Construction and interference in learning from multiple

Learning and Instruction 13, 141-156 DOI: 10.1016/s0959-4752(02)00017-8

Citation Report

#	Article	IF	CITATIONS
3	The active integration of information during learning with dynamic and interactive visualisations. Learning and Instruction, 2004, 14, 325-341.	1.9	211
4	Cognitive Theory of Multimedia Learning. , 2005, , 31-48.		760
5	An Integrated Model of Text and Picture Comprehension. , 2005, , 49-70.		278
6	The Self-Explanation Principle in Multimedia Learning. , 2005, , 271-286.		133
7	Multimedia Learning of Meteorology. , 2005, , 429-446.		7
8	Multimedia Learning of Cognitive Skills. , 2005, , 489-504.		8
9	Multimedia learning in social sciences: limitations of external graphical representations. Computers in Human Behavior, 2005, 21, 555-573.	5.1	66
10	Computer-Based Instruction on Multimedia Networking Fundamentals: Equational Versus Graphical Representation. IEEE Transactions on Education, 2005, 48, 438-447.	2.0	14
11	Supporting learning with interactive multimedia through active integration of representations. Instructional Science, 2005, 33, 73-95.	1.1	89
12	Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations. Journal of Science Education and Technology, 2005, 14, 353-365.	2.4	52
13	Endogenous fantasy and learning in digital games. Simulation and Gaming, 2005, 36, 483-498.	1.2	152
14	Towards a hypertext reading/comprehension model. , 2005, , .		11
15	Student representational competence and self-assessment when solving physics problems. Physical Review Physics Education Research, 2005, 1, .	1.7	96
16	Concepts and misconceptions in comprehension of hierarchical graphs. Learning and Instruction, 2005, 15, 281-296.	1.9	23
17	DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 2006, 16, 183-198.	1.9	1,071
18	Multimedia learning: Working memory and the learning of word and picture diagrams. Learning and Instruction, 2006, 16, 526-537.	1.9	43
19	Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 2006, 90, 1073-1091.	1.8	378
20	What lies behind graphicacy? Relating students' results on a test of graphically represented quantitative information to formal academic achievement. Journal of Research in Science Teaching, 2006, 43, 43-62.	2.0	32

#	Article	IF	CITATIONS
21	When humans form media and media form humans: An experimental study examining the effects different digital media have on the learning outcomes of students who have different learning styles. Interacting With Computers, 2006, 18, 891-909.	1.0	19
22	Revising (multi-) media learning principles by applying a differentiated knowledge concept. International Journal of Human Computer Studies, 2006, 64, 1061-1070.	3.7	6
23	External and mental referencing of multiple representations. Computers in Human Behavior, 2006, 22, 27-42.	5.1	98
24	The effects of reading goals in hypertext reading. , 2006, , .		4
25	Resolución de problemas y comprensión situacional. Cultura Y Educación, 2007, 19, 61-85.	0.2	8
26	Understanding Tutor Learning: Knowledge-Building and Knowledge-Telling in Peer Tutors' Explanations and Questions. Review of Educational Research, 2007, 77, 534-574.	4.3	393
27	The effect of causal diagrams on text learning. Contemporary Educational Psychology, 2007, 32, 367-388.	1.6	53
28	Explaining with nonshared illustrations: How they constrain explanations. Learning and Instruction, 2007, 17, 204-218.	1.9	10
29	Integration of new domain-related states and events from texts and illustrations by subjects with high and low prior knowledge. Learning and Instruction, 2007, 17, 304-321.	1.9	11
30	Does the modality principle for multimedia learning apply to science classrooms?. Learning and Instruction, 2007, 17, 465-477.	1.9	96
31	Learning cell biology with close-up views or connecting lines: Evidence for the structure mapping effect. Computers in Human Behavior, 2007, 23, 1089-1104.	5.1	20
32	Developing a â€~big picture': Effects of collaborative construction of multimodal representations in history. Instructional Science, 2008, 36, 117-136.	1.1	20
33	External and internal representations in the acquisition and use of knowledge: visualization effects on mental model construction. Instructional Science, 2008, 36, 175-190.	1.1	104
34	Assessment of metacognitive skills by means of instruction to think aloud and reflect when prompted. Does the verbalisation method affect learning?. Metacognition and Learning, 2008, 3, 39-58.	1.3	143
35	The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 2008, 92, 848-867.	1.8	111
36	The role of working memory components in multimedia comprehension. Applied Cognitive Psychology, 2008, 22, 353-374.	0.9	69
37	The use of modality in the design of verbal aids in computer-based learning environments. Interacting With Computers, 2008, 20, 545-561.	1.0	11
38	Attention guiding in multimedia learning. Learning and Instruction, 2008, 18, 135-145.	1.9	112

#	Article	IF	CITATIONS
39	Learning with multiple representations: Extending multimedia learning beyond the lab. Learning and Instruction, 2008, 18, 368-378.	1.9	41
40	Learning objects, learning objectives and learning design. Innovations in Education and Teaching International, 2008, 45, 389-400.	1.5	26
41	Constraining Presentation Pace and Using Multimodal Materials: Intertwined Design Considerations?. Proceedings of the Human Factors and Ergonomics Society, 2008, 52, 552-556.	0.2	1
42	Influencia del conocimiento matemático y situacional en la resolución de problemas aritméticos verbales: ayudas textuales y gráficas. Infancia Y Aprendizaje, 2008, 31, 463-483.	0.5	17
43	How Pictorial Knowledge Representations Mediate Collaborative Knowledge Construction In Groups. Journal of Research on Technology in Education, 2008, 40, 359-387.	4.0	20
44	The Interpretation of Cellular Transport Graphics by Students with Low and High Prior Knowledge. International Journal of Science Education, 2008, 30, 239-261.	1.0	55
45	Development in the Thematic and Containment-Relation-Oriented Organization of Word Concepts. Journal of Educational Research, 2008, 101, 350-362.	0.8	7
46	Design Factors for Effective Science Simulations. International Journal of Gaming and Computer-Mediated Simulations, 2009, 1, 16-35.	0.9	29
48	Are representations to be provided or generated in primary mathematics education? Effects on transfer. Educational Research and Evaluation, 2009, 15, 25-44.	0.9	42
49	Instructional aids to support a conceptual understanding of multiple representations Journal of Educational Psychology, 2009, 101, 70-87.	2.1	180
50	Benefits of inserting support devices in electronic learning environments. Computers in Human Behavior, 2009, 25, 804-810.	5.1	21
51	Using video and static pictures to improve learning of procedural contents. Computers in Human Behavior, 2009, 25, 354-359.	5.1	137
52	Reading information graphics: The role of spatial contiguity and dual attentional guidance. Applied Cognitive Psychology, 2009, 23, 1215-1226.	0.9	164
53	Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 2009, 21, 31-61.	3.9	173
54	Multimedia learning and individual differences: Mediating the effects of working memory capacity with segmentation. British Journal of Educational Technology, 2009, 40, 636-651.	3.9	85
55	Effects of Animations in Learning—A Cognitive Fit Perspective ¹ . Decision Sciences Journal of Innovative Education, 2009, 7, 377-410.	0.5	13
56	Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 2009, 19, 171-184.	1.9	120
57	Concrete and abstract visualizations in history learning tasks. British Journal of Educational Psychology, 2009, 79, 371-387.	1.6	14

		EPORT	
#	Article	IF	CITATIONS
58	Interactive and non-interactive pictures in multimedia learning environments: Effects on learning outcomes and learning efficiency. Learning and Instruction, 2009, 19, 411-422.	1.9	77
60	iMapping. SIGWEB Newsletter: the Newsletter of ACM's Special Interest Group on Hypertext and Hypermedia, 2010, 2010, 1-10.	0.5	3
61	Cognitive Load in Learning with Multiple Representations. , 2010, , 229-252.		15
62	Does language matter in multimedia learning? Personalization principle revisited Journal of Educational Psychology, 2010, 102, 615-624.	2.1	51
63	Instructional Designer's Intentions and Learners' Perceptions of the Instructional Functions of Visuals in an e-Learning Context. Journal of Visual Literacy, 2010, 29, 143-166.	0.2	13
64	Scaffolding group explanation and feedback with handheld technology: impact on students' mathematics learning. Educational Technology Research and Development, 2010, 58, 399-419.	2.0	81
65	CRITICAL FEATURES OF VISUALIZATIONS OF TRANSPORT THROUGH THE CELL MEMBRANE—AN EMPIRICAL STUDY OF UPPER SECONDARY AND TERTIARY STUDENTS' MEANING-MAKING OF A STILL IMAGE AND AN ANIMATION. International Journal of Science and Mathematics Education, 2010, 8, 223-246.	1.5	39
66	Expertise reversal for iconic representations in science visualizations. Instructional Science, 2010, 38, 259-276.	1.1	45
67	The educational value of visual cues and 3D-representational format in a computer animation under restricted and realistic conditions. Instructional Science, 2010, 38, 455-469.	1.1	46
68	Learning from animation enabled by collaboration. Instructional Science, 2010, 38, 471-485.	1.1	38
69	Examining the Impact of Student Use of Multiple Modal Representations in Constructing Arguments in Organic Chemistry Laboratory Classes. Research in Science Education, 2010, 40, 29-44.	1.4	80
70	Using Multi-Modal Representations to Improve Learning in Junior Secondary Science. Research in Science Education, 2010, 40, 65-80.	1.4	149
71	Multimodal Literacies in Science: Currency, Coherence and Focus. Research in Science Education, 2010, 40, 87-92.	1.4	29
72	Effect of concept map supported teaching approaches from rules to sample and sample to rules to grammar teaching. Procedia, Social and Behavioral Sciences, 2010, 2, 3954-3964.	0.5	1
73	Teaching genetics with multimedia results in better acquisition of knowledge and improvement in comprehension. Journal of Computer Assisted Learning, 2010, 26, 214-224.	3.3	32
74	New Media, Learning from. , 2010, , 140-149.		3
75	External Visual Representations in Science Learning: The case of relations among system components. International Journal of Science Education, 2010, 32, 2335-2366.	1.0	29
76	Elementary Children's Shifting Views of Models and the Nature of Matter. Canadian Journal of Science, Mathematics and Technology Education, 2010, 10, 103-122.	0.6	6

