A review of the biochemistry of heavy metal biosorption

Water Research 37, 4311-4330 DOI: 10.1016/s0043-1354(03)00293-8

Citation Report

#	Article	IF	CITATIONS
2	The process of innovation in small manufacturing firms. International Journal of Technology Management, 1999, 18, 610.	0.2	9
3	Cadmium Biosorption by S. fluitans: Treatment, Resilience and Uptake Relative to Other Sargassum spp. and Brown Algae. Water Quality Research Journal of Canada, 2004, 39, 183-189.	1.2	13
4	Thermal behavior of alginic acid and its sodium salt. Ecletica Quimica, 2004, 29, 57-64.	0.2	305
5	Biosorption of Cadmium by Fucus spiralis. Environmental Chemistry, 2004, 1, 180.	0.7	116
6	Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin, 2004, 49, 974-977.	2.3	95
7	Extraction, isolation and cadmium binding of alginate from Sargassum spp Journal of Applied Phycology, 2004, 16, 275-284.	1.5	103
8	Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana willd. water fern. Open Chemistry, 2004, 2, 434-445.	1.0	4
9	Physicochemical studies of Cadmium(II) biosorption by the invasive alga in Europe,Sargassum muticum. Biotechnology and Bioengineering, 2004, 88, 237-247.	1.7	118
10	Use of Bark Activated by Microalgae for Purification of Heavy Metal Contaminated Water. Proceedings of the Water Environment Federation, 2005, 2005, 50-57.	0.0	0
11	Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 2005, 40, 1347-1361.	1.8	439
12	Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochemistry, 2005, 40, 3675-3679.	1.8	86
13	Equilibrium biosorption isotherm for lead ion on chaff. Journal of Hazardous Materials, 2005, 125, 266-271.	6.5	171
14	Biosorption of cadmium by the protonated macroalga Sargassum muticum: Binding analysis with a nonideal, competitive, and thermodynamically consistent adsorption (NICCA) model. Journal of Colloid and Interface Science, 2005, 289, 352-358.	5.0	34
15	Biosorption of cadmium by biomass of brown marine macroalgae. Bioresource Technology, 2005, 96, 1796-1803.	4.8	177
16	Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata. Chemical Engineering Journal, 2005, 106, 177-184.	6.6	153
17	COMPARISON OF Cd, Cu, AND Zn TOXIC EFFECTS ON FOUR MARINE PHYTOPLANKTON BY PULSE-AMPLITUDE-MODULATED FLUOROMETRY. Environmental Toxicology and Chemistry, 2005, 24, 2603.	2.2	133
18	Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. European Journal of Neuroscience, 2005, 21, 2649-2659.	1.2	88
19	Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 2005, 50, 340-343.	2.3	199

#	Article	IF	CITATIONS
20	Calcium alginate immobilized marine microalgae: Experiments on growth and short-term heavy metal accumulation. Marine Pollution Bulletin, 2005, 51, 823-829.	2.3	55
21	Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Separation and Purification Technology, 2005, 44, 53-59.	3.9	164
22	The interaction between Cu, Pb, Zn and Ni in their biosorption onto polyurethane-immobilisedSphagnum moss. Journal of Chemical Technology and Biotechnology, 2005, 80, 1297-1305.	1.6	18
23	Biosorption of heavy metals by chemically-activated algaFucus vesiculosus. Journal of Chemical Technology and Biotechnology, 2005, 80, 1403-1407.	1.6	53
24	Complexation Behavior of Cu2+ in the Presence of Iminodiacetic Acid and Poly(ethyleneimine). Macromolecular Chemistry and Physics, 2005, 206, 1541-1548.	1.1	11
25	Modelling of proton and metal exchange in the alginate biopolymer. Analytical and Bioanalytical Chemistry, 2005, 383, 587-596.	1.9	26
26	Surface adsorption, intracellular accumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 577-586.	1.4	37
27	Cadmium removal byJuniperus monosperma: The role of calcium oxalate monohydrate structure in bark. Korean Journal of Chemical Engineering, 2005, 22, 599-604.	1.2	4
28	Wall-associated Kinase WAK1 Interacts with Cell Wall Pectins in a Calcium-induced Conformation. Plant and Cell Physiology, 2005, 46, 268-278.	1.5	304
29	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , .		1
29 30	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808.	5.3	1 106
29 30 31	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744.	5.3	1 106 12
29 30 31 32	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744. Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224.	5.3 1.2 1.6	1 106 12 76
29 30 31 32 33	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744. Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224. Biosorption of copper, zinc, cadmium and nickel byChlorella vulgaris. Chemistry and Ecology, 2005, 21, 61-75.	5.3 1.2 1.6 0.6	1 106 12 76 73
29 30 31 32 33 33	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744. Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224. Biosorption of copper, zinc, cadmium and nickel byChlorella vulgaris. Chemistry and Ecology, 2005, 21, 61-75. Orthophosphate Sorption onto Lanthanum-Treated Lignocellulosic Sorbents. Environmental Science & Amp; Technology, 2005, 39, 6273-6279.	5.3 1.2 1.6 0.6 4.6	1 106 12 76 73
29 30 31 32 33 33	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744. Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224. Biosorption of copper, zinc, cadmium and nickel byChlorella vulgaris. Chemistry and Ecology, 2005, 21, 61-75. Orthophosphate Sorption onto Lanthanum-Treated Lignocellulosic Sorbents. Environmental Science & amp; Technology, 2005, 39, 6273-6279. Quantifying Pb and Cd Complexation by Alginates and the Role of Metal Binding on Macromolecular Aggregation. Biomacromolecules, 2005, 6, 2756-2764.	5.3 1.2 1.6 0.6 4.6	1 106 12 76 73 103
29 30 31 32 33 34 35 36	Different cadmium adsorption behavior of juniper wood and bark sorbents. , 0, , . Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Research, 2005, 39, 1803-1808. Factors Affecting the Removal of Selected Heavy Metals using a Polymer ImmobilisedSphagnumMoss as a Biosorbent. Environmental Technology (United Kingdom), 2005, 26, 733-744. Heavy-Metal Remediation by a Fungus as a Means of Production of Lead and Cadmium Carbonate Crystals. Langmuir, 2005, 21, 7220-7224. Biosorption of copper, zinc, cadmium and nickel byChlorella vulgaris. Chemistry and Ecology, 2005, 21, 61-75. Orthophosphate Sorption onto Lanthanum-Treated Lignocellulosic Sorbents. Environmental Science & Amp; Technology, 2005, 39, 6273-6279. Quantifying Pb and Cd Complexation by Alginates and the Role of Metal Binding on Macromolecular Aggregation. Biomacromolecules, 2005, 6, 2756-2764. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere, 2005, 60, 419-426.	5.3 1.2 1.6 0.6 4.6 2.6 4.2	1 106 12 76 73 103 60 144

#	Article	IF	CITATIONS
38	Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp Chemosphere, 2005, 60, 1356-1364.	4.2	342
39	Biosorption of La, Eu and Yb using Sargassum biomass. Water Research, 2005, 39, 239-247.	5.3	170
40	Effect of counterions on lanthanum biosorption by Sargassum polycystum. Water Research, 2005, 39, 2229-2236.	5.3	62
41	Use of Algae for Removing Heavy Metal Ions From Wastewater: Progress and Prospects. Critical Reviews in Biotechnology, 2005, 25, 113-152.	5.1	665
42	Synergistic Antioxidative Effects of Alkamides, Caffeic Acid Derivatives, and Polysaccharide Fractions fromEchinacea purpureaon in Vitro Oxidation of Human Low-Density Lipoproteins. Journal of Agricultural and Food Chemistry, 2005, 53, 9413-9423.	2.4	131
43	Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. International Journal of Environmental Science and Technology, 2005, 1, 265-271.	1.8	68
44	Gold and Silver Uptake and Nanoprecipitation on Calcium Alginate Beads. Langmuir, 2005, 21, 7951-7958.	1.6	157
45	Thermodynamic and Kinetic Aspects on the Biosorption of Cadmium by Low Cost Materials: A Review. Environmental Chemistry, 2006, 3, 400.	0.7	70
46	Biosorption with Algae: A Statistical Review. Critical Reviews in Biotechnology, 2006, 26, 223-235.	5.1	233
47	Heavy Metals Remediation of Water Using Plants and Lignocellulosic Agrowastes. Reviews of Environmental Contamination and Toxicology, 2006, 188, 59-84.	0.7	58
48	Biosorption Process for Treatment of Electroplating Wastewater Containing Cr(VI):Â Laboratory-Scale Feasibility Test. Industrial & Engineering Chemistry Research, 2006, 45, 5059-5065.	1.8	91
49	Application of Two-and Three-Parameter Isotherm Models: Biosorption of Acid Red 88 onto Azolla microphylla. Bioremediation Journal, 2006, 10, 37-44.	1.0	55
50	Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Aquatic Toxicology, 2006, 78, 114-126.	1.9	75
51	Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere, 2006, 64, 1122-1127.	4.2	105
52	The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: Kinetic and equilibrium studies. Environmental Pollution, 2006, 142, 264-273.	3.7	325
53	A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 2006, 40, 788-798.	5.3	80
54	Protective Role of Alginic Acid Against Metal Uptake by American Oyster (Crassostrea virginica). Environmental Chemistry, 2006, 3, 172.	0.7	15
55	Pb(II) biosorption on reed biosorbent derived from wetland: effect of pretreatment on functional groups. Water Science and Technology, 2006, 54, 133-141.	1.2	11

#	Article	IF	CITATIONS
56	Optimization of copper sorbing?desorbing cycles with confined cultures of the exopolysaccharide-producing cyanobacterium Cyanospira capsulata. Journal of Applied Microbiology, 2006, 101, 1351-1356.	1.4	37
57	The removal of Acid Red 274 from wastewater: Combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes and Pigments, 2006, 71, 83-89.	2.0	103
58	Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 2006, 97, 692-700.	4.8	233
59	Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 2006, 97, 1411-1419.	4.8	289
60	Sequestration of biogenic amines by alginic and fulvic acids. Biophysical Chemistry, 2006, 122, 221-231.	1.5	6
61	Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering Journal, 2006, 31, 160-164.	1.8	115
62	Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation. Biomaterials, 2006, 27, 1296-1305.	5.7	65
63	Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme and Microbial Technology, 2006, 38, 705-710.	1.6	65
64	Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp Marine Chemistry, 2006, 99, 106-116.	0.9	73
65	Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochemistry, 2006, 41, 457-464.	1.8	158
66	Desorption of lanthanum, europium and ytterbium from Sargassum. Separation and Purification Technology, 2006, 50, 71-76.	3.9	15
67	Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. Journal of Colloid and Interface Science, 2006, 303, 365-371.	5.0	125
68	Study on the process, thermodynamical isotherm and mechanism of Cr(III) uptake by Spirulina platensis. Journal of Food Engineering, 2006, 75, 129-136.	2.7	43
69	Influence of surfactant entrapment to dried alginate beads on sorption and removal of Cu2+ ions. Journal of Hazardous Materials, 2006, 131, 79-83.	6.5	15
70	Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 2006, 133, 304-308.	6.5	729
71	Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions. Journal of Hazardous Materials, 2006, 136, 791-799.	6.5	114
72	Microbially-mediated glass dissolution and sorption of metals by Pseudomonas aeruginosa cells and biofilm. Journal of Hazardous Materials, 2006, 136, 889-895.	6.5	31
73	Potential of Sargassum wightii biomass for copper(II) removal from aqueous solutions: Application of different mathematical models to batch and continuous biosorption data. Journal of Hazardous Materials, 2006, 137, 558-564.	6.5	120

#	Article	IF	CITATIONS
74	Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp Journal of Hazardous Materials, 2006, 137, 1246-1251.	6.5	36
75	Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 2006, 137, 1569-1576.	6.5	218
76	Batch desorption studies and multiple sorption–regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum. Journal of Hazardous Materials, 2006, 137, 1649-1655.	6.5	64
77	Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 2006, 137, 1765-1772.	6.5	310
78	Batch kinetics and isotherms for biosorption of copper(II) ions onto pre-treated powdered waste sludge (PWS). Journal of Hazardous Materials, 2006, 138, 479-484.	6.5	38
79	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 2006, 137, 762-811.	6.5	1,482
80	Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 2006, 52, 877-885.	0.8	111
81	Relating Organic Fouling of Reverse Osmosis Membranes to Intermolecular Adhesion Forces. Environmental Science & Technology, 2006, 40, 980-987.	4.6	405
82	A Microscale Procedure to Test the Metal Sorption Properties of Biomass Sorbents: a Time and Reagents Saving Alternative to Conventional Methods. Mikrochimica Acta, 2006, 154, 287-295.	2.5	5
83	New method for evaluation of heavy metal binding to alginate beads using pH and conductivity data. Adsorption, 2006, 12, 175-184.	1.4	19
84	Microorganisms in inorganic chemical analysis. Analytical and Bioanalytical Chemistry, 2006, 384, 114-123.	1.9	72
85	Treatment of nickel containing electroplating effluents with Sargassum wightii biomass. Process Biochemistry, 2006, 41, 853-859.	1.8	57
86	Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 2006, 81, 35-43.	2.6	216
87	Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. Journal of Colloid and Interface Science, 2006, 300, 100-104.	5.0	147
88	A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts (<i>Saccharomyces) Tj ETQqC</i>	0.0 rgBT	/Oyerlock 10
89	Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 2006, 24, 427-451.	6.0	1,096
90	Biosorption of arsenic(V) with Lessonia nigrescens. Minerals Engineering, 2006, 19, 486-490.	1.8	143

91	Preparation of interpenetrating polymer network gel beads for dye absorption. Journal of Applied Polymer Science, 2006, 102, 1585-1591.	1.3	9	
----	--	-----	---	--

	CITATION R	EPORT	
#	Article	IF	CITATIONS
92	Sequestration of organometallic compounds by natural organic matter. binding of trimethyltin(IV) by fulvic and alginic acids. Applied Organometallic Chemistry, 2006, 20, 706-717.	1.7	17
93	Zinc (II) ion recovery by biosorption onto powdered waste sludge (PWS): effects of operating conditions. Journal of Chemical Technology and Biotechnology, 2006, 81, 1661-1668.	1.6	18
94	Studies on Cr(VI), Pb(II) and Cu(II) adsorption–desorption using calcium alginate as biopolymer. Chemical Speciation and Bioavailability, 2007, 19, 17-24.	2.0	52
95	Integrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy MetIntegrative Medicine and the Role of Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification – Five Case Reports. Complementary Medicine Research, 2007, 14, 358-364.	0.5	20
96	MANGANESE BIOSORPTION SITES OFSACCHAROMYCES CEREVISIAE. Environmental Technology (United) Tj ETÇ)q0,0,0 rgl 1,20 rgl	3T /Qverlock I

