A Mutation in the Fibroblast Growth Factor 14 Gene Is A Dominant Cerebral Ataxia

American Journal of Human Genetics 72, 191-199 DOI: 10.1086/345488

Citation Report

IF ARTICLE CITATIONS Dominant ataxias. , 2010, , 242-283. 0 1 Dominantly inherited ataxias. Seminars in Pediatric Neurology, 2003, 10, 210-222. 1.0 3 Paediatric and adult ataxias (update). European Journal of Paediatric Neurology, 2003, 7, 231-233. 0.7 1 Do CTG expansions at the SCA8 locus cause ataxia?. Annals of Neurology, 2003, 54, 110-115. Discoveries in sphingolipid metabolism, spinocerebellar ataxia and autoimmune disease. Clinical 5 1.0 0 Genetics, 2003, 64, 1-3. A new mechanism for spinocerebellar ataxia involving mutations in protein kinase CÎ³. Clinical Genetics, 1.0 2003, 64, 3-4. Can we throw the master-switch in autoimmune disease?. Clinical Genetics, 2003, 64, 5-6. 7 1.0 0 Fibroblast Growth Factor (FGF) Homologous Factors Share Structural but Not Functional Homology 1.6 221 with FGFs. Journal of Biological Chemistry, 2003, 278, 34226-34236. Missense Mutations in the Regulatory Domain of PKC^{î3}: A New Mechanism for Dominant Nonepisodic 9 2.6 236 Cerebellar Ataxia. American Journal of Human Genetics, 2003, 72, 839-849. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. 1.5 Neurology, 2003, 61, 1760-1765. Dominant spinocerebellar ataxias: a molecular approach to classification, diagnosis, pathogenesis and 11 12 1.5 the future. Expert Review of Molecular Diagnostics, 2003, 3, 715-732. Mouse models as a tool for understanding neurodegenerative diseases. Current Opinion in 1.8 Neurology, 2003, 16, 451-458. Title is missing!. Current Opinion in Neurology, 2003, 16, 451-458. 13 1.8 4 SCA db: spinocerebellar ataxia candidate gene database. Bioinformatics, 2004, 20, 2656-2661. 14 1.8 Molecular Genetics of Hereditary Spinocerebellar Ataxia. Archives of Neurology, 2004, 61, 727. 15 4.9 130 Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 79 20p13-12.3. Brain, 2004, 127, 2551-2557. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter 17 70 3.7 membrane targeting. Brain, 2004, 128, 436-442. A novel neurodegenerative disease characterised by posterior column ataxia and pyramidal tract 1.5 involvement maps to chromosome 8p12-8q12.1. Journal of Medical Genetics, 2004, 41, 634-639.

#	Article	IF	CITATIONS
19	Effect of <scp>d</scp> -penicillamine on neuromuscular junction in patients with Wilson disease. Neurology, 2004, 63, 935-936.	1.5	15
20	Mutations in the <i>FGF14</i> gene are not a major cause of spinocerebellar ataxia in Caucasians. Neurology, 2004, 63, 936-936.	1.5	12
21	Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurology, The, 2004, 3, 291-304.	4.9	963
22	Fine mapping of 16q-linked autosomal dominant cerebellar ataxia type III in Japanese families. Neurogenetics, 2004, 5, 215-221.	0.7	14
23	Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Annals of Neurology, 2004, 55, 97-104.	2.8	78
25	Cerebellar Cortical Degeneration in Adult American Staffordshire Terriers. Journal of Veterinary Internal Medicine, 2004, 18, 201-208.	0.6	49
26	Hereditary ataxias. Handbook of Clinical Neurophysiology, 2004, 4, 655-673.	0.0	1
27	Recent Advances in Hereditary Spinocerebellar Ataxias. Journal of Neuropathology and Experimental Neurology, 2005, 64, 171-180.	0.9	39
28	GENETICS OF INHERITED ATAXIAS. CONTINUUM Lifelong Learning in Neurology, 2005, 11, 115-142.	0.4	1
29	Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum, 2005, 4, 51-54.	1.4	29
30	The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum, 2005, 4, 2-6.	1.4	253
31	Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum, 2005, 4, 43-46.	1.4	20
32	Spinocerebellar ataxia with sensory neuropathy (SCA25). Cerebellum, 2005, 4, 58-61.	1.4	18
33	Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. European Journal of Human Genetics, 2005, 13, 118-120.	1.4	90
34	Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. Journal of Physiology, 2005, 569, 179-193.	1.3	169
35	Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Annals of Neurology, 2005, 57, 349-354.	2.8	80
36	Genetic Haploinsufficiency as a Phenotypic Determinant of a Deletion 13q Syndrome. Pediatric and Developmental Pathology, 2005, 8, 658-665.	0.5	6
38	Spinocerebellar ataxia type 14: study of a family with an exon 5 mutation in the PRKCG gene. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1720-1722.	0.9	24