#	Article	IF	CITATIONS
77	Connecting research in science literacy and classroom practice: a review of science teaching journals in Australia, the UK and the United States, 1998–2008. Studies in Science Education, 2010, 46, 45-68.	3.4	39
78	iMapping. , 2010, , .		12
79	Revisiting curriculum inquiry: the role of visual representations. Journal of Curriculum Studies, 2010, 42, 751-774.	1.2	17
80	Reading, listening, and viewing comprehension in English as a foreign language: One or more constructs?. Intelligence, 2010, 38, 562-573.	1.6	18
81	Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 2010, 20, 155-166.	1.9	207
82	Do dynamic work instructions provide an advantage over static instructions in a small scale assembly task?. Learning and Instruction, 2010, 20, 84-93.	1.9	46
83	Developing and evaluating a strategy for learning from animations. Learning and Instruction, 2010, 20, 424-433.	1.9	75
84	Cognitive activities in complex science text and diagrams. Contemporary Educational Psychology, 2010, 35, 59-74.	1.6	140
85	Intelligent Tutoring Systems. Lecture Notes in Computer Science, 2010, , .	1.0	2
86	Self-regulated Learning with MetaTutor: Advancing the Science of Learning with MetaCognitive Tools. , 2010, , 225-247.		108
87	Children road traffic safety education effect evaluation based on multiple-representations. , 2011, , .		1
88	The research of time characteristic presented by information element in multimedia learning. , 2011, , .		0
89	Note-Taking and Memory in Different Media Environments. Computers in the Schools, 2011, 28, 200-216.	0.4	23
90	The Modality Effect. , 2011, , 129-140.		4
91	Reducing the spatial distance between printed and online information sources by means of mobile technology enhances learning: Using 2D barcodes. Computers and Education, 2011, 57, 2077-2085.	5.1	68
92	Teachers' beliefs, instructional behaviors, and students' engagement in learning from texts with instructional pictures. Learning and Instruction, 2011, 21, 403-415.	1.9	41
93	Training for fostering knowledge co-construction from collaborative inference-drawing. Learning and Instruction, 2011, 21, 441-451.	1.9	16
94	A longitudinal perspective on inductive reasoning tasks. Illuminating the probability of change. Learning and Instruction, 2011, 21, 538-549.	1.9	43

6

#	Article	IF	CITATIONS
95	La TeorÃa de la Comunicabilidad: Notas para una concepción integral de la comprensión de textos escritos. Revista Signos, 2011, 44, 7-8.	0.1	16
96	Effects of information transiency in multimedia learning. Procedia, Social and Behavioral Sciences, 2011, 30, 307-311.	0.5	10
97	Characteristics and Levels of Sophistication: An Analysis of Chemistry Students' Ability to Think with Mental Models. Research in Science Education, 2011, 41, 561-586.	1.4	32
98	Supporting learning from illustrated texts: conceptualizing and evaluating a learning strategy. Instructional Science, 2011, 39, 921-937.	1.1	41
99	Identifying cross-domain distinguishing features of cognitive structure. Educational Technology Research and Development, 2011, 59, 817-840.	2.0	23
100	Integrating information from two pictorial animations: Complexity and cognitive prerequisites influence performance. Applied Cognitive Psychology, 2011, 25, 878-886.	0.9	6
101	The design of multimedia learning based on working memory. , 2011, , .		0
102	Human clay models versus cat dissection: how the similarity between the classroom and the exam affects student performance. American Journal of Physiology - Advances in Physiology Education, 2011, 35, 227-236.	0.8	26
103	Learning from Multiphase Diagrams: Effects of Spatial Ability and Visuospatial Working Memory Capacity. Proceedings of the Human Factors and Ergonomics Society, 2011, 55, 570-574.	0.2	2
104	Learning From and Through Representations in Science. , 2012, , 145-155.		18
105	Assessment for learning: Science teachers' ideas on assessment of core competences in science understanding. Infancia Y Aprendizaje, 2012, 35, 215-232.	0.5	1
106	Using Johnson-Laird's cognitive framework of sense-making to characterize engineering students' mental representations in kinematics. , 2012, , .		0
107	Knowledge Acquisition from Verbal and Pictorial Information. , 2012, , 339-365.		4
108	Cognitively demanding learning materials with texts and instructional pictures: teachers' diagnostic skills, pedagogical beliefs and motivation. European Journal of Psychology of Education, 2012, 27, 403-420.	1.3	24
109	Understanding and Enhancing the Use of Multiple External Representations in Chemistry Education. Journal of Science Education and Technology, 2012, 21, 780-795.	2.4	38
110	What counts as a flexible representational choice? An evaluation of students' representational choices to solve linear function problems. Instructional Science, 2012, 40, 999-1019.	1.1	23
111	Evaluating the performance of multimedia presentations in communicating radiological findings. , 2012, , .		1
112	Verbal descriptions of spatial information can interfere with picture processing. Memory, 2012, 20, 682-699.	0.9	11

#	Article	IF	CITATIONS
113	Fostering the analytical competency of pre-service teachers in a computer-supported case-based learning environment: A matter of perspective?. Interactive Learning Environments, 2012, 20, 513-532.	4.4	21
114	Science text comprehension: Drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 2012, 22, 16-26.	1.9	140
115	Split-attention and redundancy effects on mobile learning in physical environments. Computers and Education, 2012, 58, 172-180.	5.1	110
116	Online help-seeking in communities of practice: Modeling the acceptance of conceptual artifacts. Computers and Education, 2012, 59, 774-784.	5.1	20
117	Representation use and strategy choice in physics problem solving. Physical Review Physics Education Research, 2012, 8, .	1.7	85
118	Pictures Speak Louder than Words in ESP, Too!. English Language Teaching, 2012, 5, .	0.2	6
120	Effects of cognitive style on digital jigsaw puzzle performance: A GridWare analysis. Computers in Human Behavior, 2012, 28, 920-928.	5.1	43
121	Pictures in Test Items: Effects on Response Time and Response Correctness. Applied Cognitive Psychology, 2012, 26, 70-81.	0.9	35
122	Interactive group activity: a socially mediated tool for opening an interpretive space in classroom research. International Journal of Qualitative Studies in Education, 2013, 26, 1019-1040.	0.8	1
123	Comprehending conflicting science-related texts: graphs as plausibility cues. Instructional Science, 2013, 41, 849-872.	1.1	26
124	The role of decorative pictures in learning. Instructional Science, 2013, 41, 811-831.	1.1	90
125	Unconscious learning processes: mental integration of verbal and pictorial instructional materials. SpringerPlus, 2013, 2, 105.	1.2	23
126	Designing and Implementing Effective Animations and Simulations for Chemistry Learning. ACS Symposium Series, 2013, , 43-76.	0.5	6
127	Haptics and graphic analogies for the understanding of atomic force microscopy. International Journal of Human Computer Studies, 2013, 71, 608-626.	3.7	16
128	Strategic learning from expository animations: Short- and mid-term effects. Computers and Education, 2013, 69, 159-168.	5.1	20
129	Learning with summaries: Effects of representation mode and type of learning activity on comprehension and transfer. Learning and Instruction, 2013, 27, 40-49.	1.9	66
130	How a picture facilitates the process of learning from text: Evidence for scaffolding. Learning and Instruction, 2013, 28, 48-63.	1.9	118
131	Communicating global cardiovascular risk: Are icon arrays better than numerical estimates in improving understanding, recall and perception of risk?. Patient Education and Counseling, 2013, 93, 394-402	1.0	25

#	Article	IF	CITATIONS
132	Learning about locomotion patterns: Effective use of multiple pictures and motion-indicating arrows. Computers and Education, 2013, 65, 45-55.	5.1	26
133	How Inspecting a Picture Affects Processing of Text in Multimedia Learning. Applied Cognitive Psychology, 2013, 27, 451-461.	0.9	64
134	Scaffolding Hypermedia Learning Through Metacognitive Prompts. Springer International Handbooks of Education, 2013, , 171-186.	0.1	44
135	Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers and Education, 2013, 60, 95-109.	5.1	183
136	Interleaved practice in multi-dimensional learning tasks: Which dimension should we interleave?. Learning and Instruction, 2013, 23, 98-114.	1.9	47
137	Dynamics of mental model construction from text and graphics. European Journal of Psychology of Education, 2013, 28, 1105-1126.	1.3	30
138	An Eye-Tracking Study of Learning From Science Text With Concrete and Abstract Illustrations. Journal of Experimental Education, 2013, 81, 356-384.	1.6	118
139	The Effect of External Representations on Compare Word Problems: Supporting Mental Model Construction. Journal of Experimental Education, 2013, 81, 337-355.	1.6	22
140	How Individuals Process NWS Weather Warning Messages on Their Cell Phones. Weather, Climate, and Society, 2013, 5, 254-265.	0.5	18
141	Integrating formal and grounded representations in combinatorics learning Journal of Educational Psychology, 2013, 105, 666-682.	2.1	25
142	Investigation of the student teachers' skills of transition between multiple representations about pressure. International Journal of Academic Research, 2013, 5, 66-71.	0.1	3
143	Reducing verbal redundancy in multimedia learning: An undesired desirable difficulty?. Journal of Educational Psychology, 2013, 105, 266-277.	2.1	58
144	Role of mental representations in problem solving: Students' approaches to nondirected tasks. Physical Review Physics Education Research, 2013, 9, .	1.7	16
145	Pedagogical Agent Signaling of Multiple Visual Engineering Representations: The Case of the Young Female Agent. Journal of Engineering Education, 2013, 102, 319-337.	1.9	78
146	Effects of Picture Labeling on Science Text Processing and Learning: EvidenceÂFrom Eye Movements. Reading Research Quarterly, 2013, 48, 199-214.	1.8	70
147	Cognitive Theory of Multimedia Learning, Instructional Design Principles, and Students with Learning Disabilities in Computer-based and Online Learning Environments. Journal of Education, 2013, 193, 41-50.	0.7	19
148	Interplay of Internal and External Representations: Students' Drawings and Textual Explanations about Shadow Phenomena. Journal of Visual Literacy, 2013, 32, 67-84.	0.2	8
149	A Systematic Characterization of Cognitive Techniques for Learning from Textual and Pictorial Representations. Journal of Education and Learning, 2013, 2, .	0.2	13

#ARTICLEIF150Cognitive Synergy in Multimedia Learning. International Education Studies, 2013, 6, .0.3	CITATIONS 3 7
150Cognitive Synergy in Multimedia Learning. International Education Studies, 2013, 6, .0.3	3 7
	7
151 Effects of Seductive Details on Multimedia Learning. Journal of Studies in Education, 2014, 4, 32. 0.1	
 Blended inquiry with hands-on and virtual laboratories: the role of perceptual features during knowledge construction. Interactive Learning Environments, 2014, 22, 614-630. 	22
 Integrating pedagogical content knowledge and pedagogical/psychological knowledge in mathematics. Frontiers in Psychology, 2014, 5, 924. 	27
Chinese-Speaking Learners' Cognitive Comprehension Problems with English Video-Based Materials. Journal of Educational Computing Research, 2014, 51, 23-47.	5
Strategy shifts during learning from texts and pictures Journal of Educational Psychology, 2014, 106, 974-989.	53
 Students' Learning Strategies With Multiple Representations: Explanations of the Human Breathing Mechanism. Science Education, 2014, 98, 840-866. 	43
How to make a good animation: A grounded cognition model of how visual representation design affects the construction of abstract physics knowledge. Physical Review Physics Education Research, 1.7 2014, 10, .	20
158The Impact of Illustrations and Warnings on Solving Mathematical Word Problems Realistically. Journal of Experimental Education, 2014, 82, 103-120.1.6	43
Perceptual Literacy and the Construction of Significant Meanings within Art Education. International Journal of Art and Design Education, 2014, 33, 272-285.	4
 Mechanix: A natural sketch interface tool for teaching truss analysis and free-body diagrams. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2014, 28, 169-192. 	18
162Eye movements predict students' computer-based assessment performance of physics concepts in different presentation modalities. Computers and Education, 2014, 74, 61-72.5.1	47
 Click versus drag: User-performed tasks and the enactment effect in an interactive multimedia environment. Computers in Human Behavior, 2014, 33, 242-255. 	26
164PRIOR KNOWLEDGE AND ONLINE INQUIRY-BASED SCIENCE READING: EVIDENCE FROM EYE TRACKING.1.5164International Journal of Science and Mathematics Education, 2014, 12, 525-554.1.5	53
165Multimodal Semiosis in Science Read-Alouds: Extending Beyond Text Delivery. Research in Science Education, 2014, 44, 651-673.1.4	11
166An Integrative Framework for the Analysis of Multiple and Multimodal Representations for Meaningâ€Making in Science Education. Science Education, 2014, 98, 305-326.1.8	120
Model-Based Learning and Performance. , 2014, , 465-484.	11
Designing guidance for interpreting dynamic visualizations: Generating versus reading explanations. Journal of Research in Science Teaching, 2014, 51, 147-174.	37

