CITATION REPORT List of articles citing

Structure-based carbon nanotube sorting by sequence-dependent DNA assembly

DOI: 10.1126/science.1091911 Science, 2003, 302, 1545-8.

Source: https://exaly.com/paper-pdf/35540969/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1482			
1481	Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics.		
1480	Nanoconjugates of Ag/Au/Carbon Nanotube for Alkyne-Meditated Ratiometric SERS Imaging of Hypoxia in Hepatic Ischemia.		
1479	Manipulating Carbon Nanotubes with Nucleic Acids. 2004,		1
1478	Purification and dispersion of carbon nanotubes by sidewall functionalization with single-stranded DNA. 2004 ,		6
1477	Assembly and electrical characterization of DNA-wrapped carbon nanotube devices. 2004 , 22, 3107		13
1476	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. 2004 , 96, 6772-6775		24
1475	Reconstructing the radial breathing mode resonance Raman spectra for HiPco single-wall carbon nanotubes. 2004 , 70,		13
1474	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. 2004 , 85, 4228-4230		26
1473	Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. 2004 , 96, 6694-6699		57
1472	Quantitative evaluation of bundling effect on single walled carbon nanotubes by resonance Raman spectra. 2004 , 858, 58		
1471	Optical absorption and transient photobleaching in solutions of surfactant-encapsulated and DNA-wrapped single-walled carbon nanotubes. 2004 , 5359, 376		1
1470	Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. 2004 , 858, 52		
1469	In situ Raman and fluorescence monitoring of optically trapped single-walled carbon nanotubes. 2004 , 5593, 73		1
1468	NEAR-FIELD RAMAN SPECTROSCOPY OF INDIVIDUAL SINGLE-WALLED CARBON NANOTUBES. 2004 , 03, 371-379		6
1467	Near-infrared optical sensors based on single-walled carbon nanotubes. 2005 , 4, 86-92		771
1466	DNA polymerase-catalyzed elongation of repetitive hexanucleotide sequences: application to creation of repetitive DNA libraries. 2004 , 20, 1855-60		3

(2004-2004)

146	Synthesis of porphyrins bearing hydrocarbon tethers and facile covalent attachment to si(100). 2004, 69, 5568-77	56
146	Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. 2004 , 38, 6890-6	117
146	Molecular and nanoscale materials and devices in electronics. 2004 , 111, 133-57	67
146	Nanoparticles - known and unknown health risks. 2004 , 2, 12	930
146	Chemistry and electronics of carbon nanotubes go together. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 2992-4	ļ 27
146	Functionalized carbon nanotubes for plasmid DNA gene delivery. <i>Angewandte Chemie</i> - International Edition, 2004 , 43, 5242-6	ļ 8 7 1
145	Chemie und Elektronik von Kohlenstoffnanorfiren gehen Hand in Hand. <i>Angewandte Chemie</i> , 2004 3.6	6
145	8 Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery. <i>Angewandte Chemie</i> , 2004 , 116, 5354- 58 !	58 119
145	Functionalization of single-walled carbon nanotubes with Prussian blue. 2004 , 6, 1180-1184	112
145	56 DNA-mediated self-assembly of carbon nanotube-based electronic devices. 2004 , 391, 389-392	78
145	Optical characterization of DNA-wrapped carbon nanotube hybrids. 2004 , 397, 296-301	122
145	Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. 2004 , 49, 325-377	209
145	Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. 2004 , 4, 543-550	175
145	Porphyrin architectures tailored for studies of molecular information storage. 2004 , 69, 6739-50	61
145	Carbon nanotube based high current transistors.	
145	Structural and electron-transfer characteristics of O-, S-, and Se-tethered porphyrin monolayers on Si(100). 2004 , 126, 15603-12	61
144	Surface-bound porphyrazines: controlling reduction potentials of self-assembled monolayers through molecular proximity/orientation to a metal surface. 2004 , 126, 16653-8	45
144	8 Atomic-scale nanowires: physical and electronic structure. 2004 , 16, R721-R754	66

1447	Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. <i>Nanotechnology</i> , 2004 , 15, 1095-1102	3.4	185
1446	Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes. 2004 , 126, 13079-88		148
1445	Optical Trapping of Single-Walled Carbon Nanotubes. 2004 , 4, 1415-1419		100
1444	Concomitant length and diameter separation of single-walled carbon nanotubes. 2004 , 126, 14567-73		210
1443	23 Fullerenes. 2004 , 100, 461-488		1
1442	Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. 2004 , 85, 1006-1008		67
1441	Carbon nanotubes for the delivery of therapeutic molecules. 2004 , 1, 57-65		129
1440	Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. 2004 , 20, 6085-8		180
1439	Functionalization of Single-Wall Carbon Nanotubes: An Assessment of Computational Methods. 2004 , 260-267		1
1438	Applications of Carbon Nanotubes in Biotechnology and Biomedicine. 2005 , 1, 3-17		210
1438	Applications of Carbon Nanotubes in Biotechnology and Biomedicine. 2005 , 1, 3-17 Polymers and carbon nanotubesdimensionality, interactions and nanotechnology. 2005 , 46, 7803-7818		210249
1437		10.4	249
1437	Polymers and carbon nanotubes dimensionality, interactions and nanotechnology. 2005 , 46, 7803-7818	10.4	249
1437 1436	Polymers and carbon nanotubes dimensionality, interactions and nanotechnology. 2005, 46, 7803-7818 Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005, 43, 1879-1884 Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis.		249
1437 1436 1435	Polymers and carbon nanotubesdimensionality, interactions and nanotechnology. 2005, 46, 7803-7818 Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005, 43, 1879-1884 Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis. <i>Carbon</i> , 2005, 43, 2508-2513		2496237
1437 1436 1435	Polymers and carbon nanotubesdimensionality, interactions and nanotechnology. 2005, 46, 7803-7818 Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005, 43, 1879-1884 Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis. <i>Carbon</i> , 2005, 43, 2508-2513 Ab initio study of base-functionalized single walled carbon nanotubes. 2005, 415, 183-187 Fabrication and STM-characterization of novel hybrid materials of DNA/carbon nanotube. 2005,		249623721
1437 1436 1435 1434	Polymers and carbon nanotubesdimensionality, interactions and nanotechnology. 2005, 46, 7803-7818 Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005, 43, 1879-1884 Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis. <i>Carbon</i> , 2005, 43, 2508-2513 Ab initio study of base-functionalized single walled carbon nanotubes. 2005, 415, 183-187 Fabrication and STM-characterization of novel hybrid materials of DNA/carbon nanotube. 2005, 414, 520-524 Electrochemical potential control of isolated single-walled carbon nanotubes on gold electrode.		24962372123

1429	Developing implantable optical biosensors. 2005 , 23, 440-4		31
1428	Single-molecule studies on DNA and RNA. 2005 , 6, 2458-71		29
1427	Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4782-5	16.4	320
1426	Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. <i>Angewandte Chemie</i> , 2005 , 117, 4860-4863	3.6	41
1425	Cap Closing of Thin Carbon Nanotubes. Advanced Materials, 2005, 17, 451-455	24	38
1424	Covalent Surface Chemistry of Single-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 2005 , 17, 17-29	24	1025
1423	Nanohybrid Shish-Kebabs: Periodically Functionalized Carbon Nanotubes. <i>Advanced Materials</i> , 2005 , 17, 1198-1202	24	315
1422	Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. <i>Advanced Materials</i> , 2005 , 17, 2663-2670	24	147
1421	Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. <i>Advanced Materials</i> , 2005 , 17, 2793-2799	24	455
1420	Separation Techniques for Carbon Nanotubes. 2005 , 7, 111-116		54
1419	Immuno-carbon nanotubes and recognition of pathogens. 2005 , 6, 640-3		63
1418	The binding of single-stranded DNA and PNA to single-walled carbon nanotubes probed by flow linear dichroism. 2005 , 11, 4841-7		45
1417	Carbon nanotube transistors for biosensing applications. 2006 , 384, 322-35		310
1416	Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. 2005 , 58, 1-1		159
1415	Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. 2005 , 65, 681-69	7	40
1414	Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites. 2005 , 43, 815-822		55
1413	Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. 2005 , 1, 452-61		79
1412	The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes. 2005 , 1, 590-2		11

1411 Single Stranded DNA Decorated Carbon Nanotube Transistors for Chemical Sensing. 2005, 900, 1

1410 Wrapping carbon nanotubes with DNA: A theoretical study. 2005 ,	2
Bulk production of singly dispersed carbon nanotubes with prescribed lengths. <i>Nanotechnology</i> , 2005 , 16, 2799-2803	3.4 11
$_{1408}$ The effect of salt concentration on the optical modes of charged cylindrical nanotubes. 2005 , 97, 124307	3
1407 High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. 2005 , 86, 033105	211
1406 Collapse of single-walled carbon nanotubes. 2005 , 97, 074310	69
1405 Self-assembly of base-functionalized carbon nanotubes. 2005 , 72,	7
1404 Adhesion between single-walled carbon nanotubes. 2005 , 97, 074304	51
1403 Carbon Nanomaterials DNA Bioconjugates and their Applications. 2005 , 13, 309-318	7
PCR-BASED SYNTHESIS OF REPETITIVE SINGLE-STRANDED DNA FOR APPLICATIONS TO NANOBIOTECHNOLOGY. 2005 , 04, 287-294	2
1401 The Raman Response of Double Wall Carbon Nanotubes. 2005 , 203-224	1
1400 Applied Physics of Carbon Nanotubes. 2005,	64
1399 Nanoscopic modeling of a carbon nanotube force-measuring biosensor. 2005 , 31, 123-133	5
1398 Enrichment of single-walled carbon nanotubes by diameter in density gradients. 2005 , 5, 713-8	441
1397 Biomedical applications of functionalised carbon nanotubes. 2005 , 571-7	863
1396 Nanostructured Materials Based Next Generation Devices and Sensors. 2005 , 1-30	8
1395 Probing nanotube-nanopore interactions. 2005 , 95, 216103	37
Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. 2005 , 21, 6086-92	123

1393	Synthesis and Film-Forming Properties of Ethynylporphyrins. Chemistry of Materials, 2005, 17, 3728-374	2 9.6	43
1392	Photochemical-controlled switching based on azobenzene monolayer modified silicon (111) surface. 2005 , 109, 14465-8		41
1391	Beta-1,3-glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. 2005 , 4383-98		109
1390	Template-synthesized DNA nanotubes. 2005 , 127, 8586-7		113
1389	Electrocatalytic oxidation of DNA-wrapped carbon nanotubes. 2005, 127, 11952-3		52
1388	Colloidal particles coated and stabilized by DNA-wrapped carbon nanotubes. 2005 , 21, 10284-7		49
1387	Electrochemical Behavior of Daunorubicin at DNA-MWCNT Bioconjugates Modified Glassy Carbon Electrodes. 2005 , 38, 2579-2595		16
1386	Stable, reproducible nanorecording on rotaxane thin films. 2005 , 127, 15338-9		72
1385	A diameter-selective attack of metallic carbon nanotubes by nitronium ions. 2005 , 127, 5196-203		137
1384	Conductive atomic force microscope nanopatterning of hydrogen-passivated silicon in inert organic solvents. 2005 , 5, 91-5		43
1383	Adsorption characteristics of tripodal thiol-functionalized porphyrins on gold. 2005 , 109, 23963-71		44
1382	Optically sensing additional sonication effects on dispersed HiPco nanotubes in aerated water. 2005 , 109, 7778-80		26
1381	A compact all-carbon tripodal tether affords high coverage of porphyrins on silicon surfaces. 2005 , 70, 7972-8		31
1380	Ultrathin anisotropic films assembled from individual single-walled carbon nanotubes and amine polymers. 2005 , 109, 2540-5		56
1379	Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls. 2005, 127, 15724-9		84
1378	Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes. 2005 , 5, 2500-4		43
1377	Structural and electron-transfer characteristics of carbon-tethered porphyrin monolayers on Si(100). 2005 , 109, 6323-30		42
1376	High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. <i>Analytical Chemistry</i> , 2005 , 77, 6225-8	7.8	215

1375	Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. 2005 , 127, 9512-7	137
1374	Importance of aromatic content for peptide/single-walled carbon nanotube interactions. 2005 , 127, 12323-8	165
1373	Conformation of Polymers Dispersing Single-Walled Carbon Nanotubes in Water: A Small-Angle Neutron Scattering Study. 2005 , 38, 7828-7836	80
1372	Carbon nanotube interaction with DNA. 2005 , 5, 897-900	136
1371	Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. 2006 , 6, 371-5	280
1370	Controlled modulation of conductance in silicon devices by molecular monolayers. 2006 , 128, 14537-41	98
1369	Selective etching of metallic carbon nanotubes by gas-phase reaction. <i>Science</i> , 2006 , 314, 974-7 33.3	448
1368	Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution. 2006 , 104, 3193-3201	38
1367	DNA-decorated carbon nanotubes for chemical sensing. 2006 , 21, S17-S21	34
1366	A biomimetic "polysoap" for single-walled carbon nanotube dispersion. 2006 , 128, 6556-7	77
1365	Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. 2006 , 6, 2864-7	93
1364	Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. <i>Science</i> , 2006 , 311, 508-11	435
1363	Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis. <i>Nanotechnology</i> , 2006 , 17, 4263-9	46
1362	Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. 2006 , 110, 7316-20	129
1361	Triple-decker sandwich compounds bearing compact triallyl tripods for molecular information storage applications. 2006 , 45, 5479-92	46
1360	Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification. 2006 , 3582-4	39
1359	Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors. 2006 , 89, 232104	42
1358	Surface Chemistry in Biomedical and Environmental Science. 2006 ,	19

(2006-2006)

1357	Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. 2006 , 92, 23-32	67
1356	Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. 2006 , 103, 921-6	587
1355	Modeling and Evaluating Carbon Nanotube Bundles for Future VLSI Interconnect Applications. 2006 ,	3
1354	Controlled two-dimensional pattern of spontaneously aligned carbon nanotubes. 2006 , 6, 55-60	70
1353	Stepwise formation and characterization of covalently linked multiporphyrin-imide architectures on Si(100). 2006 , 128, 6965-74	53
1352	Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. 2006 , 6, 159-64	153
1351	Nanotube Molecular Probes: DNA Hybridization using Single Walled Carbon Nanotubes as Biomarkers. 2006 ,	
1350	Carbon Nanotubes. 2006 , 1-8	0
1349	Nearly Chromatography-Free Synthesis of the A3B-Porphyrin 5-(4-Hydroxymethylphenyl)-10,15,20-tri-p-tolylporphinatozinc(II). 2006 , 10, 304-314	22
1348	Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative. 2006 , 8, 5489-92	80
1347	Oops they did it again! Carbon nanotubes hoax scientists in viability assays. 2006 , 6, 1261-8	857
1346	Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay. 2006 , 4, 250-6	17
1345	Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. 2006 , 6, 1007-12	117
1344	Porphyrin dyads bearing carbon tethers for studies of high-density molecular charge storage on silicon surfaces. 2006 , 71, 1156-71	40
1343	Uniform directional alignment of single-walled carbon nanotubes in viscous polymer flow. 2006 , 22, 1858-62	62
1342	Radius and chirality dependent conformation of polymer molecule at nanotube interface. 2006 , 6, 1627-31	76
1341	Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. 2006 , 128, 5114-8	151
1340	Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. 2006 , 110, 16359-65	119

1339	Rheo-optical studies of carbon nanotube suspensions. 2006 , 124, 054703	41
1338	Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer. 2006 , 1425-7	99
1337	Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes. 2006 , 110, 11995-2004	62
1336	Investigation of stepwise covalent synthesis on a surface yielding porphyrin-based multicomponent architectures. 2006 , 71, 3033-50	38
1335	Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. 2006 , 128, 9004-5	118
1334	Probing surface-porphyrazine reduction potentials by molecular design. 2006 , 110, 18151-3	11
1333	Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. 2006 , 128, 8396-7	89
1332	Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. 2006 , 128, 7702-3	43
1331	Deposition of DNA-functionalized gold nanospheres into nanoporous surfaces. 2006 , 22, 4978-84	16
1330	Covalent Assembled Osmium-Chromophore-Based Monolayers: ©Chemically Induced Modulation of Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382	5 37
1330 1329		5 37 415
1329	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 ,	
1329	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 , 1758, 404-12	415
1329 1328 1327	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 , 1758, 404-12 Synthesis of carbon nanotubes. 2006 , 19-49	4 ¹ 5
1329 1328 1327	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 , 1758, 404-12 Synthesis of carbon nanotubes. 2006 , 19-49 Carbon nanotube-enabled materials. 2006 , 213-274	415 8 10
1329 1328 1327 1326	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 , 1758, 404-12 Synthesis of carbon nanotubes. 2006 , 19-49 Carbon nanotube-enabled materials. 2006 , 213-274 Functionalized carbon nanotubes in composites*. 2006 , 275-294	415 8 10
1329 1328 1327 1326	Optical Properties in the Visible Region. <i>Chemistry of Materials</i> , 2006 , 18, 1379-1382 Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. 2006 , 1758, 404-12 Synthesis of carbon nanotubes. 2006 , 19-49 Carbon nanotube-enabled materials. 2006 , 213-274 Functionalized carbon nanotubes in composites*. 2006 , 275-294 Carbon nanotube electronics and devices. 2006 , 83-117	415 8 10 6

1321	The potential risks of nanomaterials: a review carried out for ECETOC. 2006, 3, 11	870
1320	pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. 2006 , 2, 406-12	184
1319	In vitro transcription and protein translation from carbon nanotube-DNA assemblies. 2006 , 2, 718-22	19
1318	Carbon nanotubes and nucleic acids: tools and targets. 2006 , 203, 1124-1131	11
1317	Coupling carbon nanotubes through DNA linker using a biological recognition complex. 2006 , 203, 1132-1136	8
1316	Nanotube electronics and optoelectronics. 2006 , 9, 46-54	214
1315	Sorting carbon nanotubes by electronic structure using density differentiation. 2006 , 1, 60-5	1870
1314	Designed DNA molecules: principles and applications of molecular nanotechnology. 2006 , 7, 565-75	119
1313	Polarization component of cohesion energy in single-wall carbon nanotube-DNA complexes. 2006 , 84, 348-351	11
1312	A diameter-dependent separation of semiconducting from metallic single-wall carbon nanotubes by using nitronium ions. 2006 , 6, e99-e109	9
1311	Spectroscopic and SEM studies of SWNTs: Polymer solutions and films. <i>Carbon</i> , 2006 , 44, 1292-1297 10.4	32
1310	Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: Nanocomponents for molecular level electronics. <i>Carbon</i> , 2006 , 44, 1730-1739	84
1309	Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes. 2006 , 417, 288-292	72
1308	AFM imaging of wrapped multiwall carbon nanotube in DNA. 2006 , 418, 535-539	22
1307	Layer-by-layer assembly of RNA/single-walled carbon nanotube nanocomposites. 2006, 419, 574-577	40
1306	Control the chirality of carbon nanotubes by epitaxial growth. 2006 , 421, 469-472	158
1305	Raman study of DNA-wrapped single-wall carbon nanotube hybrids under various humidity conditions. 2006 , 431, 118-120	9
1304	G band Raman features of DNA-wrapped single-wall carbon nanotubes in aqueous solution and air. 2006 , 432, 172-176	27

1303	Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study. 2006 , 358, 166-170	11
1302	Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates. 2006 , 183, 315-321	13
1301	. 2006 , 9, 11-22	37
1300	Solubilization of single-walled carbon nanotubes with condensed aromatic compounds. 2006 , 7, 609-616	54
1299	Theory and simulation of charge transfer through DNA [hanotube contacts. 2006, 327, 98-104	6
1298	Line of charges in electrolyte solution near a half-space I. Counterion condensation. 2006 , 299, 564-71	7
1297	Line of charges in electrolyte solution near a half-space II. Electric field of a single charge. 2006 , 299, 572-9	9
1296	Effect of electrode material on transport and chemical sensing characteristics of metal/carbon nanotube contacts. 2006 , 35, 1641-1646	9
1295	Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes. 2006 , 1, 154-159	6
1294	The potential toxicity of nanomaterials The role of surfaces. 2006 , 58, 77-82	155
1293	A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium lons. 2006 , 35, 235-242	14
1292	Template synthesis of multifunctional nanotubes for controlled release. 2006 , 114, 143-52	102
1291	Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. 2006 , 12, 2152-61	70
1290	Supramolecular Self-Assembly of Polymer-Functionalized Carbon Nanotubes on Surfaces. 2006 , 27, 841-847	18
1289	Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid. <i>Advanced Functional Materials</i> , 2006 , 16, 371-376	152
1288	Generation of Chemically Unmodified Pure Single-Walled Carbon Nanotubes by Solubilizing with RNA and Treatment with Ribonuclease A. <i>Advanced Materials</i> , 2006 , 18, 1598-1602	50
1287	Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. 2006 , 34, 3670-6	117
1286	Compaction of DNA on nanoscale three-dimensional templates. 2006 , 18, R453-80	16

(2007-2006)