#		IF	CITATIONS
39	An Autosomal Dominant Cerebellar Ataxia Linked to Chromosome 16q22.1 is Associated with a Single-Nucleotide Substitution in the 5â€ ² Untranslated Region of the Gene Encoding a Protein with Spectrin Repeat and Rho Guanine-Nucleotide Exchange-Factor Domains. American Journal of Human Genetics, 2005, 77, 280-296.	2.6	124
40	The Proteomics Protocols Handbook. , 2005, , .		468
41	Prospects for whole genome linkage disequilibrium mapping in thoroughbreds. Gene, 2005, 346, 127-132.	1.0	15
42	FGF23 and disorders of phosphate homeostasis. Cytokine and Growth Factor Reviews, 2005, 16, 221-232.	3.2	113
43	Fibroblast growth factor homologous factors: Evolution, structure, and function. Cytokine and Growth Factor Reviews, 2005, 16, 215-220.	3.2	184
44	Spinocerebellar ataxia type 14. Neurology, 2005, 64, 1113-1114.	1.5	4
45	Methylation of Multiple Genes in Gastric Glands with Intestinal Metaplasia. American Journal of Pathology, 2006, 169, 1643-1651.	1.9	25
46	Molecular pathogenesis of spinocerebellar ataxias. Brain, 2006, 129, 1357-1370.	3.7	350
47	Diagnosis and management of early- and late-onset cerebellar ataxia. Clinical Genetics, 2006, 71, 12-24.	1.0	92
48	Differential modulation of sodium channel Nav1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily. European Journal of Neuroscience, 2006, 23, 2551-2562.	1.2	73
49	On autosomal dominant cerebellar ataxia (ADCA) other than polyglutamine diseases, with special reference to chromosome 16q22.1-linked ADCA. Neuropathology, 2006, 26, 352-360.	0.7	11
50	A â^'16C>T substitution in the 5′ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano. Journal of Human Genetics, 2006, 51, 461-466.	1.1	29
51	Paediatric and adult ataxias (update 5). European Journal of Paediatric Neurology, 2006, 10, 249-253.	0.7	3
52	Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Movement Disorders, 2006, 21, 396-401.	2.2	95
53	Identification of a new family of spinocerebellar ataxia type 14 in the japanese spinocerebellar ataxia population by the screening of PRKCG exon 4. Movement Disorders, 2006, 21, 1355-1360.	2.2	29
54	The Roles of Specific Genes Implicated as Circulating Factors Involved in Normal and Disordered Phosphate Homeostasis: Frizzled Related Protein-4, Matrix Extracellular Phosphoglycoprotein, and Fibroblast Growth Factor 23. Endocrine Reviews, 2006, 27, 221-241.	8.9	156
55	The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology, 2006, 67, 1236-1241.	1.5	34
56	Receptor Specificity of the Fibroblast Growth Factor Family. Journal of Biological Chemistry, 2006,	1.6	986

