plant Science, 0, 13, . Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root 1.7 length in response to salt stress. Frontiers in Plant Science, 0, 13, . Environmental conditions in the nursery regulate root system development and architecture of 593 0.7 8 forest tree seedlings: a systematic review. New Forests, 2022, 53, 1113-1143. Identification and function of miRNA-mRNA interaction pairs during lateral root development of 594 1.6 hemi-parasitic Santalum album L. seedlings. Journal of Plant Physiology, 2023, 280, 153866. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. Plant 595 3 2.8 Physiology and Biochemistry, 2023, 194, 685-695. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration. Journal of 2.4 Experimental Botany, 2023, 74, 6104-6118. HY5 inhibits lateral root initiation in Arabidopsis through negative regulation of the 598 3.1 7 microtubule-stabilizing protein TPXL5. Plant Cell, 2023, 35, 1092-1109. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI regulates primary root 599 1.7 growth and lateral root elongation. Frontiers in Plant Science, 0, 13, . Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno 600 1.6 1 Coconut (Cocos nucifera). Plants, 2023, 12, 105. Integrated transgene and transcriptome reveal the molecular basis of MdWRKY87 positively regulate adventitious rooting in apple rootstock. Frontiers in Plant Science, 0, 14, . P-dipping improved NERICA 4 rice seedling resilience to water and nutrient stresses under rainfed-like 602 1.4 1 conditions. Rhizosphere, 2023, 26, 100688. Differential gene expression signatures of auxin response factors and auxin/ indole 3-acetic acid genes in storage root as compared to non-tuber forming fibrous root of sweet potato (Ipomoea batatas)., 2017, 87, .

#	Article	IF	CITATIONS
604	Chromatin Remodeling Complex SWR1 Regulates Root Development by Affecting the Accumulation of Reactive Oxygen Species (ROS). Plants, 2023, 12, 940.	1.6	1
605	Effects of fruit load on growth, photosynthesis, biochemical characteristics, and fruit quality of Camellia oleifera. Scientia Horticulturae, 2023, 317, 112046.	1.7	2
609	Plant physiological and molecular responses triggered by humic based biostimulants - A way forward to sustainable agriculture. Plant and Soil, 2023, 492, 31-60.	1.8	3