	Single-Stranded DNA Insertion into Single-Walled Carbon Nanotubes by Ion Irradiation in an Electrolyte Plasma. <i>Japanese Journal of Applied Physics</i> , 2006 , 45, 8335-8339	1.4	7
	The influence of surfactants on the distribution of the radial breathing modes of single walled carbon nanotubes. <i>Nanotechnology</i> , 2006 , 17, 5212-5215	3.4	7
1283	ELECTRONIC-STRUCTURE ENGINEERING OF CARBON NANOTUBES. 2006 , 01, 115-138		47
	Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. 2006 , 2, 155-196		58
1281	Chromatographic Separation of Single Wall Carbon Nanotubes. 2006 , 922, 1		1
	The DNA hybridization assay using single-walled carbon nanotubes as ultrasensitive, long-term optical labels. <i>Nanotechnology</i> , 2006 , 17, 3442-5	3.4	32
1279 l	Investigation of DNA Decorated Carbon Nanotube Chemical Sensors. 2006 , 963, 1		
1278	Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. 2006 , 73,		65
1277	Carbon nanotubes as nanoelectromechanical systems components. 2006 , 361-488		1
1276	Separation of metallic and semiconducting single-walled carbon nanotubes. 2006 , 255-295		10
1275	Optical Stark effect in semiconducting single-walled carbon nanotubes. 2006,		
	The feature of the Breit-Wigner-Fano Raman line in DNA-wrapped single-wall carbon nanotubes. 2006 , 99, 094309		33
1273	Synthesis, growth mechanism and processing of carbon nanotubes. 2006 , 15-51		5
7272	Resonant-Raman intensities and transition energies of the E11 transition in carbon nanotubes. 2006 , 74,		34
1271	Accurate Resistance Modeling for Carbon Nanotube Bundles in VLSI Interconnect. 2006,		
	Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation. 2006 , 103, 19658-63		233
1269 l	Biological applications of functionalized carbon nanoparticles. 2006 , 265-276		
1268 l	Dynamic behaviors on zadaxin getting into carbon nanotubes. 2007 , 126, 124901		15

1267 Biofunctionalization of Carbon Nanotubes. 2007 ,	2
Dynamic modeling of rotational motion of carbon nanotubes for intelligent manufacturing of CNT-based devices. 2007 ,	
1265 Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes. 2007 , 76,	10
1264 Chirality-Dependent Combustion of Single-Walled Carbon Nanotubes. 2007 , 111, 9671-9677	53
Assessing the Implications of Process Variations on Future Carbon Nanotube Bundle Interconnect Solutions. 2007 ,	13
1262 Carbon Nanotube-based Vectors for Delivering Immunotherapeutics and Drugs. 2007 ,	1
1261 Modeling dielectrophoretic force for manipulating carbon nanotubes (CNTs). 2007 ,	2
1260 Surfactant-SWNT Assembly and Static Dielectrics of SWNTs. 2007 , 1018, 1	3
SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF SALMON DNA-WRAPPED SINGLE-WALL CARBON NANOTUBES. 2007 , 02, 295-299	11
1258 Redox Chemistry and Electrochemistry of DNA-wrapped Carbon Nanotubes. 2007 , 6, 29-32	3
New Techniques for Carbon-Nanotube Study and Characterization. 2007 , 371-393	3
Toward Nanometer-Scale Sensing Systems: Natural and Artificial Noses as Models for Ultra-Small, Ultra-Dense Sensing Systems. 2007 , 71, 103-166	5
1255 Biosensing Using Carbon Nanotube Field-effect Transistors. 2007 ,	1
1254 Solubilization of Carbon Nanotubes and Their Applications. 2007 , 64, 539-552	3
1253 Fundamentals and Applications of Soluble Carbon Nanotubes. 2007 , 36, 692-697	98
1252 Recent advances in drug delivery: potential and limitations of carbon nanotubes. 2007 , 1, 214-21	20
Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities. 2007 , 1, 181-91	16
1250 Interaction of [FeFe]-hydrogenases with single-walled carbon nanotubes. 2007 ,	

1249	Nanostrukturen erstrahlen in neuem Licht. 2007 , 55, 495-498	1
1248	Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. 2008 , 75, 163-6	19
1247	Structural phase transition of alkane molecules in nanotube composites. 2007 , 76,	19
1246	Effects of hole doping on selectivity of naphthalene towards single-wall carbon nanotubes. 2007 , 40, 354-358	6
1245	Physisorption of nucleobases on graphene: Density-functional calculations. 2007 , 76,	274
1244	Nanostructural control of cup-stacked carbon nanotubes with 1-benzyl-1,4-dihydronicotinamide dimer via photoinduced electron transfer. 2007 , 55-7	11
1243	A Raman probe for selective wrapping of single-walled carbon nanotubes by DNA. <i>Nanotechnology</i> , 2007 , 18, 405706	26
1242	Characterization of Porphyrin Surface Orientation in Monolayers on Au(111) and Si(100) Using Spectroscopically Labeled Molecules. 2007 , 111, 12693-12704	26
1241	Noncovalent porphyrin-functionalized single-walled carbon nanotubes: solubilization and spectral behaviors. 2007 , 11, 418-427	28
1240	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. 2007 , 111, 66-74	89
1239	Doped Carbon Nanotubes: Synthesis, Characterization and Applications. 2007 , 531-566	54
1238	Redox Reaction of DNA-Encased HiPco Carbon Nanotubes with Hydrogen Peroxide: A Near Infrared Optical Sensitivity and Kinetics Study. 2007 , 111, 17227-17231	34
1237	Chiral-Selective Protection of Single-walled Carbon Nanotube Photoluminescence by Surfactant Selection 2007 , 111, 17894-17900	26
1236	Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. 2007 , 7, 861-7	250
1235	ELECTROPHORETIC FRACTIONATION OF CARBON NANOTUBE DISPERSIONS ON AGAROSE GELS. 2007 , 06, 1-7	6
1234	Single-walled carbon nanotubes binding to human telomeric i-motif DNA: significant acceleration of S1 nuclease cleavage rate. 2007 , 5176-8	48
1233	DNA-Templated Ordered Array of Gold Nanorods in One and Two Dimensions. 2007 , 111, 12572-12576	56
1232	Anisotropic polarizability of isolated semiconducting single-wall carbon nanotubes in alternating electric fields. 2007 , 91, 213105	15

1231	Low-defect, purified, narrowly (n,m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. 2007 , 1, 327-36	52
1230	Bonding and structure in BxNy nanotubes (x,y = 1,2). 2007 , 17, 2892	11
1229	Controlled Adsorption Orientation for Double-Decker Complexes. 2007, 111, 2077-2080	33
1228	Optical absorption of DNA-carbon nanotube structures. 2007 , 7, 1191-4	99
1227	Dielectric response of aligned semiconducting single-wall nanotubes. 2007 , 98, 147402	69
1226	Absorption spectroscopic study of DNA hybridization using single-walled carbon nanotubes. 2007,	
1225	Recent progress in chemical detection with single-walled carbon nanotube networks. 2007, 132, 719-23	42
1224	Orientated assembly of single-walled carbon nanotubes and applications. 2007 , 17, 3863	64
1223	Fluorescence efficiency of individual carbon nanotubes. 2007 , 7, 3698-703	111
1222	Structure of Homopolymer DNACNT Hybrids 2007, 111, 17835-17845	99
1221	Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. 2007 , 7, 3046-50	128
1220	Improved Load Transfer in Nanotube/Polymer Composites with Increased Polymer Molecular Weight 2007, 111, 17923-17927	39
1219	Pressure-Induced Single-Walled Carbon Nanotube (n,m) Selectivity on CoMo Catalysts. 2007, 111, 14612-1467	1664
1218	Near-static dielectric polarization of individual carbon nanotubes. 2007 , 7, 2729-33	101
1217	DNA-Wrapped Carbon Nanotubes as Potential Optoelectronic Materials. 2007,	
1216	Reversible Redox-Based Optical Sensing of Parts per Million Levels of Nitrosyl Cation in Organic Solvents by Osmium Chromophore-Based Monolayers. 2007 , 111, 4655-4660	21
1215	Divalent Ion and Thermally Induced DNA Conformational Polymorphism on Single-walled Carbon Nanotubes. 2007 , 40, 6731-6739	53
1214	Adsorption of Adenine and Thymine and Their Radicals on Single-Wall Carbon Nanotubes. 2007 , 111, 18174-18181	63

1213	Molecular Dynamics Study on Diameter Effect in Structure of Ethanol Molecules Confined in Single-Walled Carbon Nanotubes 2007 , 111, 15677-15685	46
1212	Diameter-Selective Fractionation of HiPco Single-Walled Carbon Nanotubes in Repeated Functionalization Reactions. 2007 , 111, 10254-10259	9
1211	Helicity and broken symmetry of DNA-nanotube hybrids. 2007 , 77, 27006	14
1210	The degree and kind of agglomeration affect carbon nanotube cytotoxicity. 2007, 168, 121-31	657
1209	Metalloporphyrin hosts for supramolecular chemistry of fullerenes. 2007 , 36, 189-97	315
1208	Carbon nanotubes and their toxicity. 2007 , 1, 167-197	49
1207	Potential Applications of Carbon Nanotubes. 2007 , 13-62	251
1206	Temperature and pH-responsive single-walled carbon nanotube dispersions. 2007 , 7, 1480-4	147
1205	Measurement of Single-Wall Nanotube Dispersion by Size Exclusion Chromatography 2007, 111, 17914-1791	847
1204	Chiral response of single walled carbon nanotube based sensors to adsorption of amino acids: a theoretical model. 2007 , 127, 194702	24
1203	Covalently Immobilizing a Biological Molecule onto a Carbon Nanotube via a Stimuli-Sensitive Bond. 2007 , 111, 16161-16166	31
1202	Simulation of adsorption of DNA on carbon nanotubes. 2007 , 129, 10438-45	178
1201	Enrichment of single chirality carbon nanotubes. 2007 , 129, 6084-5	205
1200	Interfacial immobilisation of DNA molecules. 2007 , 103, 261	9
1199	Observation of the Optical Stark Effect in Semiconducting Carbon Nanotubes. 2007, 674-676	
1198	Interference of ascorbic acid in the sensitive detection of dopamine by a nonoxidative sensing approach. 2007 , 111, 12275-81	38
1197	Ferromagnetic Filled Carbon Nanotubes as Novel and Potential Containers for Anticancer Treatment Strategies. 2007 ,	3
1196	Characterization of Carbon Nanotube Surfaces by Infrared Vibration Spectroscopy. 2007 , 28, 509-512	1

1195	Solubilization of Single-walled Carbon Nanotubes with Single- stranded DNA Generated from Asymmetric PCR. 2007 , 8, 705-713		21
1194	Separation Techniques for Carbon Nanotubes. 2007,		
1193	. 2007,		49
1192	An unexpected new optimum in the structure space of DNA solubilizing single-walled carbon nanotubes. 2007 , 13, 1815-20		36
1191	Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7481-4	16.4	38
1190	Grafting Single-Walled Carbon Nanotubes with Highly Hybridizable DNA Sequences: Potential Building Blocks for DNA-Programmed Material Assembly. <i>Angewandte Chemie</i> , 2007 , 119, 7625-7628	3.6	8
1189	Label-Free Nanowire and Nanotube Biomolecular Sensors for In-Vitro Diagnosis of Cancer and other Diseases. 213-232		4
1188	Excitonic and Vibrational Properties of Single-Walled Semiconducting Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2007 , 17, 3405-3420	15.6	53
1187	Water-Redispersible Isolated Single-Walled Carbon Nanotubes Fabricated by In Situ Polymerization of Micelles. <i>Advanced Materials</i> , 2007 , 19, 929-933	24	75
1186	Carbon Nanotube Field-Effect-Transistor-Based Biosensors. <i>Advanced Materials</i> , 2007 , 19, 1439-1451	24	639
1185	Length-Dependent Uptake of DNA-Wrapped Single-Walled Carbon Nanotubes. <i>Advanced Materials</i> , 2007 , 19, 939-945	24	136
1184	DNA-Wrapped Single Walled Carbon Nanotubes as Rigid Templates for Assembling Linear Gold Nanoparticle Arrays. <i>Advanced Materials</i> , 2007 , 19, 1518-1522	24	84
1183	Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties. <i>Advanced Materials</i> , 2007 , 19, 3844-3849	24	182
1182	Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. <i>Advanced Materials</i> , 2007 , 19, 3214-3228	24	407
1181	Charge-metal interaction of a carbon nanotube. 2007 , 8, 1005-8		8
1180	Large-Scale Production of Homogeneous Helical Amylose/SWNTs Complexes with Good Biocompatibility. 2007 , 28, 2180-2184		31
1179	Physical chemical characterization of DNABWNT suspensions and associated composites. 2007 , 67, 916-9	921	28
1178	Amylose/SWNT composites: From solution to film \(\mathbb{S} \) ynthesis, characterization and properties. 2007 , 67, 817-821		20

(2007-2007)

1177	435, 104-108	35
1176	Selective detection of chiral molecules by chiral single walled nanotubes. 2007 , 443, 113-117	17
1175	Finite length effects in DNA-wrapped carbon nanotubes. 2007, 443, 328-332	7
1174	Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. <i>Carbon</i> , 2007 , 45, 2105-2110	4 166
1173	Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. <i>Carbon</i> , 2007 , 45, 2217-2228	4 21
1172	Deuterated water as super solvent for short carbon nanotubes wrapped by DNA. <i>Carbon</i> , 2007 , 45, 2701 ₁ 27	.p3 8
1171	Tocopheryl Polyethylene Glycol Succinate as a Safe, Antioxidant Surfactant for Processing Carbon Nanotubes and Fullerenes. <i>Carbon</i> , 2007 , 45, 2463-2470	4 61
1170	Simulation of nanotube separation in field-flow fractionation (FFF). 2007 , 62, 4620-4635	16
1169	Glassy carbon electrodes modified with DNA-partly-wrapped single-walled carbon nanotubes. 2007 , 9, 2729-2733	7
1168	Raman scattering from one-dimensional carbon systems. 2007 , 37, 81-87	10
1167	One dimensional nanostructured materials. 2007 , 52, 699-913	495
1166	Vertical attachment of DNA©NT hybrids on gold. 2007 , 606, 47-54	24
1165	Growth of nanotubes for electronics. 2007 , 10, 36-43	121
1164	Ultracentrifugation of single-walled nanotubes. 2007 , 10, 59-60	63
1163	Single-walled carbon nanotube interactions with HeLa cells. 2007, 5, 8	104
1162	Proteins and carbon nanotubes: close encounter in water. 2007 , 3, 1259-65	166
1161	Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. 2007 , 3, 1566-76	62
1160	Hybridization kinetics and thermodynamics of DNA adsorbed to individually dispersed single-walled carbon nanotubes. 2007 , 3, 1602-9	66

1159	Oligodeoxyribonucleotide association with single-walled carbon nanotubes studied by SPM. 2007 , 3, 1912-20	18
1158	Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. 2007 , 3, 1672-6	86
1157	Characterization of the DNA-assisted purification of single-walled carbon nanotubes. 2007 , 204, 1791-1796	6
1156	DNABarbon nanotube interactions and nanostructuring based on DNA. 2007 , 244, 4026-4029	18
1155	Optically active single-walled carbon nanotubes. 2007 , 2, 361-5	213
1154	Surface structure of size exclusion chromatography stationary phase. 2007 , 227, 110-7	3
1153	Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications. 2007 , 12, 650-6	174
1152	On the Impact of Process Variations for Carbon Nanotube Bundles for VLSI Interconnect. 2007 , 54, 446-455	38
1151	Atomic-force microscopy studies of the complexes of DNA and single-wall carbon nanotubes. 2007 , 34, 366-371	1
1150	Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. 2007 , 2, 145-9	38
1149	Carbon Nanotube Synthesis and Organization. 2007 , 101-165	77
1148	DNA-wrapped carbon nanotubes. <i>Nanotechnology</i> , 2007 , 18, 245702	79
1147	DNA-directed assembly of single-wall carbon nanotubes. 2007 , 129, 8696-7	120
1146	Separation of nanocarbons by molecular recognition. 2008 , 61, 195-216	25
1145	Hierarchical self-assembly of helical amylose/SWNTs complex. 2008, 51, 269-274	4
1144	A DNA-based approach to the carbon nanotube sorting problem. <i>Nano Research</i> , 2008 , 1, 185-194 10	127
1143	Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. 2008 , 4, 721-7	180
1142	A general strategy toward pH-controlled aggregation-dispersion of gold nanoparticles and single-walled carbon nanotubes. 2008 , 4, 326-9	35

1141	A genetic analysis of carbon-nanotube-binding proteins. 2008 , 4, 416-20		24
1140	Self-assembly of single-stranded RNA on carbon nanotube: polyadenylic acid to form a duplex structure. 2008 , 4, 656-61		47
1139	Optical identification of a DNA-wrapped carbon nanotube: signs of helically broken symmetry. 2008 , 4, 1284-6		8
1138	Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules. 2009 , 5, 244-55		10
1137	Photodynamic thermoresponsive nanocarbon-polymer gel hybrids. 2008, 4, 1711-5		42
1136	Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. 2008 , 14, 139-51		61
1135	Electrodeposition study of ODN:SWCNT hybrids on gold substrates. 2008 , 205, 1408-1411		1
1134	Gland G+ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape. 2008 , 245, 2189-2192		24
1133	Regulation of the near-IR spectral properties of individually dissolved single-walled carbon nanotubes in aqueous solutions of dsDNA. 2008 , 14, 5966-73		29
1132	Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. 2008 , 3, 940-5		85
1131	Adsorption of poly(rA) on the carbon nanotube surface and its hybridization with poly(rU). 2008 , 9, 2010-	8	12
1130	Increasing the complexity of periodic protein nanostructures by the rolling-circle-amplified synthesis of aptamers. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 126-30	6.4	94
1129	Carbon nanotube triggered self-assembly of oligo(p-phenylene vinylene)s to stable hybrid pi-gels. Angewandte Chemie - International Edition, 2008, 47, 5746-9	6.4	112
1128	Carbon Nanotube Biofiber Formation in a Polymer-Free Coagulation Bath. <i>Advanced Functional Materials</i> , 2008 , 18, 61-66	5.6	60
1127	Increasing the Complexity of Periodic Protein Nanostructures by the Rolling-Circle-Amplified Synthesis of Aptamers. <i>Angewandte Chemie</i> , 2008 , 120, 132-136	6	22
1126	Carbon Nanotube Triggered Self-Assembly of Oligo(p-phenylene vinylene)s to Stable Hybrid EGels. Angewandte Chemie, 2008 , 120, 5830-5833	6	32
1125	Adhesion between a charged particle in an electrolyte solution and a charged substrate: Electrostatic and van der Waals interactions. 2008 , 327, 251-60		19
1124	A strategy to control the chirality of single-walled carbon nanotubes. 2008 , 310, 5473-5476		62

1123	Binding of nucleobases with single-walled carbon nanotubes: Theory and experiment. 2008 , 453, 266-273	93
1122	Stacking interaction of cytosine with carbon nanotubes: MP2, DFT and Raman spectroscopy study. 2008 , 459, 153-158	52
1121	Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method. <i>Carbon</i> , 2008 , 46, 1563-1569	29
1120	Steps toward the synthesis of a geodesic C60H12 end cap for a C3v carbon [6,6]nanotube. 2008 , 64, 11360-11	3 <u>6</u> 9
1119	Ultrasensitive detection of organophosphate insecticides by carbon nanotube field-effect transistor. 2008 , 313-314, 456-460	10
1118	Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. 2008 , 8, 1577-85	278
1117	Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation. 2008 , 112, 3849-3856	85
1116	Heterocyclic Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. 2008, 161-198	2
1115	First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology, 2008 , 19, 125701 3-4	149
1114	Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow. 2008 , 1, 034003	124
1113	Interaction of single-stranded DNA with carbon nanotubes according to the molecular docking method. 2008 , 423, 297-301	4
1112	Progress towards monodisperse single-walled carbon nanotubes. 2008 , 3, 387-94	793
1111	Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. 2008 , 3, 356-62	196
1110	Predicting the Performance of Low-Loss On-Chip Inductors Realized Using Carbon Nanotube Bundles. 2008 , 55, 298-312	21
1109	Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. 2008 , 112, 738-741	36
1108	Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. 2008 , 130, 10648-55	106
1107	Spectral mixing formulations for van der Waals-London dispersion interactions between multicomponent carbon nanotubes. 2008 , 104, 53513	12
1106	Chapter 5 Optical spectroscopy of single-walled carbon nanotubes. 2008 , 3, 109-133	9

(2008-2008)

1105	dielectrophoresis. 2008 , 112, 7467-77	23
1104	Biomedical Applications of Functionalised Carbon Nanotubes. 2008 , 23-50	10
1103	Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. 2008 , 2, 1722-8	75
1102	Diameter-selective separation of double-walled carbon nanotubes. 2008 , 93, 223107	15
1101	Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam. 2008 , 101, 127402	40
1100	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersion Quality and Its Correlation with Zeta Potential. 2008 , 112, 10692-10699	315
1099	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. 2008 , 112, 972-977	68
1098	Photophysics of individual single-walled carbon nanotubes. 2008 , 41, 235-43	92
1097	Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. 2008 , 130, 6795-800	77
1096	Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals. 2008 , 4, 570-576	65
1095	Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. 2008,	87
1094	Supramolecular discrimination of carbon nanotubes according to their helicity. 2008 , 8, 1830-5	75
1093	Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. 2008 , 112, 16326-33	52
1092	Atomic force microscopic study on DNA-wrapping for different diameter single-wall carbon nanotubes. 2008 , 17, 1389-1393	10
1091	Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity. 2008 , 18, 954-964	68
1090	Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water. 2008 , 112, 16076-89	67
1089	Carbon Nanotubes. 2008,	532
1088	Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. 2008 , 8, 2682-7	187