#	Article	IF	CITATIONS
169	Prospective chemistry teachers' mental models of vapor pressure. Chemistry Education Research and Practice, 2014, 15, 366-379.	1.4	16
170	Astronomy textbook images: do they really help students?. Physics Education, 2014, 49, 332-343.	0.3	19
171	"WHAT ARE YOU LOOKING AT?―AN EYE MOVEMENT EXPLORATION IN SCIENCE TEXT READING. Internationa Journal of Science and Mathematics Education, 2014, 12, 241-260.	al 1.5	15
172	Students' images of mathematics. Instructional Science, 2014, 42, 595-614.	1.1	18
173	How Should Intelligent Tutoring Systems Sequence Multiple Graphical Representations of Fractions? A Multi-Methods Study. International Journal of Artificial Intelligence in Education, 2014, 24, 125-161.	3.9	34
174	Understanding Possibilities and Limitations of Abstract Chemical Representations for Achieving Conceptual Understanding. International Journal of Science Education, 2014, 36, 715-734.	1.0	17
175	Learning with dynamic and static visualizations: Realistic details only benefit learners with high visuospatial abilities. Computers in Human Behavior, 2014, 36, 330-339.	5.1	60
176	Learning from multiple representations: An examination of fixation patterns in a science simulation. Computers in Human Behavior, 2014, 35, 234-242.	5.1	52
177	The role of dynamic spatial ability in geoscience text comprehension. Learning and Instruction, 2014, 31, 33-45.	1.9	56
178	Effectiveness of Multiple Representations for Learning Energy Concepts: Case of Turkey. Procedia, Social and Behavioral Sciences, 2014, 116, 627-632.	0.5	20
179	Learner differences and learning outcomes in an introductory biochemistry class: Attitude toward images, visual cognitive skills, and learning approach. Biochemistry and Molecular Biology Education, 2014, 42, 285-298.	0.5	6
180	Cognitive Theory of Multimedia Learning. , 2014, , 43-71.		630
181	The Self-Explanation Principle in Multimedia Learning. , 2014, , 413-432.		109
182	Multimedia Learning with Intelligent Tutoring Systems. , 2014, , 705-728.		4
183	Multimedia Learning with Simulations and Microworlds. , 2014, , 729-761.		17
184	Introduction to Multimedia Learning. , 2014, , 1-24.		66
185	Integrated Model of Text and Picture Comprehension. , 2014, , 72-103.		143
186	The Multimedia Principle. , 2014, , 174-205.		129

#	Article	IF	CITATIONS
187	Partial testing can potentiate learning of tested and untested material from multimedia lessons Journal of Educational Psychology, 2015, 107, 991-1005.	2.1	10
190	Inference generation during online study and multimedia learning. , 2015, , 321-347.		5
191	Towards critical appraisal of infographics as scientific inscriptions. Journal of Research in Science Teaching, 2015, 52, 868-893.	2.0	28
192	Long-term conceptual retrieval by college biology majors following model-based instruction. Journal of Research in Science Teaching, 2015, 52, 1188-1206.	2.0	26
193	MÃS ALLÕDE LAS PALABRAS: Â;PUEDE COMPRENDERSE EL GÉNERO DISCURSIVO INFORME DE POLÃTICA MONETARIA DESDE UN ÚNICO SISTEMA SEMIÓTICO PREDOMINANTE?. Alpha, 2015, , 133-158.	0.0	5
194	Visualisierungskompetenz in Deutsch und Mathematik aus Sicht von Expertinnen und Experten der Lehr-/Lernforschung und Fachdidaktik. ZISU – Zeitschrift Für Interpretative Schul- Und Unterrichtsforschung, 2015, 4, 119-140.	0.1	2
195	Integrated learning: ways of fostering the applicability of teachersââ,¬â,,¢ pedagogical and psychological knowledge. Frontiers in Psychology, 2015, 06, 738.	1.1	19
197	Benefits of illustrations and videos for technical documentations. Computers in Human Behavior, 2015, 45, 109-120.	5.1	6
198	Will video be the next generation of e-commerce product reviews? Presentation format and the role of product type. Decision Support Systems, 2015, 73, 85-96.	3.5	113
199	Connection making between multiple graphical representations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry. Computers and Education, 2015, 82, 460-485.	5.1	39
200	Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education, 2015, 51, 49-85.	3.4	87
201	Students' Ability to Solve Process-diagram Problems in Secondary Biology Education. Journal of Biological Education, 2015, 49, 91-103.	0.8	10
202	Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they?. Instructional Science, 2015, 43, 147-171.	1.1	34
203	Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 2015, 41, 172-187.	1.6	97
204	The Joint Work of Connecting Multiple (Re)presentations in Science Classrooms. Science Education, 2015, 99, 378-403.	1.8	22
205	Effects of strategy instructions on learning from text and pictures. Instructional Science, 2015, 43, 345-364.	1.1	16
206	Integrative processing of verbal and graphical information during re-reading predicts learning from illustrated text: an eye-movement study. Reading and Writing, 2015, 28, 851-872.	1.0	42
207	Surface and deep structures in graphics comprehension. Memory and Cognition, 2015, 43, 605-618.	0.9	21

#	ARTICLE	IF	CITATIONS
208	Successful learning with multiple graphical representations and self-explanation prompts Journal of Educational Psychology, 2015, 107, 30-46.	2.1	61
209	Metaphorical graphics aid learning and memory. Learning and Instruction, 2015, 39, 194-205.	1.9	15
210	Virtual, Augmented and Mixed Reality. Lecture Notes in Computer Science, 2015, , .	1.0	6
211	Metacognition in self-regulated multimedia learning: integrating behavioural, psychophysiological and introspective measures. Learning, Media and Technology, 2015, 40, 187-209.	2.1	30
212	Stereoscopic 3D's impact on constructing spatial hands-on representations. Computers and Education, 2015, 85, 74-83.	5.1	17
213	The multimedia effect and its stability over time. Learning and Instruction, 2015, 38, 24-33.	1.9	19
214	Cognitive Dissonance as an Instructional Tool for Understanding Chemical Representations. Journal of Science Education and Technology, 2015, 24, 684-695.	2.4	5
215	Attention Switching and Multimedia Learning: The Impact of Executive Resources on the Integrative Comprehension of Texts and Pictures. Scandinavian Journal of Educational Research, 2015, 59, 478-498.	1.0	8
216	Measuring cognitive load in test items: static graphics versus animated graphics. Journal of Computer Assisted Learning, 2015, 31, 148-161.	3.3	17
217	The "Big Picture―of Thematic Multimedia Information Representation in Enhancing Learners' Critical Thinking and History Reasoning. Procedia, Social and Behavioral Sciences, 2015, 197, 2058-2065.	0.5	1
218	"Reading―Paintings: Evidence for Trans-Symbolic and Symbol-Specific Comprehension Processes. Cognition and Instruction, 2015, 33, 257-293.	1.9	10
219	The effects of static versus dynamic 3D representations on 10th grade students' atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 2015, 53, 169-180.	5.1	37
220	Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers and Education, 2015, 82, 280-291.	5.1	40
221	STUDENTS' COMPETENCIES IN WORKING WITH FUNCTIONS IN SECONDARY MATHEMATICS EDUCATION—EMPIRICAL EXAMINATION OF A COMPETENCE STRUCTURE MODEL. International Journal of Science and Mathematics Education, 2015, 13, 657-682.	1.5	22
222	Effects on learning of multimedia animation combined with multidimensional concept maps. Computers and Education, 2015, 80, 211-223.	5.1	43
223	Processing multimedia material: Does integration of text and pictures result in a single or two interconnected mental representations?. Learning and Instruction, 2015, 35, 62-72.	1.9	40
224	Picture or Text First? Explaining Sequence Effects when Learning with Pictures and Text. Educational Psychology Review, 2015, 27, 153-180.	5.1	67
225	Beyond Segmented Instructional Animation and its Role in Enrichment of Education and Technology. International Journal of Computer Graphics & Animation, 2016, 6, 17-33.	0.3	0

#	ARTICLE	IF	CITATIONS
226	¿Dónde se posan los ojos al leer textos multisemióticos disciplinares? Procesamiento de palabras y gráficos en un estudio experimental con eye tracker. Revista Signos, 2016, 49, 149-183.	0.1	6
227	Student's Conceptions in Statistical Graph's Interpretation. International Journal of Higher Education, 2016, 5, .	0.2	1
228	Reading Pictures for Story Comprehension Requires Mental Imagery Skills. Frontiers in Psychology, 2016, 7, 1630.	1.1	31
229	Improving diagrammatic reasoning in middle school science using conventions of diagrams instruction. Journal of Computer Assisted Learning, 2016, 32, 374-390.	3.3	15
230	The function of diagram with numbered arrows and text in helping readers construct kinematic representations: Evidenced from eye movements and reading tests. Computers in Human Behavior, 2016, 61, 622-632.	5.1	7
231	Students' conscious unknowns about artefacts and natural objects. Educational Psychology, 2016, 36, 176-190.	1.2	4
232	Using Embedded Visual Coding to Support Contextualization of Historical Texts. American Educational Research Journal, 2016, 53, 516-540.	1.6	15
233	What recent research on diagrams suggests about learning <i>with</i> rather than learning <i>from</i> visual representations in science. International Journal of Science Education, 2016, 38, 725-746.	1.0	64
234	Translation of P = kT into a pictorial external representation by high school seniors. Chemistry Education Research and Practice, 2016, 17, 656-674.	1.4	7
235	Training students to use syringe pumps: an experimental comparison of e-learning and classroom training. Biomedizinische Technik, 2016, 61, 211-20.	0.9	5
236	Learning from Static versus Animated Pictures of Embodied Knowledge. Communications in Computer and Information Science, 2016, , 144-158.	0.4	0
237	"The Pictures Can Say More Thingsâ€: Change Across Time in Young Children's References to Images and Words During Text Discussion. Reading Research Quarterly, 2016, 51, 267-287.	1.8	10
238	Innovating with Concept Mapping. Communications in Computer and Information Science, 2016, , .	0.4	5
239	Evaluation of Model Driven Architecture-Based Instruction for Understanding Phase Transitions in Object-Oriented Analysis and Design. ACM Transactions on Computing Education, 2016, 16, 1-21.	2.9	4
240	Wie wird Energie im Biologieschulbuch dargestellt? – Entwicklung eines Kategoriensystems und exemplarische Anwendung auf eine Schulbuchreihe. Zeitschrift Für Didaktik Der Naturwissenschaften, 2016, 22, 215-229.	0.2	6
241	Drawing and Writing in Digital Science Notebooks: Sources of Formative Assessment Data. Journal of Science Education and Technology, 2016, 25, 474-488.	2.4	15
242	Gender Differences in Eye Movements in Solving Text-and-Diagram Science Problems. International Journal of Science and Mathematics Education, 2016, 14, 327-346.	1.5	16
243	Supporting Scientific Explanations with Drawings and Narratives on Tablet Computers: An Analysis of Explanation Patterns. Asia-Pacific Education Researcher, 2016, 25, 173-184.	2.2	12