97	Cu(II) Ion Recovery by Biosorption onto Powdered Waste Sludge (PWS) in a Fedâ€Batch Reactor: Particle Size Effects. Separation Science and Technology, 2007, 42, 285-298.	1.3	2
98	Evaluation of the Sorptive Capacity of Sugarcane Bagasse and Its Coal for Heavy Metals in Solution. Journal of the Chinese Chemical Society, 2007, 54, 1401-1412.	0.8	4
99	Metal Ion Biosorption Potential of Lignocellulosic Biomasses and Marine Algae for Wastewater Treatment. Adsorption Science and Technology, 2007, 25, 227-244.	1.5	12
100	Cu(II) binding by dried biomass of red, green and brown macroalgae. Water Research, 2007, 41, 731-740.	5.3	173
101	Salt cleaning of organic-fouled reverse osmosis membranes. Water Research, 2007, 41, 1134-1142.	5.3	141
102	Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Research, 2007, 41, 1713-1722.	5.3	345
103	Biosorption and me. Water Research, 2007, 41, 4017-4029.	5.3	788
104	Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere, 2007, 66, 939-946.	4.2	97
105	Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass. Chemosphere, 2007, 66, 1424-1430.	4.2	67
106	Evidence for Egg-Box-Compatible Interactions in Calciumâ [~] 'Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 2007, 8, 2098-2103.	2.6	389
107	Fabrication and Manipulation of Ionotropic Hydrogels Cross-Linked by Paramagnetic Ions. Chemistry of Materials, 2007, 19, 1362-1368.	3.2	29
108	Kinetics of Zinc(II) Ion Biosorption onto Powdered Waste Sludge (PWS) at Different Operating Conditions. Environmental Engineering Science, 2007, 24, 687-695.	0.8	3
109	Structurally Colored Thin Films of Ca2+-Cross-Linked Alginate. Biomacromolecules, 2007, 8, 33-41.	2.6	50

	Сітатіо	n Report	
#	Article	IF	CITATIONS
110	Enhanced Aggregation of Alginate-Coated Iron Oxide (Hematite) Nanoparticles in the Presence of Calcium, Strontium, and Barium Cations. Langmuir, 2007, 23, 5920-5928.	1.6	234
111	<i>In vitro</i> antioxidative activities of three marine oligosaccharides. Natural Product Research, 2007, 21, 646-654.	1.0	99
112	Bio-controlled Growth of Oxides and Metallic Nanoparticles. , 0, , 159-191.		0
113	Removal of Copper(II) Ions from Aqueous Solutions by Walnutâ€, Hazelnut―and Almondâ€Shells. Clean - Soil, Air, Water, 2007, 35, 601-606.	0.7	79
114	Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelial biomass ofPanus fulvus. Journal of Chemical Technology and Biotechnology, 2007, 82, 389-398.	1.6	44
115	Asymmetrical flow fieldâ€flow fractionation coupled to multiangle laser light scattering detector: Optimization of crossflow rate, carrier characteristics, and injected mass in alginate separation. Journal of Separation Science, 2007, 30, 2332-2340.	1.3	22
116	Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 232-238.	2.3	144
117	A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 2007, 57, 97-101.	2.5	544
118	Adsorption mechanism of cadmium on juniper bark and wood. Bioresource Technology, 2007, 98, 588-594.	4.8	99
119	Biosorption of copper(II) ions onto powdered waste sludge in a completely mixed fed-batch reactor: Estimation of design parameters. Bioresource Technology, 2007, 98, 1155-1162.	4.8	28
120	Mechanistic understanding and performance enhancement of biosorption of reactive dyestuffs by the waste biomass generated from amino acid fermentation process. Biochemical Engineering Journal, 2007, 36, 2-7.	1.8	69
121	Application of seaweeds for the removal of lead from aqueous solution. Biochemical Engineering Journal, 2007, 33, 211-216.	1.8	61
122	Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochemical Engineering Journal, 2007, 35, 174-182.	1.8	180
123	Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technology, 2007, 98, 3344-3353.	4.8	497
124	Determination of model parameters for zinc (II) ion biosorption onto powdered waste sludge (PWS) in a fed–batch system. Journal of Environmental Management, 2007, 85, 883-890.	3.8	15
125	Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. Journal of Hazardous Materials, 2007, 141, 45-52.	6.5	153
126	Removal of lead from aqueous solution using Syzygium cumini L.: Equilibrium and kinetic studies. Journal of Hazardous Materials, 2007, 142, 340-347.	6.5	110
127	Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii. Journal of Hazardous Materials, 2007, 143, 590-592.	6.5	32

#	Article	IF	CITATIONS
128	Characteristics of arsenic adsorption to sorghum biomass. Journal of Hazardous Materials, 2007, 145, 30-35.	6.5	78
129	Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. Journal of Hazardous Materials, 2007, 146, 65-72.	6.5	193
130	Biosorption of lead(II) and cadmium(II) by protonated Sargassum glaucescens biomass in a continuous packed bed column. Journal of Hazardous Materials, 2007, 147, 785-791.	6.5	84
131	Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Letters in Applied Microbiology, 2008, 46, 160-165.	1.0	135
132	Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology, 2007, 114, 30-35.	2.1	236
133	Arsenic removal by native and chemically modified lactic acid bacteria. International Journal of Food Microbiology, 2007, 120, 173-178.	2.1	59
134	Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Minerals Engineering, 2007, 20, 939-944.	1.8	37
135	Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. Journal of Experimental Marine Biology and Ecology, 2007, 349, 344-358.	0.7	127
136	Characterization of the polyurethane foam using alginic acid as a polyol. Fibers and Polymers, 2007, 8, 257-262.	1.1	30
137	Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications. Applied Physics A: Materials Science and Processing, 2007, 89, 909-922.	1.1	58
138	Modeling equilibrium and kinetics of metal uptake by algal biomass in continuous stirred and packed bed adsorbers. Adsorption, 2007, 13, 587-601.	1.4	35
139	Evaluation of Dry Protonated Calcium Alginate Beads for Biosorption Applications and Studies of Lead Uptake. Applied Biochemistry and Biotechnology, 2007, 143, 115-128.	1.4	49
140	Thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens). Journal of Chemical Thermodynamics, 2007, 39, 488-492.	1.0	62
141	Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chuii. Sensors and Actuators B: Chemical, 2007, 128, 273-278.	4.0	38
142	Agricultural biomasses as sorbents of some trace metals. Coordination Chemistry Reviews, 2008, 252, 1178-1188.	9.5	96
143	Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chemical Engineering Journal, 2008, 137, 480-488.	6.6	129
144	Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chemical Engineering Journal, 2008, 145, 1-6.	6.6	63
145	Comment on "Thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens)― Journal of Chemical Thermodynamics, 2008, 40, 739-740.	1.0	7

#	Article	IF	CITATIONS
146	Assessment of the Hyperaccumulating Lead Capacity of Salvinia minima Using Bioadsorption and Intracellular Accumulation Factors. Water, Air, and Soil Pollution, 2008, 194, 77-90.	1.1	53
147	On the mechanism of uranium binding to cell wall of Chara fragilis. European Biophysics Journal, 2008, 37, 1111-1117.	1.2	9
148	Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07. Applied Microbiology and Biotechnology, 2008, 80, 531-544.	1.7	21
149	Characteristics of Pb2+ biosorption with aerobic granular biomass. Science Bulletin, 2008, 53, 948-953.	4.3	15
150	Removal of Basic Blue 3 from aqueous solution by Corynebacterium glutamicum biomass: Biosorption and precipitation mechanisms. Korean Journal of Chemical Engineering, 2008, 25, 1060-1064.	1.2	17
151	Intracellular Changes of Metal Elements by Fucoidan Extracted from Brown Seaweed (Cladosiphon) Tj ETQq1 1 0	.784314 r 1.9	gBT /Overloc
152	Assessment of immobilized yeast for the separation and determination of platinum in environmental samples by flow-injection chemiluminescence and electrothermal atomic absorption spectrometry. Mikrochimica Acta, 2008, 163, 327-334.	2.5	26
153	Removal of Cr (VI) from aqueous solutions by the nonliving biomass of Alligator weed: kinetics and equilibrium. Adsorption, 2008, 14, 823-830.	1.4	30
154	The application of macroalga <i>Pithophora varia</i> Wille enriched with microelements by biosorption as biological feed supplement for livestock. Journal of the Science of Food and Agriculture, 2008, 88, 1178-1186.	1.7	30
155	Biosorption of Nickel from Synthetic and Electroplating Industrial Solutions using a Green Marine <i>Algae Ulva reticulata</i> . Clean - Soil, Air, Water, 2008, 36, 299-305.	0.7	15
156	Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. Clean - Soil, Air, Water, 2008, 36, 937-962.	0.7	340
157	Biosorption of heavy metal using brown seaweed in a regenerable continuous column. Asia-Pacific Journal of Chemical Engineering, 2008, 3, 572-578.	0.8	8
158	XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. Journal of Colloid and Interface Science, 2008, 317, 54-61.	5.0	228
159	Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols. Journal of Colloid and Interface Science, 2008, 320, 22-29.	5.0	26
160	Competitive biosorption of zinc(II) and cobalt(II) in single- and binary-metal systems by aerobic granules. Journal of Colloid and Interface Science, 2008, 324, 1-8.	5.0	53
161	Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain. Process Biochemistry, 2008, 43, 368-375.	1.8	29
162	Immobilization of Cyphos IL-101 in biopolymer capsules for the synthesis of Pd sorbents. Reactive and Functional Polymers, 2008, 68, 1159-1169.	2.0	67
163	Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 2008, 99, 126-133.	0.9	157

#	Article	IF	CITATIONS
164	Physical and chemical modification of distillery sludge for Pb(II) biosorption. Journal of Hazardous Materials, 2008, 150, 335-342.	6.5	87
165	Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass. Journal of Hazardous Materials, 2008, 151, 65-70.	6.5	185
166	Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies. Journal of Hazardous Materials, 2008, 152, 100-112.	6.5	189
167	Removal of Cr(VI) from aqueous solutions using modified red pine sawdust. Journal of Hazardous Materials, 2008, 152, 1201-1207.	6.5	78
168	Removal of Cr(VI) from aqueous solutions by low-cost biosorbents: Marine macroalgae and agricultural by-products. Journal of Hazardous Materials, 2008, 153, 1176-1184.	6.5	67
169	Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 2008, 151, 1-8.	6.5	593
170	Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity. Journal of Hazardous Materials, 2008, 156, 448-457.	6.5	69
171	Effect of pH on phenol biosorption by marine seaweeds. Journal of Hazardous Materials, 2008, 156, 405-411.	6.5	77
172	Modeling the effect of pH on biosorption of heavy metals by citrus peels. Journal of Hazardous Materials, 2008, 157, 8-17.	6.5	109
173	Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2008, 158, 316-323.	6.5	143
174	Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous Materials, 2008, 158, 628-635.	6.5	130
175	Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 2008, 160, 349-355.	6.5	266
176	Interaction of Pb2+ ions with surfactant-containing mesoporous silicates. Journal of Industrial and Engineering Chemistry, 2008, 14, 510-514.	2.9	4
177	Adsorption equilibrium of copper ion and phenol by powdered activated carbon, alginate bead and alginate-activated carbon bead. Journal of Industrial and Engineering Chemistry, 2008, 14, 714-719.	2.9	67
178	Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination, 2008, 224, 293-306.	4.0	125
179	Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp Dyes and Pigments, 2008, 76, 726-732.	2.0	170
180	Simultaneous ammonium–nitrogen and copper removal, and copper recovery using nitrifying biofilm from the Ultra-Compact Biofilm Reactor. Bioresource Technology, 2008, 99, 6614-6620.	4.8	9
181	Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresource Technology, 2008, 99, 1932-1938.	4.8	126

#	Article	IF	CITATIONS
182	Comparison of different types of biomasses for copper biosorption. Bioresource Technology, 2008, 99, 2559-2565.	4.8	99
183	Biosorption of chromium(VI) using a Sargassum sp. packed-bed column. Bioresource Technology, 2008, 99, 3094-3099.	4.8	64
184	Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresource Technology, 2008, 99, 3600-3608.	4.8	119
185	Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresource Technology, 2008, 99, 3520-3527.	4.8	198
186	The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution. Bioresource Technology, 2008, 99, 4138-4146.	4.8	56
187	Biosorption of heavy metals by Fucus spiralis. Bioresource Technology, 2008, 99, 4684-4693.	4.8	44
188	Cadmium biosorption on Spirulina platensis biomass. Bioresource Technology, 2008, 99, 5933-5937.	4.8	72
189	Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 2008, 99, 7034-7040.	4.8	119
190	Metal biosorption by algae Gelidium derived materials from binary solutions in a continuous stirred adsorber. Chemical Engineering Journal, 2008, 141, 42-50.	6.6	16
191	Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chemical Engineering Journal, 2008, 141, 99-111.	6.6	126
192	Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresource Technology, 2008, 99, 1896-1903.	4.8	220
193	Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresource Technology, 2008, 99, 4420-4427.	4.8	59
194	Removal of copper, lead, and zinc from contaminated water by saltbush biomass: Analysis of the optimum binding, stripping, and binding mechanism. Bioresource Technology, 2008, 99, 4438-4444.	4.8	23
195	Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 2008, 99, 5574-5581.	4.8	209
196	Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy, 2008, 90, 13-18.	1.8	166
197	Development and physiology of the brown alga <i>Ectocarpus siliculosus</i> : two centuries of research. New Phytologist, 2008, 177, 319-332.	3.5	128
198	Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. Journal of Applied Microbiology, 2008, 105, 88-94.	1.4	91
199	Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International Journal of Food Microbiology, 2008, 125, 170-175.	2.1	96