1087	Carbon nanotube-modified electrodes for solar energy conversion. 2008 , 1, 120	170
1086	Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes. 2008 , 130, 9190-1	87
1085	DNA Mediated Solubilization of Single Wall Carbon Nanotubes. 2008,	
1084	Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. 2008 , 130, 12734-44	107
1083	Wrapping of single-walled carbon nanotubes by a pi-conjugated polymer: the role of polymer conformation-controlled size selectivity. 2008 , 112, 12263-9	90
1082	Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. 2008 , 8, 69-75	343
1081	Carbon nanotubes in liquid crystals. 2008 , 18, 2890	222
1080	Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. <i>Analytical Chemistry</i> , 2008 , 80, 7408-13	286
1079	Selective adsorption of cations on single-walled carbon nanotubes: A density functional theory study. 2008 , 43, 886-891	6
1078	Effects of block copolymer dispersant and nanotube length on reinforcement of carbon/epoxy composites. 2008 , 39, 1844-1850	44
1077	Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. 2008 , 2, 2540-6	269
1076	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. 2008 , 112, 3519-3524	55
1075	Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy. 2008 , 101, 157401	77
1074	Prospects of Nanomaterials in Biosensors. 2008 , 41, 159-209	137
1073	Synthesis of SWNT Rings by Noncovalent Hybridization of Porphyrins and Single-Walled Carbon Nanotubes. 2008 , 112, 12264-12271	42
1072	Investigation of Colloidal Suspension of SWCNT and ECyclodextrin Using AFM and Molecular Dynamics Simulation. 2008 , 402-416	1
1071	Organic Solvent-Redispersible Isolated Single Wall Carbon Nanotubes Coated by in-Situ Polymerized Surfactant Monolayer. 2008 , 41, 3261-3266	31
1070	Controllable redox reaction of chemically purified DNA-single walled carbon nanotube hybrids with hydrogen peroxide. 2008 , 130, 10054-5	20

(2008-2008)

1069	Spontaneous exfoliation of single-walled carbon nanotubes dispersed using a designed amphiphilic peptide. 2008 , 9, 598-602	29
1068	Nanohybrid Shish-Kebabs: Supercritical CO2-Induced PE Epitaxy on Carbon Nanotubes. 2008 , 41, 2868-2873	84
1067	Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. 2008 , 130, 6551-5	125
1066	Separations of Metallic and Semiconducting Carbon Nanotubes by Using Sucrose as a Gradient Medium. 2008 , 112, 18889-18894	51
1065	Mechanism analysis of interrupted growth of single-walled carbon nanotube arrays. 2008 , 8, 886-90	42
1064	Chromatographic Fractionation of SWNT/DNA Dispersions with On-Line Multi-Angle Light Scattering. 2008 , 112, 1842-1850	37
1063	Enrichment of (6,5) single wall carbon nanotubes using genomic DNA. 2008, 8, 4415-20	45
1062	RNA-Wrapped Carbon Nanotubes Aggregation Induced by Polymer Hybridization. 2008 , 497, 7/[339]-19/[351]	8
1061	Effects of Counterion Mobility, Surface Morphology, and Charge Screening on the Electron-Transfer Rates of Porphyrin Monolayers. 2008 , 112, 6173-6180	14
1060	Real time and in situ control of the gap size of nanoelectrodes for molecular devices. 2008 , 8, 1625-30	44
1059	Label-free detection of sequence-specific DNA with multiwalled carbon nanotubes and their light scattering signals. 2008 , 112, 7120-2	47
1058	Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges. 2008, 33, 215-224	43
1057	Improved Bath Sonication Method for Dispersion of Individual Single-Walled Carbon Nanotubes Using New Triphenylene-Based Surfactant. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 2000-2004	33
1056	Interaction of narrow carbon nanotubes with nitronium tetrafluoroborate salts. 2008, 128, 214703	5
1055	Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors. 2008 , 92, 243112	123
1054	Multifunctional metal-doped carbon nanocapsules. 2008 , 129, 234702	5
1053	Preparation of Polymer©arbon Nanotube Composite Materials and Their Applications for Enzyme Entrapment. 2008 , 41, 278-288	15
1052	Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. 2008 , 8, 4365-72	161

1051	PURITY MEASUREMENT OF SINGLE-WALLED CARBON NANOTUBES BY UV-VIS-NIR ABSORPTION SPECTROSCOPY AND THERMOGRAVIMETRIC ANALYSIS. 2008 , 03, 101-108	28
1050	Nanofiber Mats from DNA, SWNTs, and Poly(ethylene oxide) and Their Application in Glucose Biosensors. 2008 , 155, K100	16
1049	Cross-polarized spectroscopy of DNA-wrapped nanotubes: unraveling the nature of optical response. 2008 ,	1
1048	A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review. 2008 , 8, 8423-8452	60
1047	Continuous extraction of highly pure metallic single-walled carbon nanotubes in a microfluidic channel. 2008 , 8, 4380-5	67
1046	Spectroscopic properties unique to nano-emitters. 2008 , 8, 4330-4	6
1045	Accuracy of order-Ndensity-functional theory calculations on DNA systems using CONQUEST. 2008 , 20, 294201	23
1044	Self-Assembled Polysaccharide Nanotubes Generated from 即,3-Glucan Polysaccharides. 2008 , 65-121	5
1043	Design and generation of DEP force for assembly of CNT-based nano devices. 2008,	3
1042	Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. 2008 , 100, 225503	77
1041	13.2: Electrochemical Deposition of Carbon Nanotube Films and Applications in Field Emission Display Devices. 2008 , 39, 155	1
1040	Functionalising carbon nanotubes. 2008 , 5, 331	7
1039	Label-Free Gene and Protein Sensors Based on Electrochemical and Local Plasmon Resonance Devices. 2008 ,	
1038	. 2009,	7
1037	. 2009,	16
1036	Carbon Nanotubes and Nanocomposites for Electrical and Thermal Applications. 2009,	
1035	Chemical and Biological Sensors. 2009 , 259-291	1
1034	Noncovalent Interaction between Gold Nanoparticles and Multiwalled Carbon Nanotubes via an Intermediatory. 2009 , 2009, 1-7	14

1033	Adsorption of an alkane mixture on carbon nanotubes: Selectivity and kinetics. 2009, 80,		14
1032	Physisorption of adenine DNA nucleosides on zigzag and armchair single-walled carbon nanotubes: A first-principles study. 2009 , 79,		28
1031	Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. 2009, 102, 075501		54
1030	OLIGONUCLEOTIDE DNA AND RNA AS DIRECT CAPPING LIGAND FOR NANOCRYSTALS: AN EMERGING METHOD FOR BIOLOGICAL DIAGNOSTICS AND THERAPEUTICS. 2009 , 04, 189-199		4
1029	Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length. <i>Nanotechnology</i> , 2009 , 20, 195603	3.4	14
1028	Calculations of the resonant response of carbon nanotubes to binding of DNA. 2009, 42, 145408		15
1027	Nanoparticles. 2009 , 416-445		3
1026	Advanced technology for functionalization of carbon nanotubes. 2009 , 19, 801-810		240
1025	DNA can sediment TiO2 particles and decrease the uptake potential by mammalian cells. 2009 , 407, 2143	3-50	6
1024	Nucleic Acid Engineering. 549-575		
'	Nucleic Acid Engineering. 549-575 Isotropic Display of Biomolecules on CNT-Arrayed Nanostructures. 39-65		1
1023			1 4
1023	Isotropic Display of Biomolecules on CNT-Arrayed Nanostructures. 39-65 Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing. 67-96 Transmission Electron Microscopy and UVDisIR Spectroscopy Analysis of the Diameter Sorting of	15.6	4
1023	Isotropic Display of Biomolecules on CNT-Arrayed Nanostructures. 39-65 Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing. 67-96 Transmission Electron Microscopy and UVIIIsIR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009,		4
1023 1022 1021	Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing. 67-96 Transmission Electron Microscopy and UVIIIsIR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009, 19, 2219-2223 Liquid-Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-369		26
1023 1022 1021	Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing. 67-96 Transmission Electron Microscopy and UVIIIsIR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009, 19, 2219-2223 Liquid-Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-3691 Advances in Bioapplications of Carbon Nanotubes. Advanced Materials, 2009, 21, 139-152 2 Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of	5 5.6	4 26 518
1023 1022 1021 1020	Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing. 67-96 Transmission Electron Microscopy and UVIIIsIR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009, 19, 2219-2223 Liquid-Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-3694 Advances in Bioapplications of Carbon Nanotubes. Advanced Materials, 2009, 21, 139-152 Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Advanced Materials, 2009, 21, 29-53 Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites	5 5.6	4 26 518 323

1015 Nanotube B olymer Composites for Ultrafast Photonics. <i>Advanced Materials</i> , 2009 , 21, 3874-	-3899 24	659
Efficient Separation of (6,5) Single-Walled Carbon Nanotubes Using a Nanometal Sinker Angewandte Chemie, 2009 , 121, 5543-5546	3.6	4
Tuning of electronic properties of single-walled carbon nanotubes under homogenous cond 2009 , 10, 926-30	ditions.	4
1012 Defect-enhanced dispersion of carbon nanotubes in DNA solutions. 2009 , 10, 2414-7		17
Amperometric Detection of Hydrogen Peroxide Using Glassy Carbon Electrodes Modified w Chromium Hexacyanoferrate/Single-Walled Carbon Nanotube Nanocomposites. 2009 , 21, 1		8
Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotul Based Potentiometric Aptasensor. <i>Angewandte Chemie</i> , 2009 , 121, 7470-7473	be 3.6	22
Efficient separation of (6,5) single-walled carbon nanotubes using a "nanometal sinker". Angewandte Chemie - International Edition, 2009, 48, 5435-8	16.4	21
Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube potentiometric aptasensor. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7334-7	based 16.4	225
Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the cap cysteine-containing reversible cyclic peptides to disperse carbon nanotubes. 2009 , 92, 212-		9
Bio-nano complexes: DNA/surfactant/single-walled carbon nanotube interactions in electri 2009 , 50, 881-890	c field.	10
Carbon nanotube induced polymer crystallization: The formation of nanohybrid shishRebab , 50, 953-965	os. 2009	215
1004 Applications of carbon materials in photovoltaic solar cells. 2009 , 93, 1461-1470		269
Concentration control of carbon nanotubes in aqueous solution and its influence on the grobehavior of fibroblasts. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 71, 148-53	owth 6	20
Conformation analysis of nucleic acids and proteins adsorbed on single-shell carbon nanoto 2009 , 50, 954-961	ıbes.	17
Isolation of single-walled carbon nanotube enantiomers by density differentiation. <i>Nano Re</i> 2009 , 2, 69-77	esearch, 10	138
In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1\(\bar{\text{U}}\)Using Single-Walle Carbon Nanotubes Noncovalently Coated with siRNA. <i>Nano Research</i> , 2009 , 2, 279-291	ed 10	94
999 Measurement of the optical Stark effect in semiconducting carbon nanotubes. 2009 , 96, 28	3-287	23
Length distribution of single-walled carbon nanotubes in aqueous suspension measured by electrospray differential mobility analysis. 2009 , 5, 2894-901		39

(2009-2009)

997	DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. 2009 , 460, 250-3	882
996	Materials science: Nanotubes sorted using DNA. 2009 , 460, 186-7	8
995	Carbon nanotube tips for atomic force microscopy. 2009 , 4, 483-91	191
994	Alternating patterns on single-walled carbon nanotubes. 2009 , 4, 358-62	121
993	Deposition and meniscus alignment of DNA-CNT on a substrate. 2009 , 330, 255-65	14
992	The simple and facile methods to improve dispersion stability of nanoparticles: different chain length alkylcarboxylate mixtures. 2009 , 334, 208-11	32
991	pH- and thermo-responsive dispersion of single-walled carbon nanotubes modified with poly(N-isopropylacrylamide-co-acrylic acid). 2009 , 334, 212-6	23
990	Structure of a polyelectrolyte around an electronically responsive cylinder. 2009 , 338, 276-83	5
989	Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. 2009 , 150, 63-89	79
988	Adsorption and release behavior of bare and DNA-wrapped-carbon nanotubes on self-assembled monolayer surface. 2009 , 74, 240-5	8
987	A DNA nanomachine induced by single-walled carbon nanotubes on gold surface. 2009 , 30, 1739-45	54
986	Selective interaction of a soluble pentacene derivative with metallic single-walled carbon nanotubes. 2009 , 471, 97-102	6
985	Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. 2009 , 473, 96-101	36
984	Quantitative comparison of ultracentrifuged and diluted single walled nanotube dispersions; differences in dispersion quality. 2009 , 474, 122-126	17
983	The high dispersion of DNA-multiwalled carbon nanotubes and their properties. 2009, 387, 267-70	46
982	Mono-dispersed single-walled carbon nanotubes made by using arc-burning method in nitrogen atmosphere. 2009 , 52, 83-86	1
981	Nucleic acid conjugated nanomaterials for enhanced molecular recognition. 2009 , 3, 2451-60	276
980	Supramolecular surface modification and solubilization of single-walled carbon nanotubes with cyclodextrin complexation. 2009 , 4, 1562-72	17

979	Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. <i>Science</i> , 2009 , 324, 1051-5	627
978	Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. 2009 , 1, 96-105	51
977	Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines. 2009 , 131, 6775-84	49
976	Tuning the Diameter of Single-Walled Carbon Nanotubes by Temperature-Mediated Chemical Vapor Deposition. 2009 , 113, 13051-13059	30
975	Quantum electronic stability in selective enrichment of carbon nanotubes. 2009, 9, 1034-8	30
974	Facile and scalable route for highly efficient enrichment of semiconducting single-walled carbon nanotubes. 2009 , 131, 16529-33	43
973	Reversible metal-semiconductor transition of ssDNA-decorated single-walled carbon nanotubes. 2009 , 9, 1345-9	48
972	A scanning probe microscopy based assay for single-walled carbon nanotube metallicity. 2009 , 9, 1668-72	49
971	Quantum Mechanical Quantification of Weakly Interacting Complexes of Peptides with Single-Walled Carbon Nanotubes. 2009 , 5, 2879-85	35
970	Multimodal, nanoscale, hyperspectral imaging demonstrated on heterostructures of quantum dots and DNA-wrapped single-wall carbon nanotubes. 2009 , 3, 3769-75	10
969	Effect of Metal Cluster-Cap Interactions on the Catalyzed Growth of Single-Wall Carbon Nanotubes. 2009 , 113, 698-709	32
968	Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation. Nanotechnology, 2009 , 20, 065707	28
967	Macroscopic-scale carbon nanotube alignment via self-assembly in lyotropic liquid crystals. 2009 , 159, 2177-2179	16
966	Nanotechnology, nanotoxicology, and neuroscience. 2009 , 87, 133-70	313
965	Probabilistic Analysis and Design of Metallic-Carbon-Nanotube-Tolerant Digital Logic Circuits. 2009 , 28, 1307-1320	50
964	A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. 2009 , 5006-8	20
963	Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. 2009 , 3, 149-58	419
962	Preferential growth of single-walled carbon nanotubes with metallic conductivity. <i>Science</i> , 2009 , 326, 116-20	373

(2009-2009)

961	nanotubes. 2009 , 131, 2454-5	56
960	Carbon nanotubeselectronic/electrochemical properties and application for nanoelectronics and photonics. 2009 , 38, 165-84	456
959	Free energy landscape of a DNA-carbon nanotube hybrid using replica exchange molecular dynamics. 2009 , 9, 537-41	142
958	DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 465602	6
957	Measurement of Electrostatic Properties of DNA-Carbon Nanotube Hybrids by Capillary Electrophoresis. 2009 , 113, 13616-13621	33
956	Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes: a quantitative study of the surface properties of biomimetic nanofibrous scaffolds. 2009 , 3, 3200-6	59
955	Base dependent DNA-carbon nanotube interactions: activation enthalpies and assembly-disassembly control. <i>Nanotechnology</i> , 2009 , 20, 395101	71
954	Selective band structure modulation of single-walled carbon nanotubes in ionic liquids. 2009 , 131, 5364-5	35
953	A simple route to coat mesoporous SiO2 layer on carbon nanotubes. 2009 , 19, 3725	85
952	Species enrichment of SWNTs with pyrene alkylamide derivatives: is the alkyl chain length important?. <i>Nanotechnology</i> , 2009 , 20, 305601	11
951	Efficient first-principles method for calculating the circular dichroism of nanostructures. 2009, 79,	20
950	Observation of carbon nanotube and clay micellelike microstructures with dual dispersion property. 2009 , 113, 8654-9	57
949	Solvent-dependent fluorescence property of multi-walled carbon nanotubes noncovalently functionalized by pyrene-derivatized polymer. <i>Nanotechnology</i> , 2009 , 20, 135705	14
948	Quantifying the semiconducting fraction in single-walled carbon nanotube samples through comparative atomic force and photoluminescence microscopies. 2009 , 9, 3203-8	62
947	Rotational friction of single-wall carbon nanotubes in liquid suspension. 2009 , 94, 053107	13
946	Carbon Nanotube Electronics. 2009,	14
945	Interactions of Carbon Nanotubes with Biomolecules: Advances and Challenges. 715-742	
944	Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. 2009 , 131, 18153-8	129

943	Fabrication of high performance conducting polymer nanocomposites for biosensors and flexible electronics: summary of the multiple roles of DNA dispersed and functionalized single walled carbon nanotubes. 2009 , 19, 6465		57
942	Superlong-oriented Single-Walled Carbon Nanotube Arrays on Substrate with Low Percentage of Metallic Structure. 2009 , 113, 6983-6988		25
941	Six-Membered-Ring-Based Radical Mechanism for Catalytic Growth of Carbon Nanotubes with Benzene Precursor. 2009 , 113, 16495-16502		15
940	Quantitative Analyses of Microwave-Treated HiPco Carbon Nanotubes Using Absorption and Raman Spectroscopy. 2009 , 113, 7134-7138		14
939	Aromatic electron acceptors change the chirality dependence of single-walled carbon nanotube oxidation. 2009 , 25, 10417-21		9
938	Length-Dependent Dielectric Polarization in Metallic Single-Walled Carbon Nanotubes. 2009, 113, 10337	-1034	109
937	An immunoassay using biotinylated single-walled carbon nanotubes as Raman biomarkers. 2009 , 134, 1294-6		2
936	Fractioning HiPco and CoMoCAT SWCNTs via density gradient ultracentrifugation by the aid of a novel perylene bisimide derivative surfactant. 2009 , 2643-5		32
935	Construction, DNA wrapping and cleavage of a carbon nanotube-polypseudorotaxane conjugate. 2009 , 4106-8		12
934	Counterion-mediated electrostatic interactions between helical molecules. 2009 , 5, 868-877		45
933	The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. 2009 , 19, 3612		51
932	Carbon nanotubes on low resistance monolayer-modified glassy carbon electrode as chemo/biosensor. 2009 , 634, 98-103		1
931	PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. 2009 , 131, 4783-7		488
930	Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7257-67	3.6	14
929	Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. <i>Analytical Chemistry</i> , 2009 , 81, 6006-12	7.8	149
928	Transport Properties of a DNA-Conjugated Single-Wall Carbon Nanotube Field-Effect Transistor. Japanese Journal of Applied Physics, 2009, 48, 06FD08	1.4	6
927	Gating of single layer graphene using DNA. 2009 ,		1
926	Progress towards monodisperse single-walled carbon nanotubes. 2009 , 3-10		1

925 Intracellular Trafficking of Membrane Receptor-Mediated Uptake of Carbon Nanotubes. **2010**, 143-159

924	Soluble Carbon Nanotubes and Application to Electrochemistry. 2010 , 78, 2-15		5
923	Coulombic Dragging and Mechanical Propelling of Molecules in Nanofluidic Systems. 2010 , 117-149		
922	Formation of quantum dots in single stranded DNA-wrapped single-walled carbon nanotubes. 2010 , 96, 023104		6
921	Carbon-Nanotube-Based Sensors. 2010 , 1-30		
920	Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. <i>Analytical Chemistry</i> , 2010 , 82, 2341-6	7.8	803
919	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. 2010 , 114, 17267-17285		125
918	Bright Luminescence and Exciton Energy Transfer in Polymer-Wrapped Single-Walled Carbon Nanotube Bundles. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3243-3248	6.4	22
917	Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. 2010 , 132, 8158-64		105
916	DNA and carbon nanotubes as medicine. 2010 , 62, 633-49		165
915	Nanoparticle-based theranostic agents. 2010 , 62, 1064-79		1083
914	Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing. 2010 , 132, 10964-6		35
913	A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. 2010 , 3, 3818-3844		83
912	DNA-Functionalized Carbon Nanotubes: Synthesis, Self-Assembly, and Applications. 2010 , 50, 277-290		15
911	Single-walled carbon nanotube as an effective quencher. 2010 , 396, 73-83		98
910	Reduced working electrode based on fullerene C60 nanotubes@DNA: Characterization and application. 2010 , 175, 159-163		29
909	Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode. 2010 , 171, 63-69		22
908	Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide. 2010 , 5, 1578-84		8