#	Article	IF	CITATIONS
244	Effects of Prior Knowledge on Mathematics Different Order Thinking Skills in Mobile Multimedia Environments. Lecture Notes in Educational Technology, 2016, , 373-386.	0.5	3
245	Learning and Instruction: a review of main research lines during recent decades. Zeitschrift Fur Erziehungswissenschaft, 2016, 19, 101-119.	3.5	2
246	The role of student-generated externalizations in strategic multimedia learning and how current (web-)technology fails to support learner engagement. Interactive Learning Environments, 2016, 24, 1610-1628.	4.4	3
247	Towards a multimodally oriented theory of translation: A cognitive framework for the translation of illustrated technical texts. Translation Studies, 2016, 9, 67-81.	0.1	18
248	The relative roles of visuospatial and linguistic working memory systems in generating inferences during visual narrative comprehension. Memory and Cognition, 2016, 44, 207-219.	0.9	51
249	Developing conceptual understanding in ray optics via learning with multiple representations. Zeitschrift Fur Erziehungswissenschaft, 2016, 19, 235-255.	3.5	7
250	Twenty Years on: Reflections on "Supporting the Use of External Representations in Problem Solvingâ€â€¦. International Journal of Artificial Intelligence in Education, 2016, 26, 193-204.	3.9	4
251	Why Use Multiple Representations in the Mathematics Classroom? Views of English and German Preservice Teachers. International Journal of Science and Mathematics Education, 2016, 14, 363-382.	1.5	29
252	Young primary students making sense of text and illustrations about how refuse can become soil. Environmental Education Research, 2017, 23, 1150-1168.	1.6	1
253	Can visual aids in representational illustrations help pupils to solve mathematical word problems more realistically?. European Journal of Psychology of Education, 2017, 32, 335-351.	1.3	18
254	Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning. Educational Psychology Review, 2017, 29, 717-761.	5.1	140
255	Secondary-Task Effects on Learning With Multimedia: An Investigation Through Eye-Movement Analysis. Journal of Experimental Education, 2017, 85, 126-141.	1.6	10
256	Relationship of prior knowledge and working engineers' learning preferences: implications for designing effective instruction. European Journal of Engineering Education, 2017, 42, 302-322.	1.5	3
257	A Relational Reasoning Approach to Text-Graphic Processing. Educational Psychology Review, 2017, 29, 55-72.	5.1	17
258	Learner expertise and mathematics different order thinking skills in multimedia learning. Computers and Education, 2017, 107, 147-164.	5.1	39
259	Complex phenomena understanding in electricity through dynamically linked concrete and abstract representations. Journal of Computer Assisted Learning, 2017, 33, 151-163.	3.3	10
260	Interpreting Visual Metaphors: Asymmetry and Reversibility. Poetics Today, 2017, 38, 93-121.	0.2	17
261	Diagrams in Contracts: Fostering Understanding in Global Business Communication. IEEE Transactions on Professional Communication, 2017, 60, 118-146.	0.6	14

#	Article	IF	CITATIONS
262	Test-takers' eye movements: Effects of integration aids and types of graphical representations. Computers and Education, 2017, 109, 85-97.	5.1	25
263	Development of Dynamic Usage of Strategies for Integrating Text and Picture Information in Secondary Schools. Methodology of Educational Measurement and Assessment, 2017, , 303-313.	0.4	4
264	The effectiveness of hybrid dynamic visualisation in learning genetics in a Hong Kong secondary school. Research in Science and Technological Education, 2017, 35, 308-329.	1.4	3
265	Using eye movements to model the sequence of text–picture processing for multimedia comprehension. Journal of Computer Assisted Learning, 2017, 33, 443-460.	3.3	38
266	Influences of text difficulty and reading ability on learning illustrated science texts for children: An eye movement study. Computers and Education, 2017, 113, 263-279.	5.1	35
267	Textual and graphical refutations: Effects on conceptual change learning. Contemporary Educational Psychology, 2017, 49, 275-288.	1.6	30
268	Developing a Drawing Task to Differentiate Group Average Time Course vs. Dynamics in the Individual. Psychology Learning and Teaching, 2017, 16, 212-231.	1.3	3
269	The effects of explicit visual cues in reading biological diagrams. International Journal of Science Education, 2017, 39, 605-626.	1.0	14
270	Eye-movement patterns and reader characteristics of students with good and poor performance when reading scientific text with diagrams. Reading and Writing, 2017, 30, 1447-1472.	1.0	16
271	The merits of representational pictures in educational assessment: Evidence for cognitive and motivational effects in a time-on-task analysis. Contemporary Educational Psychology, 2017, 51, 482-492.	1.6	27
272	Imagining Flipped Workshops: Considerations for Designing Online Modules for Social Justice Education Workshops. Multicultural Perspectives, 2017, 19, 178-184.	0.3	0
273	The effects of visualizations on linguistically diverse students' understanding of energy and matter in life science. Journal of Research in Science Teaching, 2017, 54, 1274-1301.	2.0	20
274	Erhebung von reprÄ s entationaler KohÄ re nzfÄ r igkeit von Schļlerinnen und Schļlern im Themenbereich Strahlenoptik. Zeitschrift Fļr Didaktik Der Naturwissenschaften, 2017, 23, 181-203.	0.2	7
276	Evaluating Multiple Analogical Representations from Students' Perceptions. Models and Modeling in Science Education, 2017, , 71-91.	0.6	3
277	Representation of Elementary School Teachers on Concept of Heat Transfer. Journal of Physics: Conference Series, 2017, 895, 012159.	0.3	6
278	Multi-level mental representations of written, auditory, and audiovisual text in children and adults. Cognitive Processing, 2017, 18, 491-504.	0.7	12
279	Development of students' text-picture integration and reading competence across grades 5–7 in a three-tier secondary school system: A longitudinal study. Contemporary Educational Psychology, 2017, 51, 152-169.	1.6	6
280	Identifying processes underlying the multimedia effect in testing: An eye-movement analysis. Learning and Instruction, 2017, 47, 91-102.	1.9	52

#	Article	IF	CITATIONS
281	Probing the question order effect while developing a chemistry concept inventory. Chemistry Education Research and Practice, 2017, 18, 45-54.	1.4	5
282	The effect of emphasising the realistic modelling complexity in the text or picture on pupils' realistic solutions of P-items. Educational Psychology, 2017, 37, 1173-1185.	1.2	10
283	Visualizers versus verbalizers: Effects of cognitive style on learning with texts and pictures – An eye-tracking study. Computers in Human Behavior, 2017, 68, 170-179.	5.1	116
284	Biological Principles and Threshold Concepts for Understanding Natural Selection. Science and Education, 2017, 26, 953-973.	1.7	52
285	Using computer animation for emergency medicine education. International Journal of Technology Enhanced Learning, 2017, 9, 354.	0.4	4
286	Exploring the Item Order Effect in a Geoscience Concept Inventory. Journal of Geoscience Education, 2017, 65, 292-303.	0.8	1
287	Visualizer's representation in functions. Journal of Physics: Conference Series, 2017, 943, 012004.	0.3	9
288	Development and validation of the Food Disgust Picture Scale. Appetite, 2018, 125, 367-379.	1.8	41
289	Multi-modal, multi-source reading: A multi-representational reader's perspective. Learning and Instruction, 2018, 57, 71-75.	1.9	3
290	Flowcharts, Swimlanes, and Timelines. Journal of Business and Technical Communication, 2018, 32, 229-272.	1.4	17
291	Does the accuracy matter? Accurate concept map feedback helps students improve the cohesion of their explanations. Educational Technology Research and Development, 2018, 66, 1051-1067.	2.0	13
292	Making Sense of Phenomena from Sequential Images versus Illustrated Text. Journal of Chemical Education, 2018, 95, 347-354.	1.1	5
293	Effects of Tables, Bar Charts, and Graphs on Solving Function Tasks. Journal Fur Mathematik-Didaktik, 2018, 39, 97.	1.0	8
294	Students' mental load, stress, and performance when working with symbolic or symbolic–textual molecular representations. Journal of Research in Science Teaching, 2018, 55, 1162-1187.	2.0	5
295	Psychological Theories in Mathematics Education. Journal Fur Mathematik-Didaktik, 2018, 39, 1-6.	1.0	10
296	Introduction to the special issue: Desiderata for a theory of multi-source multi-modal comprehension. Learning and Instruction, 2018, 57, 1-4.	1.9	5
297	Mental Representations of the Text Surface, the Text Base, and the Situation Model in Auditory and Audiovisual Texts in 7-, 9-, and 11-Year-Olds. Discourse Processes, 2018, 55, 290-304.	1.1	12
298	Eye Movements in Integrating Geometric Text and Figure: Scanpaths and Given-New Effects. International Journal of Science and Mathematics Education, 2018, 16, 699-714.	1.5	20

ARTICLE IF CITATIONS Elementary students' challenges with informational texts: Reading the words and the world. Journal 299 0.4 9 of Social Studies Research, 2018, 42, 49-59. Advances in Design for Inclusion. Advances in Intelligent Systems and Computing, 2018, , . The impact of stereoscopic imagery and motion on anatomical structure recognition and visual 301 2.518 attention performance. Anatomical Sciences Education, 2018, 11, 15-24. The influence of text cohesion and picture detail on young readers' knowledge of science topics. British Journal of Educational Psychology, 2018, 88, 465-479. Making connections among multiple visual representations: how do sense-making skills and 303 perceptual fluency relate to learning of chemistry knowledge?. Instructional Science, 2018, 46, 1.1 14 209-243. The Importance of Diagrams, Graphics and Other Visual Representations in STEM Teaching. , 2018, , 169-196. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior 305 1.4 10 High School Textbooks. Research in Science Education, 2018, 48, 1409-1431. An Experimental Study of Learning Behaviour in an ELearning Environment., 2018, , . 306 307 Multimediales Lernen: Lehren und Lernen mit Texten und Bildern., 2018, , 1-26. 0 Teaching Hardware Reverse Engineering: Educational Guidelines and Practical Insights., 2018, , . Visual and Verbal Ascribing of Meanings to the Term "Holy―in the German Magazines Stern and 309 0.2 1 Spiegel. Journal of Religion, Media and Digital Culture, 2018, 7, 279-299. DESAFÃOS PARA EL DESARROLLO DE UNA COMPETENCIA MULTIMODAL DISCIPLINAR. EL CASO DEL GÉNERO 0.1 INFORME DE POLÃTICA MONETARIA (IPOM). Signa, 2018, 27, 1095. The Role of Laboratory Work in Improving Physics Teaching and Learning., 2018, , . 312 7 Mining Learning Styles for Personalised eLearning., 2018,,. Static and dynamic seductive illustration effects on textâ€andâ€graphic learning processes, perceptions, 314 0.9 22 and outcomes: Evidence from eye tracking. Applied Cognitive Psychology, 2019, 33, 109-123. Reading Instructions Influence Cognitive Processes of Illustrated Text Reading Not Subject 1.1 Perception: An Eye-Tracking Study. Frontiers in Psychology, 2018, 9, 2263. Niveles de comprensiÃ³n y su relaciÃ³n con la predominancia de sistemas semiÃ³ticos: una aproximaciÃ³n a 316 0.1 2 la comprensiÃ³n multimodal desde el discurso académico. Estudios Pedagogicos, 2018, 44, 293-313. As Symbol as That: Inconsistencies in Symbol Systems of Alleles in Textbooks, and Students' 1.4 Justifications for Them. Education Sciences, 2018, 8, 110.