# 200	ARTICLE Bacterial biosorbents and biosorption. Biotechnology Advances, 2008, 26, 266-291.	IF 6.0	Citations 1,466
201	Contamination of marine biogenic habitats and effects upon associated epifauna. Marine Pollution Bulletin, 2008, 56, 1057-1065.	2.3	71
202	The brown alga Lobophora variegata, a bioindicator species for surveying metal contamination in tropical marine environments. Journal of Experimental Marine Biology and Ecology, 2008, 362, 49-54.	0.7	23
203	Application of agricultural fibers in pollution removal from aqueous solution. International Journal of Environmental Science and Technology, 2008, 5, 275-285.	1.8	104
204	The extracellular proteoglycan produced by Rhodella grisea. International Journal of Biological Macromolecules, 2008, 43, 390-393.	3.6	29
205	Identification of S2-T A63: A cDNA fragment corresponding to a gene differentially expressed in a Cr-tolerant strain of the unicellular green alga Scenedesmus acutus. Aquatic Toxicology, 2008, 86, 495-507.	1.9	10
206	Column biosorption of lanthanum and europium by Sargassum. Water Research, 2008, 42, 363-371.	5.3	43
207	Influence of interactions between NOM and particles on UF fouling mechanisms. Water Research, 2008, 42, 3870-3878.	5.3	149
208	Biomonitors and the assessment of ecological impacts: Distribution of herbivorous epifauna in contaminated macroalgal beds. Environmental Pollution, 2008, 156, 489-503.	3.7	26
209	Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control. Geochimica Et Cosmochimica Acta, 2008, 72, 1742-1757.	1.6	187
210	Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere, 2008, 70, 1128-1134.	4.2	178
211	Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere, 2008, 71, 1233-1240.	4.2	155
212	Comparative study on biosorption of Pb(II) and Cr(VI) by Synechococcus sp Transactions of Nonferrous Metals Society of China, 2008, 18, 1336-1342.	1.7	19
213	Waste-waste treatment technology and environmental management using sawdust bio-mixture. Journal of Taibah University for Science, 2008, 1, 12-22.	1.1	10
214	Stability of Lead(II) Complexes of Alginate Oligomers. Environmental Science & Technology, 2008, 42, 1673-1679.	4.6	11
215	Cd(II) Speciation in Alginate Gels. Environmental Science & amp; Technology, 2008, 42, 7242-7247.	4.6	28
216	Quantification of Solute–Solute Interactions Using Negligible-Depletion Solid-Phase Microextraction: Measuring the Affinity of Estradiol to Bulk Organic Matter. Environmental Science & Technology, 2008, 42, 2886-2892.	4.6	43
217	Pb(II) Sorption under Batch and Continuous Mode Using Natural, Pretreated, and Amino-Modified Ectodermis of <i>Opuntia</i> . Industrial & Engineering Chemistry Research, 2008, 47, 1026-1034.	1.8	11

#	Article	IF	CITATIONS
218	Bacterial Alginate Role in Aerobic Granular Bioâ€particles Formation and Settleability Improvement. Separation Science and Technology, 2008, 43, 1642-1652.	1.3	41
219	Selective Biosorption of Zirconium and Hafnium from Acidic Aqueous Solutions by Rice Bran, Wheat Bran and Platanus Orientalis Tree Leaves. Separation Science and Technology, 2008, 43, 597-608.	1.3	17
220	Conformation, dynamics and ion-binding properties of single-chain polyuronates: a molecular dynamics study. Molecular Simulation, 2008, 34, 421-446.	0.9	34
221	CrIII binding by surface polymers in natural biomass: the role of carboxylic groups. Environmental Chemistry, 2008, 5, 355.	0.7	36
222	Biosorption of Cd, Ni, and Zn with Mixtures of Different Types of Algae. Environmental Engineering Science, 2008, 25, 999-1008.	0.8	21
223	Biosorption of Heavy Metals by Dead <i>Streptomyces fradiae</i> . Environmental Engineering Science, 2008, 25, 627-634.	0.8	24
224	Bioremoval of Aqueous Lead UsingLemna Minor. International Journal of Phytoremediation, 2008, 10, 278-288.	1.7	12
225	Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in <i>Padina Tetrastromatica</i> (Hauck). Analytical Chemistry Insights, 2008, 3, 117739010800300.	2.7	70
226	Investigation of Kinetics and Mechanism Involved in the Biosorption of Heavy Metals on Activated Sludge. International Journal of Green Energy, 2008, 5, 313-321.	2.1	13
227	Enhanced Removal of Cu(II) and Pb(II) from Aqueous Solutions by Pretreated Biomass of <i>Fusarium Solani</i> . Journal of the Chinese Chemical Society, 2008, 55, 1235-1242.	0.8	9
228	Biosorption performance of red and green marine macroalgae for removal of trace cadmium and nickel from wastewater. International Journal of Environment and Pollution, 2008, 34, 340.	0.2	6
229	Feasibility of Using Microalgal Biomass Cultured in Domestic Wastewater for the Removal of Chromium Pollutants. Water Environment Research, 2008, 80, 647-653.	1.3	14
230	Remoção de nÃquel de soluções aquosas em batelada e em coluna utilizando a alga marinha marrom Sargassum filipendula . Acta Scientiarum - Technology, 2008, 29, .	0.4	2
231	Copper, Zinc, Nickel, and Cobalt biosorption potential of Fucus vesiculosus (Phaeophyceae) and Gracilaria tikvahiae (Rhodophyta). Water Practice and Technology, 2009, 4, .	1.0	1
232	Biosorption of Copper(II) from Aqueous Solutions by Brown Macroalga <i>Cystoseira myrica</i> Biomass. Environmental Engineering Science, 2009, 26, 1009-1015.	0.8	19
233	Mechanism of Cu(II) Biosorption by Saccharomyces Cerevisiae. , 2009, , .		1
234	LIVE AND DEAD <i>SPIRULINA</i> SP. TO REMOVE ARSENIC (V) FROM WATER. International Journal of Phytoremediation, 2009, 11, 53-64.	1.7	25
235	Quantification and Localization of Fucoidan in <i>Laminaria japonica</i> Using a Novel Antibody. Bioscience, Biotechnology and Biochemistry, 2009, 73, 335-338.	0.6	28

#	Article	IF	CITATIONS
236	IN-AIR MICRO-PIXE ANALYSIS FOR METAL ELEMENTS IN RAT HEPATOCYTES TREATED WITH FUCOIDAN. International Journal of PIXE, 2009, 19, 47-54.	0.4	1
237	Divalent Cu, Cd, and Pb Biosorption in Mixed Solvents. Bioinorganic Chemistry and Applications, 2009, 2009, 1-5.	1.8	5
238	Application of two low-cost adsorption media for removal of toxic metals from contaminated water. Water Science and Technology, 2009, 60, 935-942.	1.2	2
239	Study of Biosorption of Rare Earth Metals (La, Nd, Eu, Gd) by <i>Sargassum</i> sp. Biomass in Batch Systems: Physicochemical Evaluation of Kinetics and Adsorption Models. Advanced Materials Research, 0, 71-73, 605-608.	0.3	33
240	Characterization of <i>Sargassum</i> sp. from Brazil and Evaluation of Cu ²⁺ and Ni ²⁺ Biosorption. Advanced Materials Research, 0, 71-73, 589-592.	0.3	0
241	Waste Biomass from Marine Environment as Arsenic and Lead Biosorbent. Advanced Materials Research, 2009, 71-73, 597-600.	0.3	3
242	Development of Bentonite-Alginate Films for Enhancement in Cd(II) Removal. Materials Research Society Symposia Proceedings, 2009, 1219, 6071.	0.1	0
243	pH dependence of steroid hormone—organic matter interactions at environmental concentrations. Science of the Total Environment, 2009, 407, 1164-1173.	3.9	75
244	Baseline metal concentrations in marine algae from São Miguel (Azores) under different ecological conditions – Urban proximity and shallow water hydrothermal activity. Marine Pollution Bulletin, 2009, 58, 438-443.	2.3	39
245	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226.	6.0	2,111
245 246	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40.	6.0 1.7	2,111 107
245 246 247	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450.	6.0 1.7 11.1	2,111 107 34
245 246 247 248	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450. Biosorption of Cadmium Ions from Aqueous Solution Onto Nonâ€living Lichen <i>Ramalina fraxinea</i> Biomass. Clean - Soil, Air, Water, 2009, 37, 249-255.	6.0 1.7 11.1 0.7	2,111 107 34 23
245 246 247 248 249	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450. Biosorption of Cadmium Ions from Aqueous Solution Onto Nonâ€living Lichen <i>Ramalina fraxinea</i> Biomass. Clean - Soil, Air, Water, 2009, 37, 249-255. Statistical Optimization of Process Parameters for Cr (VI) Biosorption onto Mixed Cultures of <i>Pseudomonas aeruginosa</i> and <i>Bacillus subtilis</i> Clean - Soil, Air, Water, 2009, 37, 319-327.	6.0 1.7 11.1 0.7 0.7	2,111 107 34 23 49
245 246 247 248 249 250	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450. Biosorption of Cadmium Ions from Aqueous Solution Onto Nonâ€living Lichen <i>Ramalina fraxinea</i> Biomass. Clean - Soil, Air, Water, 2009, 37, 249-255. Statistical Optimization of Process Parameters for Cr (VI) Biosorption onto Mixed Cultures of <i>Pseudomonas aeruginosa /i> and <i>Bacillus subtilis /i>. Clean - Soil, Air, Water, 2009, 37, 319-327. Competitive Adsorption of Nickel and Copper Ions from Aqueous Solution Using Nonliving Biomass of the Marine Brown Alga <i>Laminaria japonica</i></i></i>	6.0 1.7 11.1 0.7 0.7	2,111 107 34 23 49 13
245 246 247 248 249 250	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450. Biosorption of Cadmium Ions from Aqueous Solution Onto Nonâ€living Lichen <i>Ramalina fraxinea</i> Biomass. Clean - Soil, Air, Water, 2009, 37, 249-255. Statistical Optimization of Process Parameters for Cr (VI) Biosorption onto Mixed Cultures of <i>Pseudomonas aeruginosa</i> and <i>Bacillus subtilis</i> . Clean - Soil, Air, Water, 2009, 37, 319-327. Competitive Adsorption of Nickel and Copper Ions from Aqueous Solution Using Nonliving Biomass of the Marine Brown Alga <i>Laminaria Japonica </i> . Clean - Soil, Air, Water, 2009, 37, 663-668. Removal of the Azo Dye Congo Red from Aqueous Solutions by the Marine Alga <i>Porphyra yezoensis Ueda</i>	 6.0 1.7 11.1 0.7 0.7 0.7 0.7 	2,111 107 34 23 49 13 25
245 246 247 248 249 250 251	Biosorbents for heavy metals removal and their future. Biotechnology Advances, 2009, 27, 195-226. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. European Journal of Pharmacology, 2009, 617, 33-40. Shaped Films of lonotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450. Biosorption of Cadmium Ions from Aqueous Solution Onto Nonâ€living Lichen <i>Ramalina fraxinea</i> Biomass. Clean - Soil, Air, Water, 2009, 37, 249-255. Statistical Optimization of Process Parameters for Cr (VI) Biosorption onto Mixed Cultures of <i>Pseudomonas aeruginosa</i> action and <i>Bacillus subtilis</i> . Clean - Soil, Air, Water, 2009, 37, 319-327. Competitive Adsorption of Nickel and Copper Ions from Aqueous Solution Using Nonliving Biomass of the Marine Brown Alga <i>Laminaria Japonica</i> . Clean - Soil, Air, Water, 2009, 37, 663-668. Removal of the Azo Dye Congo Red from Aqueous Solutions by the Marine Alga <i>Porphyra yezoensis Lueda Potentiometric titrations for the characterization of functional groups on solid wastes of the olive oil production. Environmental Progress and Sustainable Energy, 2010, 29, 249-258.</i>	 6.0 1.7 11.1 0.7 0.7 0.7 0.7 1.3 	2,111 107 34 23 49 13 25 2

#	Article	IF	CITATIONS
254	Mercury removal: a physicochemical study of metal interaction with natural materials. Journal of Chemical Technology and Biotechnology, 2009, 84, 1688-1696.	1.6	22
255	Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper (II) from aqueous solution. Journal of Applied Polymer Science, 2009, 111, 2881-2885.	1.3	33
256	Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohydrate Polymers, 2009, 78, 894-901.	5.1	38
257	Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal, 2009, 146, 211-219.	6.6	112
258	A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chemical Engineering Journal, 2009, 148, 425-433.	6.6	82
259	Removal of copper by calcium alginate encapsulated magnetic sorbent. Chemical Engineering Journal, 2009, 152, 509-513.	6.6	72
260	Sorption of hazardous metals from single and multi-element solutions by saltbush biomass in batch and continuous mode: Interference of calcium and magnesium in batch mode. Journal of Environmental Management, 2009, 90, 1213-1218.	3.8	16
261	Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 2009, 90, 3485-3489.	3.8	113
262	Removal of rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta). Journal of Applied Phycology, 2009, 21, 625-631.	1.5	51
263	Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg. Journal of Radioanalytical and Nuclear Chemistry, 2009, 279, 909-914.	0.7	26
264	Biosorption of Cd(II) and Pb(II) onto brown seaweed, LobophoraÂvariegata (Lamouroux): kinetic and equilibrium studies. Biodegradation, 2009, 20, 1-13.	1.5	28
265	Cadmium, Copper and Zinc Biosorption Study by Non-Living Egeria densa Biomass. Water, Air, and Soil Pollution, 2009, 202, 385-392.	1.1	36
266	Biosorption of nickel(II) ions by using chemically pre-treated Sargassum filipendula biomass in a fixed bed column. World Journal of Microbiology and Biotechnology, 2009, 25, 1849-1856.	1.7	4
267	Thermodynamic parameters and sorption of U(VI) on ACSD. Journal of Radioanalytical and Nuclear Chemistry, 2009, 279, 271-280.	0.7	28
268	Evaluation of Native and Chemically Modified Sargassum glaucescens for Continuous Biosorption of Co(II). Applied Biochemistry and Biotechnology, 2009, 158, 736-746.	1.4	21
269	Arsenic (V) removal from groundwater by GE-HL nanofiltration membrane: effects of arsenic concentration, pH, and co-existing ions. Frontiers of Environmental Science and Engineering in China, 2009, 3, 428-433.	0.8	8
270	Surface modified granular activated carbon for enhancement of nickel adsorption from aqueous solution. Korean Journal of Chemical Engineering, 2009, 26, 1748-1753.	1.2	5
271	Investigation on the biomimetic influence of biopolymers on calcium phosphate precipitation—Part 1: Alginate. Materials Science and Engineering C, 2009, 29, 1109-1113.	3.8	9