#	Article	IF	CITATIONS
57	The <i>FGF14^{F145S}</i> Mutation Disrupts the Interaction of FGF14 with Voltage-Gated Na ⁺ Channels and Impairs Neuronal Excitability. Journal of Neuroscience, 2007, 27, 12033-12044.	1.7	131
58	Chapter 4 Clinical and Genetic Aspects of Spinocerebellar Ataxias with Emphasis on Polyglutamine Expansions. Blue Books of Neurology, 2007, , 113-144.	0.1	1
59	The Fgf Families in Humans, Mice, and Zebrafish: Their Evolutional Processes and Roles in Development, Metabolism, and Disease. Biological and Pharmaceutical Bulletin, 2007, 30, 1819-1825.	0.6	180
60	Spinocerebellar ataxias: an update. Current Opinion in Neurology, 2007, 20, 438-446.	1.8	122
61	Fibroblast Growth Factor Homologous Factors Control Neuronal Excitability through Modulation of Voltage-Gated Sodium Channels. Neuron, 2007, 55, 449-463.	3.8	220
62	Gene table: Gene location. Neuromuscular Disorders, 2007, 17, 81-119.	0.3	1
63	FGF23 is a hormone-regulating phosphate metabolism—Unique biological characteristics of FGF23. Bone, 2007, 40, 1190-1195.	1.4	135
64	Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Molecular and Cellular Neurosciences, 2007, 34, 366-377.	1.0	74
65	Genetic analysis of SCA 27 in ataxia and childhood onset postural tremor. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 395-396.	1.1	1
66	Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population. Movement Disorders, 2007, 22, 857-862.	2.2	38
67	Clinical and genetic epidemiological study of 16q22.1-linked autosomal dominant cerebellar ataxia in western Japan. Acta Neurologica Scandinavica, 2007, 116, 123-127.	1.0	15
68	Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiology of Disease, 2007, 26, 14-26.	2.1	81
69	Whole-genome linkage disequilibrium screening for complex traits in horses. Molecular Genetics and Genomics, 2007, 277, 663-672.	1.0	6
70	Screening of the SPTBN2 (SCA5) gene in German SCA patients. Journal of Neurology, 2007, 254, 1649-1652.	1.8	13
71	Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia. Journal of Human Genetics, 2007, 52, 643-649.	1.1	28
72	Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. Journal of Human Genetics, 2007, 52, 848-855.	1.1	49
73	Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum, 2008, 7, 170-178.	1.4	164
74	The highly heterogeneous spinocerebellar ataxias: From genes to targets for therapeutic intervention. Cerebellum, 2008, 7, 97-100.	1.4	14

		CITATION REP	ORT	
#	Article		IF	CITATIONS
75	Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum, 2008, 7, 204-214.		1.4	67
76	Fibroblast growth factor homologous factor 1 (FHF1) is expressed in a subpopulation of calcitoni geneâ€related peptideâ€positive nociceptive neurons in the murine dorsal root ganglia. Journal o Comparative Neurology, 2008, 507, 1588-1601.	n f	0.9	12
77	Functional evolutionary history of the mouse <i>Fgf</i> gene family. Developmental Dynamics, 20 237, 18-27.	008,	0.8	352
78	Xâ€linked congenital ataxia: A new locus maps to Xq25â€q27.1. American Journal of Medical Gen A, 2008, 146A, 593-600.	etics, Part	0.7	12
79	PKCγ mutations in spinocerebellar ataxia type 14 affect C1 domain accessibility and kinase activi leading to aberrant MAPK signaling. Journal of Cell Science, 2008, 121, 2339-2349.	ty	1.2	87
80	A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Molecular Genetics, 2008, 17, 3847-3853.	Human	1.4	50
81	Recent Advancements in Targeted Delivery of Therapeutic Molecules in Neurodegenerative Disease–-Spinocerebellar Ataxia–-Opportunities and Challenges. Drug Target Insights, 2008,	3, DTI.S378.	0.9	2
82	Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels. Journal of Biolog Chemistry, 2009, 284, 17883-17896.	ical	1.6	121
83	FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiology of Disease, 2009, 33, 81-88.		2.1	112
84	SCA-LSVD: A repeat-oriented locus-specific variation database for genotype to phenotype correlation spinocerebellar ataxias. Human Mutation, 2009, 30, 1037-1042.	tions	1.1	32
85	Molecular pathology of the fibroblast growth factor family. Human Mutation, 2009, 30, 1245-125	55.	1.1	86
86	SCA27 caused by a chromosome translocation: further delineation of the phenotype. Neurogenet 2009, 10, 371-374.	ics,	0.7	42
87	Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. Advances in Experimenta Medicine and Biology, 2009, 652, 263-296.	I	0.8	8
88	FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium char Molecular and Cellular Neurosciences, 2009, 42, 90-101.	inels.	1.0	117
89	The Spinocerebellar Ataxias. Journal of Neuro-Ophthalmology, 2009, 29, 227-237.		0.4	182
90	Spinocerebellar ataxia type 11 in the Chinese Han population. Neurological Sciences, 2010, 31, 1	07-109.	0.9	10
91	Cellular and Molecular Pathways Triggering Neurodegeneration in the Spinocerebellar Ataxias. Cerebellum, 2010, 9, 148-166.		1.4	83
92	Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurology 2010, 9, 885-894.	, The,	4.9	628