#	Δρτιςι ε	IF	CITATIONS
π 919	Improving older adults' comprehension and use of patient portal-based health information. , 2018, ,	ш	4
510	49-80.		-
319	Enhancing Conceptual Knowledge of Energy in Biology with Incorrect Representations. CBE Life Sciences Education, 2018, 17, ar5.	1.1	11
320	The Efficacy of Multimedia Stories in Preschoolers' Explicit and Implicit Story Comprehension. Early Childhood Education Journal, 2018, 46, 629-642.	1.6	22
321	Multiple symbolic representations: The combination of formula and text supports problem solving in the mathematical field of propositional logic. Learning and Instruction, 2018, 58, 88-105.	1.9	41
322	Learners' epistemic criteria and strategies for evaluating scientific visual representations. Learning and Instruction, 2018, 58, 137-147.	1.9	11
323	Changing representation in contextual mathematical problems from descriptive to depictive: The effect on students' performance. Studies in Educational Evaluation, 2018, 58, 122-131.	1.2	26
324	Representational Competence in Science Education: From Theory to Assessment. Models and Modeling in Science Education, 2018, , 263-277.	0.6	6
326	What Makes a Diagram Easy or Hard? The Impact of Diagram Design on Fourth-Grade Students' Comprehension of Science Texts. Elementary School Journal, 2018, 119, 122-151.	0.9	7
327	Click-On-Diagram Questions: a New Tool to Study Conceptions Using Classroom Response Systems. Journal of Science Education and Technology, 2018, 27, 492-507.	2.4	7
328	Blinded with Science or Informed by Charts? A Replication Study. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 781-790.	2.9	18
329	Specifying the boundary conditions of the multimedia effect: The influence of content and its distribution between text and pictures. British Journal of Psychology, 2019, 110, 126-150.	1.2	11
330	The impact of instruction and student characteristics on the development of students' ability to read texts with instructional pictures. European Journal of Psychology of Education, 2019, 34, 375-395.	1.3	2
331	The effectiveness thermodynamic learning based on multiple representation toward understanding basic concept of physics education students. Journal of Physics: Conference Series, 2019, 1157, 032043.	0.3	0
332	Explicit <i>versus</i> implicit similarity – exploring relational conceptual understanding in organic chemistry. Chemistry Education Research and Practice, 2019, 20, 924-936.	1.4	27
333	How Static and Animated Pictures Contribute to Multi-level Mental Representations of Auditory Text in Seven-, Nine-, and Eleven-Year-Old Children. Journal of Cognition and Development, 2019, 20, 573-591.	0.6	4
334	Mathematical Representations in Physics Lessons. , 2019, , 75-102.		9
335	Cognitive Task Analysis for Implicit Knowledge About Visual Representations With Similarity Learning Methods. Cognitive Science, 2019, 43, e12744.	0.8	2
336	Biologiespezifisches BildverstĤdnis. Zeitschrift Fļr Didaktik Der Naturwissenschaften, 2019, 25, 289-306.	0.2	0

#	Article	IF	CITATIONS
337	The Craving and Excitement of Social Networking Sites Addicts: Based on Cue-Reactivity. Frontiers in Psychology, 2019, 10, 1717.	1.1	15
339	Cross-reality environments in smart buildings to advance STEM cyberlearning. International Journal on Interactive Design and Manufacturing, 2019, 13, 331-348.	1.3	21
340	Effect of disfluency on learning outcomes, metacognitive judgments and cognitive load in computer assisted learning environments. Computers in Human Behavior, 2019, 99, 310-321.	5.1	14
341	Trends and issues in multimedia learning research in 1996–2016: A bibliometric analysis. Educational Research Review, 2019, 28, 100282.	4.1	56
342	Translation process of mathematics representation: From graphics to symbols and vice versa. Journal of Physics: Conference Series, 2019, 1188, 012055.	0.3	2
343	New Media: A Double-Edged Sword in Support of Public Engagement with Science. , 2019, , 79-95.		12
344	The Role of Visual Representations in Mathematical Word Problems. , 2019, , 269-294.		4
345	How generative drawing affects the learning process: An eyeâ€ŧracking analysis. Applied Cognitive Psychology, 2019, 33, 1147-1164.	0.9	27
346	Comprehension across mediums: the case of text and video. Journal of Computing in Higher Education, 2019, 31, 514-535.	3.9	19
347	Training for Coherence Formation When Learning From Text and Picture and the Interplay With Learners' Prior Knowledge. Frontiers in Psychology, 2019, 10, 193.	1.1	24
348	Spatial Continuity Effect vs. Spatial Contiguity Failure. Revising the Effects of Spatial Proximity Between Related and Unrelated Representations. Frontiers in Education, 2019, 4, .	1.2	9
349	The Influence of Presentation Format of Story on Narrative Production in Chinese Children Learning English-as-a-Second-Language: A Comparison Between Graphic Novel, Illustration Book and Text. Journal of Psycholinguistic Research, 2019, 48, 221-242.	0.7	9
350	Do seductive details do their damage in the context of graph comprehension? Insights from eye movements. Applied Cognitive Psychology, 2019, 33, 95-108.	0.9	18
351	Summarizing as a Strategy for Science Text Comprehension: Text-Based Versus Content-Based Processing. Discourse Processes, 2019, 56, 728-747.	1.1	3
352	Do We Need Arrows in Representing an Energy Pyramid?. International Journal of Science and Mathematics Education, 2019, 17, 1301-1316.	1.5	2
353	The concreteness of titles affects metacognition and study motivation. Instructional Science, 2019, 47, 257-277.	1.1	6
354	Students' Use of Data Visualizations in Historical Reasoning: A Think-Aloud Investigation with Elementary, Middle, and High School Students. Journal of Social Studies Research, 2019, 43, 389-404.	0.4	16
355	Investigating multiple source use among students with and without dyslexia. Reading and Writing, 2019, 32, 1149-1174.	1.0	17

#	Article	IF	CITATIONS
356	Supporting linguistically diverse students' science learning with dynamic visualizations through discourseâ€rich practices. Journal of Research in Science Teaching, 2019, 56, 270-301.	2.0	15
357	Linguistic characteristics of reflective states in video annotations under different instructional conditions. Computers in Human Behavior, 2019, 96, 211-222.	5.1	14
358	A Framework of Effective Science Explanation Videos Informed by Criteria for Instructional Explanations. Research in Science Education, 2020, 50, 2441-2462.	1.4	33
359	Learning fractions with and without educational technology: What matters for high-achieving and low-achieving students?. Learning and Instruction, 2020, 65, 101264.	1.9	57
360	Texts and pictures serve different functions in conjoint mental model construction and adaptation. Memory and Cognition, 2020, 48, 69-82.	0.9	22
361	Inspecting a picture before reading affects attentional processing but not comprehension. Educational Psychology, 2020, 40, 4-21.	1.2	4
363	Measuring and investigating strategic knowledge about drawing to solve geometry modelling problems. ZDM - International Journal on Mathematics Education, 2020, 52, 97-110.	1.3	20
364	Can animation compensate for temporal processing difficulties in deaf people?. Applied Cognitive Psychology, 2020, 34, 308-317.	0.9	3
365	Dynamic cognitive processes of text-picture integration revealed by event-related potentials. Brain Research, 2020, 1726, 146513.	1.1	5
366	Examination of using monoscopic three-dimensional (M3D) and stereoscopic three-dimensional (S3D) animation on students. Education and Information Technologies, 2020, 25, 2765-2790.	3.5	2
367	Word problem solving and pictorial representations: insights from an exploratory study in kindergarten. ZDM - International Journal on Mathematics Education, 2020, 52, 17-31.	1.3	5
368	Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. British Journal of Educational Technology, 2020, 51, 629-644.	3.9	44
369	Origami folding: Taxing resources necessary for the acquisition of sequential skills. PLoS ONE, 2020, 15, e0240226.	1.1	7
370	Challenges Solving Science Tasks with Text–Picture Combinations Persist beyond Secondary School. Journal of Research on Educational Effectiveness, 2020, 13, 759-783.	0.9	0
371	Data-literate citizenry: how US state standards address data and data visualizations in social studies. Information and Learning Science, 2020, 121, 909-931.	0.8	7
372	Promoting Scientific Understanding through Animated Multimodal Texts. Innovations in Science Education and Technology, 2020, , 131-158.	0.1	0
373	How to easily facilitate consumers' mental simulation through advertising: the effectiveness of self-referencing image dynamics on purchase intention. International Journal of Advertising, 2021, 40, 810-834.	4.2	15
374	Augmented Reality for the Manufacturing Industry: The Case of an Assembly Assistant. , 2020, , .		7

#	Article	IF	CITATIONS
375	Association between slides-format and Major's contents: effects on perceived attention and significant learning. Multimedia Tools and Applications, 2020, 79, 24969-24992.	2.6	2
376	Learning a Motor Skill from Video and Static Pictures in Physical Education Students—Effects on Technical Performances, Motivation and Cognitive Load. International Journal of Environmental Research and Public Health, 2020, 17, 9067.	1.2	14
377	Engagement and effectiveness of symbolic and iconic learning support for math problem representation: an eye tracking study. Interactive Learning Environments, 2023, 31, 1514-1531.	4.4	0
378	Epistemic Network Analyses of Economics Students' Graph Understanding: An Eye-Tracking Study. Sensors, 2020, 20, 6908.	2.1	10
379	Perceptual Simulation of Vertical Object Movement during Comprehension of Auditory and Audiovisual Text in Children and Adults. Discourse Processes, 2020, 57, 460-472.	1.1	3
380	Effects of Analogical Learning Approaches and Presentation Modalities on Ninth Graders' Learning Outcome and Eye Movements: a Preliminary Study. Journal of Science Education and Technology, 2020, 29, 547-560.	2.4	6
381	Illustrations Before Text Reduce Visuospatial Working Memory Load During Text Processing. Discourse Processes, 2020, 57, 627-658.	1.1	3
382	Format effects in the understanding of motion from kinematic diagrams in engineering education. International Journal of Technology and Design Education, 2020, 31, 1063.	1.7	1
383	Scaffolding EFL Reading with Text-Structure Visual Displays: Idea Maps and Idea Matrices. English Teaching and Learning, 2020, 44, 397-415.	0.6	1
384	Representational and decorative pictures in science and mathematics tests: Do they make a difference?. Learning and Instruction, 2020, 68, 101345.	1.9	28
385	Homogeneous and heterogeneous multiple representations in equationâ€solving problems: An eyeâ€tracking study. Journal of Computer Assisted Learning, 2020, 36, 781-798.	3.3	11
386	Diagram comprehension ability of college students in an introductory biology course. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 169-180.	0.8	4
387	Do You Get the Picture? A Meta-Analysis of the Effect of Graphics on Reading Comprehension. AERA Open, 2020, 6, 233285842090169.	1.3	35
388	Comparing Multiple Theories about Learning with Physical and Virtual Representations: Conflicting or Complementary Effects?. Educational Psychology Review, 2020, 32, 297-325.	5.1	27
389	Cross-codal integration of bridging-event information in narrative understanding. Memory and Cognition, 2020, 48, 942-956.	0.9	9
390	Effects of spatial distance on the effectiveness of mental and physical integration strategies in learning from split-attention examples. Computers in Human Behavior, 2020, 110, 106379.	5.1	24
391	Learning from split-attention materials: Effects of teaching physical and mental learning strategies. Contemporary Educational Psychology, 2020, 61, 101873.	1.6	23
392	Does reading medium affect processing and integration of textual and pictorial information? A multimedia eye-tracking study. Contemporary Educational Psychology, 2020, 62, 101870.	1.6	33