#	Article	IF	CITATIONS
272	Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource Technology, 2009, 100, 1727-1733.	4.8	60
273	Kinetics and equilibrium of Cu(II) adsorption onto chemically modified orange peel cellulose biosorbents. Hydrometallurgy, 2009, 95, 145-152.	1.8	95
274	Adsorption of heavy metals on sonicated activated sludge. Ultrasonics Sonochemistry, 2009, 16, 83-87.	3.8	7
275	Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. Journal of Hazardous Materials, 2009, 162, 1347-1354.	6.5	165
276	Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. Journal of Hazardous Materials, 2009, 163, 555-562.	6.5	163
277	Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. Journal of Hazardous Materials, 2009, 163, 931-938.	6.5	135
278	Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling. Journal of Hazardous Materials, 2009, 163, 1113-1122.	6.5	55
279	Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 2009, 163, 475-510.	6.5	481
280	Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. Journal of Hazardous Materials, 2009, 164, 1019-1023.	6.5	77
281	Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats. Journal of Hazardous Materials, 2009, 164, 1304-1309.	6.5	73
282	Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents. Journal of Hazardous Materials, 2009, 164, 1439-1446.	6.5	43
283	Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species. Journal of Hazardous Materials, 2009, 166, 318-326.	6.5	45
284	Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 2009, 166, 612-618.	6.5	304
285	Phycoremediation of Chromium (VI) by Nitella and impact of calcium encrustation. Journal of Hazardous Materials, 2009, 166, 1332-1338.	6.5	40
286	Optimization of Cu(II) biosorption onto Ascophyllum nodosum by factorial design methodology. Journal of Hazardous Materials, 2009, 167, 449-454.	6.5	23
287	Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution. Journal of Hazardous Materials, 2009, 167, 1106-1113.	6.5	76
288	Lead sorption by waste biomass of hazelnut and almond shell. Journal of Hazardous Materials, 2009, 167, 1203-1208.	6.5	193
289	Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Journal of Hazardous Materials, 2009, 168, 1-12.	6.5	155

#	Article	IF	CITATIONS
290	Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. Journal of Hazardous Materials, 2009, 168, 369-375.	6.5	189
291	Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column. Journal of Hazardous Materials, 2009, 170, 735-743.	6.5	77
292	Development of hybrid alginate/ceramic membranes for Cd2+ removal. Microporous and Mesoporous Materials, 2009, 120, 154-164.	2.2	24
293	Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. Journal of Analytical and Applied Pyrolysis, 2009, 85, 3-10.	2.6	178
294	Pb (II) sorption by acidically modified Cicer arientinum biomass. Chemical Engineering Journal, 2009, 150, 40-48.	6.6	43
295	Biosorption of nickel ions from aqueous solutions by Pseudomonas sp. and Staphylococcus xylosus cells. Desalination, 2009, 248, 907-914.	4.0	13
296	Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater. Ecological Engineering, 2009, 35, 856-860.	1.6	25
297	Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and equilibrium studies. Bioresource Technology, 2009, 100, 186-193.	4.8	144
298	Uptake of Re(VII) from aqueous solutions by Bacillus sp. GT-83-23. Bioresource Technology, 2009, 100, 603-608.	4.8	31
299	Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage. Bioresource Technology, 2009, 100, 615-621.	4.8	24
300	Effect of salinity on vanadate biosorption by Halomonas sp. GT-83: Preliminary investigation on biosorption by micro-PIXE technique. Bioresource Technology, 2009, 100, 2361-2368.	4.8	20
301	Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnatifida). Carbohydrate Polymers, 2009, 78, 717-724.	5.1	39
302	Surface chemistry evaluation of some solid wastes from olive-oil industry used for lead removal from aqueous solutions. Biochemical Engineering Journal, 2009, 44, 151-159.	1.8	80
303	Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 2009, 44, 19-41.	1.8	377
304	Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. Journal of Food Composition and Analysis, 2009, 22, 330-336.	1.9	85
305	Synthesis of <i>N</i> -Methylimidazolium Functionalized Strongly Basic Anion Exchange Resins for Adsorption of Cr(VI). Industrial & Engineering Chemistry Research, 2009, 48, 3261-3267.	1.8	123
306	Structural and Nanomechanical Properties of Termitomyces clypeatus Cell Wall and Its Interaction with Chromium(VI). Journal of Physical Chemistry B, 2009, 113, 1485-1492.	1.2	12
307	Natural seaweed waste as sorbent for heavy metal removal from solution. Environmental Technology (United Kingdom), 2009, 30, 755-762.	1.2	52

ARTICLE IF CITATIONS Adsorption Behavior of Mercury on Functionalized Aspergillus versicolor Mycelia: Atomic Force 308 1.6 47 Microscopic Study. Langmuir, 2009, 25, 360-366. Impact of pH on Cdll partitioning between alginate gel and aqueous media. Environmental Chemistry, 309 9 2009, 6, 305. Impact of Ionic Strength on Cd(II) Partitioning between Alginate Gel and Aqueous Media. 310 4.6 24 Environmental Science & amp; Technology, 2009, 43, 1091-1096. Removal of Cu(II) and Ni(II) from Industrial Effluents by Brown Seaweed, Cystoseira indica. Industrial 1.8 & Engineering Chemistry Research, 2009, 48, 961-975. Biosorption of arsenic(III) ion from aqueous solution using <i>Aspergillus fumigatus </i>isolated from 312 1.0 12 arsenic contaminated site. Desalination and Water Treatment, 2009, 11, 294-301. Cadmium biosorption by non-living aquatic macrophytes Egeria densa. Water Science and Technology, 1.2 2009, 60, 293-300. Bioavailability and detoxification of cationics: I. Algal toxicity of alkyltrimethyl ammonium salts in 314 4.2 30 the presence of suspended sediment and humic acid. Chemosphere, 2009, 75, 303-309. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: Response surface methodology 4.2 and isotherm study. Chemosphere, 2009, 7<u>5, 1483-1491.</u> Silk fibroin as a sorbent for on-line extraction and preconcentration of copper with detection by 316 2.9 25 electrothermal atomic absorption spectrometry. Talanta, 2009, 78, 71-75. Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 2009, 5.3 188 43, 4479-4488. Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, 318 1.9 28 Microcystis aeruginosa. Aquatic Toxicology, 2009, 93, 1-10. Fucoidan Induces Apoptosis through Activation of Caspase-8 on Human Breast Cancer MCF-7 Cells. 319 2.4 Journal of Agricultural and Food Chemistry, 2009, 57, 8677-8682. Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds. Journal of 320 0.8 263 Medicinal Food, 2009, 12, 236-258. One-step synthesis of functional chiral porous silica nanorods using an achiral surfactant. Dalton 1.6 Transactions, 2009, , 6651. Removal of Cadmium Ions from Aqueous Samples bySynechocystissp.. Separation Science and 322 9 1.3 Technology, 2009, 44, 1467-1483. Biosorption of Cu(II) and Zn(II) by intact and pre-treated biomass of Oscillatoria planctonica. International Journal of Environment and Pollution, 2009, 38, 1. Potencial de biossorção do zinco pela macrÃ3fita egeria densa. Engenharia Sanitaria E Ambiental, 2009, 324 0.117 14, 465-470. Heavy Metal Removal with Exopolysaccharide-Producing Cyanobacteria. Advances in Industrial and Hazardous Wastes Treatment Series, 2009, , .

#	Article	IF	CITATIONS
326	Treatment of Micropollutants in Water and Wastewater. Water Intelligence Online, 0, 9, .	0.3	27
327	Batch Studies of Zinc(II) Ion Adsorption onto Alginic Acid Fibres. Adsorption Science and Technology, 2010, 28, 363-375.	1.5	5
328	Kinetics and Mechanism of Nickel(II) Ion Biosorption by Immobilized Brown <i>Laminaria Japonica</i> Algae. Adsorption Science and Technology, 2010, 28, 499-507.	1.5	5
329	Biosorption of inorganic mercury onto marine alga Sargassum tenerrimum: batch and column studies. International Journal of Environmental Technology and Management, 2010, 12, 229.	0.1	6
330	Hydrophobicity in biosorptive flotation for metal ion removal. International Journal of Environmental Technology and Management, 2010, 12, 192.	0.1	5
331	The change of the electrokinetic potential of Bacillus polymyxa IMV 8910 cells in interaction with ions of U(VI) and strontium. Journal of Water Chemistry and Technology, 2010, 32, 56-60.	0.2	2
332	Water treatment to remove acid and basic dyes by biosorption on polysaccharide composites. Russian Journal of Applied Chemistry, 2010, 83, 1785-1793.	0.1	4
333	Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions. Bioresource Technology, 2010, 101, 8573-8580.	4.8	84
334	An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media. Biosensors and Bioelectronics, 2010, 26, 321-326.	5.3	48
335	Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 2010, 254, 2959-2972.	9.5	474
336	Single and binary biosorption of cerium and europium onto crab shell particles. Chemical Engineering Journal, 2010, 163, 337-343.	6.6	92
337	Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides. Colloids and Surfaces B: Biointerfaces, 2010, 76, 179-185.	2.5	56
338	Heavy metals binding to biosorbents. Insights into Non-Competitive Models from a simple pH-dependent model. Colloids and Surfaces B: Biointerfaces, 2010, 80, 133-137.	2.5	5
339	Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids and Surfaces B: Biointerfaces, 2010, 81, 620-628.	2.5	108
340	Site-specific Eu(III) binding affinities to a Datura innoxia biosorbent. Journal of Hazardous Materials, 2010, 173, 409-414.	6.5	5
341	Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration. Journal of Membrane Science, 2010, 348, 174-180.	4.1	71
342	Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead biomass. International Journal of Mineral Processing, 2010, 94, 203-206.	2.6	54
343	How does mechanism of biosorption determine the differences between the initial and equilibrium adsorption states?. Adsorption, 2010, 16, 351-357.	1.4	11

#	Article	IF	CITATIONS
344	Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp. stromboliensis immobilized on Amberlite XAD-4. Mikrochimica Acta, 2010, 169, 79-85.	2.5	35
345	Adsorption and thermodynamics studies of U(VI) by composite adsorbent in a batch system. Ionics, 2010, 16, 741-749.	1.2	4
346	Biosorption of Cadmium, Lead, and Uranium by Powder of Poplar Leaves and Branches. Applied Biochemistry and Biotechnology, 2010, 160, 976-987.	1.4	64
347	Mercury(II) Biosorption Using Lessonia sp. Kelp. Applied Biochemistry and Biotechnology, 2010, 162, 805-822.	1.4	15
348	Biosorption of Pb2+ and Zn2+ by Non-Living Biomass of Spirulina sp Indian Journal of Microbiology, 2010, 50, 438-442.	1.5	38
349	On the biosorption, by brown seaweed, Lobophora variegata, of Ni(II) from aqueous solutions: equilibrium and thermodynamic studies. Biodegradation, 2010, 21, 661-680.	1.5	13
350	Removal of phosphate by the green seaweed Ulva lactuca in a small-scale sewage treatment plant (Ios) Tj ETQqO	0 0 rgBT /	Overlock 10
351	Efficient Purification of Heavy-Metal-Contaminated Water by Microalgae-Activated Pine Bark. Water, Air, and Soil Pollution, 2010, 210, 493-500.	1.1	24
352	A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Biotechnology, 2010, 9, 215-288.	3.9	281
353	Isolation, identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing Penicillium sp. MRF-1 from South Korean mine soil. Journal of Environmental Sciences, 2010, 22, 1049-1056.	3.2	28
354	Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity. Marine Pollution Bulletin, 2010, 60, 1482-1488.	2.3	92
355	Batch and column removal of total chromium from aqueous solution using <i>Sargassum polycystum</i> . Environmental Progress and Sustainable Energy, 2010, 29, 334-341.	1.3	17
356	Biosorption of Procion Red MX 5B by <i>Bacillus subtilis</i> and Its Extracellular Polysaccharide: Effect of Immobilization. Clean - Soil, Air, Water, 2010, 38, 775-780.	0.7	8
357	Zn(II) Ion Biosorption onto Surface of Eucalyptus Leaf Biomass: Isotherm, Kinetic, and Mechanistic Modeling. Clean - Soil, Air, Water, 2010, 38, 1062-1073.	0.7	59
358	Removal of heavy metals and cyanide from gold mine wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 590-613.	1.6	179
359	Quantitative study of Au(III) and Pd(II) ion biosorption on genetically engineered Tobacco mosaic virus. Journal of Colloid and Interface Science, 2010, 342, 455-461.	5.0	51
360	Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. Journal of Food Composition and Analysis, 2010, 23, 814-820.	1.9	49
361	Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust. Journal of Hazardous Materials, 2010, 173, 236-242.	6.5	152

ARTICLE IF CITATIONS Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos). 362 6.5 172 Journal of Hazardous Materials, 2010, 173, 502-509. Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. 6.5 Journal of Hazardous Materials, 2010, 179, 151-159. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a 364 6.5 120 consortium of white-rot fungi. Journal of Hazardous Materials, 2010, 179, 845-851. Evaluation of the potential of microalgae Microcystis novacekii in the removal of Pb2+ from an 39 aqueous medium. Journal of Hazardous Materials, 2010, 179, 947-953. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-1±- and IFN-13-stimulated C6 366 1.9 81 glioma cellsa⁺†. Journal of Nutritional Biochemistry, 2010, 21, 671-679. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology, 2010, 101, 1466-1470. 4.8 Coconut-based biosorbents for water treatment â€" A review of the recent literature. Advances in 368 7.0 159 Colloid and Interface Science, 2010, 160, 1-15. Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green 2.5 56 algae Ulothrix sp.. Colloids and Surfaces B: Biointerfaces, 2010, 76, 279-285. Biosorption of heavy metal ions using wheat based biosorbents $\hat{a} \in A$ review of the recent literature. Bioresource Technology, 2010, 101, 5043-5053. 370 4.8 707 Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue 371 5.1 engineering. Carbohydrate Polymers, 2010, 79, 660-664. Sorption of Al (III) from aqueous solution by fresh macrophyte alligator weed: Equilibrium and 372 4 4.0kinetics. Desalination, 2010, 250, 485-489. Removal of Cd(II) by modified lawny grass cellulose adsorbent. Desalination, 2010, 259, 120-130. 4.0 26 Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal. Journal of 374 2.5 88 Rare Earths, 2010, 28, 125-131. Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum Filipendula. Materials Research, 2010, 13, 541-550. Cadmium(II) and Lead(II) removal by Chlorella sp. Immobilized and E. coli genetically engineered with 376 0.1 0 mice Metallothionein I. Materials Research Society Symposia Proceedings, 2010, 1278, 301. Cadmium(II) and Lead(II) removal by Chlorella sp. Immobilized and E. coli genetically engineered with mice Metallothionein I. Materials Résearch Society Symposia Proceedings, 2010, 1277, 1801. Decontaminating Heavy Metals from Water Using Photosynthetic Microbes., 2010, , 57-73. 378 3 Biosorption of Chromium(III) and Copper(II) Ions onto Marine Alga <i>Sargassum </i> sp. in a Fixed-bed 379 1.5 Column. Adsorption Science and Technology, 2010, 28, 449-464.