#	Article	IF	CITATIONS
93	SCA27., 2010,, 91-95.		2
94	Ataxia and Progressive Encephalopathy in a 4-Year-Old Girl. Laboratory Medicine, 2010, 41, 5-9.	0.8	1
95	Incisor Degeneration in Rats Induced by Vascular Endothelial Growth Factor/Fibroblast Growth Factor Receptor Tyrosine Kinase Inhibition. Toxicologic Pathology, 2010, 38, 267-279.	0.9	15
96	Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neuroscience Letters, 2010, 486, 84-91.	1.0	25
97	Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 1229-1232.	0.9	47
98	Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. Journal of Biochemistry, 2011, 149, 121-130.	0.9	546
100	Spinocerebellar degenerations. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 100, 113-140.	1.0	22
101	Fibroblast Growth Factor Homologous Factors in the Heart: A Potential Locus for Cardiac Arrhythmias. Trends in Cardiovascular Medicine, 2011, 21, 199-203.	2.3	15
103	Autosomal dominant cerebellar ataxias. Revue Neurologique, 2011, 167, 385-400.	0.6	12
104	Cognitive repercussions of hereditary cerebellar disorders. Cortex, 2011, 47, 81-100.	1.1	29
105	From Cradle to Grave: The Multiple Roles of Fibroblast Growth Factors in Neural Development. Neuron, 2011, 71, 574-588.	3.8	205
106	The FGF Family in Humans, Mice, and Zebrafish: Development, Physiology, and Pathophysiology. , 0, , .		Ο
107	Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics. Orphanet Journal of Rare Diseases, 2011, 6, 33.	1.2	68
108	Movement disorders in spinocerebellar ataxias. Movement Disorders, 2011, 26, 792-800.	2.2	124
109	Fibroblast Growth Factor Homologous Factor 13 Regulates Na ⁺ Channels and Conduction Velocity in Murine Hearts. Circulation Research, 2011, 109, 775-782.	2.0	104
110	Clinical overview and phenomenology of movement disorders. , 2011, , 1-35.		7
111	Identification of Novel Interaction Sites that Determine Specificity between Fibroblast Growth Factor Homologous Factors and Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 24253-24263.	1.6	73
112	Genes and biological processes commonly disrupted in rare and heterogeneous developmental delay syndromes. Human Molecular Genetics, 2011, 20, 880-893.	1.4	23