#	Article	IF	CITATIONS
393	An integrative study on learning and testing with multimedia: Effects on students' performance and metacognition. Learning and Instruction, 2021, 71, 101100.	1.9	25
394	Online Assessment of Applied Anatomy Knowledge: The Effect of Images on Medical Students' Performance. Anatomical Sciences Education, 2021, 14, 342-351.	2.5	17
395	The effects of social and cognitive cues on learning comprehension, eye-gaze pattern, and cognitive load in video instruction. Journal of Computing in Higher Education, 2021, 33, 39-63.	3.9	21
396	Exploring students' translation performance and use of intermediary representations among multiple representations: Example from torque and rotation. Teaching and Teacher Education, 2021, 97, 103209.	1.6	2
397	Effects of picture-word integration on reading visual narratives in L1 and L2. Learning and Instruction, 2021, 71, 101397.	1.9	7
398	The Mechanisms of "Incidental News Consumptionâ€r an Eye Tracking Study of News Interaction on Facebook. Digital Journalism, 2021, 9, 215-234.	2.5	13
399	Expertise as Sensorimotor Tuning: Perceptual Navigation Patterns Mark Representational Competence in Science Education, 2022, 52, 725-747.	1.4	5
400	Through the Eyes of an Archeologist: Studying the Role of Prior Knowledge in Learning with Diagrams. Lecture Notes in Computer Science, 2021, , 315-330.	1.0	0
401	Design Principles for Educational Mixed Reality?. Advances in Educational Technologies and Instructional Design Book Series, 2021, , 76-99.	0.2	3
402	Children's surface, textbase, and situation model representations of written and illustrated written narrative text. Reading and Writing, 2021, 34, 1415-1440.	1.0	6
403	Modeling Reading Behaviors: An Automatic Approach to Eye Movement Analytics. IEEE Access, 2021, 9, 63580-63590.	2.6	5
404	Interviewer presence can affect learning with interview videos. E-Learning and Digital Media, 2021, 18, 403-421.	1.5	1
405	Multimedia Effect in Problem Solving: A Meta-Analysis. Educational Psychology Review, 2021, 33, 1717-1747.	5.1	8
406	Learning in Virtual Reality: Bridging the Motivation Gap by Adding Annotations. Frontiers in Psychology, 2021, 12, 645032.	1.1	12
407	Adaptive support for representational competencies during technology-based problem solving in chemistry. Journal of the Learning Sciences, 0, , 1-41.	2.0	3
408	The effects of using photos in Arabic news websites on the audience's comprehension and recall: A pilot research. Journal of Applied Journalism and Media Studies, 2021, 00, 1-21.	0.1	3
409	Visual representation fidelity and <scp>selfâ€explanation</scp> prompts in <scp>multiâ€representational</scp> adaptive learning. Journal of Computer Assisted Learning, 2021, 37, 1091-1106.	3.3	7
410	Homophily at a glance: visual homophily estimation in network graphs is robust under time constraints. SN Social Sciences, 2021, 1, 1.	0.4	1

#	Article	IF	CITATIONS
411	Immersive virtual reality or auditory text first? Effects of adequate sequencing and prompting on learning outcome. British Journal of Educational Technology, 2021, 52, 2058-2076.	3.9	6
412	Teaching with Texts and Pictures in Science Classes: Teachers' Attitudes and Motivational Orientations at Different School Levels. Journal of Science Teacher Education, 2022, 33, 107-123.	1.4	7
413	The role of reading comprehension in mathematical modelling: improving the construction of a real-world model and interest in Germany and Taiwan. Educational Studies in Mathematics, 2022, 109, 337-359.	1.8	20
414	Attention Span of Children With Mild Intellectual Disability: Does Music Therapy and Pictorial Illustration Play Any Significant Role?. Frontiers in Psychology, 2021, 12, 677703.	1.1	3
415	Students' integration of textbook representations into their understanding of photomicrographs: epistemic network analysis. Research in Science and Technological Education, 2023, 41, 544-563.	1.4	8
416	Multiple mental representations in picture processing. Psychological Research, 2021, , 1.	1.0	4
417	What can children learn from exposure to visual-graphical representations?. Thinking Skills and Creativity, 2021, 40, 100830.	1.9	2
418	Continuous time models support the reciprocal relations between academic achievement and fluid intelligence over the course of a school year. Intelligence, 2021, 87, 101560.	1.6	3
419	Different complex word problems require different combinations of cognitive skills. Educational Studies in Mathematics, 2022, 109, 89-114.	1.8	5
420	Exploring students' visualisation competence with photomicrographs of villi. International Journal of Science Education, 2021, 43, 2290-2315.	1.0	3
421	The More, the Better? Effects of Multiple Modalities on EFL Listening and Reading Comprehension. STEM Journal, 2021, 22, 29-45.	0.1	2
422	COVID ISSUE: Visual Narratives About COVID-19 Improve Message Accessibility, Self-Efficacy, and Health Precautions. Frontiers in Communication, 2021, 6, .	0.6	7
423	Visual Model Fit Estimation in Scatterplots: Influence of Amount and Decentering of Noise. IEEE Transactions on Visualization and Computer Graphics, 2021, 27, 3834-3838.	2.9	2
424	Is Mathematics Required for Cooking? An Interdisciplinary Approach to Integrating Computational Thinking in a Culinary and Restaurant Management Course. Mathematics, 2021, 9, 2219.	1.1	2
425	Effects of Using One or More Manipulatives on Strategy Mastery and Generalization. Journal of Experimental Education, 2023, 91, 230-248.	1.6	1
426	Exploring the impact of student generated representations on student learning. Pedagogies, 2023, 18, 198-220.	0.4	0
427	Symbolizing algebraic story problems: Are diagrams helpful?. Applied Cognitive Psychology, 0, , .	0.9	2
428	Prompting in-depth learning in immersive virtual reality: Impact of an elaboration prompt on developing a mental model. Computers and Education, 2021, 171, 104235	5.1	18

ARTICLE IF CITATIONS Relations of Creativity to the Interplay Between High-order Cognitive Functions: Behavioral and 429 1.1 3 Neural Evidence. Neuroscience, 2021, 473, 90-101. Digital support for student engagement in blended learning based on self-determination theory. 5.1 94 Computers in Human Behavior, 2021, 124, 106909. Cross-Representational Signaling and Cohesion Support Inferential Comprehension of Textâ€"Picture 431 1.1 4 Documents. Frontiers in Psychology, 2020, 11, 592509. The impact of representations of chemical bonding on students' predictions of chemical properties. Chemistry Education Research and Practice, 2021, 22, 1035-1053. Translanguaging for biliteracy: Book reading practices in a Chinese bilingual family. Bilingual 433 1.0 3 Research Journal, 2021, 44, 39-55. Why Multimedia Learning is not Always Helpful., 2008, , 17-41. 436 Display of Key Pictures from Animation: Effects on Learning., 2008, , 61-78. 8 Researching Effective Pedagogies for Developing the Literacies of Science: Some Theoretical and 438 Practical Considerations., 2009, , 151-168. 439 Arguing a Position from Text: The Influence of Graphic Themes on Schema Activation., 2008, , 227-236. 2 440 External Representations for Learning., 2009, , 137-153. Multimedia Instruction., 2014, , 385-399. 441 54 Gaze-Based Attention-Aware Cyberlearning Technologies. Educational Communications and 0.2 Technology: Issues and Innovations, 2019, , 87-105. Two Modes are Better Than One: a Multimodal Assessment Framework Integrating Student Writing 443 1.0 4 and Drawing. Lecture Notes in Computer Science, 2015, , 205-215. Investigation of Visual Features for Augmented Reality Assembly Assistance. Lecture Notes in 444 1.0 Computer Science, 2015, , 488-498. Design of Effective Dynamic Visualizations: A Struggle Between the Beauty and the Beast? Commentary 446 6 on Parts I and II. , 2017, , 233-251. Image Design for Enhancing Science Learning: Helping Students Build Taxonomic Meanings with 447 Salient Tree Structure Images. , 2018, , 237-258. How Cross-Representational Signaling Affects Learning from Text and Picture: An Eye-Tracking Study. 448 1.0 1 Lecture Notes in Computer Science, 2018, , 725-728. Multimodalitä– ein universelles Merkmal der Medienkommunikation: Zum Verhänis von 449 Medienangebot und Medienrezeption., 2012, , 51-82.