ARTICLE IF CITATIONS Biosorption in Environmental Remediation., 2010, , 35-99. 380 11 Influence of Operating Conditions on the Removal Cd Ions from Aqueous Media by Adsorption Using Chlamydomonas Reinhardtii. Chinese Journal of Population Resources and Environment, 2010, 8, 93-96. 1.5 Competitive Biosorption of Acid Dyes from Binary Solutions onto<i>Enteromorpha prolifera</i>: Application of the First Order Derivative Spectrophotometric Analysis Method. Separation Science 382 9 1.3 and Technology, 2010, 45, 380-393. Development of a Fucoidan-Specific Antibody and Measurement of Fucoidan in Serum and Urine by Sandwich ELISA. Bioscience, Biotechnology and Biochemistry, 2010, 74, 350-357. Biosorption of Pb(II) from aqueous solution by biomass of Neosartorya hiratsukae(M7): Equilibrium 384 0 and kinetic studies., 2010, , Ceramic-Supported Alginate Adsorbent for the Removal of Heavy Metal Ions. Adsorption Science and 1.5 Technology, 2010, 28, 253-266. Biosorption of Lanthanum, Cerium, Europium, and Ytterbium by a Brown Marine Alga, <i>Turbinaria 386 1.8 122 Conoides </i>. Industrial & amp; Engineering Chemistry Research, 2010, 49, 4405-4411. Antibacterial properties of nine pure metals: a laboratory study using<i>Staphylococcus 0.8 164 aureus</i>and<i>Escherichia coli</i>. Biofouling, 2010, 26, 851-858. 388 Application of seaweed as an alternative for leachate treatment of heavy metal., 2010,,. 1 Direct synthesis of ordered N-methylimidazolium functionalized mesoporous silica as highly efficient 389 44 anion exchanger of Cr(vi). Journal of Materials Chemistry, 2010, 20, 1553-1559. Green Recovery of Gold through Biosorption, Biocrystallization, and Pyro-Crystallization. Industrial 390 63 1.8 & Engineering Chemistry Research, 2010, 49, 7129-7135. Biosorption and bioaccumulation – the prospects for practical applications. Environment 4.8 International, 2010, 36, 299-307. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in 392 5.3 259 pilot-plant. Water Research, 2010, 44, 3355-3364. Application of the Nernst–Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata. Water Research, 2010, 44, 3946-3958. 5.3 46 Proteomic analysis and identification of copper stress-regulated proteins in the marine alga 394 1.9 71 Scytosiphon gracilis (Phaeophyceae). Aquatic Toxicology, 2010, 96, 85-89. A review of antihypertensive and antioxidant activities in macroalgae. Botanica Marina, 2010, 53, . 93 Use of macroalgae stored in an Environmental Specimen Bank for application of some European 396 5.324 Framework Directives. Water Research, 2010, 44, 1713-1724. Cellulose-Based Native and Surface Modified Fruit Peels for the Adsorption of Heavy Metal Ions from Aqueous Solution: Langmuir Adsorption Isotherms. Journal of Chemical & amp; Engineering Data, 2010,

#	Article	IF	Citations
399	Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Marine Drugs, 2010, 8, 2038-2064.	2.2	319
400	Adsorption of Pb ²⁺ by Alkali-Treated <i>Citrus limetta</i> Peels. Industrial & Engineering Chemistry Research, 2010, 49, 11682-11688.	1.8	26
401	Bioremediation Technology. , 2010, , .		15
402	A Novel Two-Resistance Model for Description of the Adsorption Kinetics onto Porous Particles. Langmuir, 2010, 26, 802-808.	1.6	22
403	Xenobiotics Removal by Membrane Technology: An Overview. Environmental Pollution, 2010, , 307-338.	0.4	5
404	Synthesis of Iron Oxide Based Gelatin Nanocomposites and their Applications in Removal of Cr (VI) Ions from Aqueous Solutions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 47-56.	1.2	7
405	Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. Journal of Analytical Atomic Spectrometry, 2010, 25, 1114.	1.6	98
406	Synthesis and Characterization of a Bentonite-Alginate Microspherical Adsorbent for Removal of Uranyl Ions from Aqueous Solutions. Separation Science and Technology, 2010, 45, 288-298.	1.3	14
407	Molecular dynamics study of the interactions between phenolic compounds and alginate/alginic acid chains. New Journal of Chemistry, 2011, 35, 1607.	1.4	16
408	The Adsorption Behavior of Cu2+Fe2+onto Waste Seaweed in Acid Mine Drainage. Geosystem Engineering, 2011, 14, 175-180.	0.7	1
409	Environmental Sustainability of Microalgae Production as a Biofuel Source. Advanced Materials Research, 2011, 378-379, 433-438.	0.3	2
410	Fourier Transform Infrared Spectroscopic Analysis of Fruit Peels before and after the Adsorption of Heavy Metal Ions from Aqueous Solution. Journal of Chemical & Engineering Data, 2011, 56, 2249-2255.	1.0	87
411	Equilibrium, Kinetics, and Thermodynamics of Dye Removal Using Alginate in Binary Systems. Journal of Chemical & Engineering Data, 2011, 56, 2802-2811.	1.0	107
412	Potential of Biosorption Technology. , 2011, , 7-17.		22
413	The Mechanism of Metal Cation and Anion Biosorption. , 2011, , 19-58.		52
414	Algal Biosorption and Biosorbents. , 2011, , 159-178.		19
418	Security of Industrial Water Supply and Management. NATO Science for Peace and Security Series C: Environmental Security, 2011, , .	0.1	7
419	New chelating resin for preconcentration and determination of molybdenum by inductive couple plasma atomic emission spectroscopy. International Journal of Environmental Science and Technology, 2011, 8, 501-512.	1.8	15

#	Article	IF	CITATIONS
420	Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology (United Kingdom), 2011, 32, 467-491.	1.2	305
421	Microbial Biosorption of Metals. , 2011, , .		65
422	Microbes and Microbial Technology. , 2011, , .		50
423	Antimonite Removal Using Marine Algal Species. Industrial & Engineering Chemistry Research, 2011, 50, 9864-9869.	1.8	18
424	Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquatic Toxicology, 2011, 104, 94-107.	1.9	58
425	Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin. Aquatic Toxicology, 2011, 104, 1-13.	1.9	73
426	Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 162-170.	2.0	65
427	Influence of viscous Rhodella grisea (Rhodophyceae) proteoglycan on chemically induced cough reflex. International Journal of Biological Macromolecules, 2011, 49, 1046-1050.	3.6	2
428	Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Research, 2011, 45, 145-154.	5.3	152
429	Biosorption: A new rise for elemental solid phase extraction methods. Talanta, 2011, 85, 2290-2300.	2.9	60
430	Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science and Technology, 2011, 22, 315-326.	7.8	433
431	Chemical Fractionation of Radionuclides and Stable Elements in Aquatic Plants of the Yenisei River. Environmental Science & Technology, 2011, 45, 7143-7150.	4.6	4
432	Functional Properties of Brown Algal Sulfated Polysaccharides, Fucoidans. Advances in Food and Nutrition Research, 2011, 64, 163-178.	1.5	8
433	Effect of Different Exogeneous Compounds on Biosorption of Endosulfan. American Journal of Environmental Sciences, 2011, 7, 224-236.	0.3	3
434	Characterization of copper resistant ciliates: Potential candidates for consortia of organisms used in bioremediation of wastewater. African Journal of Biotechnology, 2011, 10, 9101-9113.	0.3	4
435	Comparative Metal Ion Binding to Native and Chemically Modified Datura innoxia Immobilized Biomaterials. , 2011, , .		0
436	Cellulosic substrates for removal of pollutants from aqueous systems: A review. 1. Metals. BioResources, 2011, 6, 2161-2287.	0.5	136
437	Copper Ions Biosorption Properties of Biomass Derived from Algerian Sahara Plants. , 0, , .		3

#	Article	IF	CITATIONS
438	Preferential Adsorption of Heavy Metals on Activated Carbon. Bangladesh Journal of Scientific and Industrial Research, 2011, 46, 211-218.	0.1	3
439	Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. African Journal of Biotechnology, 2011, 10, .	0.3	43
440	<i>Kjellmaniella crassifolia</i> Miyabe (Gagome) Extract Modulates Intestinal and Systemic Immune Responses. Bioscience, Biotechnology and Biochemistry, 2011, 75, 2178-2183.	0.6	15
441	Cosmeceutical Properties of Brown Algae and Its Industrial Applications. , 2011, , 305-318.		0

Biosorption of Cu(II) Ions from Aqueous Solution by Red Alga (<i&gt;Palmaria) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 Td

443	Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. Journal of Animal Physiology and Animal Nutrition, 2011, 95, 374-387.	1.0	61
444	Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass. Journal of Hazardous Materials, 2011, 193, 1-9.	6.5	70
445	Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renewable and Sustainable Energy Reviews, 2011, 15, 4432-4435.	8.2	58
446	Bioaccumulation of metals by Fucus ceranoides in estuaries of South West England. Marine Pollution Bulletin, 2011, 62, 2557-2562.	2.3	24
447	Modelling temporal trends of 137Cs and 99Tc concentrations in Fucus vesiculosus from the eastern Irish coastline. Marine Pollution Bulletin, 2011, 62, 2337-2344.	2.3	2
448	The use of kelp sieve tube sap metal composition to characterize urban runoff in southern California coastal waters. Marine Pollution Bulletin, 2011, 62, 2619-2632.	2.3	7
449	The use of a white rot fungi (Pleurotus ostreatus) immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Bioresource Technology, 2011, 102, 8035-8039.	4.8	33
450	Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances, 2011, 29, 483-501.	6.0	463
451	Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 2011, 173, 422-428.	6.6	127
452	Marine biological resources: An advanced raw material base for biofuel. Catalysis in Industry, 2011, 3, 57-61.	0.3	6
453	Effect of preâ€ŧreatments on biosorption of Ni (II) by dead biomass of <i>Mucor hiemalis</i> . Engineering in Life Sciences, 2011, 11, 588-597.	2.0	16
454	Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochemistry Reviews, 2011, 10, 431-443.	3.1	120
455	High-impact papers presented in the subject category of water resources in the essential science indicators database of the institute for scientific information. Scientometrics, 2011, 87, 551-562.	1.6	111

#	Article	IF	CITATIONS
456	Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. Journal of Nanoparticle Research, 2011, 13, 3207-3216.	0.8	120
457	Biosorption Capacity for Cadmium of Brown Seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California. Water, Air, and Soil Pollution, 2011, 221, 137-144.	1.1	14
458	Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technologies and Environmental Policy, 2011, 13, 241-268.	2.1	120
459	Using ICP-OES and SEM-EDX in biosorption studies. Mikrochimica Acta, 2011, 172, 65-74.	2.5	52
460	Adsorption equilibrium and kinetics of copper ions and phenol onto modified adsorbents. Adsorption, 2011, 17, 135-143.	1.4	14
461	Trace Metals in Algae and Sediments from the North-Eastern Tunisian Lagoons. Bulletin of Environmental Contamination and Toxicology, 2011, 86, 194-198.	1.3	18
462	Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnology, 2011, 92, 697-708.	1.7	246
463	Size control and catalytic activity of bio-supported palladium nanoparticles. Colloids and Surfaces B: Biointerfaces, 2011, 85, 373-378.	2.5	51
464	Samarium(III) and praseodymium(III) biosorption on Sargassum sp.: Batch study. Process Biochemistry, 2011, 46, 736-744.	1.8	61
465	Sorption of lead on Iranian bentonite and zeolite: kinetics and isotherms. Environmental Earth Sciences, 2011, 62, 559-568.	1.3	45
466	Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass. Environmental Science and Pollution Research, 2011, 18, 790-799.	2.7	48
467	The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 2011, 33, 35-51.	1.0	557
468	Molecular basis of calcium binding by polyguluronate chains. Revising the eggâ€box model. Journal of Computational Chemistry, 2011, 32, 2988-2995.	1.5	86
469	Integrated macroalgae production for sustainable bioethanol, aquaculture and agriculture in Pacific island nations. Biofuels, Bioproducts and Biorefining, 2011, 5, 599-608.	1.9	20
470	Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chemical Engineering Journal, 2011, 166, 122-131.	6.6	59
471	Binding mechanisms and QSAR modeling of aromatic pollutant biosorption on Penicillium oxalicum biomass. Chemical Engineering Journal, 2011, 166, 624-630.	6.6	19
472	Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chemical Engineering Journal, 2011, 167, 223-227.	6.6	108
473	A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 2011, 168, 493-504.	6.6	627

#	Article	IF	CITATIONS
474	Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption. Chemical Engineering Journal, 2011, 171, 1060-1068.	6.6	159
475	Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresource Technology, 2011, 102, 2821-2828.	4.8	83
476	Equilibrium of Cu(II) and Ni(II) biosorption by marine alga Sargassum filipendula in a dynamic system: Competitiveness and selectivity. Bioresource Technology, 2011, 102, 4610-4617.	4.8	86
477	Physico-chemical characteristics and lead biosorption properties of Enteromorpha prolifera. Colloids and Surfaces B: Biointerfaces, 2011, 85, 316-322.	2.5	19
478	Interaction of rare earth elements with a brown marine alga in multi-component solutions. Desalination, 2011, 265, 54-59.	4.0	60
479	Biosorption characteristics of crab shell particles for the removal of manganese(II) and zinc(II) from aqueous solutions. Desalination, 2011, 266, 195-200.	4.0	81
480	Selective reinforced competitive biosorption of Ag (I) and Cu (II) on Magnetospirillum gryphiswaldense. Desalination, 2011, 270, 258-263.	4.0	38
481	Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 2011, 275, 93-101.	4.0	102
482	Full description of copper uptake by algal biomass combining an equilibrium NICA model with a kinetic intraparticle diffusion driving force approach. Bioresource Technology, 2011, 102, 2990-2997.	4.8	18
483	Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel, 2011, 90, 598-607.	3.4	179
484	Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds. Journal of Hazardous Materials, 2011, 192, 284-91.	6.5	36
485	Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polymer Degradation and Stability, 2011, 96, 936-942.	2.7	119
486	Sorption isotherms and characteristics of U(VI) ion onto composite adsorbent. Desalination and Water Treatment, 2011, 30, 186-194.	1.0	4
487	Biosorption of heavy metals by potassium hydrogen phosphate and sodium oxalate modified lignocellulosic waste. , 2011, , .		1
488	Study on Biosorption and Desorption of Copper-Containing Wastewater by Anaerobic Granular Sludge. , 2011, , .		0
489	The Adsorption of Copper Ions by Sodium Alginate Immobilized Bacillus Subtilis Body and Purify Copper of Mine Wastewater. Advanced Materials Research, 2011, 356-360, 1469-1474.	0.3	0
490	Metal Tolerance and Biosorption Potential of Soil Fungi: Applications for a Green and Clean Water Treatment Technology. , 2011, , 321-361.		5
491	Bacterial Biosorption: A Technique for Remediation of Heavy Metals. , 2011, , 283-319.		18