#	Article	IF	CITATIONS
113	Spinocerebellar ataxia 13 and 25. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 549-553.	1.0	9
114	A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Human Molecular Genetics, 2012, 21, 5472-5483.	1.4	58
115	Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons. Journal of Cell Science, 2012, 125, 6058-6070.	1.2	23
116	Bioluminescence Methodology for the Detection of Protein–Protein Interactions Within the Voltage-Gated Sodium Channel Macromolecular Complex. Assay and Drug Development Technologies, 2012, 10, 148-160.	0.6	40
117	Other spinocerebellar ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 581-586.	1.0	3
118	Overview of autosomal dominant ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 389-398.	1.0	13
119	Spinocerebellar ataxia type 5. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 451-459.	1.0	31
120	Oculomotor aspects of the hereditary cerebellar ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 63-83.	1.0	8
121	Epidemiology and population genetics of degenerative ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 227-251.	1.0	57
122	Spinocerebellar ataxia type 27 (SCA27) is an uncommon cause of dominant ataxia among Chinese Han population. Neuroscience Letters, 2012, 520, 16-19.	1.0	12
123	Roles of intracellular fibroblast growth factors in neural development and functions. Science China Life Sciences, 2012, 55, 1038-1044.	2.3	50
124	The ataxias. , 0, , 52-63.		Ο
125	The Spinocerebellar Ataxias: Clinical Aspects And Molecular Genetics. Advances in Experimental Medicine and Biology, 2012, 724, 351-374.	0.8	51
126	Brain pathology of spinocerebellar ataxias. Acta Neuropathologica, 2012, 124, 1-21.	3.9	337
127	Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain and Development, 2012, 34, 230-233.	0.6	22
128	Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin. Structure, 2012, 20, 1167-1176.	1.6	138
129	HereditÃ r e Ataxien. Medizinische Genetik, 2013, 25, 235-248.	0.1	1
130	FGF14 localization and organization of the axon initial segment. Molecular and Cellular Neurosciences, 2013, 56, 393-403.	1.0	48

			1
#	Article	IF	CITATIONS
131	FGF14 Regulates Presynaptic Ca2+ Channels and Synaptic Transmission. Cell Reports, 2013, 4, 66-75.	2.9	61
132	Spinocerebellar Ataxia Type 13 is an Uncommon SCA Subtype in the Chinese Han Population. International Journal of Neuroscience, 2013, 123, 450-453.	0.8	2
133	An update on Spino-cerebellar ataxias. Annals of Indian Academy of Neurology, 2013, 16, 295.	0.2	7
134	The Fibroblast Growth Factor 14·Voltage-gated Sodium Channel Complex Is a New Target of Glycogen Synthase Kinase 3 (GSK3). Journal of Biological Chemistry, 2013, 288, 19370-19385.	1.6	77
135	Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels. Circulation Research, 2013, 113, 381-388.	2.0	65
136	Autosomal Dominant Spinocerebellar Ataxias and Episodic Ataxias. , 2013, , 2193-2267.		5
137	Dual Transgene Expression in Murine Cerebellar Purkinje Neurons by Viral Transduction In Vivo. PLoS ONE, 2014, 9, e104062.	1.1	14
138	Role of the Axonal Initial Segment in Psychiatric Disorders: Function, Dysfunction, and Intervention. Frontiers in Psychiatry, 2014, 5, 109.	1.3	32
139	Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24. PLoS Genetics, 2014, 10, e1003991.	1.5	33
140	Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. Future Neurology, 2014, 9, 187-196.	0.9	27
141	Integrative Biological Analysis For Neuropsychopharmacology. Neuropsychopharmacology, 2014, 39, 5-23.	2.8	17
142	Structural analyses of Ca2+/CaM interaction with NaV channel C-termini reveal mechanisms of calcium-dependent regulation. Nature Communications, 2014, 5, 4896.	5.8	86
143	A new variable phenotype in spinocerebellar ataxia 27 (SCA 27) caused by a deletion in the FGF14 gene. European Journal of Paediatric Neurology, 2014, 18, 413-415.	0.7	40
144	Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Frontiers in Cellular Neuroscience, 2015, 9, 205.	1.8	29
145	The Inherited Ataxias. , 2015, , 811-832.		0
146	Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. Journal of Neuroscience, 2015, 35, 6752-6769.	1.7	61
147	The Fibroblast Growth Factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 215-266.	5.9	1,492
149	SCA27 is a cause of early-onset ataxia and developmental delay. European Journal of Paediatric Neurology, 2015, 19, 271-273.	0.7	7