#	Article	IF	CITATIONS
450	Facilitating Conditional Probability Problems with Visuals. , 2007, , 63-71.		9
451	Blocked versus Interleaved Practice with Multiple Representations in an Intelligent Tutoring System for Fractions. Lecture Notes in Computer Science, 2010, , 413-422.	1.0	18
452	Multiple Interactive Representations for Fractions Learning. Lecture Notes in Computer Science, 2010, , 221-223.	1.0	1
453	Lehrexpertise – Integration und Förderung von pÃ ¤ agogischem und psychologischem Wissen. , 2019, , 207-235.		2
454	Multiple Document Comprehension of University Students. , 2020, , 221-240.		8
455	Lernen mit digitalen Medien. , 2018, , 177-192.		4
458	Förderung der Kohäenzbildung beim Lernen mit multiplen Repräentationen. Zeitschrift Fur Padagogische Psychologie, 2005, 19, 61-75.	1.2	30
460	The Effect of the Wording of MultipleÂDocuments on Learning. Zeitschrift Fur Padagogische Psychologie, 2019, 33, 223-240.	1.2	6
465	How Representational Pictures Enhance Students' Performance and Test-Taking Pleasure in Low-Stakes Assessment. European Journal of Psychological Assessment, 2018, 34, 376-385.	1.7	20
466	Controlling Presentation Speed, Labels, and Tooltips in Interactive Animations. Journal of Media Psychology, 2010, 22, 160-170.	0.7	6
467	Perspective Taking in Computer-Mediated Instructional Communication. Journal of Media Psychology, 2011, 23, 192-199.	0.7	13
468	Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations Journal of Educational Psychology, 2017, 109, 355-373.	2.1	18
469	Sequencing support for sense making and perceptual induction of connections among multiple visual representations Journal of Educational Psychology, 2018, 110, 811-833.	2.1	13
470	Construction and elaboration of mental models through strategic conjoint processing of text and pictures Journal of Educational Psychology, 2018, 110, 850-863.	2.1	31
471	Chapter 4. Comprehension processes in digital reading. Studies in Written Language and Literacy, 0, , 91-120.	1.0	51
472	Translanguaging pedagogy in multilingual early childhood classes. Translation and Translanguaging in Multilingual Contexts, 2017, 3, 167-183.	0.5	2
473	Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots?. Physical Review Physics Education Research, 2018, 14, .	1.4	41
474	Developing the use of visual representations to explain basic astronomy phenomena. Physical Review Physics Education Research, 2018, 14, .	1.4	18

ARTICLE IF CITATIONS # Improving learners' representational coherence ability with experiment-related representational 475 1.4 10 activity tasks. Physical Review Physics Education Research, 2019, 15, . The format of problem representation for inâ€game learning supports. Journal of Computer Assisted 476 3.3 Learning, 2019, 35, 390-406. Teaching and Learning Science through Multiple Representations: Intuitions and Executive Functions. 477 1.1 5 CBE Life Sciences Education, 2020, 19, ar61. Modal Representations and their Role in the Learning Process: A Theoretical and Pragmatic Analysis. Educational Sciences: Theory and Practice, O, , . A Critical Discussion of The Efficacy of Using Visual Learning Aids From The Internet To Promote Understanding, Illustrated With Examples Explaining The Daniell Voltaic Cell. Eurasia Journal of 479 0.7 9 Mathematics, Science and Technology Education, 2009, 5, . 480 Gaze transitions when learning with multimedia. Journal of Eye Movement Research, 2016, 9, . The Effect of Contextual Visual Aids on High School Students' Reading Comprehension. Theory and 481 0.1 2 Practice in Language Studies, 2016, 6, 1827. How Multiple External Representations Can Help or Constrain Learning in Science. Journal of 0.2 Cognitive Education and Psychology, 2014, 13, 411-423. Using Principles of the Instructional Systems Design Approach for Implementing Open-Source Learning 483 0.6 3 Management System in Higher Education. The Open Education Journal, 2008, 1, 1-8. 484 Monilukutaitoa oppikirjan ÃÃrellÃrAinedidaktiikka, 2020, 4, 99-121. 0.1 Comparing Efficiency of Web Based Learning Contents on Different Media. International Journal of 486 3 0.8 Emerging Technologies in Learning, 2009, 4, 31. Digital Multimedia Perception and Design., 2006, , . Multimedia Learning and Working Memory Capacity., 2009, , 17-33. 488 10 Fostering Transfer in Multimedia Instructional Environments., 2009, 237-259. 489 Designing Animated Simulations and Web-Based Assessments to Improve Electrical Engineering 490 2 Education., 0,, 979-997. Designing Animated Simulations and Web-Based Assessments to Improve Electrical Engineering Education., 0, , 77-95. Comparing the Effect of Use Case Format on End User Understanding of System Requirements. Journal 492 0.3 3 of Information Technology Research, 2010, 3, 1-20. A study of the effects of computer animation on college students' learning of Leadership in Energy 493 0.4 and Environmental Design - LEED. EAI Endorsed Transactions on E-Learning, 2013, 1, e3.

#	Article	IF	CITATIONS
494	Exploring the Causes of Students' Connecting Errors Induced in Learning Boyle's Law and Charles's Law with Multiple External Representations. Journal of the Korean Chemical Society, 2008, 52, 550-560.	0.2	2
495	Multimedia: How to Combine Language and Visuals. Language at Work: Bridging Theory and Practice, 2008, 3, .	0.0	4
497	Fixation prediction for advertising images: Dataset and benchmark. Journal of Visual Communication and Image Representation, 2021, 81, 103356.	1.7	4
498	Timeline-Anchored Comments in Video-Based Learning: The Impact of Visual Layout and Content Depth. International Journal of Human-Computer Interaction, 2022, 38, 868-883.	3.3	4
499	Visualizing the Science of Genomics. , 2005, , 217-251.		6
500	Methodological issues in using sequential representations in the teaching of writing. Research in Learning Technology, 2011, 15, .	2.3	0
501	Proposition de modélisation de la compréhension de textes multimédias de type « bandes dessinées » analyse de l'impact des composantes verbales et imagées. Annee Psychologique, 2007, 107, 181.	0.2	0
503	Active Learning and Its Implementation for Teaching. , 2008, , 1-8.		1
504	Understanding Multimedia Documents: An Introduction. , 2008, , 1-14.		2
506	Neue Medien unter lernpsychologi-schen Aspekten. Springer-Lehrbuch, 2009, , 631-662.	0.1	0
507	EEG based Cognitive Load Measurement for e-learning Application. Korean Journal of Cognitive Science, 2009, 20, 125-154.	0.1	2
509	Bilgi ve İletişim Teknolojilerinin Eğitime Entegrasyonu: Bilgisayar Tabanlı Öykü Tamamlama Çalışma: AJIT-e Online Academic Journal of Information Technology, 2011, 2, 1-2.	sıÃ−rne 0.3	ÄΫi.
510	Pictorial Representations and Learning. , 2012, , 2636-2638.		0
511	Bullet Points, Bilder & Co: Zur Rezeption wissenschaftlicher PrÄßentationen mit PowerPoint. , 2012, , 325-361.		0
512	THE MULTIMODAL LEARNING AS A STRATEGY FOR CHEMISTRY REPRESENTATIONS CONVERSION: THE PHENOMENON TO THE CHART. Gamtamokslinis Ugdymas / Natural Science Education, 2012, 9, 20-31.	0.1	1
513	The Analysis of the Learning Effect by the Presentation Methods of Texts and Pictures in Geography Education. The Journal of the Korean Association of Geographic and Environmental Education, 2012, 20, 19-32.	0.0	0
515	Understanding the role of prior knowledge in a multimedia learning application. Australasian Journal of Educational Technology, 2013, 29, .	2.0	2
516	Elementary Students' Mental Models of the Solar System. Astronomy Education Review, 0, 12, .	0.0	6

#	Article	IF	CITATIONS
517	CONSTRUCTION OF GRAPHICS IN CHEMISTRY: AN ESSENTIAL COMPETENCE IN INVESTIGATIVE ACTIVITIES. Gamtamokslinis Ugdymas / Natural Science Education, 2013, 10, 7-20.	0.1	1
518	The Effect of Pedagogical Agent's Nonverbal Communications on Affective Perception and Cognitive Efficiency. The Korean Journal of Educational Methodology Studies, 2014, 26, 115-136.	0.1	0
519	Medien. Springer-Lehrbuch, 2015, , 121-149.	0.1	3
520	Multimedia unter lerntheoretischen Aspekten. Springer-Lehrbuch, 2015, , 843-877.	0.1	1
521	Digital Media Affecting Society. Advances in Media, Entertainment and the Arts, 2016, , 208-236.	0.0	0
522	Fachsprache und fachbezogenes Kommunizieren im naturwissenschaftlichen Unterricht. , 2017, , 163-188.		0
524	DISCIPLINARY DIFFERENCES AND STUDENTS' LEARNING PREFERENCES. International Journal of Research in Engineering and Technology, 2017, 06, 25-31.	0.1	0
525	Evaluation of Students' Attitudes towards e-Exams and Use of Technology in Theology Distance Undergraduate Education Programs. Journal of Divinity Faculty of Hitit University, 2017, 16, 277-299.	0.2	5
526	Real-Time Cognitive Load Measurement for Dynamic Modality Selection Using Eye-Tracking Methods. Advances in Intelligent Systems and Computing, 2018, , 229-237.	0.5	0
527	IzELA: Ein Instructional Design basiertes Evaluationstool für Lern-Apps. , 2018, , 159-175.		1
528	Emotionen beim Lernen mit Multimedia. , 2018, , 141-158.		3
530	Students' Visual Attention While Solving Multiple Representation Problems in Upper-Division Physics. , 2018, , 67-87.		0
531	Lernen mit externen ReprÄ s entationen. , 2018, , 159-175.		3
532	Mobiles Lernen im Handwerk. , 2018, , 943-970.		1
533	The Impact of Virtual Laboratory Environments in Teaching-by-Inquiry Electric Circuits in Greek Secondary Education: The ElectroLab Project. , 2018, , 279-291.		0
534	Digital Media Affecting Society. , 2018, , 1161-1190.		0
535	Supporting Representational Competences Through Adaptive Educational Technologies. Models and Modeling in Science Education, 2018, , 103-132.	0.6	1
536	Vizuálie v geografickém vzdÄ›lávánÃ: pÅ™ehledová studie. Scientia in Educatione, 2019, 9, 4-21. 	0.2	1

#	ARTICLE	IF	CITATIONS
537	Kompetenzen beim Umgang mit Abbildungen und Diagrammen. , 2019, , 147-165.		0
538	Enhancing text comprehension through watching TV. Cadmo, 2019, , 65-77.	0.2	Ο
539	Incorporating Representation-Based Instruction Into Mathematics Teaching. Advances in Higher Education and Professional Development Book Series, 2019, , 311-336.	0.1	1
540	Multiple External Representations (MERs) as a Component of Special Language in Biology. Contributions From Science Education Research, 2019, , 51-71.	0.4	Ο
542	Herausforderungen und Chancen einer sprachsensiblen Textarbeit im Biologieunterricht – ein Lehr-Lern-Konzept. Edition Fachdidaktiken, 2019, , 47-77.	0.0	0
543	Does the Degree of Abstraction of Interactive Visualizations Affect Students' Learning of Surveying?. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 96-113.	0.2	0
544	Efectos de los laboratorios de ciencias con TIC en la comprensión y representación de los conocimientos cientÃficos en estudiantes del bachillerato en un contexto escolar cotidiano. Revista Iberoamericana De Educacion Superior, 2019, 10, 124-142.	0.4	1
545	The Learning Opportunities Presented by Mathematics Coursebooks Used in Middle Schools in Turkey on the Concept of Arithmetic Mean. Turkish Journal of Computer and Mathematics Education, 0, , .	0.4	0
546	The Impact of Using Infographics on Improving Grammar Learning for Primary Stage Pupils and Their Attitude Towards It. Maǧallatl^ Kulliyyatl^ Al-Tarbiyyatl^ Bil-Manṣūratl^, 2020, 111, 225-255.	0.0	1
547	Visual Model Fit Estimation in Scatterplots and Distribution of Attention. Experimental Psychology, 2020, 67, 292-302.	0.3	4
548	SQLVis: Visual Query Representations for Supporting SQL Learners. , 2021, , .		11
549	Logros en la comprensión de temas de genética utilizando representaciones externas. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 2020, 17, 1-18.	0.2	1
550	Learning From Multiple Representations: Prior Knowledge Moderates the Beneficial Effects of Signals and Abstract Graphics. Frontiers in Psychology, 2020, 11, 601125.	1.1	5
551	Sensation and Perception. Springer International Handbooks of Education, 2021, , 1-26.	0.1	0
552	Comparison of High-Achieving Sixth Grade Students' Performances on Written Computation, Symbolic Representation, and Pictorial Representation Tests. Acta Didactica Napocensia, 2020, 13, 233-255.	0.1	0
553	Uncovering the Role of Different Instructional Designs When Learning Tactical Scenes of Play through Dynamic Visualizations: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 256.	1.2	6
554	Visualizing the teaching of data visualizations in social studies: A study of teachers' data literacy practices, beliefs, and knowledge. Theory and Research in Social Education, 2021, 49, 262-306.	1.4	12
555	Multimediales Lernen: Lehren und Lernen mit Texten und Bildern. , 2020, , 31-56.		5