#	Article	IF	CITATIONS
492	Removal of Cadmium (II) Ions from Aqueous Phase by Biosorption on Biological Activated Dates' Pedicels (Kinetic, Equilibrium and Thermodynamic Study). International Journal of Chemical Reactor Engineering, 2011, 9, .	0.6	0
493	Research on the Cr (VI) Absorption by Floc-Type Biosorbent AR. Advanced Materials Research, 0, 383-390, 3029-3034.	0.3	0
494	Seaweed Minerals as Nutraceuticals. Advances in Food and Nutrition Research, 2011, 64, 371-390.	1.5	70
495	Biosorption of Silver Ions by <i>Paecilomyces Lilacinus</i> Biomass: Equilibrium, Kinetics and Thermodynamics. Adsorption Science and Technology, 2011, 29, 887-896.	1.5	8
496	Synthesis and characterization of new biopolymeric microcapsules containing DEHPA–TOPO extractants for separation of uranium from phosphoric acid solutions. Journal of Microencapsulation, 2011, 28, 248-257.	1.2	10
497	Biosorption of Pb(II) by Biomass of KCâ€2: Kinetic, Equilibrium and Characteristic Studies. Water Environment Research, 2011, 83, 2148-2153.	1.3	2
498	Effect of Alginate Concentration on Alginate-TiO2Hydrogel for Lead Ion Removal. IOP Conference Series: Materials Science and Engineering, 2011, 21, 012028.	0.3	1
499	The effects of laminarin derived from Laminaria digitata on measurements of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. British Journal of Nutrition, 2011, 105, 669-677.	1.2	79
500	Assessing the Importance of Organic Matrix Materials in Biofilm Chemical Reactivity: Insights from Proton and Cadmium Adsorption onto the Commercially Available Biopolymer Alginate. Geomicrobiology Journal, 2011, 28, 266-273.	1.0	14
501	Use of laboratory-grown bacterial alginate in copper removal. Water Science and Technology, 2012, 65, 2003-2009.	1.2	2
502	Marine Macrophytes as Effective Lead Biosorbents. Water Environment Research, 2012, 84, 9-16.	1.3	19
503	Adsorption of Zn ²⁺ by <i>Sargassum horneri</i> and Desorption at Simulated Marine Environment. Applied Mechanics and Materials, 2012, 209-211, 1093-1099.	0.2	0
504	Adsorption of Hexavalent Chromium Ions by Organic-Inorganic Hybrid Mesoporous Material in Aqueous Solution. Advanced Materials Research, 2012, 518-523, 854-859.	0.3	0
505	Research on the Cr (VI) Absorption by Activated Sludge. Applied Mechanics and Materials, 0, 229-231, 138-141.	0.2	0
506	Zn(II) Removal with Activated <i>Firmiana Simplex</i> Leaf: Kinetics and Equilibrium Studies. Journal of Environmental Engineering, ASCE, 2012, 138, 190-199.	0.7	29
507	Important Role of β ₁ -Integrin in Fucoidan-Induced Apoptosis <i>via</i> Caspase-8 Activation. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1163-1168.	0.6	16
508	A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13225-13230.	3.3	52
509	Wastewater Treatment Integrated with Algae Production for Biofuel. Cellular Origin and Life in Extreme Habitats, 2012, , 447-466.	0.3	3

#	Article	IF	CITATIONS
510	Brown macroalgae as bio-indicators for heavy metals pollution of Al-Jubail coastal area of Saudi Arabia. African Journal of Biotechnology, 2012, 11, 15888-15895.	0.3	22
511	Biosorption of Pb (II) from aqueous solutions by modified of two kinds of marine algae, <i>Sargassum glaucescens</i> and <i>Gracilaria corticata</i> . Polish Journal of Chemical Technology, 2012, 14, 22-28.	0.3	5
512	Optimization and equilibrium studies of Pb(II) removal by <i>Grewia Asiatica</i> seed: a factorial design approach. Polish Journal of Chemical Technology, 2012, 14, 71-77.	0.3	9
513	Modified crab shell particles for the removal of lead[II] ions from aqueous solutions. International Journal of Environment and Waste Management, 2012, 9, 232.	0.2	0
514	Algae of economic importance that accumulate cadmium and lead: a review. Revista Brasileira De Farmacognosia, 2012, 22, 825-837.	0.6	35
515	- Advanced Oxidation Processes: Basics and Applications. , 2012, , 76-121.		0
516	- Impinging-Jet Ozone Bubble Column Reactors. , 2012, , 122-151.		0
517	Biosorption of Copper (II) from Aqueous Solution Using Non-Living <i>Mesorhizobium amorphae</i> Strain CCNWGS0123. Microbes and Environments, 2012, 27, 234-241.	0.7	36
518	Biotechnology of Marine Fungi. Progress in Molecular and Subcellular Biology, 2012, 53, 277-297.	0.9	39
519	A Physicochemical Study of Al(+3) Interactions with Edible Seaweed Biomass in Acidic Waters. Journal of Food Science, 2012, 77, C987-93.	1.5	7
520	Water Detoxification by a Substrateâ€Bound Catecholamine Adsorbent. ChemPlusChem, 2012, 77, 987-990.	1.3	57
521	Nonliving biomass of marine macrophytes as arsenic(V) biosorbents. Journal of Applied Phycology, 2012, 24, 1495-1502.	1.5	33
522	Uranium micelle-mediated extraction in acetate medium: factorial design optimization. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 789-795.	0.7	6
523	Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata. Environmental Science and Pollution Research, 2012, 19, 3118-3125.	2.7	65
524	Sorption of lead, copper, and cadmium by calcium alginate. Metal binding stoichiometry and the pH effect. Environmental Science and Pollution Research, 2012, 19, 3516-3524.	2.7	28
525	Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 433-443.	2.7	51
526	Biosorption of diesel and lubricating oil on algal biomass. 3 Biotech, 2012, 2, 301-310.	1.1	19
527	Investigation on adsorptive removal of basic dye by seaweed-derived biosorbent: considering effects of sorbent dosage, ionic strength and agitation speed. Desalination and Water Treatment, 2012, 48, 238-244.	1.0	3

#	Article	IF	CITATIONS
528	Determination of the Functional Groups in Algae Parachlorella Kessleri by Potentiometric Titrations. Nova Biotechnologica Et Chimica, 2012, 11, .	0.1	16
532	Effects of Cd, Cu, Ni, and Zn on Brown Tide Alga Aureococcus Anophagefferens Growth and Metal Accumulation. Environmental Science & Technology, 2012, 46, 517-524.	4.6	20
533	Spongy Hydrogels of Cyanobacterial Polyanions Mediate Energy-Saving Electrolytic Metal-Refinement. Industrial & Engineering Chemistry Research, 2012, 51, 8704-8707.	1.8	12
534	Metal Recovery, Separation and/or Pre-concentration. , 2012, , 237-322.		10
535	Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21373.	6.7	74
536	Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. Journal of Environmental Management, 2012, 111, 106-114.	3.8	134
537	Cr(VI) removal from synthetic and real wastewaters: The use of the invasive biomass Sargassum muticum in batch and column experiments. Journal of Industrial and Engineering Chemistry, 2012, 18, 1370-1376.	2.9	24
538	Analysis of mono-sugars obtained by acid hydrolysis of algae-based polysaccharides. Journal of Industrial and Engineering Chemistry, 2012, 18, 1366-1369.	2.9	9
539	Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresource Technology, 2012, 118, 545-552.	4.8	29
540	Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes. Carbohydrate Polymers, 2012, 90, 399-406.	5.1	118
541	Algal alginate: A potential coagulant for drinking water treatment. Desalination, 2012, 299, 16-21.	4.0	55
542	Insights into trivalent chromium biosorption onto protonated brown algae Pelvetia canaliculata: Distribution of chromium ionic species on the binding sites. Chemical Engineering Journal, 2012, 200-202, 140-148.	6.6	35
543	Valorisation of marine Pelvetia canaliculata Ochrophyta for separation and recovery of nickel from water: Equilibrium and kinetics modeling on Na-loaded algae. Chemical Engineering Journal, 2012, 200-202, 365-372.	6.6	16
544	Acidic dye biosorption onto marine brown macroalgae: Isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 2012, 204-206, 225-234.	6.6	82
545	What regulates rhenium deposition in euxinic basins?. Chemical Geology, 2012, 304-305, 131-141.	1.4	63
546	Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotoxicology and Environmental Safety, 2012, 77, 7-17.	2.9	67
547	Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicology and Environmental Safety, 2012, 79, 48-54.	2.9	80
548	Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecological Engineering, 2012, 38, 119-124.	1.6	55

#	Article	IF	CITATIONS
549	Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry, 2012, 135, 2229-2234.	4.2	112
550	Enzyme-Assisted Aqueous Extraction of Lipid from Microalgae. Journal of Agricultural and Food Chemistry, 2012, 60, 11771-11776.	2.4	132
551	XPS, EXAFS, and FTIR As Tools To Probe the Unexpected Adsorption-Coupled Reduction of U(VI) to U(V) and U(IV) on <i>Borassus flabellifer</i> Based Adsorbents. Langmuir, 2012, 28, 16038-16048.	1.6	67
552	Strontium sorption by pectins isolated from the Sea grasses Zostera marina and Phyllospadix iwatensis. Russian Journal of Marine Biology, 2012, 38, 346-350.	0.2	5
553	Heavy Metals: Toxicity and Removal by Biosorption. Environmental Chemistry for A Sustainable World, 2012, , 379-442.	0.3	21
554	Applications of Marine Nutraceuticals in Dairy Products. Advances in Food and Nutrition Research, 2012, 65, 457-478.	1.5	18
555	Sorption of Zn(II) ion onto the surface of activated carbon derived from eucalyptus bark saw dust from industrial wastewater: isotherm, kinetics, mechanistic modeling, and thermodynamics. Desalination and Water Treatment, 2012, 46, 332-351.	1.0	28
556	Interaction of Mercuric Ions with Different Marine Algal Species. Bioremediation Journal, 2012, 16, 225-234.	1.0	7
557	Cadmium adsorption characteristic of alkali modified sewage sludge. Bioresource Technology, 2012, 121, 25-30.	4.8	41
558	Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource Technology, 2012, 121, 342-347.	4.8	76
559	An attempt to develop seaweed-based treatment technology for the remediation of complex metal-bearing laboratory wastewaters. Ecological Engineering, 2012, 47, 278-283.	1.6	12
560	A surface complexation model of YREE sorption on Ulva lactuca in 0.05–5.0M NaCl solutions. Geochimica Et Cosmochimica Acta, 2012, 97, 183-199.	1.6	24
561	Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 166-173.	2.0	247
562	Advances in Water Treatment and Pollution Prevention. , 2012, , .		41
563	The rheological characterization of algae suspensions for the production of biofuels. Journal of Rheology, 2012, 56, 925-939.	1.3	43
564	Biological Removal and Recovery of Toxic Heavy Metals in Water Environment. Critical Reviews in Environmental Science and Technology, 2012, 42, 1007-1057.	6.6	101
565	Environmental Chemistry for a Sustainable World. Environmental Chemistry for A Sustainable World, 2012, , .	0.3	15
566	Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia) Tj ETQq1	l 0.784314 1.7	rggT /Overla

#	Article	IF	CITATIONS
567	The Science of Algal Fuels. Cellular Origin and Life in Extreme Habitats, 2012, , .	0.3	19
568	Absorption of Radionuclides from the Fukushima Nuclear Accident by a Novel Algal Strain. PLoS ONE, 2012, 7, e44200.	1.1	47
569	Adsorption study on orange peel: Removal of Ni(II) ions from aqueous solution. African Journal of Biotechnology, 2012, 11, .	0.3	21
570	Removal of Cu2+ Ions from Aqueous Solutions Using Copper Resistant Bacteria. Our Nature, 2012, 9, 49-54.	0.1	6
571	CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. BioResources, 2012, 7, .	0.5	65
572	Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. African Journal of Biotechnology, 2012, 11, 16158-16164.	0.3	9
573	Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. African Journal of Biotechnology, 2012, 11, .	0.3	9
574	NEW BIOLOGICAL DIETARY FEED SUPPLEMENT FOR LAYING HENS WITH MICROELEMENTS BASED ON DUCKWEED (<i>LEMNA MINOR</i>). American Journal of Agricultural and Biological Science, 2012, 7, 482-493.	0.9	4
575	The use of Saccharomyces cerevisiae for removing cadmium(II) from aqueous waste solutions. African Journal of Microbiology Research, 2012, 6, 6893-6899.	0.4	5
576	Preparation, characterization, and dyeing properties of calcium alginate fibers. Journal of Applied Polymer Science, 2012, 126, E383.	1.3	13
577	Biosorption and desorption of lanthanum(III) and neodymium(III) in fixedâ€bed columns with <i>Sargassum</i> sp.: Perspectives for separation of rare earth metals. Biotechnology Progress, 2012, 28, 715-722.	1.3	36
578	Biosorption behaviors of natural polymer microfibers synthesized by using cellulase-based enzyme reactions. Macromolecular Research, 2012, 20, 490-495.	1.0	0
579	Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Phycology, 2012, 24, 979-983.	1.5	52
580	Binary biosorption of uranium(VI) and nickel(II) from aqueous solution by Ca-pretreated Cystoseira indica in a fixed-bed column. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 501-512.	0.7	15
581	An alternative evaluation method for accumulated dead leaves of Posidonia oceanica (L.) Delile on the beaches: removal of uranium from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2012, 293, 489-496.	0.7	13
582	Comparative Assessment of Al(III) and Cd(II) Biosorption onto Turbinaria conoides in Single and Binary Systems. Water, Air, and Soil Pollution, 2012, 223, 2923-2931.	1.1	17
583	Process optimization of batch biosorption of lead using Lactobacillius bulgaricus in an aqueous phase system using response surface methodology. World Journal of Microbiology and Biotechnology, 2012, 28, 2047-2055.	1.7	29
584	Removal of heavy metals by biosorption. Environmental Chemistry Letters, 2012, 10, 109-117.	8.3	134