TION RED

ARTICLE IF CITATIONS A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia. Neurogenetics, 150 0.7 34 2015, 16, 233-236. Mouse Models of Dystonia., 2015, , 465-481. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive 152 0.9 42 Purkinje cell vulnerability. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 554-561. Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation 1.8 sequencing. Journal of Neurology, 2015, 262, 2382-2395. iPS Cells and Spinocerebellar Ataxia. Pancreatic Islet Biology, 2015, , 45-61. 154 0.1 1 <i>SCN5A</i> variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 3.3 2015, 112, 12528-12533. Genetics and Clinical Features of Inherited Ataxias., 2015, , 939-978. 156 1 Dominantly Inherited Spinocerebellar Syndromes., 2015, , 1003-1032. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Frontiers in 158 1.3 63 Synaptic Neuroscience, 2016, 8, 35. Current view on regulation of voltageâ€gated sodium channels by calcium and auxiliary proteins. 159 3.1 Protein Science, 2016, 25, 1573-1584. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6. Journal of Biological 160 1.6 26 Chemistry, 2016, 291, 11268-11284. <scp>N</scp>omenclature of genetic movement disorders: <scp>R</scp>ecommendations of the international <scp>P</scp>arkinson and movement disorder society task force. Movement Disorders, 2.2 228 2016, 31, 436-457. Polarized localization of voltage-gated Na ⁺ channels is regulated by concerted FGF13 and 162 FGF14 action. Proceedings of the National Academy of Sciences of the United States of America, 2016, 3.3 52 113, E2665-74. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying 2.4 cognitive impairment associated with schizophrenia. Translational Psychiatry, 2016, 6, e806-e806. Gain-of-function <i>FHF1</i> mutation causes early-onset epileptic encephalopathy with cerebellar 164 1.5 57 atrophy. Neurology, 2016, 86, 2162-2170. CK2 activity is required for the interaction of FGF14 with voltageâ€gated sodium channels and neuronal excitability. FASEB Journal, 2016, 30, 2171-2186. Another piece to the intracellular FGF/Na+ channel puzzle. Proceedings of the National Academy of 166 3.3 2 Sciences of the United States of America, 2016, 113, 5147-5149. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian 6.5 cells. Nucleic Acids Research, 2016, 44, gkw707.

#	Article	IF	CITATIONS
168	Cerebellar ataxias: βâ€ I II spectrin's interactions suggest common pathogenic pathways. Journal of Physiology, 2016, 594, 4661-4676.	1.3	24
169	FGF13 modulates the gating properties of the cardiac sodium channel Na _v 1.5 in an isoform-specific manner. Channels, 2016, 10, 410-420.	1.5	33
170	Climbing fibers in spinocerebellar ataxia: A mechanism for the loss of motor control. Neurobiology of Disease, 2016, 88, 96-106.	2.1	34
171	Proteomic analysis of native cerebellar iFGF14 complexes. Channels, 2016, 10, 297-312.	1.5	8
172	Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. Molecular Neurobiology, 2016, 53, 7254-7270.	1.9	19
173	Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells. Stem Cells and Development, 2016, 25, 160-177.	1.1	9
174	Fibroblast Growth Factor Homologous Factors. Neuroscientist, 2016, 22, 19-25.	2.6	34
175	Keeping Our Calcium in Balance to Maintain Our Balance. Biochemical and Biophysical Research Communications, 2017, 483, 1040-1050.	1.0	32
176	Conditional knockout of Fgf13 in murine hearts increases arrhythmia susceptibility and reveals novel ion channel modulatory roles. Journal of Molecular and Cellular Cardiology, 2017, 104, 63-74.	0.9	39
177	Using the shared genetics of dystonia and ataxia to unravel their pathogenesis. Neuroscience and Biobehavioral Reviews, 2017, 75, 22-39.	2.9	41
178	Phenytoin-responsive epileptic encephalopathy with a tandem duplication involving <i>FGF12</i> . Neurology: Genetics, 2017, 3, e133.	0.9	13
179	An Introduction to the Fibroblast Growth Factors. , 2017, , 1-39.		1
180	Inducible <i>Fgf13</i> ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4010-E4019.	3.3	22
181	A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain, 2017, 140, 1579-1594.	3.7	89
182	PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Experimental Neurology, 2017, 295, 1-17.	2.0	35
183	FGF14 is a regulator of KCNQ2/3 channels. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 154-159.	3.3	35
184	Genomic organization and modulation of gene expression of the TGF-Î ² and FGF pathways in the allotetraploid frog Xenopus laevis. Developmental Biology, 2017, 426, 336-359.	0.9	16
185	Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 103.	1.8	54