#	Article	IF	CITATIONS
556	Medien. , 2020, , 133-159.		1
557	How People Approach Graphical Information. , 0, , 262-295.		0
558	Design Factors for Effective Science Simulations. , 0, , 16-35.		0
559	The Role of Language in Learning Physics with Computer-based Multimedia. , 2007, , 489-502.		0
563	Lernen mit Medien. , 2008, , 41-63.		0
564	Incidental L2 Vocabulary Acquisition and Reading: Concerns, Progresses and Future Directions. Chinese Journal of Applied Linguistics, 2020, 43, 469-488.	0.3	4
565	E-Collaborative Help-Seeking Using Social Web Features. Advances in Social Networking and Online Communities Book Series, 0, , 109-123.	0.3	3
567	Learning from text and animations: a study into the need for cross-representational signaling. Annee Psychologique, 2021, Vol. 121, 393-416.	0.2	0
568	Integrated Model of Text and Picture Comprehension. , 2021, , 82-99.		3
569	The Multimedia Principle. , 2021, , 145-157.		2
570	Does Active or Passive Signaling Support Integration of Text and Graphs?. Applied Cognitive Psychology, 0, , .	0.9	2
571	Cognitive Theory of Multimedia Learning. , 2021, , 57-72.		18
572	Introduction to Multimedia Learning. , 2021, , 3-16.		32
575	Ortaöğretim kurumlarına geçiş sınavlarındaki fen bilimleri sorularının gösterim türleri açıs/ incelenmesi: Bir yineleme çalışması. Kocaeli Üniversitesi Eğitim Dergisi, 2021, 4, 537-555.	ından 0.9	1
576	Principles for Educational Assessment with Multimedia. , 2021, , 552-565.		2
579	The Role and Potential Dangers of Visualisation when Learning about Sub-Microscopic Explanations in Chemistry Education. Center for Educational Policy Studies Journal, 2012, 2, 125-145.	0.1	10
580	Student Engagement with a Science Simulation: Aspects that Matter. Center for Educational Policy Studies Journal, 2011, 1, 27-43.	0.1	2
581	Regulating distance to the screen while engaging in difficult tasks. Frontline Learning Research, 2020, 8, 59-76.	0.4	3

#	Article	IF	CITATIONS
584	Automatic and intelligent content visualization system based on deep learning and genetic algorithm. Neural Computing and Applications, 2022, 34, 2473-2493.	3.2	9
585	Realistic visualizations can aid transfer performance: Do distinctive shapes and descriptive labels contribute towards learning?. Journal of Computer Assisted Learning, 2022, 38, 681-691.	3.3	8
586	A multimedia effect for multiple-choice and constructed-response test items Journal of Educational Psychology, 2022, 114, 72-88.	2.1	6
587	Reading in print versus digital media uses different cognitive strategies: evidence from eye movements during science-text reading. Reading and Writing, 2022, 35, 1549-1568.	1.0	16
588	Do Interactive Learning Environments Have an Effect on Learning Outcomes, Cognitive Load and Metacognitive Judgments?. Education and Information Technologies, 2022, 27, 7019-7058.	3.5	15
589	The MAKRO Screening – an assessment tool for discourse deficits in adults with dysexecutive symptoms following TBI. Brain Injury, 2022, , 1-14.	0.6	1
590	How to Do Things with Pictures: Imagery in Visual Media as Workspace. Visual Communication Quarterly, 2022, 29, 3-16.	0.2	0
591	Effects of drawing instructions and strategic knowledge on mathematical modeling performance: Mediated by the use of the drawing strategy. Applied Cognitive Psychology, 2022, 36, 402-417.	0.9	5
592	Eye-Tracking as a Promising Tool in Pre-Service Teacher Education─A New Approach to Promote Skills for Digital Multimedia Design. Journal of Chemical Education, 2022, 99, 1651-1659.	1.1	6
594	Lower grade students tend to give up early in multimedia learning. European Journal of Psychology of Education, 2023, 38, 545-565.	1.3	2
595	Creating Representation in Support of Chemical Reasoning to Connect Macroscopic and Submicroscopic Domains of Knowledge. Journal of Chemical Education, 2022, 99, 1734-1746.	1.1	5
596	Mind Maps: Processed as Intuitively as Thought? Investigating Late Elementary Students' Eye-Tracked Visual Behavior Patterns In-Depth. Frontiers in Psychology, 2022, 13, 821768.	1.1	2
597	The Effect of the †Touch Screen-Based Cognitive Training' for Children with Severe Cognitive Impairment in Special Education. Children, 2021, 8, 1205.	0.6	1
598	Science reading and self-regulated learning: Evidence from eye movements of middle-school readers. Journal of Educational Research, 2022, 115, 11-24.	0.8	2
607	Key Factors and New Directions of Multimedia Learning Design. , 0, , 207-227.		0
608	Using an eye tracker to examine the effect of prior knowledge on reading processes while reading a printed scientific text with multiple representations. International Journal of Science Education, 2022, 44, 1209-1229.	1.0	4
609	Using Augmented Reality to Enhance Students' Representational Fluency: The Case of Linear Functions. Mathematics, 2022, 10, 1718.	1.1	5
610	The diagram as a mediator in collaborative learning: A conceptual review. Learning, Culture and Social Interaction, 2022, 35, 100634.	1.1	0

#	Article	IF	CITATIONS
612	Workflow for designing instructional videos to support place-based geoscience education for geoscience majors. Journal of Geoscience Education, 2023, 71, 107-125.	0.8	1
614	Establishing a theoretical framework for AVT research. Translation Spaces(Netherland), 2022, 11, 12-37.	0.8	1
615	Making race and racism invisible: a critical race analysis of data visualizations in online curricular materials for teaching history. Race Ethnicity and Education, 0, , 1-21.	1.9	1
616	Text First or Picture First? Evaluating Two Modes of Multimodal Input for EFL Vocabulary Meaning Acquisition. SAGE Open, 2022, 12, 215824402211194.	0.8	0
617	The influence of external concept structures on an individual's knowledge structures. Educational Technology Research and Development, 2022, 70, 1657-1674.	2.0	2
618	A Teacher Training Course on Using Digital Media for Acquisition, Visualization and 3D Printing of Complex Data and for Fostering Pupils' Experimental Skills. Challenges in Physics Education, 2022, , 75-90.	0.6	3
619	Der Beitrag digitaler Werkzeuge zur Entwicklung des Funktionsbegriffs und des funktionalen Denkens. , 2022, , 163-188.		0
620	Comparing Reading Comprehension of Narrative and Expository Texts Based on the Direct and Inferential Mediation Model. International Journal of Science and Mathematics Education, 2022, 20, 17-41.	1.5	3
621	Effects of instructor-provided visuals on learner-generated explanations. Educational Psychology, 2022, 42, 1068-1088.	1.2	3
622	Spatial supports for comparison in educational science images. Instructional Science, 2022, 50, 807-827.	1.1	1
623	Delphi-Studie zum Begriff Schülervorstellungen in der deutschsprachigen Physikdidaktik-Community. Zeitschrift Für Didaktik Der Naturwissenschaften, 2022, 28, .	0.2	3
624	Lernen mit Medien. , 2022, , 695-712.		0
625	Mapping and Extending the Theoretical Perspectives of Reading in Science and Mathematics Education Research. International Journal of Science and Mathematics Education, 2022, 20, 1-15.	1.5	3
626	To What Extent Do Pictures Support Malaysian Children's Comprehension of Stories?. International Journal of Computer-Assisted Language Learning and Teaching, 2022, 12, 1-17.	0.5	2
627	Implications of introducing case based radiological images in anatomy on teaching, learning and assessment of medical students: a mixed-methods study. BMC Medical Education, 2022, 22, .	1.0	4
628	Producing and Consuming Instructional Material in Manufacturing Contexts: Evaluation of an AR-based Cyber-Physical Production System for Supporting Knowledge and Expertise Sharing. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-36.	2.5	1
629	Cognition-centered design principles for digital assessment tasks and items. , 2023, , 171-184.		1
630	Wechsel zwischen Diagramm und Formel im Kontext von Vektorfeldern – Einfluss der Aufgabenkomplexitäauf Indikatoren visueller Aufmerksamkeit. , 2022, , 193-208.		1

#	Article	IF	CITATIONS
631	Blickverhalten beim Lernen und Problemlösen mit Graphen – Ein Literaturüberblick bis 2020. , 2022, , 177-192.		0
632	Augmented reality for chemistry education to promote the use of chemical terminology in teacher trainings. Frontiers in Psychology, 0, 13, .	1.1	1
633	Sensation and Perception. Springer International Handbooks of Education, 2023, , 75-99.	0.1	0
634	‹Pedagogical Usability› von Augmented Reality zum Thema Elektrik. MedienpÄ,dagogik, 0, 51, 25-64.	0.3	2
635	Computer-based multimedia testing: Effects of static and animated representational pictures and text modality. Contemporary Educational Psychology, 2023, 73, 102151.	1.6	3
636	Effects of related decorative pictures on learning and metacognition. Instructional Science, 2023, 51, 571-594.	1.1	1
638	Flipped Classroom im Physikunterricht der Sekundarstufe I – Auswirkungen auf die VerÃ ¤ derung des individuellen Interesses im Bereich der E-Lehre. , 2023, , 35-49.		0
639	On the role of linguistic features for comprehension and learning from STEM texts. A meta-analysis. Educational Research Review, 2023, 39, 100533.	4.1	6
640	Data Abstraction Elephants: The Initial Diversity of Data Representations and Mental Models. , 2023, , .		2
641	Charagraph: Interactive Generation of Charts for Realtime Annotation of Data-Rich Paragraphs. , 2023, , .		3
643	Kompetenzen für das Lernen mit digitalen Medien: Eine konzeptuelle Analyse. Edition ZfE, 2023, , 81-101.	0.2	0
650	Meaning Making in Science Classrooms: Orchestrating Multiple Modes of Representations. , 2023, , 9-16.		0
652	Assessing the Impact of Computer Simulations on Physics and Chemistry Learning. Lecture Notes in Networks and Systems, 2023, , 34-44.	0.5	0
659	Using External Representations to Support Mathematical Modelling Competence in Biology Education. , 2024, , 35-50.		0
660	Lernen mit digitalen Medien. , 2023, , 125-138.		0