907	Creation of unique supramolecular nanoarchitectures utilizing natural polysaccharide as a one-dimensional host. 2010 , 68, 25-47		13
906	Silica coated titania nanotubes for drug delivery system. 2010 , 64, 1664-1667		16
905	Coarse-grained molecular dynamics modeling of DNABarbon nanotube complexes. 2010, 83, 968-985		16
904	Carbon Nanotubes on Polymeric Microcapsules: Free-Standing Structures and Point-Wise Laser Openings. <i>Advanced Functional Materials</i> , 2010 , 20, 3136-3142	15.6	59
903	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. <i>Advanced Functional Materials</i> , 2010 , 20, 4305-4313	15.6	16
902	Nanotube surfactant design: the versatility of water-soluble perylene bisimides. <i>Advanced Materials</i> , 2010 , 22, 788-802	24	128
901	High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. <i>Advanced Materials</i> , 2010 , 22, 2698-701	24	50
900	Aligned, ultralong single-walled carbon nanotubes: from synthesis, sorting, to electronic devices. <i>Advanced Materials</i> , 2010 , 22, 2285-310	24	115
899	Poly(methacrylic acid)-grafted carbon nanotube scaffolds enhance differentiation of hESCs into neuronal cells. <i>Advanced Materials</i> , 2010 , 22, 3542-7	24	60
898	Composites Based on Conducting Polymers and Carbon Nanotubes. 2010 , 209-260		5
897	Enhanced adsorption affinity of anionic perylene-based surfactants towards smaller-diameter SWCNTs. 2010 , 16, 13185-92		22
896	Kohlenstoffnanomaterialien fl Biosensoren: Nanorliren oder Graphen lwas eignet sich besser?. <i>Angewandte Chemie</i> , 2010 , 122, 2160-2185	3.6	51
895	Carbon nanomaterials in biosensors: should you use nanotubes or graphene?. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2114-38	16.4	1188
894	Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. 2010 , 70, 63-91		104
893	Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. 2010 , 51, 975-993		288
892	DFT study of NH3 adsorption on the (5,0), (8,0), (5,5) and (6,6) single-walled carbon nanotubes. Calculated binding energies, NMR and NQR parameters. 2010 , 405, 1455-1460		32
891	The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. 2010 , 31, 5182-90		76
890	Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. 2010 , 254, 1101-1116		86

(2010-2010)

889	Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1902-7	67
888	Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. <i>Carbon</i> , 2010 , 48, 2941-2947	46
887	Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. <i>Carbon</i> , 2010 , 48, 3260-3270	67
886	Decrease of carbon nanotube UV light absorption induced by Estacking interaction with nucleotide bases. <i>Carbon</i> , 2010 , 48, 3682-3691	35
885	Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension. 2010 , 493, 147-150	31
884	Designing multifunctional chemical sensors using Ni and Cu doped carbon nanotubes. 2010 , 247, 2678-2682	8
883	Nitrogen-doped SWCNT synthesis using ammonia and carbon monoxide. 2010 , 247, 2726-2729	15
882	A combined photoemission and ab initio study of the electronic structure of (6,4)/(6,5) enriched single wall carbon nanotubes. 2010 , 247, 2875-2879	2
881	Sorting single-wall carbon nanotubes combining gel chromatography and density-gradient ultracentrifugation. 2010 , 247, 2746-2749	5
880	Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces. 2010 , 6, 1992-5	17
879	The nature of DNA-base-carbon-nanotube interactions. 2010 , 6, 31-4	101
878	Light-induced electron transfer through DNA-decorated single-walled carbon nanotubes. 2010 , 6, 27-30	14
877	Tailoring the electronic structure of double-walled carbon nanotubes by encapsulating single-stranded DNA. 2010 , 6, 729-32	15
876	Gating of single-layer graphene with single-stranded deoxyribonucleic acids. 2010 , 6, 1150-5	48
875	Diameter- and metallicity-selective enrichment of single-walled carbon nanotubes using polymethacrylates with pendant aromatic functional groups. 2010 , 6, 1311-20	13
874	Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. 2010 , 5, 61-6	512
873	Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. 2010 , 5, 443-50	448
872	. 2010,	117

871	Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance. 2010, 2010, 1-8		O
870	Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells. 2010 , 2010, 1-14		18
869	Nucleic Acid Interaction and Interfaces with Single-Walled Carbon Nanotubes. 2010,		1
868	Carbon nanotubes for next generation very large scale integration interconnects. 2010 , 4, 041690		28
867	DNA-based applications in nanobiotechnology. 2010 , 2010, 715295		28
866	On the Inextensible Elastica Model for the Collapse of Nanotubes. 2010 , 15, 591-606		11
865	Fullerene-based one-dimensional crystalline nanopolymer formed through topochemical transformation of the parent nanowire. 2010 , 81,		23
864	Exploring sequence dependence in DNA-decorated CNT Gas sensors on CMOS circuitry. 2010,		О
863	Dispersion and Separation of Single-Walled Carbon Nanotubes. 2010 , 365-383		0
862	Chemistry of Soluble Carbon Nanotubes: Fundamentals and Applications. 2010 , 301-331		
861	Position Control and Electrical Characterization of Single-Walled Carbon Nanotubes Debundled by Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04	1.4	5
861		1.4	13
	Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04	1.4	
860	Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04 Noncovalent Functionalization of Carbon Nanotubes. 103-134	1.4	13
860 859	Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04 Noncovalent Functionalization of Carbon Nanotubes. 103-134 Recent Developments in Carbon Nanotube Sorting and Selective Growth. 2010 , 35, 315-321 Helicity Distributions of Single-Walled Carbon Nanotubes and Its Implication on the Growth	3.4	13 97
860 859 858	Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04 Noncovalent Functionalization of Carbon Nanotubes. 103-134 Recent Developments in Carbon Nanotube Sorting and Selective Growth. 2010 , 35, 315-321 Helicity Distributions of Single-Walled Carbon Nanotubes and Its Implication on the Growth Mechanism. 2010 , 3, 2725-2734 Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color		13 97 7
860 859 858 857	Density Gradient Ultracentrifugation. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BD04 Noncovalent Functionalization of Carbon Nanotubes. 103-134 Recent Developments in Carbon Nanotube Sorting and Selective Growth. 2010 , 35, 315-321 Helicity Distributions of Single-Walled Carbon Nanotubes and Its Implication on the Growth Mechanism. 2010 , 3, 2725-2734 Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes. <i>Nanotechnology</i> , 2010 , 21, 045606	3.4	13 97 7 28

(2010-2010)

853	Carbon nanotube-inorganic hybrids. 2010 , 110, 1348-85	703
852	Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. 2010 , 4, 1060-6	24
851	Long range interactions in nanoscale science. 2010 , 82, 1887-1944	304
850	Diameter-Selective Metal/Semiconductor Separation of Single-wall Carbon Nanotubes by Agarose Gel. 2010 , 114, 9270-9276	84
849	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metalfarbon hybrid nanostructures via self-assembly. 2010 , 20, 900-906	156
848	Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions below the cmc. 2010 , 114, 2-9	67
847	Assembly of single wall carbon nanotube-metal nanohybrids using biomolecular components. 2010,	
846	DNA Functionalized Carbon Nanotubes for Nonbiological Applications. 2010 , 25, 891-908	21
845	Towards chirality-pure carbon nanotubes. 2010 , 2, 1919-29	60
844	Graphene-DNA hybrids: self-assembly and electrochemical detection performance. 2010 , 20, 6668	105
843	Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications. 2010 , 249-284	2
842	ssDNA binding reveals the atomic structure of graphene. 2010 , 26, 18078-82	75
841	Carbohydrate functionalized carbon nanotubes and their applications. 2010, 39, 2925-34	78
840	Multiple exciton generation in single-walled carbon nanotubes. 2010 , 10, 2381-6	131
839	A simple method of separating metallic and semiconducting single-walled carbon nanotubes based on molecular charge transfer. 2010 , 132, 5560-1	62
⁰ 39	on motecular charge transfer. 2010, 132, 3300-1	
838	Adsorption of nucleotides on the rutile (110) surface. 2010 , 101, 758-764	18
		18 37

835	Metal-mediated electrochemical oxidation of DNA-wrapped carbon nanotubes. 2010 , 114, 8861-70		15
834	Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement. <i>Chemistry of Materials</i> , 2010 , 22, 5718-5724	9.6	31
833	Counterion Condensation on a Polyelectrolyte near an Electronically Responsive Cylinder. 2010 , 114, 3781-3790		2
832	Dispersion and Exfoliation of Nanotubes with Synthetic Oligonucleotides: Variation of Dispersion Efficiency and Oligo-Nanotube Interaction with Base Type. 2010 , 114, 11741-11747		16
831	Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation. 2010 , 114, 4831-4834		42
830	Enzyme-mediated assimilation of DNA-functionalized single-walled carbon nanotubes. 2010 , 26, 613-7		9
829	Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. <i>Analytical Chemistry</i> , 2010 , 82, 8432-7	7.8	100
828	Reversible Control of Third-Order Optical Nonlinearity of DNA Decorated Carbon Nanotube Hybrids. 2010 , 114, 22697-22702		2
827	Biological identification of peptides that specifically bind to poly(phenylene vinylene) surfaces: recognition of the branched or linear structure of the conjugated polymer. 2010 , 26, 17278-85		30
826	Protein Dispersant Binding on Nanotubes Studied by NMR Self-Diffusion and Cryo-TEM Techniques. Journal of Physical Chemistry Letters, 2010 , 1, 1414-1419	6.4	36
825	Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules. 2010 , 4, 2791-803		33
824	Understanding the Electrophoretic Separation of Single-Walled Carbon Nanotubes Assisted by Thionine as a Probe. 2010 , 114, 19234-19238		19
823	Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. 2010 , 23, 1131-47		126
822	Chemical approaches towards single-species single-walled carbon nanotubes. 2010 , 2, 1901-18		38
821	Noncovalent Functionalization of Carbon Nanotubes. 2010 , 1-48		17
820	Carbon nanostructure-based field-effect transistors for label-free chemical/biological sensors. 2010 , 10, 5133-59		129
819	Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. 2010 , 4, 3969-78		108
818	Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant. 2010 , 114, 15554-64		14

817	Addressable terminally linked DNA-CNT nanowires. 2010 , 132, 14009-11	33
816	Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. 2010 , 4, 4725-32	73
815	Capture and manipulation of hybrid DNAs by carbon nanotube bundles. <i>Nanotechnology</i> , 2010 , 21, 19539,14	4
814	Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. 2010 , 2, 1767-72	32
813	Carbon nanotubes in neuroscience. 2010 , 106, 337-41	42
812	Applications of the Cluster Method for Biological Systems. 2010 , 1, 71-150	1
811	Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids. 2010 , 61, 241-61	17
810	DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry. <i>Nanotechnology</i> , 2010 , 21, 095504	24
809	A kinetic Monte Carlo analysis for the production of singularly tethered carbon nanotubes. Nanotechnology, 2010 , 21, 495703 3.4	4
808	Current investigations into carbon nanotubes for biomedical application. 2010 , 5, 22001	103
807	Toward single-chirality carbon nanotube device arrays. 2010 , 4, 2748-54	62
806	Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality. 2010 , 82,	17
805	Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. 2010 , 46, 7379-81	39
804	Translocation events in a single walled carbon nanotube. 2010 , 22, 454112	9
803	Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. 2010 , 20, 6903	15
802	Molecular Simulation of DNA 断heet and 盼arrel Structures on Graphite and Carbon Nanotubes. 2010 , 114, 13267-13276	28
801	Base and acid treatment of SWCNT-RNA transparent conductive films. 2010, 4, 4890-6	20
800	An environmentally friendly dispersion method for cup-stacked carbon nanotubes in a water system. 2010 , 46, 2295-7	13

799	Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. 2011 , 115, 14295-300	8
798	Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes. 2011 , 47, 12521-3	84
797	'Supramolecular wrapping chemistry' by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures. 2011 , 47, 1961-75	92
796	A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing. 2011 , 47, 2637-9	24
795	Comparison of propagation delay characteristics for single-walled CNT bundle and multiwalled CNT in global VLSI interconnects. 2011 ,	
794	Creation of Individual Defects at Extremely High Proton Fluences in Carbon Nanotube \$p{-}n\$ Diodes. 2011 , 58, 2898-2903	11
793	Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study. 2011 , 27, 751-9	43
792	Translocation of single-wall carbon nanotubes through solid-state nanopores. 2011 , 11, 2446-50	24
791	Molecular-crowding-induced clustering of DNA-wrapped carbon nanotubes for facile length fractionation. 2011 , 5, 8258-66	54
790	Electrically moving single-stranded DNA into and out of double-walled carbon nanotubes. 2011 , 47, 2309-11	8
789	DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing. Physical Chemistry Chemical Physics, 2011, 13, 10004-8 3.6	15
788	Functionalized Carbon Nanotubes: (X-CNTs). 2011 , 113-161	O
787	Adsorbability of Single-Wall Carbon Nanotubes onto Agarose Gels Affects the Quality of the Metal/Semiconductor Separation. 2011 , 115, 21723-21729	21
786	A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on Agarose Gels. 2011 , 115, 9361-9369	41
785	Base- and Structure-Dependent DNA Dinucleotide (Carbon Nanotube Interactions: Molecular Dynamics Simulations and Thermodynamic Analysis. 2011 , 115, 21546-21558	35
784	Carbon nanotubes from short hydrocarbon templates. Energy analysis of the DielsAlder cycloaddition/rearomatization growth strategy. 2011 , 21, 1373-1381	95
783	Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. 2011 , 2, 1407	139
782	Engineering DNA-based functional materials. 2011 , 40, 5730-44	224

(2011-2011)

781	Resonance energy transfer (RET)-Induced intermolecular pairing force: a tunable weak interaction and its application in SWNT separation. 2011 , 115, 8155-66	7
78o	Noncovalent Interactions of Derivatized Pyrenes with Metallic and Semiconducting Single-Walled Carbon Nanotubes. 2011 , 115, 11010-11015	15
779	Microbiosensors based on DNA modified single-walled carbon nanotube and Pt black nanocomposites. 2011 , 136, 4916-24	51
778	Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation. 2011 , 3, 2412-20	25
777	A Compositional Window of Kinetic Stability for Amphiphilic Polymers and Colloidal Nanorods. 2011 , 115, 7164-7170	7
776	Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study. 2011 , 115, 6181-6189	104
775	Peculiarities of homooligonucleotides wrapping around carbon nanotubes: molecular dynamics modeling. 2011 , 115, 9271-9	33
774	Electronic Properties of DNA/SWNT Hybrids: From Charge Separation to Optical Sensing. 2011 , 787-823	1
773	Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. 2011 , 133, 5232-5	118
772	Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. 2011 , 133, 567-81	140
771	Fluorescence of Nafion Dispersed Single-Walled Carbon Nanotubes in Water and in Silica Composite. 2011 , 115, 10561-10568	2
770	Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. <i>Analytical Chemistry</i> , 2011 , 83, 8130-7 7.8	317
769	Free-Energy Simulations of Hydrogen Bonding versus Stacking of Nucleobases on a Graphene Surface. 2011 , 115, 19455-19462	23
768	Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy. 2011 , 11, 1171-6	43
767	Nanotechnology Research Directions for Societal Needs in 2020. 2011 ,	151
766	Purification, functionalization, and bioconjugation of carbon nanotubes. 2011 , 751, 505-32	2
765	Biomolecular modification of carbon nanotubes for studies of cell adhesion and migration. Nanotechnology, 2011 , 22, 494019 3-4	2
764	Noncovalent assembly of carbon nanotube-inorganic hybrids. 2011 , 21, 7527	67

763	Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. 2011, 133, 12998-30	00 1 /1
762	Molecular- and Nano-Tubes. 2011 ,	8
761	Bioconjugation Protocols. 2011 ,	5
760	Syntheses of organic molecule-DNA hybrid structures. 2011 , 5, 2067-74	31
759	Electrochemistry on Carbon-Nanotube-Modified Surfaces. 2011 , 117-168	
75 ⁸	CNT/Polymer Composite Materials. 2011 , 361-380	
757	Interaction of Carbon Nanotubes and Small Molecules. 2011 , 381-406	5
756	The Tuning of CNT Devices Using Self-Assembling Organic and Biological Molecules. 2011 , 407-428	
755	Carbon nanotube-DNA hybrid used for activity monitoring and inhibitor screening of nuclease. 2011 , 706, 171-5	16
754	Sequence-specific self-stitching motif of short single-stranded DNA on a single-walled carbon nanotube. 2011 , 133, 13545-50	71
753	Recognition ability of DNA for carbon nanotubes correlates with their binding affinity. 2011 , 27, 8282-93	74
752	Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond. 2011 , 27, 4339-50	45
751	Electrostatic-driven pattern formation in fibers, nanotubes and pores. 2011 , 7, 1456	16
750	Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. 2011 , 85, 2517-21	125
749	Carbon nanotubes: engineering biomedical applications. 2011 , 104, 175-245	37
748	Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. 2011 , 2, 309	661
747	Fullerenes, carbon nanotubes, and graphene for molecular electronics. 2012 , 312, 127-74	19
746	Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation. 2011 , 133, 19922-30	44

745	Rational concept to recognize/extract single-walled carbon nanotubes with a specific chirality. 2011 , 133, 2651-7		110
744	Selective Separation of Single-Walled Carbon Nanotubes in Solution. 2011 ,		4
743	Fabrication and Applications of Carbon Nanotube-Based Hybrid Nanomaterials by Means of Non-Covalently Functionalized Carbon Nanotubes. 2011 ,		2
742	Carbon Nanotubes and Nanocomposites for Electrical and Thermal Applications. 2011,		
741	Intermediate Frequency AC Signal Analysis for Bionanosensor. 2011 , 2011, 1-9		2
740	How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids. 2011 , 2, 653-8		7
739	Layer-by-Layer Polyelectrolyte Assembles Involving DNA as a Platform for DNA Sensors. 2011 , 7, 8-34		19
738	Dispersion of Carbon Nanotubes in Water by Noncovalent Wrapping with Peptides Screened by Phage Display. 2011 , 40, 880-882		5
737	Biomedical investigation of CNT based coatings. 2011 , 206, 759-766		79
736	Gel-based separation of single-walled carbon nanotubes for metallic and semiconducting fractions. 2011 , 46, 1535-1539		6
735	Investigating purine-functionalised carbon nanotubes and their properties: a computational approach. 2011 , 5, 32-5		9
734	Carbon Nanotubes Bundled Interconnects: Design Hints Based on Frequency- and Time-Domain Crosstalk Analyses. 2011 , 58, 2702-2711		6
733	Simple detection of nucleic acids with a single-walled carbon-nanotube-based electrochemical biosensor. <i>Biosensors and Bioelectronics</i> , 2011 , 28, 257-62	11.8	27
732	Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. <i>Carbon</i> , 2011 , 49, 5132-5141	10.4	21
731	Graphene: learning from carbon nanotubes. 2011 , 21, 919-929		41
730	Doped Carbon Nanotubes: (X:CNTs). 2011 , 41-111		2
729	Computational design of virus-like protein assemblies on carbon nanotube surfaces. <i>Science</i> , 2011 , 332, 1071-6	33.3	178
728	Photoinduced processes of the supramolecularly functionalized semi-conductive SWCNTs with porphyrinsvia ion-pairing interactions. 2011 , 4, 707-716		35

727	Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. 2011 , 40, 1324-36	74
726	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics. 2011 , 279-354	5
725	Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell. 2011 , 3, 4352-8	17
724	Chapter 1:Carbon Nanotubes. RSC Nanoscience and Nanotechnology, 2011 , 1-242	2
723	Covalent hybridization of CNT by thymine and uracil: a computational study. 2011 , 17, 695-9	35
722	Adsorption mechanism of single guanine and thymine on single-walled carbon nanotubes. 2011 , 17, 2773-80	12
721	Force fluctuation on pulling a ssDNA from a carbon nanotube. 2011 , 10, 221-7	4
720	An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. 2011 , 701, 66-74	160
719	PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3494-9	206
718	Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA for selective detection of dopamine. 2011 , 155, 679-686	24
717	Effects of gamma irradiation for sterilization on aqueous dispersions of length sorted carbon nanotubes. <i>Nano Research</i> , 2011 , 4, 393-404	11
716	Tunable separation of single-walled carbon nanotubes by dual-surfactant density gradient ultracentrifugation. <i>Nano Research</i> , 2011 , 4, 623-634	24
715	Cell-SELEX-based aptamer-conjugated nanomaterials for enhanced targeting of cancer cells. 2011 , 54, 1218-1226	16
714	Quantum simulation of molecular interaction and dynamics at surfaces. 2011 , 6, 294-308	8
713	Effect of chirality and curvature of single-walled carbon nanotubes on the adsorption of uracil. 2011 , 248, 1431-1436	11
712	Amphiphile replacement on carbon nanotube surfaces: Effect of aromatic groups on the interaction strength. 2011 , 248, 2532-2535	9
711	Separation of single-walled carbon nanotubes with aromatic group functionalized polymethacrylates and building blocks contribution to the enrichment. 2011 , 49, 949-960	3
710	Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. 2011 , 7, 2413-27	201

709	Design and application of inorganic nanoparticle superstructures: current status and future challenges. 2011 , 7, 2133-46		177
708	Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of single-walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. 2011 , 42, 41-46		12
707	Binding of polynucleotides with single-walled carbon nanotubes: Effect of temperature. 2011 , 42, 92-97		4
706	Nitrogen-Doped Single-Walled Carbon Nanotubes Grown on Substrates: Evidence for Framework Doping and Their Enhanced Properties. <i>Advanced Functional Materials</i> , 2011 , 21, 986-992	15.6	52
705	Carbon nanotubes: measuring dispersion and length. Advanced Materials, 2011, 23, 338-48	24	35
704	Strategies for post-synthesis alignment and immobilization of carbon nanotubes. <i>Advanced Materials</i> , 2011 , 23, 953-70	24	38
703	Functionalized carbon nanotube networks with field-tunable bandgaps. <i>Advanced Materials</i> , 2011 , 23, 3075-9	24	4
702	A scalable, CMOS-compatible assembly of ambipolar semiconducting single-walled carbon nanotube devices. <i>Advanced Materials</i> , 2011 , 23, 1734-8	24	31
701	Nanoparticle Surface Modification and Bioconjugation. 2011 , 47-73		1
700	Carbon Nanotubes: In Vitro and In Vivo Sensing and Imaging. 2011 , 127-159		Ο
699	Photochemically Controlled Supramolecular Curdlan/Single-Walled Carbon Nanotube Composite Gel: Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. 2011 , 2011, 2801-2806		25
698	Diameter-sorted SWCNT-porphyrin and SWCNT-phthalocyanine conjugates for light-energy harvesting. 2011 , 12, 2266-73		46
697	Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. 2011 , 4, 848-63		102
696	Carbon nanotube mass production: principles and processes. 2011 , 4, 864-89		288
695	Physical origins of the stability of aromatic amino acid core ring-polycyclic hydrocarbon complexes: a post-Hartree-Fock and density functional study. 2011 , 32, 1887-95		8
694	Labile diazo chemistry for efficient silencing of metallic carbon nanotubes. 2011 , 17, 1415-8		14
693	One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3505-10	11.8	19
692	The behavior after intravenous injection in mice of multiwalled carbon nanotube / Fe3O4 hybrid MRI contrast agents. 2011 , 32, 4867-76		94