#	Article	IF	CITATIONS
186	Familial episodic ataxia in lambs is potentially associated with a mutation in the fibroblast growth factor 14 (FGF14) gene. PLoS ONE, 2017, 12, e0190030.	1.1	4
187	Functional Modulation of Voltage-Gated Sodium Channels by a FGF14-Based Peptidomimetic. ACS Chemical Neuroscience, 2018, 9, 976-987.	1.7	24
188	Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology, 2018, 132, 31-42.	2.0	22
189	Fibroblast Growth Factor Homologous Factors Modulate Cardiac Sodium and Calcium Channels. , 2018, , 177-179.		0
190	Voltage-gated sodium currents in cerebellar Purkinje neurons: functional and molecular diversity. Cellular and Molecular Life Sciences, 2018, 75, 3495-3505.	2.4	7
191	Spinocerebellar ataxias. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 155, 143-174.	1.0	50
192	Spinocerebellar ataxia 27 with a novel nonsense variant (Lys177X) in FGF14. European Journal of Medical Genetics, 2019, 62, 172-176.	0.7	14
193	Knockout of the Xâ€linked <i>Fgf13</i> in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity. FASEB Journal, 2019, 33, 11579-11594.	0.2	9
194	Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. Cerebellum, 2019, 18, 615-634.	1.4	13
195	Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genomics, 2019, 20, 263.	1.2	34
196	Emerging roles of Fgf14 in behavioral control. Behavioural Brain Research, 2019, 356, 257-265.	1.2	17
197	Acetazolamide-Responsive Episodic Ataxia Linked to Novel Splice Site Variant in FGF14 Gene. Cerebellum, 2019, 18, 649-653.	1.4	18
198	Spinocerebellar ataxia: an update. Journal of Neurology, 2019, 266, 533-544.	1.8	180
199	Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia?. Neuroscience Letters, 2019, 688, 49-57.	1.0	48
200	Ion channel dysfunction in cerebellar ataxia. Neuroscience Letters, 2019, 688, 41-48.	1.0	52
201	Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Frontiers in Neuroscience, 2020, 14, 707.	1.4	30
202	Episodic Ataxias: Faux or Real?. International Journal of Molecular Sciences, 2020, 21, 6472.	1.8	11
203	FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Communication and Signaling, 2020, 18, 69.	2.7	25