#	Article	IF	CITATIONS
585	Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir. Journal of Applied Microbiology, 2012, 112, 363-371.	1.4	24
586	Sorption of anionic polysaccharides by cellulose. Carbohydrate Polymers, 2012, 87, 695-700.	5.1	12
587	Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 2012, 88, 13-20.	5.1	366
588	Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 2012, 185-186, 82-90.	6.6	52
589	Optimization of nickel biosorption by chemically modified brown macroalgae (Pelvetia canaliculata). Chemical Engineering Journal, 2012, 193-194, 256-266.	6.6	49
590	Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution. Chemical Engineering Journal, 2012, 193-194, 348-357.	6.6	43
591	Optimization of C.I. Acid black 1 biosorption by Cystoseira indica and Gracilaria persica biomasses from aqueous solutions. International Biodeterioration and Biodegradation, 2012, 67, 56-63.	1.9	40
592	Biosorption properties of green tomato husk (Physalis philadelphica Lam) for iron, manganese and iron–manganese from aqueous systems. Desalination, 2012, 284, 167-174.	4.0	60
593	Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Industrial Crops and Products, 2012, 35, 295-301.	2.5	101
594	Sorption of metal cations by alginate-based biosorbents. On the correct determination of the thermodynamic parameters. Journal of Colloid and Interface Science, 2012, 368, 547-551.	5.0	10
595	Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresource Technology, 2012, 114, 20-25.	4.8	201
596	Zinc and cadmium biosorption by untreated and calcium-treated Macrocystis pyrifera in a batch system. Bioresource Technology, 2012, 116, 195-203.	4.8	52
597	FATTY ACIDS, AMINO ACIDS, MINERAL CONTENTS, AND PROXIMATE COMPOSITION OF SOME BROWN SEAWEEDS ¹ . Journal of Phycology, 2012, 48, 285-292.	1.0	72
598	Combined nano-membrane technology for removal of lead ions. Journal of Membrane Science, 2012, 409-410, 44-53.	4.1	78
599	Biosorptive removal of cadmium from aqueous solutions using a Streptomyces lunalinharesii strain. Minerals Engineering, 2012, 29, 112-120.	1.8	25
600	Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polymer Degradation and Stability, 2012, 97, 1034-1040.	2.7	110
601	Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). Journal of Cleaner Production, 2012, 22, 67-75.	4.6	183
602	Removal of Copper, Nickel, and Zinc Ions from Electroplating Rinse Water. Clean - Soil, Air, Water, 2012, 40, 66-79.	0.7	38

#	Article	IF	CITATIONS
603	Biosorption of Cd2+ and Cu2+ on immobilized Saccharomyces cerevisiae. Frontiers of Environmental Science and Engineering, 2012, 6, 51-58.	3.3	21
604	Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass. Journal of Ocean University of China, 2012, 11, 52-58.	0.6	33
605	Water Remediation Using Calcium Phosphate Derived From Marine Residues. Water, Air, and Soil Pollution, 2012, 223, 989-1003.	1.1	15
606	Response of Chara globularis and Hydrodictyon reticulatum to lead pollution: their survival, bioaccumulation, and defense. Journal of Applied Phycology, 2012, 24, 245-251.	1.5	10
607	Cd, Cr, Cu, Pb, and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from Rabta Bay, Jijel (Algeria). Environmental Monitoring and Assessment, 2012, 184, 1711-1718.	1.3	40
608	Binding of heavy metals by algal biosorbents. Theoretical models of kinetics, equilibria and thermodynamics. Advances in Colloid and Interface Science, 2013, 197-198, 58-67.	7.0	53
609	Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Applied Nanoscience (Switzerland), 2013, 3, 145-151.	1.6	176
610	The Pre-concentration and determination of Iridium and Palladium in environmental water by imprinted polymer-based method. International Journal of Environmental Science and Technology, 2013, 10, 1091-1102.	1.8	10
611	FABRICATION AND CHARACTERIZATION OF MACROPOROUS EPICHLOROHYDRIN CROSS-LINKED ALGINATE BEADS AS PROTEIN ADSORBENT. Preparative Biochemistry and Biotechnology, 2013, 43, 431-444.	1.0	11
612	Cadmium, Copper, Sodium and Zinc Effects on Diatoms: from Heaven to Hell — a Review. Cryptogamie, Algologie, 2013, 34, 185-225.	0.3	63
613	Removal of Cr(VI) by modified brown algae Sargassum bevanom from aqueous solution and industrial wastewater. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 977-989.	2.7	77
614	Heavy Metal Stress in Plants. , 2013, , .		38
615	Influence of hydrogen cations on kinetics and equilibria of heavy-metal sorption by algae—sorption of copper cations by the alga Palmaria palmata (Linnaeus) Weber & Mohr (Rhodophyta). Journal of Applied Phycology, 2013, 25, 1387-1394.	1.5	15
616	Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies. Desalination and Water Treatment, 2013, 51, 4424-4434.	1.0	33
617	State of the Art for the Biosorption Process—a Review. Applied Biochemistry and Biotechnology, 2013, 170, 1389-1416.	1.4	373
618	Taguchi L16 orthogonal array optimization for Cd (II) removal using Carpinus betulus tree leaves: Adsorption characterization. International Biodeterioration and Biodegradation, 2013, 85, 66-77.	1.9	55
619	Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass and Bioenergy, 2013, 56, 8-13.	2.9	77
620	Removal of Pb2+ from aqueous solution by adsorption on chemically modified muskmelon peel. Environmental Science and Pollution Research, 2013, 20, 4424-4434.	2.7	54

#	Article	IF	CITATIONS
621	Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environmental Science and Pollution Research, 2013, 20, 3011-3023.	2.7	175
622	Study of Mo (VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data. Iranian Journal of Environmental Health Science & Engineering, 2013, 10, 14.	1.8	27
623	Microfiltration (MF) membrane fouling potential evaluation of protein with different ion strengths and divalent cations based on extended DLVO theory. Desalination, 2013, 331, 62-68.	4.0	50
624	Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chemical Engineering Journal, 2013, 220, 172-184.	6.6	41
625	Binding sites and mechanisms of cadmium to the dried sewage sludge biomass. Chemosphere, 2013, 93, 146-151.	4.2	14
626	Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnology and Bioprocess Engineering, 2013, 18, 728-735.	1.4	18
627	Direct determination of copper in gasoline by flame atomic absorption spectrometry after sorption and preconcentration on Moringa oleifera husks. Microchemical Journal, 2013, 110, 320-325.	2.3	28
628	Surface modifications of Sargassum muticum algal biomass for mercury removal: A physicochemical study in batch and continuous flow conditions. Chemical Engineering Journal, 2013, 229, 378-387.	6.6	21
629	Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, 2013, 107, 11-18.	2.5	174
630	Kinetic and equilibrium study for cadmium and copper removal from aqueous solutions by sorption onto mixed alginate/pectin gel beads. Journal of Environmental Chemical Engineering, 2013, 1, 1252-1260.	3.3	44
631	Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 322-330.	2.7	131
632	γ-Fe ₂ O ₃ Nanoparticles Encapsulated Millimeter-Sized Magnetic Chitosan Beads for Removal of Cr(VI) from Water: Thermodynamics, Kinetics, Regeneration, and Uptake Mechanisms. Journal of Chemical & Engineering Data, 2013, 58, 3142-3149.	1.0	64
633	Recovery of rare earth metals through biosorption: An overview. Journal of Rare Earths, 2013, 31, 933-943.	2.5	253
634	Biocidal effects of silver and zinc oxide nanoparticles on the bioluminescent bacteria. Proceedings of SPIE, 2013, , .	0.8	3
636	Fucoidan induces G1 phase arrest and apoptosis through caspases-dependent pathway and ROS induction in human breast cancer MCF-7 cells. Journal of Huazhong University of Science and Technology [Medical Sciences], 2013, 33, 717-724.	1.0	56
637	Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study. Journal of Environmental Health Science & Engineering, 2013, 11, 29.	1.4	58
638	Adsorption Behavior of Heavy Metal lons from Aqueous Solution by Soy Protein Hollow Microspheres. Industrial & Engineering Chemistry Research, 2013, 52, 11036-11044.	1.8	119
639	Hybrid <i>Sargassum</i> -sand sorbent: A novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 1685-1693.	0.9	18
#	ARTICLE Encapsulation of nanoporous MCM-41 in biopolymeric matrix of calcium alginate and its use as	IF	CITATIONS
-----	---	-----	-----------
640	effective adsorbent for lead ions: Equilibrium, kinetic and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 343-348.	2.7	18
641	Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chemical Engineering Journal, 2013, 234, 33-42.	6.6	89
643	Adsorption of Aquatic Cadmium (II) by Chestnut Inner Shell. , 2013, , .		0
644	Cadmium accumulation by green algae <i>Cladophora glomerata</i> (L.) Kutz. (Chlorophyta) in presence of Nile tilapia <i>Oreochromis niloticus</i> (L.). Toxicological and Environmental Chemistry, 2013, 95, 1565-1571.	0.6	4
645	The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Research, 2013, 47, 57-65.	5.3	151
646	Biosorption of radiostrontium by alginate beads: application of isotherm models and thermodynamic studies. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 777-788.	0.7	22
647	Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). South African Journal of Botany, 2013, 86, 1-4.	1.2	150
648	Interaction energy evaluation of the role of solution chemistry and organic foulant composition on polysaccharide fouling of microfiltration membrane bioreactors. Chemical Engineering Science, 2013, 104, 1028-1035.	1.9	28
649	Thin and thick target PIXE analyses to assess the mechanism of Cu2+ removal by Egeria densa. Applied Radiation and Isotopes, 2013, 82, 1-6.	0.7	4
650	Metal accumulation kinetics by the estuarine macroalga, FucusÂceranoides. Estuarine, Coastal and Shelf Science, 2013, 128, 33-40.	0.9	9
651	Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt(IV) recovery from acidic solutions. Journal of Hazardous Materials, 2013, 263, 391-397.	6.5	45
652	Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis. Journal of Hazardous Materials, 2013, 261, 148-154.	6.5	10
653	Acoustic, electrochemical and microscopic characterization of interaction of Arthrospira platensis biofilm and heavy metal ions. Journal of Environmental Chemical Engineering, 2013, 1, 609-619.	3.3	13
654	Comparative Study of Chromium Biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in Single and Binary Mixtures. Applied Biochemistry and Biotechnology, 2013, 169, 570-587.	1.4	27
655	Seasonal variations in concentrations of macro- and micronutrients in three species of brown seaweed. Botanica Marina, 2013, 56, 49-61.	0.6	22
656	Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 2013, 15, 303-316.	2.1	108
657	Mercury(II) removal from aqueous solution by sorption onto alginate, pectate and polygalacturonate calcium gel beads. A kinetic and speciation based equilibrium study. Reactive and Functional Polymers, 2013, 73, 207-217.	2.0	73
658	Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder: Box–Behnken experimental approach. Environmental Science and Pollution Research, 2013, 20, 1327-1343.	2.7	35

#	Article	IF	CITATIONS
659	A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 2013, 252-253, 428-461.	6.5	401
660	Kinetics and Equilibrium Studies on the Removal of Victoria Blue Using <i>Prosopis juliflora</i> -Modified Carbon/Zn/Alginate Polymer Composite Beads. Journal of Chemical & Engineering Data, 2013, 58, 517-527.	1.0	38
661	Gold recovery from artificial seawater using synthetic materials and seaweed biomass to induce gold nanoparticles formation in batch and column experiments. Marine Chemistry, 2013, 152, 11-19.	0.9	19
662	Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 2013, 25, 933-943.	3.2	340
663	Study of nickel and copper biosorption on brown algae <i>Sargassum angustifolium</i> : application of response surface methodology (RSM). Environmental Technology (United Kingdom), 2013, 34, 2423-2431.	1.2	10
664	Algae - Heavy Metals Biosorbent / Glony - Biosorbent Metali Ciężkich. Ecological Chemistry and Engineering S, 2013, 20, 23-40.	0.3	12
665	Recovery of metallic palladium from hydrochloric acid solutions by a combined method of adsorption and incineration. Chemical Engineering Journal, 2013, 218, 303-308.	6.6	22
666	Immunomodulating compounds in Basidiomycetes. Journal of Clinical Biochemistry and Nutrition, 2013, 52, 202-207.	0.6	63
667	Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Marine Pollution Bulletin, 2013, 72, 6-13.	2.3	296
668	A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresource Technology, 2013, 127, 464-472.	4.8	67
669	Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications. Materials Science and Engineering C, 2013, 33, 979-983.	3.8	26
670	Modeling of trivalent chromium speciation in binding sites of marine macroalgae Sargassum Cymosum. Clean Technologies and Environmental Policy, 2013, 15, 987-997.	2.1	7
671	Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalination and Water Treatment, 2013, 51, 6021-6030.	1.0	26
672	Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. Journal of Environmental Radioactivity, 2013, 126, 226-231.	0.9	47
673	Terra rossa as the substrate for biological phosphate removal from wastewater. Clay Minerals, 2013, 48, 725-738.	0.2	8
674	Factors Influencing the Removal of As(V) from Groundwater by NF/RO. Advanced Materials Research, 0, 690-693, 1074-1080.	0.3	0
675	Application of Biosorption in the Production of Innovative Feed Supplements: A Novel Method. Adsorption Science and Technology, 2013, 31, 421-431.	1.5	6
676	Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. Interface Focus, 2013, 3, 20120046.	1.5	41

#	Article	IF	CITATIONS
677	Biosorption of U(VI) from Aqueous Solution by <i>Chlorella vulgaris</i> : Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Environmental Engineering, ASCE, 2013, 139, 410-421.	0.7	43
678	Preparation of Ca-alginate biopolymer beads and investigation of their decorporation characteristics for 85Sr, 238U and 234Th by in vitro experiments. Radiation Protection Dosimetry, 2013, 153, 47-55.	0.4	5
679	Recent Trends in Microbial Biosorption of Heavy Metals: A Review. Biochemistry & Molecular Biology, 2013, 1, 19.	0.5	86
680	Removal of Cr (VI) from Aqueous Solution Using <i>Camellia oleifera</i> Abel Shells. Materials Science Forum, 2013, 743-744, 463-468.	0.3	1
681	Microencapsulation of Rutin in Chitosan-Coated Alginate Microspheres through Internal Gelation Technique. Advanced Materials Research, 2013, 716, 455-458.	0.3	6
682	Removal of Vanadium(III) and Molybdenum(V) from Wastewater Using Posidonia oceanica (Tracheophyta) Biomass. PLoS ONE, 2013, 8, e76870.	1.1	37
683	Preparation and Evaluation ofAcetabularia-Modified Carbon Paste Electrode in Anodic Stripping Voltammetry of Copper and Lead Ions. Journal of Chemistry, 2013, 2013, 1-9.	0.9	2
684	Biosorption: A Mechanistic Approach. Advances in Biochemical Engineering/Biotechnology, 2013, 141, 173-209.	0.6	8
685	Adsorption of Cu ²⁺ and Ni ²⁺ from Aqueous Solution by Arabinoxylan Hydrogel: Equilibrium, Kinetic, Competitive Adsorption. Separation Science and Technology, 2013, 48, 2659-2669.	1.3	19
686	Recovery of Thorium by High-Capacity Biopolymeric Sorbent. Separation Science and Technology, 2013, 48, 2115-2124.	1.3	10
687	Environmentally friendly copolymeric beads ofÂ <i>Chlorella vulgaris</i> and poly(methacrylamide) grafted aliginic acid diâ€block copolymers for biosorption of zinc ions. Polymer International, 2013, 62, 1179-1186.	1.6	4
688	Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry, 2013, 2013, 1-8.	2.0	35
689	Biosorption of Heavy Metals (Cd ²⁺ , Cu ²⁺ , Co ²⁺ , and) Tj ETQq0 0 0 rgBT amylolyticus: Equilibrium and Kinetic Studies. Bioremediation Journal, 2013, 17, 86-96.	/Overlock 1.0	10 Tf 50 267 53
690	Alginate Enhances Excretion and Reduces Absorption of Strontium and Cesium in Rats. Biological and Pharmaceutical Bulletin, 2013, 36, 485-491.	0.6	14
691	Biosorption of Cu(II) and Zn(II) ions from aqueous solution by water hyacinth (Eichhornia crassipes). International Journal of Environment and Waste Management, 2013, 11, 365.	0.2	7
692	Study of equilibrium and kinetic models for removal of chromium (VI) and lead (II) by modified feather by H _{2O_{2. International Journal of Environment and Waste Management, 2013, 12, 453.}}	0.2	3
693	Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads. E3S Web of Conferences, 2013, 1, 41024.	0.2	1
694	An assessment of urban habitat contamination with selected heavy metals within the city of Katowice using the common dandelion (<i>Taraxacum officinale</i> Web.) as a bioindicator. Environmental and Socio-Economic Studies, 2013, 1, 29-40.	0.3	8