691	Effects of poly-l-tyrosine molecules decoration on the surface properties and electron transport of SWCNTs compared to the effects of DNA molecules. 2011 , 501, 451-454		3
690	Pd nanoparticles deposited on poly(lactic acid) grafted carbon nanotubes: synthesis, characterization and application in Heck C-C coupling reaction. 2011 , 399, 154-160		46
689	Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. 2011 , 503, 115-163		335
688	Polyethylene/carbon nanotube nano hybrid shish-kebab obtained by solvent evaporation and thin-film crystallization. 2011 , 52, 3633-3638		56
687	Effect of gas flow on electronic transport in a DNA-decorated carbon nanotube. <i>Nanotechnology</i> , 2011 , 22, 205201	3.4	1
686	Solubilized Carbon Nanotubes and Their Redox Chemistry. 2011 , 245-269		1
685	Binding Force Between a Charged Wall and a Complex Formed by a Polyelectrolyte and an Electronically Responsive Cylinder. 2011 , 87, 251-271		4
684	Performance comparison between single wall carbon nanotube bundle and multiwall carbon nanotube for global interconnects. 2011 ,		О
683	Hemispherical Geodesic Polyarenes: Attractive Templates for the Chemical Synthesis of Uniform-Diameter Armchair Nanotubes. 2011 , 235-258		1
682	Applications: High-Performance Materials and Emerging Areas. 2011 , 467-499		
681	Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling. 2011 , 2011, 415621		15
680	DNA Gating effect from single layer graphene. 2011 , 1344, 1		
679	Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap. <i>Nanotechnology</i> , 2011 , 22, 175705	3.4	30
678	Unraveling siRNA unzipping kinetics with graphene. 2012 , 137, 054903		15
677	A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors. <i>Nanotechnology</i> , 2012 , 23, 125201	3.4	11
676	Effect of particle size of hydroxyapatite nanoparticles on its biocompatibility. 2012 , 11, 336-40		24
675	Chiral recognition of carbon nanoforms. 2012 , 10, 3577-83		18
674	Laser-Irradiation-Induced Enrichment of Metallic Single-Walled Carbon Nanotubes from As-Synthesized Nanotubes Individually Dispersed in Aqueous Solution. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 105101	1.4	2

673	Optical Detection of Non-amplified Genomic DNA. 2012 , 153-183		2
672	Chirally enhanced solubilization through perylene-based surfactant. 2012 , 249, 2465-2468		8
671	Facile and Effective Post-Production Separation of Single-Walled Carbon Nanotubes with Paired Aromatic Molecules: A Molecular Tweezers Approach. 2012 , 116, 6800-6804		9
670	Water redissoluble chiral porphyrinBarbon nanotube composites. 2012 , 22, 5764		11
669	Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE-PPV Copolymer 2012 , 1, 246-251		27
668	Thermodynamic determination of the metal/semiconductor separation of carbon nanotubes using hydrogels. 2012 , 6, 10195-205		48
667	Achieving Diameter-Selective Separation of Single-Walled Carbon Nanotubes by Using Polymer Conformation-Confined Helical Cavity. 2012 , 1, 701-705		19
666	Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. 2012 , 134, 7266-9		376
665	Interaction of double-stranded DNA inside single-walled carbon nanotubes. 2012 , 50, 2512-2526		8
664	Growth of carbon nanotubes from titanium dioxide nanoparticles. 2012 , 258, 8019-8025		12
663	INTERACTION OF SINGLE-WALLED CARBON NANOTUBES WITH AMINE. 2012 , 07, 1130001		13
662	Mass transport through vertically aligned large diameter MWCNTs embedded in parylene. Nanotechnology, 2012 , 23, 455101	5-4	28
661	Separation of Metallic Single-Walled Carbon Nanotubes and Semiconducting Single-Walled Carbon Nanotubes by Agarose Gel Electrophoresis. 2012 , 40, 1839-1844		4
660	Electrophoretically fabricated core-shell CNT-DNA biowires for biosensing. 2012 , 22, 2727-2732		11
659	Oxygen and light sensitive field-effect transistors based on ZnO nanoparticles attached to individual double-walled carbon nanotubes. 2012 , 4, 251-6		12
658	Loading of single-walled carbon nanotubes in cationic cholesterol suspensions significantly improves gene transfection efficiency in serum. 2012 , 22, 7985		23
657	Highly effective separation of semiconducting carbon nanotubes verified via short-channel devices fabricated using dip-pen nanolithography. 2012 , 6, 2487-96		57
656	Imaging Carbon Nanotube Interaction with Nucleobases in Water Using the Statistical Mechanical Theory of Molecular Liquids. 2012 , 116, 15087-15092		12

655	Physisorption of nucleobases on graphene: a comparative van der Waals study. 2012 , 24, 424210	72
654	Nitrogen-induced catalyst restructuring for epitaxial growth of multiwalled carbon nanotubes. 2012 , 6, 7723-30	29
653	A cytosine-assisted carbon nanotubes junction: DFT studies. 2012 , 52, 158-164	5
652	A targetable fluorescent sensor for hypochlorite based on a luminescent europium complex loaded carbon nanotube. 2012 , 137, 1872-5	26
651	Steered molecular dynamics simulation study on dynamic self-assembly of single-stranded DNA with double-walled carbon nanotube and graphene. 2012 , 4, 2301-5	47
650	Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. 2012 , 3, 1074	116
649	Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. 2012, 258, 3086-3088	
648	Conjugates of Nanomaterials with Phthalocyanines. 2012 , 347-423	2
647	Liquid Crystals of Carbon Nanotubes and Carbon Nanotubes in Liquid Crystals. 2012, 341-378	8
646	Photophysical Properties of SWNT Interfaced with DNA. 2012 , 89-163	4
645	Modification of Nano-objects by Aryl Diazonium Salts. 2012 , 103-124	3
644	Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. 2012 , 136, 065106	41
643	Computational Tools for the Biomedical Application of Carbon Nanomaterials. 2012,	
642	Prospects of nanoparticle-DNA binding and its implications in medical biotechnology. 2012 , 30, 1721-32	56
641	DNA-linker-induced surface assembly of ultra dense parallel single walled carbon nanotube arrays. 2012 , 12, 1129-35	44
640	Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes. Analytical Chemistry, 2012 , 84, 8733-9 7.8	19
639	Purification of Single-Wall Carbon Nanotubes by Controlling the Adsorbability onto Agarose Gels Using Deoxycholate. 2012 , 116, 9816-9823	25
638	Fluorophore and dye-assisted dispersion of carbon nanotubes in aqueous solution. 2012 , 28, 11676-86	24

63	Mild Bromination-Assisted Density-Gradient Ultracentrifugation to Sort Single-Walled Carbon Nanotubes by Metallicity. 2012 , 116, 23027-23035	3
63	Reversible dispersion and releasing of single-walled carbon nanotubes by a stimuli-responsive TTFV-phenylacetylene polymer. 2012 , 48, 3100-2	50
63	Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. 2012 , 6, 614-22	32
63.	Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. 2012 , 4, 1146-53	40
63	Highly enhanced gas sensing in single-walled carbon nanotube-based thin-film transistor sensors by ultraviolet light irradiation. 2012 , 7, 644	14
63.	2 Donor doping of single-walled carbon nanotubes by filling of channels with silver. 2012 , 115, 485-491	32
63	Quantifying Interactions between DNA Oligomers and Graphite Surface Using Single Molecule Force Spectroscopy. 2012 , 116, 13896-13903	40
63	Evaluation of the individualization state in single-walled carbon nanotube solutions using absorption, Raman and photoluminescence spectroscopy. 2012 , 23, 125501	6
62	9 Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. 2012 ,	10
62	8 Detection of Non-Amplified Genomic DNA. 2012 ,	10
62	Computational Studies of Nucleotide Selectivity in DNACarbon Nanotube Hybrids. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2790-2797	19
62	6 Self-Assembly of Nanostructures. 2012 ,	5
62	5 Noncovalent Functionalization of Carbon Nanotubes. 2012 ,	16
62	Organic solar cell materials and active layer designs[Improvements with carbon nanotubes: a review. 2012 , 61, 342-354	60
62	Tuning ratios, densities, and supramolecular spacing in bifunctional DNA-modified gold nanoparticles. 2012 , 8, 873-83	17
62	Influence of DNA conformation on the dispersion of SWNTs: single-strand DNAvs. hairpin DNA. 2012 , 8, 2820	12
62	Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. 2012 , 134, 7414-22	391
62	$_{ m O}$ Lipophilic guanosine derivatives as carbon nanotube dispersing agents. <i>Carbon</i> , 2012 , 50, 4663-4672 $_{ m 10.4}$	13

619	Helicoidal fields and spin polarized currents in carbon nanotube-DNA hybrids. 2012, 108, 126601		32
618	Polymer Self-assembly on Carbon Nanotubes. 2012 , 1-72		7
617	High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant. 2012 , 116, 10266-10273		26
616	Unreliable Probabilities, Paradoxes, and Epistemic Risks. 2012 , 477-498		7
615	Unusual aggregation of poly(rC)-wrapped carbon nanotubes in aqueous suspension induced by cationic porphyrin. 2012 , 22, 10795		10
614	Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes. 2012 , 6, 5083-90		37
613	Duplex DNA/Graphene Oxide Biointerface: From Fundamental Understanding to Specific Enzymatic Effects. <i>Advanced Functional Materials</i> , 2012 , 22, 3083-3088	15.6	115
612	Hexahistidine-Tagged Single-Walled Carbon Nanotubes (His6-tagSWNTs): A Multifunctional Hard Template for Hierarchical Directed Self-Assembly and Nanocomposite Construction. <i>Advanced Functional Materials</i> , 2012 , 22, 4009-4015	15.6	9
611	Graphene oxide as an optical biosensing platform. <i>Advanced Materials</i> , 2012 , 24, 3298-308	24	398
610	Functionalization of diameter-sorted semiconductive SWCNTs with photosensitizing porphyrins: syntheses and photoinduced electron transfer. 2012 , 18, 11388-98		24
609	Stability and optical limiting properties of a single wall carbon nanotubes dispersion in a binary water-glycerol solvent. 2012 , 100, 251903		23
608	On-chip diameter-dependent conversion of metallic to semiconducting single-walled carbon nanotubes by immersion in 2-ethylanthraquinone. 2012 , 2, 1275-1281		4
607	Tuning periodicity of polymer-decorated carbon nanotubes. 2012 , 55, 802-807		7
606	Interaction of nucleic acids with carbon nanotubes and dendrimers. 2012, 37, 457-74		43
605	Self-assembly of DNA on a gapped carbon nanotube. 2012 , 18, 3291-300		7
604	Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode. 2012 , 427, 26-32		57
603	Remotely actuated shape memory effect of electrospun composite nanofibers. 2012 , 8, 1248-59		112
602	Anomalous effective hydrodynamic radius of octadecylamine functionalised single walled carbon nanotubes. <i>Carbon</i> , 2012 , 50, 3807-3815	10.4	3

(2013-2012)

601	Disruption of small double stranded DNA molecules on carbon nanotubes: A molecular dynamics study. 2012 , 525-526, 120-124		15
600	Density gradient ultracentrifugation and stability of SWNTpeptide conjugates. 2012, 535, 131-135		3
599	A model for carbon nanotube-DNA hybrid using one-dimensional density of states. 2012 , 380, 25-33		3
598	Electrochemistry of horseradish peroxidase entrapped in graphene and dsDNA composite modified carbon ionic liquid electrode. 2012 , 75, 381-386		23
597	Optical properties of single wall carbon nanotubes dispersed in biopolymers. 2012 , 73, 232-236		3
596	Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats. 2012 , 259, 281-92		34
595	Comparative study on raman and photoluminescence spectra of carbon nanotubes dispersed in different surfactant solutions. 2012 , 60, 1301-1304		1
594	Combination self-assembly of 點heet peptides and carbon nanotubes: functionalizing carbon nanotubes with bioactive 點heet block copolypeptides. 2012 , 12, 49-54		13
593	The preparation of carbon nanotube/poly(ethylene oxide) composites using amphiphilic block copolymers. 2012 , 68, 465-481		8
592	A comparison of the effect of nanotube chirality and electronic properties on the Interaction of single-wall carbon nanotubes with pyrazinamide antitubercular drug. 2013 , 113, 1272-1284		14
591	Nanomaterials Imaging Techniques, Surface Studies, and Applications. <i>Springer Proceedings in Physics</i> , 2013 ,	.2	2
590	Molecular Units. 2013 , 1-108		
589	Conjugated polymer-controlled selective dispersion of single-walled carbon nanotubes and fabrication of network transistors. 2013 , 21, 1083-1090		3
588	Nanoparticles as macromolecules. 2013 , 51, 1195-1208		29
587	Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. 2013 , 65, 1899-920		169
586	Nano- and microstructuration of supramolecular materials driven by H-bonded uracil \mathbb{D} , 6-diamid opyridine complexes. 2013 , 5, 8837-51		29
585	Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants. 2013 , 29, 11154-62		51
584	Carbon nanotubes as optical biomedical sensors. 2013 , 65, 1933-50		245

583	A kinetic model for the deterministic prediction of gel-based single-chirality single-walled carbon nanotube separation. 2013 , 7, 1779-89		65	
582	Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon. 2013 , 109, 160-6		20	
581	DNA Nanotechnology. 2013 ,		4	
580	A strategy for efficient immobilization of laccase and horseradish peroxidase on single-walled carbon nanotubes. 2013 , 88, 2227-2232		19	
579	Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. 2013 , 48, 5624-5632		7	
578	High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. 2013 , 7, 6831-9		80	
577	Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes. 2013 , 117, 12953-65		34	
576	Packing of charged chains on toroidal geometries. 2013 , 87, 012603		6	
575	Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 14896-918	3.6	92	
574	Magneto-Fluorescent Carbon Nanotube-Mediated siRNA for Gastrin-Releasing Peptide Receptor Silencing in Neuroblastoma. 2013 , 3, 4544-4551		5	
573	New Materials for Transparent Electrodes. 2013 , 139-174			
572	Multiplexed optical detection of plasma porphyrins using DNA aptamer-functionalized carbon nanotubes. <i>Analytical Chemistry</i> , 2013 , 85, 8391-6	7.8	16	
571	Universal dispersion of single-walled carbon nanotubes in the liquid phase inspired by Maya Blue. 2013 , 1, 10626		8	
570	Conformationally switchable TTFVphenylacetylene polymers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes. 2013 , 1, 5477		22	
569	Adsorption of Chlorobenzene onto (5,5) Armchair Single-Walled Carbon Nanotube and Graphene Sheet: Toxicity versus Adsorption Strength. 2013 , 117, 21217-21227		33	
568	Understanding the Interaction of Nucleobases with Chiral Semiconducting Single-Walled Carbon Nanotubes: An Alternative Theoretical Approach Based on Density Functional Reactivity Theory. 2013 , 117, 21539-21550		40	
567	Nanotubes complexed with DNA and proteins for resistive-pulse sensing. 2013, 7, 8857-69		25	
566	Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. 2013 , 49, 10492-4		20	

(2013-2013)

565	In Situ Charge-Transfer-Induced Transition from Metallic to Semiconducting Single-Walled Carbon Nanotubes. <i>Chemistry of Materials</i> , 2013 , 25, 4464-4470	9.6	7
564	Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers. 2013 , 135, 16220-34		62
563	Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. 2013 , 8, 959-68		205
562	Structural Stability and Binding Strength of a Designed Peptide-Carbon Nanotube Hybrid. 2013 , 117, 26255-26261		11
561	Amyloidogenic peptide/single-walled carbon nanotube composites based on tau-protein-related peptides derived from AcPHF6: preparation and dispersive properties. 2013 , 117, 7593-604		5
560	Electrochemical aptasensors for microbial and viral pathogens. 2014 , 140, 155-81		9
559	Chirality-dependent properties of carbon nanotubes: electronic structure, optical dispersion properties, Hamaker coefficients and van der Waals I ondon dispersion interactions. 2013 , 3, 823-842		33
558	DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. 2013 , 115, 438-41		19
557	Fundamental optical processes in armchair carbon nanotubes. 2013 , 5, 1411-39		46
556	Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres. 2013 , 47, 493-501		10
555	DNA origami templated self-assembly of discrete length single wall carbon nanotubes. 2013 , 11, 596-8		36
554	Theoretical understanding of single-stranded DNA assisted dispersion of graphene. 2013 , 1, 91-100		36
553	Affinity and fluorescent detection of surfactants/ssDNA and single-walled carbon nanotube. 2013 , 23, 456-461		4
552	Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors. 2013 , 7, 2659-68		79
551	Can helical spring dextrin be composed of higher eight glucose units per turn?. 2013 , 1036, 274-278		12
550	Material drag phenomena in nanotubes. 2013 , 113, 3372-90		37
549	Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. 2013 , 9, 1306-11		23
548	High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. 2013 , 7, 2971-6		126

547	Carbon nanotubes: controlled growth and application. 2013 , 16, 19-28		70
546	Deploying RNA and DNA with Functionalized Carbon Nanotubes. 2013 , 117, 5982-5992		31
545	Quantitative analysis of the (n,m) abundance of single-walled carbon nanotubes dispersed in ionic liquids by optical absorption spectra. 2013 , 139, 233-240		8
544	Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes. 2013 , 117, 132-40		43
543	Mixture of ionic liquid and carbon nanotubes: comparative studies of the structural characteristics and dispersion of the aggregated non-bundled and bundled carbon nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 2482-94	3.6	16
542	A simple pyrene ElickEtype modification of DNA affects solubilisation and photoluminescence of single-walled carbon nanotubes. 2013 , 3, 6331		5
541	Strong and Weak Polyelectrolyte Adsorption onto Oppositely Charged Curved Surfaces. 2013, 1-56		22
540	Sonication mediated covalent cross-linking of DNA to single-walled carbon nanotubes. 2013 , 413, 11-19		10
539	High Purity and Yield Separation of Semiconducting Single-Walled Carbon Nanotubes Dispersed in Aqueous Solutions with Density Gradient Ultracentrifugation Using Mixed Dispersants of Polysaccharides and Surfactants. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 035102	1.4	4
538	Quasi-one-dimensional fullerene-nanotube composites: Structure, formation energetics, and electronic properties. 2013 , 97, 113-119		6
537	Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. 2013 , 135, 6822-5		244
536	Deoxyribonucleic Acid Functionalized Carbon Nanotube Network as Humidity Sensors. 2013 , 13, 1806-18	816	19
535	Nanomaterial-Based Fluorescent DNA Analysis: A Comparative Study of the Quenching Effects of Graphene Oxide, Carbon Nanotubes, and Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 4140-4148	15.6	154
534	Biomedical applications of carbon nanotubes. 2013 , 109, 10		42
533	Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis. 2013 , 5, 2947		41
532	Oriented, polymer-stabilized carbon nanotube films: influence of dispersion rheology. <i>Nanotechnology</i> , 2013 , 24, 015709	3.4	17
531	The effect of single wall carbon nanotube metallicity on genomic DNA-mediated chirality enrichment. 2013 , 5, 4931-6		5
530	Robust nanobioconjugates of Candida antarctica lipase Bmultiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. 2013 , 140, 103-10		54

529	Quantum mechanical treatment of binding energy between DNA nucleobases and carbon nanotube: A DFT analysis. 2013 , 54, 65-71		18
528	Supramolecular chemistry of carbon nanotubes. 2014 , 348, 95-126		21
527	Chapter 6:Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices. <i>RSC Nanoscience and Nanotechnology</i> , 2013 , 182-211		1
526	Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. 2013 , 9, 2595-601		40
525	Highly efficient individual dispersion of single-walled carbon nanotubes using biocompatible dispersant. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 102, 95-101	6	18
524	Functionalizing Carbon Nanotubes: An Indispensible Step towards Applications. 2013 , 2, M3040-M3045		26
523	Quantitative study on the interaction of Ag+ and Pd2+ with CNT-graft-PCA (polycitric acid) in aqueous solution. 2013 , 180, 39-44		7
522	Nanotechnology: toxicologic pathology. 2013 , 41, 395-409		49
521	Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate. 2013 , 115, 506-11		26
520	Time-resolved observation of chiral-index-selective wrapping on single-walled carbon nanotube with non-aromatic polysilane. 2013 , 135, 2374-83		21
519	Influence of oligonucleotide interaction on electronic properties of single walled carbon nanotubes. 2013 , 44, 183-189		2
518	Carbon Nanotubes and Graphene. 2013 , 76-127		
517	Self-ordering electron donor-acceptor nanohybrids based on single-walled carbon nanotubes across different scales. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2180-4	16.4	39
516	Carbon nanotube-based optical platforms for biomolecular detection. 2013 , 270-303e		1
515	Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors. 2013 , 2, 332-367		9
514	How charge fluctuations modulate complexation of DNA around a histone cylinder. 2013, 104, 18002		3
513	Synthesis of carbon based nanomaterials for tissue engineering applications. 2013, 119-157		3
512	Applicability of carbon and boron nitride nanotubes as biosensors: Effect of biomolecular adsorption on the transport properties of carbon and boron nitride nanotubes. 2013 , 102, 133705		9