#	Article	IF	Citations
204	Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism and Related Disorders, 2020, 77, 121-140.	1.1	13
205	Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. Journal of Internal Medicine, 2020, 288, 103-115.	2.7	16
206	Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. European Journal of Pharmacology, 2020, 871, 172920.	1.7	8
207	Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Frontiers in Neuroscience, 2020, 14, 293.	1.4	8
208	Clinical overview and phenomenology of movement disorders. , 2021, , 1-51.e27.		3
209	Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic encephalopathy. American Journal of Human Genetics, 2021, 108, 176-185.	2.6	20
210	Spinocerebellar ataxias (SCAs) caused by common mutations. Neurogenetics, 2021, 22, 235-250.	0.7	13
211	Disorders of Phosphate Metabolism: Autosomal Dominant Hypophosphatemic Rickets, Tumor Induced Osteomalacia, Fibrous Dysplasia, and the Pathophysiological Relevance of FGF23. , 2005, , 1189-1195.		4
212	Disorders of the Cerebellum, Including the Degenerative Ataxias. , 2012, , 1802-1823.		1
213	Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future, 2009, 34, 991.	0.0	17
214	Cerebellar cortical degeneration in adult American Staffordshire Terriers. Journal of Veterinary Internal Medicine, 2004, 18, 201-8.	0.6	21
215	Modulation of the FGF14:FGF14 Homodimer Interaction Through Short Peptide Fragments. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1559-1570.	0.8	19
216	Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. International Journal of Molecular Sciences, 2020, 21, 3603.	1.8	36
217	Infant Spinocerebellar Ataxia Type 27: Early Presentation Due To a 13q33.1 Microdeletion Involving the FGF14 Gene. Journal of Genetic Syndromes & Gene Therapy, 2013, 04, .	0.2	4
218	Eye Movement Abnormalities in Spinocerebellar Ataxias. , 0, , .		2
219	FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. ELife, 2014, 3, e04193.	2.8	56
220	Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor and Other Hyperkinetic Movements, 2018, 8, 534.	1.1	22
221	Autosomal Dominant Ataxias. Neurological Disease and Therapy, 2005, , 306-350.	0.0	0

#	Article	IF	CITATIONS
224	Disorders of the Cerebellum, Including the Degenerative Ataxias. , 2008, , 2123-2145.		3
225	The Cerebellum and the Hereditary Ataxias. , 2012, , 939-964.		1
226	Ataxias. , 2012, , 3421-3444.		0
227	Eye Movements in Autosomal Dominant Spinocerebellar Ataxias. Contemporary Clinical Neuroscience, 2019, , 415-449.	0.3	0
228	Sodium Channels. , 2020, , 120-141.		8
229	The inherited ataxias. , 2020, , 75-97.		0
231	Autosomal Dominant Spinocerebellar Ataxias and Episodic Ataxias. , 2022, , 2483-2559.		0
232	New spinocerebellar ataxia subtype caused by <i>SAMD9L</i> mutation triggering mitochondrial dysregulation (SCA49). Brain Communications, 2022, 4, fcac030.	1.5	15
233	The highly heterogeneous spinocerebellar ataxias: From genes to targets for therapeutic intervention. Cerebellum, 2008, 7, 1-4.	1.4	0
234	Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). Cerebellum, 2008, 7, 1-9.	1.4	0
235	Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum, 2008, 7, 1-11.	1.4	0
236	The IGSF1, Wnt5a, FGF14, and ITPR1 Gene Expression and Prognosis Hallmark of Prostate Cancer. Reports of Biochemistry and Molecular Biology, 2022, 11, 44-53.	0.5	0
237	Ataxia. , 2022, , 333-394.		0
238	Analysis of Fibroblast Growth Factor 14 (FGF14) structural variants reveals the genetic basis of the early onset nystagmus locus NYS4 and variable ataxia. European Journal of Human Genetics, 2023, 31, 353-359.	1.4	4
241	An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. American Journal of Human Genetics, 2023, 110, 105-119.	2.6	52
242	Deep Intronic <i>FGF14</i> GAA Repeat Expansion in Late-Onset Cerebellar Ataxia. New England Journal of Medicine, 2023, 388, 128-141.	13.9	70
243	Ataxias: Hereditary, Acquired, and Reversible Etiologies. Seminars in Neurology, 2023, 43, 048-064.	0.5	0
244	Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy. Frontiers in Neuroscience, 0, 17, .	1.4	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
245	Physiology of Dystonia: Animal Studies. International Review of Neurobiology, 2023, ,		0.9	2
246	Genetics of Dominant Ataxias. Contemporary Clinical Neuroscience, 2023, , 115-139.		0.3	0
248	Brain 18F-FDG PET findings and sequential vestibular testing in SCA27B: a case report. Neurology, 2024, 271, 1015-1018.	Journal of	1.8	0
249	Advances in the Genetics of Human Tremor. Contemporary Clinical Neuroscience, 202	3, , 43-74.	0.3	0