511	Self-Ordering Electron Donor Acceptor Nanohybrids Based on Single-Walled Carbon Nanotubes Across Different Scales. <i>Angewandte Chemie</i> , 2013 , 125, 2236-2240	20
510	Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. 2013 , 41, 7987-96	62
509	Carbon nanotubes: an overview. 2013 , 2, 299-337	1
508	Functionalized Carbon Nanotubes with Self-Templating Assembly Behavior. 2013 , 2013, 2812-2816	3
507	. 2013,	31
506	Structure-dependent Optical Activity of Single-walled Carbon Nanotube Enantiomers. 2014 , 22, 269-279	6
505	Decontamination of Surfaces Exposed to Carbon-Based Nanotubes and Nanomaterials. 2014 , 2014, 1-9	4
504	Experimental tools to study molecular recognition within the nanoparticle corona. 2014 , 14, 16196-211	37
503	Graphene and Carbon Nanotube-Based Nanomaterial: Application in Biomedical and Energy Research. 2014 , 189-236	
502	Tuning the Electron Transfer Properties of Entire Nanodiamond Ensembles. 2014 , 118, 30209-30215	11
501	Achieving low-voltage thin-film transistors using carbon nanotubes. 2014 , 105, 063111	7
500	Tailoring Carbon Nanotubes Surface for Gene Delivery Applications. 2014 , 11, 704-713	10
499	Schottky diodes using as-grown single-walled carbon nanotube ensembles. 2014 , 104, 123501	5
498	A Label-Free Electrochemical Aptasensor for Thrombin Using a Single-Wall Carbon Nanotube (SWCNT) Casted Glassy Carbon Electrode (GCE). 2014 , 26, 513-520	8
497	Carbon-Based Nanomaterials for Drugs Sensing: A Review. 2014 , 807, 13-39	2
496	Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes. 2014 , 116, 024304	1
495	Carbon nanotube B olyaniline composites. 2014 , 39, 707-748	229
494	Direct intermolecular force measurements between functional groups and individual metallic or semiconducting single-walled carbon nanotubes. 2014 , 10, 750-7	6

Modification of carboxylated multiwall nanotubes with benzotriazole derivatives and study of their anticancer activities. 2014 , 23, 487-495		19	
Modification of the electronic properties of zigzag (n = 510) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. 2014 , 25, 1005-1012		5	
A noncovalent Ru(phen)32+@CNTs nanocomposite and its application as a solid-state electrochemiluminescence signal probe. 2014 , 4, 1955-1960		8	
Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes. 2014 , 9, 85		5	
Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. 2014 , 60, 1499-1508		14	
Hybrid peptidelarbon nanotube dispersions and hydrogels. <i>Carbon</i> , 2014 , 71, 284-293	10.4	13	
Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes. 2014 , 8, 3367-79		28	
Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. 2014 , 6, 2937-44		22	
Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and l-alanine. 2014 , 604, 83-88		11	
Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10914-22	3.6	7	
Magnetoadsorptive Particles Enabling the Centrifugation-Free, Preparative-Scale Separation, and Sorting of Single-Walled Carbon Nanotubes. 2014 , 31, 1097-1104		3	
Triton assisted fabrication of uniform semiconducting single-walled carbon nanotube networks for highly sensitive gas sensors. <i>Carbon</i> , 2014 , 66, 369-376	10.4	14	
Biosensors Based on Aptamers and Enzymes. 2014 ,		6	
Carbon nanotube-based fluorescence sensors. 2014 , 19, 20-34		52	
Mechanics and Energetics of DNA Hybridization on Single-Walled Carbon Nanotubes Explored Using Adaptive Biasing Force Calculations. 2014 , 118, 2209-2214		7	
Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition. 2014 , 118, 29441-29447		4	
Fabrication and Performance of Solution-Based Micropatterned DNA Functionalized Carbon Nanotube Network as Humidity Sensors. 2014 , 13, 335-342		7	
Study of Bio-nano Interaction Outlook of Amino Acids on Single-walled Carbon Nanotubes. 2014 , 22, 595-603		4	
	Anticancer activities. 2014, 23, 487-495 Modification of the electronic properties of zigzag (n = 510) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. 2014, 25, 1005-1012 A noncovalent Ru(phen) 32+@CNTs nanocomposite and its application as a solid-state electrochemiluminescence signal probe. 2014, 4, 1955-1960 Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes. 2014, 9, 85 Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. 2014, 60, 1499-1508 Hybrid peptideBarbon nanotube dispersions and hydrogels. Carbon, 2014, 71, 284-293 Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes. 2014, 8, 3367-79 Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. 2014, 6, 2937-44 Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and I-alanine. 2014, 604, 83-88 Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Physical Chemistry Chemical Physics, 2014, 16, 10914-22 Magnetoadsorptive Particles Enabling the Centrifugation-Free, Preparative-Scale Separation, and Sorting of Single-Walled Carbon Nanotubes. 2014, 31, 1097-1104 Triton assisted fabrication of uniform semiconducting single-walled carbon nanotube networks for highly sensitive gas sensors. Carbon, 2014, 66, 369-376 Biosensors Based on Aptamers and Enzymes. 2014, 19, 20-34 Mechanics and Energetics of DNA Hybridization on Single-Walled Carbon Nanotubes Explored Using Adaptive Biasing Force Calculations. 2014, 118, 2209-2214 Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition. 2014, 118, 29441-29447 Fabrication and Performance of Solution-Based Micropatterned DNA Functionalized Carbon Nanotube Network as Humidity Sensors. 2014, 13, 335-342	Andicancer activities. 2014, 23, 487-495 Modification of the electronic properties of zigzag (n = 500) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. 2014, 25, 1005-1012 A noncovalent Ru(phen)32+@CNTs nanocomposite and its application as a solid-state electrochemiluminescence signal probe. 2014, 4, 1955-1960 Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes. 2014, 9, 85 Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. 2014, 60, 1499-1508 Hybrid peptideBarbon nanotube dispersions and hydrogels. Carbon, 2014, 71, 284-293 10.4 Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes. 2014, 8, 3367-79 Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. 2014, 6, 2937-44 Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and I-alanine. 2014, 604, 83-88 Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Physical Chemistry Chemical Physics, 2014, 16, 10914-22 Magnetoadsorptive Particles Enabling the Centrifugation-Free, Preparative-Scale Separation, and Sorting of Single-Walled Carbon Nanotubes. 2014, 31, 1097-1104 Triton assisted fabrication of uniform semiconducting single-walled carbon nanotube networks for highly sensitive gas sensors. Carbon, 2014, 66, 369-376 Biosensors Based on Aptamers and Enzymes. 2014, 118, 209-2214 Mechanics and Energetics of DNA Hybridization on Single-Walled Carbon Nanotubes Explored Using Adaptive Biasing Force Calculations. 2014, 118, 2209-2214 Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition. 2014, 118, 29441-29447 Fabrication and Performance of Solution-Based Micropatterned DNA Functionalized Carbon Nanotube Network as Humidity Sensors. 2014, 13, 335-342	anticancer activities. 2014, 23, 487-495 Modification of the electronic properties of zigzag (n = 580) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. 2014, 25, 1005-1012 A noncovalent Ru(phen)32+@CNTs nanocomposite and its application as a solid-state electrochemilluminescence signal probe. 2014, 4, 1955-1960 Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes. 2014, 9, 85 Assessment of length and bundle distribution of dilute single-walled carbon nanotubes by viscosity measurements. 2014, 60, 1499-1508 Hybrid peptideBarbon nanotube dispersions and hydrogels. Carbon, 2014, 71, 284-293 10-4 13 Quantitative theory of adsorptive separation for the electronic sorting of single-walled carbon nanotubes. 2014, 8, 3367-79 Loading of an anti-cancer drug onto graphene oxide and subsequent release to DNA/RNA: a direct optical detection. 2014, 6, 2937-44 Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and I-alanine. 2014, 604, 83-88 Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Physical Chemistry Chemical Physics, 2014, 16, 10914-22 Magnetoadsorptive Particles Enabling the Centrifugation-Free, Preparative-Scale Separation, and Sorting of Single-Walled Carbon Nanotubes. 2014, 31, 1097-1104 Triton assisted fabrication of uniform semiconducting single-walled carbon nanotube networks for highly sensitive gas sensors. Carbon, 2014, 66, 369-376 Biosensors Based on Aptamers and Enzymes. 2014, 119, 20-34 Mechanics and Energetics of DNA Hybridization on Single-Walled Carbon Nanotubes Explored Using Adaptive Biasing Force Calculations. 2014, 118, 2209-2214 Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition. 2014, 118, 29441-29447 4 Fabrication and Performance of Solution-Based Micropatterned DNA Functionalized Carbon Nanotubes Explored Using Adaptive Biasing Force Calculations. 2014, 118, 2309-2214

475	Photochemical behavior of single-walled carbon nanotubes in the presence of propylamine. 2014 , 15, 1821-6		7
474	Thermomechanical stability and mechanochemical response of DNA: a minimal mesoscale model. 2014 , 141, 115101		3
473	Nanowire Field Effect Transistors: Principles and Applications. 2014,		8
472	Chirality-controlled growth of single-walled carbon nanotubes via nanotube cloning. 2014 , 22, 917-925		О
471	Environment-dependent optical scattering of cuprous oxide microcrystals in liquid dispersions and Langmuir B lodgett films. 2014 , 2, 5910-5915		1
470	Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. 2014 , 8, 9107-12		69
469	Toward high-performance digital logic technology with carbon nanotubes. 2014 , 8, 8730-45		209
468	Terahertz science and technology of carbon nanomaterials. <i>Nanotechnology</i> , 2014 , 25, 322001 3.4		130
467	Aptamer-mediated nanocomposites of semiconductor quantum dots and graphene oxide as well as their applications in intracellular imaging and targeted drug delivery. 2014 , 2, 8558-8565		22
466	Simple and highly sensitive electrogenerated chemiluminescence adenosine aptasensor formed by adsorbing a ruthenium complex-tagged aptamer on single-walled carbon nanotubes. 2014 , 6, 1317		4
465	Long-range charge transport in single G-quadruplex DNA molecules. 2014 , 9, 1040-6		191
464	Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes. 2014 , 14, 1426-32		25
463	Dynamic Mechanism of Single-Stranded DNA Encapsulated into Single-Wall Carbon Nanotubes: A Molecular Dynamics Simulation Study. 2014 , 83, 024801		1
462	Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite. 2014 , 136, 12947-57		50
461	Nanocarbon-chlorophyll hybrids: Self assembly and photoresponse. <i>Carbon</i> , 2014 , 80, 746-754	4	6
460	Detection of pH change in cytoplasm of live myocardial ischemia cells via the ssDNA-SWCNTs nanoprobes. <i>Analytical Chemistry</i> , 2014 , 86, 3048-52		20
459	Removing Aggregates from Single-Walled Carbon Nanotube Samples by Magnetic Purification. 2014 , 118, 4489-4494		13
458	Coarse-Grained Model for Sequence-Dependent Adsorption of ssDNA on Carbon Nanotubes. 2014 , 118, 17677-17685		6

457	SORTING SEMICONDUCTING SINGLE-WALLED CARBON NANOTUBES AND USING THEM AS RANDOM NETWORK OF FIELD-EFFECT TRANSISTORS. 2014 , 09, 1450055	1
456	Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. 2014 , 47, 2446-56	208
455	Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. 2014 , 8, 9822-32	149
454	Metal-organic framework-based molecular beacons for multiplexed DNA detection by synchronous fluorescence analysis. 2014 , 139, 1721-5	44
453	Why nanotubes grow chiral. 2014 , 5, 4892	128
452	Role of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes. 2014 , 6, 3721-30	24
451	DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 4672-8	51
450	The Investigation of Sequence-dependent Interaction of Messenger RNA Binding to Carbon Nanotube. 2014 , 22, 643-662	7
449	DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. 2014 , 136, 10383-92	124
448	Effects of Electric Field on the Vaporliquid Equilibria of Nanoconfined Methanol and Ethanol. 2014 , 59, 3090-3097	7
447	Separation of double-walled carbon nanotubes by size exclusion column chromatography. 2014 , 8, 6756-64	26
446	Chemical basis of interactions between engineered nanoparticles and biological systems. 2014 , 114, 7740-81	398
445	Visualizing individual carbon nanotubes with optical microscopy. 2014 , 136, 8536-9	11
444	Electrochemical characterization of oligonucleotide-carbon nanotube functionalized using different strategies. 2014 , 140, 489-496	8
443	Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. 2014 , 471, 214-23	21
442	Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for SuzukiMiyaura coupling reaction. 2014 , 382, 106-113	59
441	Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. 2014 , 102, 1580-94	97
440	Separation of the semiconducting and the metallic types of single-wall carbon nanotube by electrophoresis method. 2014 ,	

439	Carbon Nanotubes in Liquid Crystals. 2014 , 1-40		1
438	On the Mechanical Properties of Functionalized CNT Reinforced Polymer Roham Ra?ee and Reza Pourazizi. 2015 , 636-653		
437	- Role of Top and Interlayer Metal Nanoparticle Grafting on CNTs: Improved Raman Scattering and Electron Emission Investigations. 2015 , 84-107		0
436	How does carbon nanoring deform to spiral induced by carbon nanotube?. 2014 , 4, 3865		7
435	Topological solitons in helical strings. 2015 , 91, 062601		1
434	Conclusion. 2015 , 515-636		
433	Electrical sensing of DNA-hybridization using two-port network based on suspended carbon nanotube membrane. 2015 , 17, 103		4
432	Spin Filtering through Single-Wall Carbon Nanotubes Functionalized with Single-Stranded DNA. <i>Advanced Functional Materials</i> , 2015 , 25, 3210-3218	15.6	41
431	Living Cells Directly Growing on a DNA/Mn3(PO4)2-Immobilized and Vertically Aligned CNT Array as a Free-Standing Hybrid Film for Highly Sensitive In Situ Detection of Released Superoxide Anions. <i>Advanced Functional Materials</i> , 2015 , 25, 5924-5932	15.6	41
430	Selective detection and quantification of carbon nanotubes in soil. 2015 , 34, 1969-74		6
429	Carbon Nanotubes. 2015 , 47-84		1
0			
428	Electrochemical Detection of Rutin on Mg2Al-Cl Layered Double Hydroxide Modified Carbon Ionic Liquid Electrode. 2015 , 62, 640-646		
427		24	65
	Double-walled carbon nanotube processing. <i>Advanced Materials</i> , 2015 , 27, 3105-37 Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of	²⁴	65
427	Double-walled carbon nanotube processing. <i>Advanced Materials</i> , 2015 , 27, 3105-37 Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of	ŕ	
427 426	Double-walled carbon nanotube processing. <i>Advanced Materials</i> , 2015 , 27, 3105-37 Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2015 , 25, 5858-5864	ŕ	20
427 426 425	Double-walled carbon nanotube processing. <i>Advanced Materials</i> , 2015 , 27, 3105-37 Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2015 , 25, 5858-5864 Supramolecular Assembly Models of siRNA Delivery Systems. 2015 , 33, 79-89 Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor	15.6	7

(2015-2015)

421	Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. <i>Carbon</i> , 2015 , 93, 574-594	10.4	17
420	A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. 2015 , 5, 227-236		143
419	Selective extraction of metallic arc-discharged single-walled carbon nanotubes by a water soluble polymethylsilane derivative. 2015 , 5, 102238-102246		6
418	Thin-film transistors using DNA-wrapped semiconducting single-wall carbon nanotubes with selected chiralities. 2015 , 8, 105101		2
417	The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. <i>Nanotechnology</i> , 2015 , 26, 425601	3.4	8
416	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. 2015 , 10, 737-758		90
415	Quantitatively control of carbon nanotubes using real time electrical detection dielectrophoresis assembly. 2015 ,		O
414	Growth of Single-Walled Carbon Nanotubes from Well-Defined POSS Nanoclusters Structure. 2015 , 10, 1550004		
413	Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. 2015 , 7, 3462-7		17
412	Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 6874-80	3.6	17
411	Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses. 2015 , 25, 015902		4
410	Novel supramolecular assemblies of repulsive DNABnionic porphyrin complexes based on covalently modified multi-walled carbon nanotubes and cyclodextrins. 2015 , 5, 21153-21160		7
409	A QM:MM model for the interaction of DNA nucleotides with carbon nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 7564-75	3.6	17
408	Nanoscale Structure and Interaction of Condensed Phases of DNAtarbon Nanotube Hybrids. 2015 , 119, 15763-15769		5
407	Tunable threshold voltage in solution-processed single-walled carbon nanotube thin-film transistors. 2015 , 15, S8-S11		8
406	A Mathematical Formulation and Solution of the CoPhMoRe Inverse Problem for Helically Wrapping Polymer Corona Phases on Cylindrical Substrates. 2015 , 119, 13876-13886		31
405	Bright Fraction of Single-Walled Carbon Nanotubes through Correlated Fluorescence and Topography Measurements. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2816-21	6.4	9
404	The graphene/nucleic acid nanobiointerface. 2015 , 44, 6954-80		153

403	Biomacromolecular logic gate, encoder/decoder and keypad lock based on DNA damage with electrochemiluminescence and electrochemical signals as outputs. 2015 , 51, 13185-8		41
402	Potential of carbon nanotubes in algal biotechnology. 2015 , 125, 451-71		27
401	Ordered wrapping of poly(methyl methacrylate) on single wall carbon nanotubes. 2015, 70, 278-281		24
400	Amplification yield enhancement of short DNA templates using bulk and surface-attached amine-functionalized single-wall carbon nanotubes. 2015 , 349, 147-155		7
399	Single-walled carbon nanotube networks for flexible and printed electronics. 2015 , 30, 074001		76
398	Comparative Dynamics and Sequence Dependence of DNA and RNA Binding to Single Walled Carbon Nanotubes. 2015 , 119, 10048-10058		61
397	Functionalized Graphene as an Electron-Cascade Acceptor for Air-Processed Organic Ternary Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 3870-3880	15.6	63
396	Carbon nanomaterials for photovoltaic process. 2015 , 15, 490-522		41
395	Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy. 2015 , 2, 71-84		42
394	Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. 2015 , 9, 4572-82		117
393	Chirality-Selective Optical Scattering Force on Single-Walled Carbon Nanotubes. 2015, 3,		21
392	Hierarchical Polymer-Carbon Nanotube Hybrid Mesostructures by Crystallization-Driven Self-Assembly. 2015 , 9, 10673-85		26
391	Competitive Binding in Mixed Surfactant Systems for Single-Walled Carbon Nanotube Separation. 2015 , 119, 22737-22745		37
390	Electrostatics of DNA nucleotide-carbon nanotube hybrids evaluated from QM:MM simulations. 2015 , 7, 19586-95		8
389	Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. 2015 , 224, 53-63		162
388	Studying Different Binding and Intracellular Delivery Efficiency of ssDNA Single-Walled Carbon Nanotubes and Their Effects on LC3-Related Autophagy in Renal Mesangial Cells via miRNA-382. 2015 , 7, 25733-40		14
387	Graphene for DNA Biosensing. Springer Briefs in Molecular Science, 2015, 11-33	0.6	2
386	Impact of distributions and mixtures on the charge transfer properties of graphene nanoflakes. 2015 , 7, 1864-71		12

(2016-2015)

385	Effect of temperature on the selection of semiconducting single walled carbon nanotubes using Poly(3-dodecylthiophene-2,5-diyl). <i>Carbon</i> , 2015 , 84, 66-73	10.4	22
384	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. 2015 , 44, 4672-98		202
383	Binding of nucleobases with graphene and carbon nanotube: a review of computational studies. 2015 , 33, 1567-97		25
382	Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. <i>Springer Proceedings in Physics</i> , 2015 ,	0.2	3
381	Application of Carbon Nanotubes for Plant Genetic Transformation. <i>Springer Proceedings in Physics</i> , 2015 , 233-255	0.2	3
380	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. 2015 , 7, 4598-810		2015
379	. 2016,		60
378	DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning. 2016 , 6,		9
377	Probe Microscopic Studies of DNA Molecules on Carbon Nanotubes. 2016 , 6,		12
376	Nanostructured Materials: Bioengineering Platforms for Sensing Nucleic Acids. 2016 ,		2
375	Interaction Potency of Single-Walled Carbon Nanotubes with DNAs: A Novel Assay for Assessment of Hazard Risk. 2016 , 11, e0167796		
374	Chirality-Selective Photoluminescence Enhancement of ssDNA-Wrapped Single-Walled Carbon Nanotubes Modified with Gold Nanoparticles. 2016 , 12, 3164-71		11
373	Interaction mechanism between serine functional groups and single-walled carbon nanotubes. 2016 , 29, 69-76		3
372	Sensitive Electrochemical Prostate Specific Antigen Aptasensor: Effect of Carboxylic Acid Functionalized Carbon Nanotube and Glutaraldehyde Linker. 2016 , 28, 1134-1145		33
371	Robust polyelectrolyte microcapsules reinforced with carbon nanotubes. 2016 , 6, 114639-114643		14
370	Differentiating Left- and Right-Handed Carbon Nanotubes by DNA. 2016 , 138, 16677-16685		120
369	Interaction of Polymers with Single-Wall Carbon Nanotubes. 2016 , 120, 10094-10103		16
368	ReviewEngineering the Selectivity of the DNA-SWCNT Sensor. 2016 , 5, M3067-M3074		8

367	Carbon Nanotube Interconnects 🖪 Promising Solution for VLSI Circuits. 2016 , 57, 46-64	17
366	All-Carbon Thin-Film Transistors as a Step Towards Flexible and Transparent Electronics. 2016 , 2, 1600229	28
365	Carbon Nanotubes: A Promising Carrier for Drug Delivery and Targeting. 2016, 465-501	3
364	Ultrafast Photophysics of Single-Walled Carbon Nanotubes. 2016 , 4, 1670-1688	24
363	DNA sequencing by nanopores: advances and challenges. 2016 , 49, 413001	27
362	Nanoparticle-Templated Molecular Recognition Platforms for Detection of Biological Analytes. 2016 , 8, 197-223	23
361	Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study. 2016 , 12, 8512-8520	17
360	Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review. <i>Nanotechnology</i> , 2016 , 27, 332002	19
359	Inorganic Printable Electronic Materials. 2016 , 54-105	2
358	Si-Doped single-walled carbon nanotubes interacting with isoniazid-a density functional and molecular docking study. 2016 , 6, 94651-94660	7
357	Fabrication of biocompatible nanohybrid shish-kebab-structured carbon nanotubes with a mussel-inspired layer. 2016 , 6, 101660-101670	12
356	Application of Chemical Force Microscopy for Finding Selective Functional Groups for Discriminating Different Electronic Type Single-Walled Carbon Nanotubes. 2016 , 8, 23338-47	3
355	Sorting centimetre-long single-walled carbon nanotubes. 2016 , 6, 30836	3
354	Photodegrading hexaazapentacene dispersant for surface-clean semiconducting single-walled carbon nanotubes. <i>Carbon</i> , 2016 , 105, 448-453	6
353	Tethered anthracene pair as molecular tweezers for post-production separation of single-walled carbon nanotubes. 2016 , 657, 190-194	2
352	Attractive Interactions between DNACarbon Nanotube Hybrids in Monovalent Salts. 2016 , 120, 13831-13835	10
351	Auger-Assisted Ultrafast Fluorescence Measurement of Semiconductor Single-Walled Carbon Nanotubes. 2016 , 3, 1415-1420	1
350	Ultrafast Exciton Hopping Observed in Bare Semiconducting Carbon Nanotube Thin Films with Two-Dimensional White-Light Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2024-31	25

(2016-2016)

349	Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube photoluminescence probe: Fast relaxation by nucleobase autoionization mechanism. <i>Nano Research</i> , 2016 , 9, 571-583	10	7	
348	Advances in Nanotheranostics II. 2016 ,		3	
347	Functional Nanoparticles for Molecular Imaging-Guided Gene Delivery and Therapy. 2016 , 273-305		2	
346	Krthmungssensitive Biomembransensoren. 2016 ,			
345	Sugar-functionalized triptycenes used for dispersion of single-walled carbon nanotubes in aqueous solution by supramolecular interaction. 2016 , 40, 3300-3307		9	
344	Simulations of the PDF functions for dilute colloidal suspensions of molecular particles flowing in mesopores with rough surface boundaries. 2016 , 78, 15-29			
343	Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. 2016, 49, 461-70		113	
342	Impact of Redox-Active Molecules on the Fluorescence of Polymer-Wrapped Carbon Nanotubes. 2016 , 120, 3061-3070		55	
341	Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 320-6	6.4	19	
340	Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin. 2016 , 13, 541-8		1	
339	Recent advances in mycotoxins detection. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 532-545	11.8	178	
338	Electrical Modeling and Analysis of a Mixed Carbon Nanotube Based Differential Through Silicon via in 3-D Integration. 2016 , 15, 155-163		19	
337	Improving FET Properties of Semiconducting Single-Walled Carbon Nanotubes by Selective Extraction. 2016 , 63, 1749-1753			
336	Challenges in modelling nanoparticles for drug delivery. 2016 , 28, 023002		13	
335	Diameter-selective non-covalent functionalization of carbon nanotubes with porphyrin monomers. 2016 , 8, 2326-32		17	
334	Selective Wrapping of Few-Walled Carbon Nanotubes by a Serpent-Like Heterobimetallic Coordination Polymer. 2016 , 120, 1245-1251		7	
333	How does ss-DNA recognize the chirality of carbon nanotubes?. 2016 , 15, 60-64		1	
332	Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: a review. 2016 , 46, 93-118		195	

331	Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. 2016 , 143, 85-98		136
330	Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 123-135	11.8	116
329	Sorting Carbon Nanotubes. 2017 , 375, 13		48
328	High On/Off Ratio Field-Effect Transistor Based on Semiconducting Single-Walled Carbon Nanotubes by Selective Separation. 2017 , 6, M1-M4		5
327	Emerging investigators series: highly effective adsorption of organic aromatic molecules from aqueous environments by electronically sorted single-walled carbon nanotubes. 2017 , 3, 203-212		16
326	Progress Towards Applications of Carbon Nanotube Photoluminescence. 2017 , 6, M3075-M3077		25
325	Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. 2017 , 9, 7791-7804		14
324	High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins. 2017, 121, 3117-3125		6
323	Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions. 2017 , 12, 81		6
322	Electronic properties of carbon nanotubes complexed with a DNA nucleotide. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 7333-7342	3.6	3
321	Poly-cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials. <i>Angewandte Chemie</i> , 2017 , 129, 6304-6308	3.6	18
320	Poly-cytosine DNA as a High-Affinity Ligand for Inorganic Nanomaterials. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6208-6212	16.4	99
319	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. 2017 , 9, 7998-8006		17
318	Carbon nanotube radio-frequency electronics. <i>Nanotechnology</i> , 2017 , 28, 212001	3.4	16
317	Effect of temperature and diameter of narrow single-walled carbon nanotubes on the viscosity of nanofluid: A molecular dynamics study. 2017 , 434, 193-199		11
316	Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. 2017 , 9, 23287-23301		87
315	Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9326-9330	16.4	7
314	Micro-Raman spectroscopy as an enabling tool for long-term intracellular studies of nanomaterials at nanomolar concentration levels. 2017 , 5, 6536-6545		3

313	Two-way correspondence between carbon nanotubes and caps: Development of a numerical algorithm and a tool for organic cap synthesis. <i>Carbon</i> , 2017 , 116, 678-685	10.4	3
312	On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors. <i>Advanced Materials</i> , 2017 , 29, 1606757	24	30
311	High-Throughput Optical Imaging and Spectroscopy of One-Dimensional Materials. 2017 , 23, 9703-9710)	
310	Spin filtering with poly-T wrapped single wall carbon nanotubes. 2017 , 9, 5155-5163		10
309	Theoretical study of the adsorption of aromatic amino acids on a single-wall boron nitride nanotube with empirical dispersion correction. 2017 , 95, 710-716		12
308	Tip Functionalization of Finite Single-Walled Carbon Nanotubes and Its Impact on the Ground and Excited State Electronic Structure. 2017 , 121, 8601-8612		24
307	A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo. 2017, 1,		111
306	Separation and optical identification of semiconducting and metallic single-walled carbon nanotubes. 2017 , 254, 1600659		15
305	Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography. 2017 , 1483, 93-100		4
304	30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. 2017 , 32, 107-127		43
303	Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization. 2017 , 72, 62-68		7
302	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. 2017 , 50, 8002-8009		10
301	High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. 2017 , 5, 11339-11368		29
300	Structure Sorting of Large-Diameter Carbon Nanotubes by NaOH Tuning the Interactions between Nanotubes and Gel. <i>Advanced Functional Materials</i> , 2017 , 27, 1700278	15.6	17
299	A Low Energy Route to DNA-Wrapped Carbon Nanotubes via Replacement of Bile Salt Surfactants. <i>Analytical Chemistry</i> , 2017 , 89, 10496-10503	7.8	30
298	DNA-Assisted Dispersion of Carbon Nanotubes and Comparison with Other Dispersing Agents. 2017 , 9, 35287-35296		22
297	Diameter-Selective Separation of Semiconducting Single-Walled Carbon Nanotubes in Large Diameter Range. 2017 , 254, 1700294		9
296	Recent progress on the structure separation of single-wall carbon nanotubes. <i>Nanotechnology</i> , 2017 , 28, 452001	3.4	17

295	Engineering Molecular Recognition with Bio-mimetic Polymers on Single Walled Carbon Nanotubes. 2017 ,		6
294	Dispersion of single-walled carbon nanotubes using nucleobase-containing poly(acrylamide) polymers. 2017 , 55, 2611-2617		6
293	Spatially Selective, High-Density Placement of Polyfluorene-Sorted Semiconducting Carbon Nanotubes in Organic Solvents. 2017 , 11, 7697-7701		8
292	Optically Triggered Melting of DNA on Individual Semiconducting Carbon Nanotubes. <i>Angewandte Chemie</i> , 2017 , 129, 9454-9458	3.6	3
291	Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis. <i>Analytical Chemistry</i> , 2017 , 89, 13235-13244	7.8	18
290	Conformation and electronic structure of DNA in carbon nanotubes: a molecular dynamics and first-principles study. 2017 , 12, 490-493		
289	Assembly and Electronic Applications of Colloidal Nanomaterials. <i>Advanced Materials</i> , 2017 , 29, 160389	9524	78
288	DNA-Directed Self-Assembly of Highly Ordered and Dense Single-Walled Carbon Nanotube Arrays. 2017 , 1500, 245-256		2
287	Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. 2017 , 49, 36-44		48
286	Structure and property of multiple amino acids assembled on the surface of a CNT. 2017 , 85, 7-12		3
285	Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. 2017 , 244, 36-53		28
284	Functionalization of multi-walled carbon nanotubes with pramipexole for immobilization of palladium nanoparticles and investigation of catalytic activity in the Sonogashira coupling reaction. 2017 , 31, e3600		23
283	Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 065102	1.4	10
282	Enhancement of Raman scattering from single-walled carbon nanotubes on densely-arranged two-dimensional gold nanoparticle assemblies. 2017 , 654, 151-156		
281	Development and evaluation of Ehermoelectric power-generating paper Lising carbon nanotube-composite paper. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 06GE10	1.4	6
280	Directed Assembly of Carbon Nanotubes. 2017 , 27-45		
279	THE ROLE OF CARBON NANOTUBES IN NANOBIOMEDICINES. 2017 , 9, 235		2
278	A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. 2018 , 1, 415-439		77

277	Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples 2018 , 8, 10465-10473		23
276	Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. 2018 , 3, 236-244		38
275	On/off ratio enhancement in single-walled carbon nanotube field-effect transistor by controlling network density via sonication. 2018 , 444, 442-447		2
274	Reversible dispersion and release of carbon nanotubes cooperative clamping interactions with hydrogen-bonded nanorings. 2018 , 9, 4176-4184		12
273	How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. 2018 , 14, e1703305		37
272	Controlled gasIlquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials. Japanese Journal of Applied Physics, 2018 , 57, 0102A6	1.4	3
271	Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted AzideAlkyne Cycloaddition. 2018 , 51, 755-762		19
270	Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion-Image Interactions. 2018 , 122, 1545-1550		3
269	Facile Nondestructive Assembly of Tyrosine-Rich Peptide Nanofibers as a Biological Glue for Multicomponent-Based Nanoelectrode Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1705729	15.6	12
268	Orientation Control of Molecularly Functionalized Surfaces Applied to the Simultaneous Alignment and Sorting of Carbon Nanotubes. <i>Angewandte Chemie</i> , 2018 , 130, 2423-2427	3.6	8
267	Orientation Control of Molecularly Functionalized Surfaces Applied to the Simultaneous Alignment and Sorting of Carbon Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2399-2403	16.4	15
266	Preparation and application of AgNPs/SWCNTs nanohybrid as an electroactive label for sensitive detection of miRNA related to lung cancer. 2018 , 260, 824-831		27
265	Spin Filtering with Helical Potentials. 2018 , 131-172		
264	Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening. 2018 , 10, 19010-19018		27
263	Functionalization of polyfluorene-wrapped carbon nanotubes via copper-mediated azidelkyne cycloaddition. 2018 , 9, 2873-2879		16
262	Ultrasensitive detection of miRNA-155 using multi-walled carbon nanotube-gold nanocomposites as a novel fluorescence quenching platform. 2018 , 266, 221-227		23
261	Immunostimulatory CpG on Carbon Nanotubes Selectively Inhibits Migration of Brain Tumor Cells. 2018 , 29, 1659-1668		13
260	Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures. 2018 , 429, 264-271		8

259	Toward Bioelectronic Nanomaterials: Photoconductivity in Protein Porphyrin Hybrids Wrapped around SWCNT. <i>Advanced Functional Materials</i> , 2018 , 28, 1704031	23
258	A Comparative Study of Field Emission From Semiconducting and Metallic Single-Walled Carbon Nanotube Planar Emitters. 2018 , 255, 1700268	14
257	Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. 2018 , 2, 36-63	80
256	DNA-mediated assembly of carbon nanotubes for enhancing electrochemiluminescence and its application. 2018 , 256, 953-961	10
255	NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. 2018 , 6, 349-365	181
254	Selection and Screening of DNA Aptamers for Inorganic Nanomaterials. 2018 , 24, 2525-2532	32
253	Vertically aligned carbon nanotubes: production and applications for environmental sustainability. 2018 , 20, 5245-5260	21
252	Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. 2018 , 10, 22087-22139	45
251	Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics. 2018, 3, 17108-17115	3
250	Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. 2018 , 10, 5468-5479	44
249	Tuning of Bandstructure of SingleWalled Carbon Nanotube Functionalized with ssDNA Oligonucleotide Sequence. 2018 ,	
248	Direct Measurement of Coupling at the Single-Molecule Level using a Carbon Nanotube Force Sensor. 2018 , 18, 7883-7888	3
247	Helical liquid in carbon nanotubes wrapped with DNA molecules. 2018 , 98,	3
246	Reduced Graphene Oxide-Oligonucleotide Interfaces: Understanding Based on Electrochemical Oxidation of Guanines. 2018 , 3, 15464-15470	2
245	Differences in the response of the near-infrared absorbance spectra of single-walled carbon nanotubes; Effects of chirality and wrapping polymers. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 6 172, 684-689	7
244	Novel Strategy for the Investigation on Chirality Selection of Single-Walled Carbon Nanotubes with DNA by Electrochemical Characterization. <i>Analytical Chemistry</i> , 2018 , 90, 12810-12814	15
243	Preparation of stimulus-responsive, polyfluorene-wrapped carbon nanotubes via palladium cross coupling. 2018 , 56, 2723-2729	6
242	Pillar[5]arene-Decorated Single-Walled Carbon Nanotubes. 2018 , 3, 13935-13943	11

241	Supramolecular interactions of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-thiophene] with single-walled carbon nanotubes. 2018 , 7, 487-495	18
240	Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity. 2018 , 34, 13672-13679	16
239	Direct observation of the wrapping/unwrapping of ssDNA around/from a SWCNT at the single-molecule level: towards tuning the binding mode and strength. 2018 , 10, 18586-18596	16
238	Carbon dioxide electrolysis and carbon deposition in alkaline-earth-carbonate-included molten salts electrolyzer. 2018 , 42, 15663-15670	10
237	A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. 2018 , 13, e0197972	6
236	A Novel Magnetic Carbon Nanotubes Functionalized with Pyridine Groups: Synthesis, Characterization and Their Application as an Efficient Carrier for Plasmid DNA and Aptamer. 2018 , 3, 6743-6749	10
235	Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. 2018 , 2018, 6254692	3
234	Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4336-4343	23
233	Nitrogen doped chiral carbonaceous nanotube for ultrasensitive DNA direct electrochemistry, DNA hybridization and damage study. 2018 , 1038, 41-51	1
232	Thickness-dependent thermoelectric power factor of polymer-functionalized semiconducting carbon nanotube thin films. 2018 , 19, 581-587	14
231	Decoration of polyfluorene-wrapped carbon nanotube thin films via strain-promoted azidelkyne cycloaddition. 2018 , 9, 4460-4467	15
230	Interfacial characteristics of carbon nanotube-polymer composites: A review. 2018 , 114, 149-169	88
229	Functionalized Nanomaterials for Chromatography. 2018 , 403-414	1
228	Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices. <i>Advanced Materials</i> , 2019 , 31, e1800750	69
227	Stochastic RNA Walkers for Intracellular MicroRNA Imaging. <i>Analytical Chemistry</i> , 2019 , 91, 11253-112587.8	28
226	Chemistries for DNA Nanotechnology. 2019 , 119, 6384-6458	176
225	Organizing End-Site-Specific SWCNTs in Specific Loci Using DNA. 2019 , 141, 11923-11928	27
224	Single-Particle Tracking for Understanding Polydisperse Nanoparticle Dispersions. 2019 , 15, e1901468	7

223	Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration. 2019 , 114, 113619	8
222	Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes. 2019 , 7, 612	18
221	Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. 2019 , 141, 17861-17866	27
220	Graphene: Simultaneous Electrochemical Dual-Electrode Exfoliation of Graphite toward Scalable Production of High-Quality Graphene (Adv. Funct. Mater. 37/2019). <i>Advanced Functional Materials</i> , 15.6 2019 , 29, 1970257	4
219	Enhanced Sensitivity of Dopamine Biosensors: An Electrochemical Approach Based on Nanocomposite Electrodes Comprising Polyaniline, Nitrogen-Doped Graphene, and DNA-Functionalized Carbon Nanotubes. 2019 , 166, B1415-B1425	16
218	Carbon Nanotubes in the 21st Century: An Advancement in Real Time Monitoring and Control of Environmental Water. 2019 , 265-301	3
217	Detection of in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. 2019 , 8,	25
216	Design of Refolding DNA Aptamer on Single-Walled Carbon Nanotubes for Enhanced Optical Detection of Target Proteins. <i>Analytical Chemistry</i> , 2019 , 91, 12704-12712	8
215	Origins of the variability of the electrical characteristics of solution-processed carbon nanotube thin-film transistors and integrated circuits. 2019 , 1, 636-642	12
214	Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. 2019 , 19,	139
213	DNA-directed amphiphilic self-assembly as a chemifunctional/multiscale-structuring strategy for high-performance LiB batteries. 2019 , 7, 4084-4092	2
212	EConcave Hosts for Curved Carbon Nanomaterials. 2019 , 25, 6673-6692	31
211	Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction. 2019 , 13, 2567-2578	41
210	Quantification of the Number of Adsorbed DNA Molecules on Single-Walled Carbon Nanotubes. 2019 , 123, 4837-4847	31
209	Controlled Patterning of Carbon Nanotube Energy Levels by Covalent DNA Functionalization. 2019 , 13, 8222-8228	20
209		20
	13, 8222-8228	

205	Exploiting the Physiochemical Interactions between Single-Walled Carbon Nanotubes and Hydrogel Microspheres To Afford Chirally Pure Nanotubes. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3615-3625	5.6	3	
204	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9758-9769	16.4	23	
203	Single-Walled Carbon Nanotubes. 2019 ,		11	
202	Surface-Enhanced Raman Scattering Probing the Translocation of DNA and Amino Acid through Plasmonic Nanopores. <i>Analytical Chemistry</i> , 2019 , 91, 6275-6280	7.8	23	
201	Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via AzideAlkyne Cycloaddition. 2019 , 1, 797-803		9	
200	Augmentation of C17.2 Neural Stem Cell Differentiation via Uptake of Low Concentrations of ssDNA-Wrapped Single-Walled Carbon Nanotubes. 2019 , 3, e1800321		1	
199	Optoelectrical and mechanical properties of multiwall carbon nanotube-integrated DNA thin films. <i>Nanotechnology</i> , 2019 , 30, 245704	3.4	7	
198	Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. 2019 , 6, 181605		24	
197	Optical Absorption Spectroscopy of DNA-Wrapped HiPco Carbon Nanotubes. 2019 , 943, 95-99		0	
196	Implantable Nanotube Sensor Platform for Rapid Analyte Detection. 2019 , 19, e1800469		6	
195	1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability. 2019 ,		9	
194	Functionalization of Carbon Nanomaterials for Biomedical Applications. 2019 , 5, 72		28	
193	Theoretical Model for Surface Forces between Cytosine and CNT(6,6-6) Nanotube: Geometry Optimization, Molecular Structure, Intermolecular Hydrogen Bond, Spectroscopic (NMR, UV/Vis, Excited State), FMO, MEP, and HOMOIUMO Investigations. 2019 , 93, 2429-2443		3	
192	Functionalized Carbon Nanotube Excited States and Optical Properties. 2019 , 181-207		1	
191	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. <i>Angewandte Chemie</i> , 2019 , 131, 9860-9871	3.6	5	
190	Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems. 2019 , 141, 20177-20186		21	
189	Carbon Nanomaterials. 2019 , 3-38		3	
188	DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. 2019 , 11, 2225-2233		16	

187	Synthesis, Characterization, and Applications of Carbon Nanotubes. 2019 , 1-45	10
186	History and National Initiatives of Carbon Nanotube and Graphene Research in Brazil. 2019 , 49, 288-300	4
185	Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. 2019 , 9, 31-49	27
184	Carbon Nanotubes. 2019 , 469-529	6
183	Carbon Nanotubes: Electronic Structure and Spectroscopy. 2019 , 205-218	3
182	Targeted codelivery of doxorubicin and IL-36lexpression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. 2019 , 15, 129-141	20
181	Metal to semimetal conversion by band structure engineering of SWCNT by DNA nucleobase functionalization. 2019 , 25, 1563-1570	О
180	Metal to semiconductor conversion by hydrogenation in guanine functionalized SWCNT. 2019 , 25, 1863-1874	1
179	Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses. 2020 , 565, 55-62	6
178	Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. 2020 , 14, 948-963	44
177	Paper Dye-Sensitized Solar CelliBased on Carbon-Nanotube-Composite Papers. 2020, 13, 57	5
176	Carbon nanotube electronics for IoT sensors. 2020 , 4, 012001	17
175	Polyaniline/carbon nanotube-supported nanocomposite electrode for detection of organic pollutants. 2020 , 279-296	2
174	Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. 2020 , 12, 23371-23390	9
173	Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. 2020,	3
172	Organization of Bio-Molecules in Bulk and Over the Nano-Substrate: Perspective to the Molecular Dynamics Simulations. 2020 , 149-166	
171	Role of constituents for the chirality isolation of single-walled carbon nanotubes by the reversible phase transition of a thermoresponsive polymer 2020 , 10, 24570-24576	2
170	Temperature-dependent Oxidation of Carbon Nanotubes for Metal/Semiconductor Separation. 2020 , 49, 1154-1158	1

169	Computer-aided design and synthesis of molecular imprinting polymers based on doubly oriented functional multiwalled carbon nanotubes for electrochemically sensing bisphenol A. 2020 , 157, 104767		11
168	Carbon Nanotubes. 2020 , 107-147		
167	. 2020,		2
166	Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage. 2020 , 14, 12148-12158		7
165	Stronger Adsorption of Phosphorothioate DNA Oligonucleotides on Graphene Oxide by van der Waals Forces. 2020 , 36, 13708-13715		6
164	Carbon nanotube dielectrophoresis: Theory and applications. 2020 , 41, 1893-1914		3
163	The Handedness of DNA Assembly around Carbon Nanotubes Is Determined by the Chirality of DNA. 2020 , 124, 5362-5369		2
162	Pentiptycene Polymer/Single-Walled Carbon Nanotube Complexes: Applications in Benzene, Toluene, and -Xylene Detection. 2020 , 14, 7297-7307		20
161	Quantendefekte als Werkzeugkasten fildie kovalente Funktionalisierung von Kohlenstoffnanorfiren mit Peptiden und Proteinen. <i>Angewandte Chemie</i> , 2020 , 132, 17885-17891	3.6	2
160	Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17732-17738	16.4	30
159	Carbon nanotube-mediated antibody-free suspension array for determination of typical endocrine-disrupting chemicals. 2020 , 187, 202		2
158	Dispersion quality of single-walled carbon nanotubes reveals the recognition sequence of DNA. Nanotechnology, 2020 , 31, 255708	3.4	
157	Regulating the aggregation of anionic nanoparticles for size-tunable nanochannels. 2020 , 604, 118076		2
156	Carbon nanotube sorting due to commensurate molecular wrapping. 2020 , 12, 15725-15735		1
155	Liquid-Crystal Phase Optimization Using the Alignment Relay Technique for the Deposition of Single-Walled Carbon Nanotubes. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2118-2122	5 .6	5
154	Carrier Transport Engineering in Carbon Nanotubes by Chirality-Induced Spin Polarization. 2020 , 14, 3389	9-339	6 8
153	In situ chemical polymerization of conducting polymer nanocomposites: Effect of DNA-functionalized carbon nanotubes and nitrogen-doped graphene as catalytic molecular templates. 2020 , 389, 124500		17
152	Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. 2020 , 120, 2693-2758		128

151	A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties. <i>Carbon</i> , 2020 , 161, 350-358	10.4	15
150	DNA-Guided Assemblies toward Nanoelectronic Applications 2020 , 3, 2702-2722		17
149	Separation of Large-Diameter Metallic and Semiconducting Single-Walled Carbon Nanotubes by Iterative Temperature-Assisted Gel-Column Chromatography for Enhanced Device Applications. 2020 , 257, 1900714		5
148	Facile Fabrication of Semiconducting Single-Walled Carbon Nanotubes Patterns on Flexible Substrate Based on a Photoimmobilization Technique. 2020 , 12, 8722-8729		8
147	Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. <i>Advanced Materials</i> , 2020 , 32, e1905654	24	24
146	Near Infrared-Emitting Nanoparticles for Biomedical Applications. 2020,		9
145	Pathway-Dependent Structures of DNA-Wrapped Carbon Nanotubes: Direct Sonication vs Surfactant/DNA Exchange. 2020 , 124, 9045-9055		12
144	Plant Nanobionic Sensors for Arsenic Detection. <i>Advanced Materials</i> , 2021 , 33, e2005683	24	29
143	Understanding interfacial influence on properties of polymer nanocomposites. 2021, 22, 100879		29
142	Chirality luminescent properties of single-walled carbon nanotubes during redox reactions. 2021 , 112, 110748		O
141	Biomolecule-Directed Carbon Nanotube Self-Assembly. 2021 , 10, e2001162		12
140	Molecular insights on the dynamic stability of peptide nucleic acid functionalized carbon and boron nitride nanotubes. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 219-228	3.6	3
139	DNA-Guided Self-assembly of Carbon Nanotube Electronics. 2021 , 481-501		
138	Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. 2021 , 15, 4699-4709		9
137	Optical Response Characteristics of Single-Walled Carbon Nanotube Chirality Exposed to Oxidants with Different Oxidizing Power. 2021 , 26,		1
136	Antioxidant potential of tea assessed by optical absorption spectroscopy in DNA-encased carbon nanotubes. 2021 , 39, 23-28		O
135	Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. 2021 , 12, e164	8	1
134	Mechanical and Electrical Properties of DNA Hydrogel-Based Composites Containing Self-Assembled Three-Dimensional Nanocircuits. 2021 , 11, 2245		1

133	Poly-adenine DNA as the high-affinity goalkeeper of mesoporous silica nanoparticles for molecular encapsulation and signal-amplification detection. 2021 , 23, 100933	
132	Degradable Fluorene- and Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes. 2021 , 54, 4363-4374	5
131	Machine-Perception Nanosensor Platform to Detect Cancer Biomarkers.	
130	Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. <i>Analytical Chemistry</i> , 7.8	10
129	Review of Sorted Metallic Single-Walled Carbon Nanotubes. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2002 4.6 6	2
128	Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes. 2021 , 15, 10406-10414	8
127	In Vivo Biointeraction and Alleviation of Toxicity of MWCNTs upon Functionalization with ssDNA in a Caenorhabditis elegans Model. 2021 , 50, 4974-4990	
126	Adsorption immobilization of biomolecules from subphase on Langmuir monolayers of organo-modified single-walled carbon nanotube. 2021 , 621, 126559	1
125	Effects of the Molecular Weight of PCz on Selective Extraction of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. 69, 11-21	O
124	Single-Walled Carbon Nanotube-Based Biosensors for Detection of Bronchial Inflammation. 2130002	
123	Band structure dependent electronic localization in macroscopic films of single-chirality single-wall carbon nanotubes. <i>Carbon</i> , 2021 , 183, 774-779	2
122	Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes. 2021 , 15, 923-933	5
121	Nanostructured Materials: Bioengineering Platforms for Sensing Nucleic Acids. 2021,	О
120	Directed assembly of multiplexed single chirality carbon nanotube devices. 2021 , 129, 024305	O
119	Amino-acid-substituted polyacetylene-based chiral corellhell microspheres: helix structure induction and application for chiral resolution and adsorption.	2
118	Functionalized Carbon Nanotubes for Bioapplications. 197-233	O
117	Supramolecular Chemistry of Carbon Nanotubes. 263-300	2
116	Carbon Nanotube B iomolecule Interactions: Applications in Carbon Nanotube Separation and Biosensing. 2005 , 253-271	7

115	The Selective Chemistry of Single Walled Carbon Nanotubes. 2005 , 151-180		2
114	Direct Synthesis and Integration of SWNT Devices. 2009 , 43-61		1
113	Properties and Applications of Doped Carbon Nanotubes. 2009 , 223-269		2
112	Non-Covalent Immobilization of Oligonucleotides on Single-Walled Carbon Nanotubes. <i>Springer Proceedings in Physics</i> , 2013 , 291-307	0.2	3
111	Temperature and pH-responsive "smart" carbon nanotube dispersions. 2010 , 625, 27-38		6
110	Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections. 2020 , 231-277		2
109	DNA-Directed Assembly of Nanophase Materials: An Updated Review. 2013 , 157-183		1
108	Carbon Nanotubelliposome Complexes in Hydrogels for Controlled Drug Delivery via Near-Infrared Laser Stimulation. <i>ACS Applied Nano Materials</i> , 2021 , 4, 331-342	5.6	5
107	Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl pyrrolidone) Chains. 2007 , 2007, 1-5		1
106	Chemistry of Carbon Nanotubes. 2006 ,		3
105	Chemistry of Carbon Nanotubes. 2006 , 77-147		1
104	Chemistry of Carbon Nanotubes. 2006 , 37-108		2
103	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. 2011, 13-48		2
102	Fabrication of a CHMOSFET with a Combination of P-Carbon Nanotube and an Enhanced NMOS.		1
101	DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring. 2013 , 12, 73-95		4
100	Competing interactions in DNA assembly on graphene. 2011 , 6, e18442		87
99	An Overview on Carbon Nanotubes. 2017 , 3,		3
98	Carbon Nanotube Structures and Compositions. 2007 , 7-18		4

(2011-2010)

97	POLYMER-ASSISTED ALIGNMENT AND ASSEMBLY OF CARBON NANOTUBES. 2010 , 010, 131-142		4
96	The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes. 2007 , 31, 483-489		2
95	Application of Carbon Nanotubes in Nanomedicine. 2015 , 90-128		2
94	DNA Computing Using Carbon Nanotube-DNA Hybrid Nanostructure. 2016 , 744-774		1
93	Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. 2021 , 13, 5103-5119		0
92	Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube-DNA films. <i>Nanotechnology</i> , 2021 , 33,	3.4	O
91	DEVELOPMENT OF ARC DISCHARGE METHOD IN ORGANIC SOLVENTS FOR THE FORMATION OF DNA ENCAPSULATED CARBON NANOTUBES. 2005 , 71-74		
90	Quantum Jewels in Carbon Nanotubes. 2005 , 2, 03		
89	Carbon Nanotubes and Bismuth Nanowires. 2005 ,		1
88	Optical Stark Effect in Semiconducting Single-Walled Carbon Nanotubes. 2006,		
88	Optical Stark Effect in Semiconducting Single-Walled Carbon Nanotubes. 2006, Carbon Nanotubes in Cancer Therapy and Diagnosis.		
87	Carbon Nanotubes in Cancer Therapy and Diagnosis.		1
8 ₇ 86	Carbon Nanotubes in Cancer Therapy and Diagnosis. Multifunctional Nanotubes and Nanowires for Cancer Diagnosis and Therapy. Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology		1
87 86 85	Carbon Nanotubes in Cancer Therapy and Diagnosis. Multifunctional Nanotubes and Nanowires for Cancer Diagnosis and Therapy. Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues. 2008, 283-316 Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption		
87 86 85 84	Carbon Nanotubes in Cancer Therapy and Diagnosis. Multifunctional Nanotubes and Nanowires for Cancer Diagnosis and Therapy. Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues. 2008, 283-316 Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy. 2009, 10, 9-13		
87 86 85 84 83	Carbon Nanotubes in Cancer Therapy and Diagnosis. Multifunctional Nanotubes and Nanowires for Cancer Diagnosis and Therapy. Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues. 2008, 283-316 Relative Content Evaluation of Single-walled Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy. 2009, 10, 9-13 Creation of Nanobio Materials Using Electrolyte Plasmas in the Atmosphere. 2010, 36, 162-167		

79	Beyond Conventional CMOS Technology: Challenges for New Design Concepts. 2012 , 279-301	
78	Results and Discussion. 2012 , 41-179	
77	Nonlinear Raman Scattering Spectroscopy for Carbon Nanomaterials. 2012, 99-118	
76	DNA-Directed Assembly of Multicomponent Single-Walled Carbon Nanotube Devices. <i>The Electrical Engineering Handbook</i> , 2012 , 1017-1036	
75	Laser-Irradiation-Induced Enrichment of Metallic Single-Walled Carbon Nanotubes from As-Synthesized Nanotubes Individually Dispersed in Aqueous Solution. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 105101	1.4
74	Science and Applications of Photomechanical Actuation of Carbon Nanostructures. 2012 , 177-236	
73	Comparison of Poly(rI) and Poly(rA) Adsorption on Carbon Nanotubes. <i>Springer Proceedings in Physics</i> , 2013 , 275-290	0.2
72	Peptide-Based Carbon Nanotube Dispersal Agents. 217-245	
71	Molecular Combing of DNA and Carbon Nanotubes by a Moving Meniscus. 2013,	
70	Fabrication of Nanowires and Their Applications. 2014 , 89-128	
69	Modyfikacja i funkcjonalizacja nanorurek wglowych. 2014 ,	
	Modyfrkacja Frufikcjonatizacja fianorurek wgtowych. 2014 ,	
68	Introduction. Springer Briefs in Molecular Science, 2015 , 1-10	0.6
		0.6
68	Introduction. Springer Briefs in Molecular Science, 2015 , 1-10 Convergence of Nanotechnology and Microbiology. Advances in Environmental Engineering and	
68 67	Introduction. Springer Briefs in Molecular Science, 2015, 1-10 Convergence of Nanotechnology and Microbiology. Advances in Environmental Engineering and Green Technologies Book Series, 2015, 313-342	0.4
68 67 66	Introduction. Springer Briefs in Molecular Science, 2015, 1-10 Convergence of Nanotechnology and Microbiology. Advances in Environmental Engineering and Green Technologies Book Series, 2015, 313-342 Carbon Nanotubes: Synthesis, Properties and Applications. 89-138	o.4 5
68 67 66 65	Introduction. Springer Briefs in Molecular Science, 2015, 1-10 Convergence of Nanotechnology and Microbiology. Advances in Environmental Engineering and Green Technologies Book Series, 2015, 313-342 Carbon Nanotubes: Synthesis, Properties and Applications. 89-138 Quantum-Mechanical Investigations of Noncovalent Interactions of Carbon Materials. 2015, 1-32	o.4 5

61	Chapter 3:Carbon Nanomaterials in Analytical Separations. RSC Detection Science, 2018, 69-104	0.4	
60	The Comparison of Optical Properties of Acridine Orange when Interact with Hybrids of Single-Walled Carbon Nanotubes and Single-Stranded DNA or DoubleStranded DNA. 2018 , 2,		
59	Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4791-4802	6.4	4
58	Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. <i>Analytical Chemistry</i> , 2020 , 92, 8901-8908	7.8	1
57	Global Alignment of Carbon Nanotubes via High Precision Microfluidic Dead-End Filtration. <i>Advanced Functional Materials</i> , 2107411	15.6	2
56	CHAPTER 1:Carbon Nanotubes. RSC Nanoscience and Nanotechnology, 2021, 1-110		
55	Protecting workers and the environment: An environmental NGOE perspective on nanotechnology. 2006 , 11-22		
54	Preparation, Characterization and Cellular Biological Impact of Water Soluble Multiwalled Carbon Nanotubes. 2008 , 198-201		
53	Effect on near-infrared absorption spectra of DNA/single-walled carbon nanotube (SWNT) complexes by adsorption of a blocking reagent. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 193, 111072	2 ⁶	0
52	Probing the adsorption behavior and free energy landscape of single-stranded DNA oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 ,	3.4	
52 51			10
	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 ,		10
51	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 , A perception-based nanosensor platform to detect cancer biomarkers. <i>Science Advances</i> , 2021 , 7, eabjo The molecular origin of the electrostatic gating of single-molecule field-effect biosensors	852 3	
51 50	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 , A perception-based nanosensor platform to detect cancer biomarkers. <i>Science Advances</i> , 2021 , 7, eabjo The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations <i>Physical Chemistry Chemical Physics</i> , 2022 ,	852 3	0
51 50 49	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 , A perception-based nanosensor platform to detect cancer biomarkers. <i>Science Advances</i> , 2021 , 7, eabj0 The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations <i>Physical Chemistry Chemical Physics</i> , 2022 , Nanomaterials in transistors. 2021 ,	8 Б2 3 3.6	0
51 50 49 48	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 , A perception-based nanosensor platform to detect cancer biomarkers. <i>Science Advances</i> , 2021 , 7, eabjo The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations <i>Physical Chemistry Chemical Physics</i> , 2022 , Nanomaterials in transistors. 2021 , Biosensing with Fluorescent Carbon Nanotubes <i>Angewandte Chemie - International Edition</i> , 2022 , Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a	8 5.2 3 3.6	8
51 50 49 48 47	oligonucleotides on single-layer MoSwith molecular dynamics. <i>Nanotechnology</i> , 2021 , A perception-based nanosensor platform to detect cancer biomarkers. <i>Science Advances</i> , 2021 , 7, eabj0 The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations <i>Physical Chemistry Chemical Physics</i> , 2022 , Nanomaterials in transistors. 2021 , Biosensing with Fluorescent Carbon Nanotubes <i>Angewandte Chemie - International Edition</i> , 2022 , Potentiometric aptasensing of Escherichia coli based on electrogenerated chemiluminescence as a highly sensitive readout <i>Biosensors and Bioelectronics</i> , 2021 , 200, 113923	8 5.2 3 3.6	8 0

43	Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie,	3.6	
42	Biological recognition elements. 2022 , 213-239		
41	Nanomaterials for Quantum Information Science and Engineering Advanced Materials, 2022, e2109621	24	6
40	Oncometabolite Fingerprinting Using Fluorescent Single-Walled Carbon Nanotubes. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101591	4.6	3
39	Defected Carbon Nanotubes and Their Application. <i>Advances in Material Research and Technology</i> , 2022 , 111-141	0.4	
38	Carbon based electronic technology in post-Moore era: progress, applications and challenges. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2022 , 71, 068503	0.6	1
37	Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics <i>Advanced Science</i> , 2022 , e2200054	13.6	3
36	Tungsten Disulfide Nanosheet-Based Field-Effect Transistor Biosensor for DNA Hybridization Detection. ACS Applied Nano Materials,	5.6	1
35	Guanine-Specific Chemical Reaction Reveals ssDNA Interactions on Carbon Nanotube Surfaces Journal of Physical Chemistry Letters, 2022 , 2231-2236	6.4	2
34	The role of the bile salt surfactant sodium deoxycholate in aqueous two-phase separation of single-wall carbon nanotubes revealed by systematic parameter variations. <i>Carbon</i> , 2022 ,	10.4	2
33	Introducing Chirality Concept of Single-Walled Carbon Nanotubes to High School Students and Undergraduates by Paper Origami in Their Science Projects. <i>Journal of Chemical Education</i> ,	2.4	
32	Printable Inks and Deformable Electronic Array Devices. <i>Nanoscale Horizons</i> ,	10.8	1
31	DNA-Mediated Assembly of Carbon Nanomaterials ChemPlusChem, 2022, 87, e202200089	2.8	
30	High-Throughput Experimentation for Selective Growth of Small-Diameter Single-Wall Carbon Nanotubes Using Ru-Promoted Co Catalysts. <i>Chemistry of Materials</i> ,	9.6	
29	N/O?B dative bond supplemented by N-HN/HC Hydrogen Bonds make BN-cages an attractive candidate for DNA-nucleobase adsorption [An MP2 prediction. <i>Physical Chemistry Chemical Physics</i> ,	3.6	О
28	Cell cycle-dependent endocytosis of DNA wrapped single-walled carbon nanotubes (DNA-SWCNT) by neural progenitor cells. <i>Biophysical Reports</i> , 2022 , 100061		
27	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. <i>Advanced Functional Materials</i> , 2201069	15.6	2
26	Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. <i>Analytical Chemistry</i> , 2022 , 94, 9941-9951	7.8	4

25	Interlocking of Single-Walled Carbon Nanotubes with Metal-Tethered Tetragonal Nanobrackets to Enrich a Few Hundredths of a Nanometer Range in Their Diameters. 2022 , 16, 12500-12510	О
24	Chemical properties of carbon nanotubes. 2022 , 281-304	О
23	The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube. 2022 , 12, 3380	0
22	Mechanically interlocked derivatives of carbon nanotubes: synthesis and potential applications.	1
21	Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction. 2022 , 14, 15484-15497	0
20	Engineered Materials for Probing and Perturbing Brain Chemistry. 2022 , 89-168	O
19	Optimization of ssDNA-SWCNT Ultracentrifugation via Efficacy Measurements. 2022, 11, 101009	0
18	Insight into designing of 2-pyridone derivatives for COVID-19 drug discovery - A computational study.	О
17	Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics.	O
16	DNA-Wrapped CNT Sensor for Small Nucleic Acid Detection: Influence of Short Complementary Sequence.	2
15	Fabrication of small-diameter carbon nanotubes using a coordination polymer with a free-oxygen ligand as a catalyst precursor. 2023 , 293, 126938	O
14	Noncovalent Functionalization of Carbon Nanotubes. 2022 , 421-448	O
13	Divalent Metal Cation Optical Sensing Using Single-Walled Carbon Nanotube Corona Phase Molecular Recognition.	O
12	van der Waals SWCNT@BN Heterostructures Synthesized from Solution-Processed Chirality-Pure Single-Wall Carbon Nanotubes.	1
11	Single-chirality nanotube synthesis by guided evolutionary selection. 2022, 8,	О
10	Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. 2022 , 340639	O
9	Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications.	0
8	The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration. 2206774	O

7	Diameter-Selective Sorting of Single-Walled Carbon Nanotubes Using EMolecular Tweezers for Energy Materials.	О
6	Atomistic simulation of biological molecules interacting with nanomaterials. 2023, 225-269	O
5	Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. 2023 , 1-18	1
4	Surface engineering of colloidal nanoparticles. 2023 , 10, 1185-1209	O
3	A review on surface functionalization of carbon nanotubes: methods and applications. 2023, 18,	0
2	Numerical Analysis for Light Absorption Spectra of the Base of DNA-Wrapped Single-Walled Carbon Nanotubes. 2023 , 28, 2719	O
1	Helical Wrapping of Cylindrical Tubes by Wormlike-Chain Polymers.	О