ARTICLE IF CITATIONS Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms., 0,,. 695 68 Potential of Micro and Macro Algae for Biofuel Production: A Brief Review. BioResources, 2013, 9, . Bioremediation of Waters Contaminated with Heavy Metals Using Moringa oleifera Seeds as 697 34 Biosorbent., 0, , . Evaluation of non-viable biomass of Laurencia papillosa for decolorization of dye waste water. African Journal of Biotechnology, 2013, 12, 2215-2223. A Simple and Effective Method for High Quality Co-Extraction of Genomic DNA and Total RNA from 700 1.1 48 Low Biomass Ectocarpus siliculosus, the Model Brown Alga. PLoS ONE, 2014, 9, e96470. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems. Scientific 0.8 World Journal, The, 2014, 2014, 1-11. Biogenic Synthesis of Silver Nanoparticles Using <i>Scenedesmus abundans</i> and Evaluation of 702 1.4 140 Their Antibacterial Activity. Journal of Nanoparticles, 2014, 2014, 1-6. Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity 0.3 124 against Clinical Pathogens. International Journal of Metals, 2014, 2014, 1-8. Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes. 704 1.2 9 International Journal of Environmental Research and Public Health, 2014, 11, 12486-12498. Biosorption of Microelements by<i>Spirulina</i>: Towards Technology of Mineral Feed Supplements. 0.8 49 Scientific World Journal, The, 2014, 2014, 1-15. Biosorption of Arsenic by Living and Dried Biomass of Fresh Water Microalgae - Potentials and 706 4 0.5 Equilibrium Studies. Journal of Bioremediation & Biodegradation, 2014, 05, . PEMISAHAN ION KROM(III) DAN KROM(IV) DALAM LARUTAN DENGAN MENGGUNAKAN BIOMASSA ALGA HIJAU 0.2 SPIROGYRA SUBSALSA SEBAGAI BIOSORBEN. Reaktor, 2014, 15, 27. Organic leaching and metal removal with <i>Sargassum filipendula. Acta Scientiarum -708 0.4 4 Technology, 2014, 36, 429. Removal of Cadmium(II) lons from Water by Adsorption using Water Hyacinth (Eichhornia crassipes) 16 Biomass. BioResources, 2014, 9, . Use of microalgae for the removal of environmental pollutants. International Journal of Scientific 710 3.0 4 World, 2014, 3, 1-11. Enhancing Biosorption Characteristics of Marine Green Algae (Ulva lactuca) for Heavy Metals Removal by Alkaline Treatment. Journal of Bioprocessing & Biotechniques, 2014, 04, . Biosorption of Uranium and Thorium by Biopolymers., 2014, , 363-395. 714 11 Exclusion of Zn(II) from aqueous solution using corncob (<i>Zea mays</i>stalk) after chemical modifications with inorganic acids and bases. Desalination and Water Treatment, 2014, 52, 5605-5610.

#	Article	IF	CITATIONS
716	Biosorption of copper, manganese, cadmium, and zinc by <i>Pseudomonas putida</i> isolated from contaminated sediments. Desalination and Water Treatment, 2014, 52, 7218-7224.	1.0	9
717	Biometallurgical Recovery of Metals from Waste Electrical and Electronic Equipment: a Review. ChemBioEng Reviews, 2014, 1, 148-169.	2.6	76
718	Biosorption Modeling with Multilayer Perceptron for Removal of Lead and Zinc Ions Using Crab Shell Particles. Arabian Journal for Science and Engineering, 2014, 39, 8465-8475.	1.1	14
720	Bisorption of chromium(VI) from aqueous solutions by <i>Sargassum thunbergii</i> Kuntze. Biotechnology and Biotechnological Equipment, 2014, 28, 259-265.	0.5	12
721	Functional characterization of polysaccharide utilization loci in the marine <i>Bacteroidetes</i> â€~ <i>Gramella forsetii</i> ' KT0803. ISME Journal, 2014, 8, 1492-1502.	4.4	177
722	The single batch biosorption of copper(II) ions onSargassum acinarum. Desalination and Water Treatment, 2014, 52, 1514-1523.	1.0	24
723	In situ removal of dissolved and suspended contaminants from a eutrophic pond using hybrid sand-filter. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1176-1186.	0.9	0
724	Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review. Sensors, 2014, 14, 17725-17752.	2.1	53
725	Biosorption Process Fundamentals and a Pilot Designâ~†. , 2014, , .		0
726	Surface-bound iron: a metal ion buffer in the marine brown alga <i>Ectocarpus siliculosus</i> ?. Journal of Experimental Botany, 2014, 65, 585-594.	2.4	16
727	Dietary fucoidan enhance the non-specific immune response and disease resistance in African catfish, Clarias gariepinus, immunosuppressed by cadmium chloride. Veterinary Immunology and Immunopathology, 2014, 162, 168-173.	0.5	37
728	The Antifouling Defence Mechanisms of Marine Macroalgae. Advances in Botanical Research, 2014, 71, 413-440.	0.5	66
729	Cadmium uptake in <i><scp>E</scp>lodea canadensis</i> leaves and its interference with extra―and intraâ€cellular <scp>pH</scp> . Plant Biology, 2014, 16, 615-621.	1.8	14
730	The Mechanism of Heavy Metal Biosorption on Green Marine Macroalga <i>Enteromorpha linza</i> . Clean - Soil, Air, Water, 2014, 42, 251-259.	0.7	26
731	Removal of Zinc from Aqueous Solution by Metal Resistant Symbiotic Bacterium <i>Mesorhizobium amorphae</i> . Separation Science and Technology, 2014, 49, 376-387.	1.3	13
732	Microbial Generation of Acid Mine Drainage: Its Bioremediation in Buenos Aires, Argentina. , 2014, , 165-178.		0
733	Evaluation of mechanical membrane cleaning with moving beads in MBR using Box–Behnken response surface methodology. Desalination and Water Treatment, 0, , 1-10.	1.0	1
734	Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme. PLoS ONE, 2014, 9, e95242.	1.1	16

#	Article	IF	CITATIONS
735	The Feasibility Study of Brown Marine Algae toward Cadmium Ions as a Low Cost Biosorbent. Journal of Medical and Bioengineering, 2014, 3, 227-230.	0.5	1
736	Translocation of Cations During Sorption of Copper in the System Solution - Algae (Spirogyra) Tj ETQq1 1 0.7843	14 rgBT /(0.3	Overlock 10 2
737	Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresource Technology, 2014, 164, 264-269.	4.8	77
738	Specific chemical interactions between metal ions and biological solids exemplified by sludge particulates. Bioresource Technology, 2014, 160, 32-42.	4.8	9
739	Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials. Construction and Building Materials, 2014, 53, 190-202.	3.2	46
740	Removal of copper ions from aqueous solution using silica derived from rice straw: comparison with activated charcoal. International Journal of Environmental Science and Technology, 2014, 11, 1581-1590.	1.8	16
741	Biosorption of antimony(V) by freshwater cyanobacteria Microcystis from Lake Taihu, China: effects of pH and competitive ions. Environmental Science and Pollution Research, 2014, 21, 5836-5848.	2.7	19
742	Biosorption of zinc ion: a deep comprehension. Applied Water Science, 2014, 4, 311-332.	2.8	42
743	A kinetic analysis of cadmium accumulation in a <scp><scp>Cd</scp></scp> hyperâ€accumulator fern, <i><scp>A</scp>thyrium yokoscense</i> and tobacco plants. Plant, Cell and Environment, 2014, 37, 1086-1096.	2.8	26
744	Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 2014, 99, 517-526.	5.1	61
745	A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 2014, 160, 67-78.	4.8	538
746	Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research, 2014, 55, 21-29.	5.3	116
747	Bioaccumulation of gamma emitting radionuclides in Polysiphonia fucoides. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1489-1497.	0.7	5
748	Biosorption of thorium from aqueous solution by Ca-pretreated brown algae Cystoseira indica. Korean Journal of Chemical Engineering, 2014, 31, 289-295.	1.2	19
749	Fast and efficient adsorption of azure (II) on nanoporous MCM-41 for its removal, preconcentration and determination in biological matrices. Journal of Porous Materials, 2014, 21, 413-421.	1.3	3
750	Biosorption of chromium(VI) using Bacillus subtilis SS-1 isolated from soil samples of electroplating industry. Clean Technologies and Environmental Policy, 2014, 16, 405-413.	2.1	38
751	Optimization of Lead and Nickel Biosorption by <i>Cystoseira trinodis</i> (Brown Algae) Using Response Surface Methodology. Clean - Soil, Air, Water, 2014, 42, 243-250.	0.7	17
752	Contamination trends of trace metals and coupling with algal productivity in sediment cores in Pearl River Delta, South China. Chemosphere, 2014, 103, 35-43.	4.2	45

ARTICLE IF CITATIONS # Mechanistic modelling of copper biosorption by wild type and engineered Saccharomyces cerevisiae 753 16 6.6 biomasses. Chemical Engineering Journal, 2014, 244, 561-568. Ion exchange kinetics of magnetic alginate ferrogel beads produced by external gelation. 754 5.1 Carbohydrate Polymers, 2014, 111, 198-205. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. 755 8.2 133 Renewable and Sustainable Energy Reviews, 2014, 33, 675-688. Biofuels in Brazil., 2014,,. Marine macroalgae Pelvetia canaliculata (Phaeophyceae) as a natural cation exchanger for cadmium 757 6.6 54 and lead ions separation in aqueous solutions. Chemical Engineering Journal, 2014, 242, 294-305. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. 4.8 86 Bioresource Technology, 2014, 160, 182-190. 759 Polymeric foams with functional nanocomposite cells. RSC Advances, 2014, 4, 19177-19182. 1.7 7 Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast 1.3 48 during 2008–2010. Environmental Monitoring and Assessment, 2014, 186, 5865-5881. Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chemical 761 6.6 101 Engineering Journal, 2014, 237, 362-371. Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 4.8 827 2014, 160, 3-14. Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. 763 6.6 136 using SEM/EDX, FTIR, and XPS: Preliminary studies. Chemical Engineering Journal, 2014, 239, 381-391. Exploring the molecular basis for the metal-mediated assembly of alginate gels. Carbohydrate 764 5.1 Polymers, 2014, 102, 246-253. A review with recent advancements on bioremediation-based abolition of heavy metals. Environmental 765 1.7 181 Sciences: Processes and Impacts, 2014, 16, 180-193. Uptake of PCBs contained in marine sediments by the green macroalga Ulva rigida. Marine Pollution 2.3 Bulletin, 2014, 88, 207-214. Simple pyrolysis of cobalt alginate fibres into Co₃O₄/C 767 nano/microstructures for a high-performance lithium ion battery anode. Journal of Materials 5.2106 Chemistry A, 2014, 2, 18761-18766. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence. Metallomics, 2014, 6, 845-853. Selected Comments on the Role of Algae in Sustainability. Advances in Botanical Research, 2014, 71, 1-30. 769 0.5 8 Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. 770 International Biodeterioration and Biodegradation, 2014, 93, 145-152.

#	Article	IF	CITATIONS
771	Boron removal from produced water using electrocoagulation. Chemical Engineering Research and Design, 2014, 92, 509-514.	2.7	83
772	Application of Taguchi L32 orthogonal array design to optimize copper biosorption by using Spaghnum moss. Ecotoxicology and Environmental Safety, 2014, 107, 229-235.	2.9	16
773	Cadmium removal by macro algae Caulerpa fastigiata: Characterization, kinetic, isotherm and thermodynamic studies. Journal of Environmental Chemical Engineering, 2014, 2, 1533-1542.	3.3	46
774	Multimetal biosorption modeling of Zn 2+ , Cu 2+ and Ni 2+ by Sargassum ilicifolium. Ecological Engineering, 2014, 71, 197-205.	1.6	18
775	Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer. Journal of Hazardous Materials, 2014, 279, 428-435.	6.5	54
776	Molecular Dynamics Simulations of Polyamide Membrane, Calcium Alginate Gel, and Their Interactions in Aqueous Solution. Langmuir, 2014, 30, 9098-9106.	1.6	82
777	Spectroscopic Comparison of Eu(III) Binding to Various Biosorbents. Separation Science and Technology, 2014, 49, 209-213.	1.3	1
778	Bioremediation in Latin America. , 2014, , .		6
779	Removal of cadmium from aqueous solution using marine green algae, Ulva lactuca. Egyptian Journal of Aquatic Research, 2014, 40, 235-242.	1.0	108
780	A comparative study of intensive Litopenaeus vannamei culture on four bottom substrates without water change. Journal of Ocean University of China, 2014, 13, 705-711.	0.6	5
781	CHAPTER 3. Removal of Dissolved Metals by Bioremediation. , 2014, , 44-56.		7
782	l-Proline Based Aqueous Biphasic System: Design and Application To Isolate the Alkaline Earths. Journal of Chemical & Engineering Data, 2014, 59, 1288-1294.	1.0	12
783	De novo transcriptome analysis-gained insights into physiological and metabolic characteristics of Sargassum thunbergii (Fucales, Phaeophyceae). Journal of Applied Phycology, 2014, 26, 1519-1526.	1.5	19
784	Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 493-503.	0.7	20
785	Equilibrium and kinetics study of uranium(VI) from aqueous solution by Citrus limetta peels. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 451-457.	0.7	15
786	Microalgal Feedstock for Bioenergy: Opportunities and Challenges. , 2014, , 367-392.		4
787	Adsorption, photodegradation and antibacterial study of graphene–Fe ₃ O ₄ nanocomposite for multipurpose water purification application. RSC Advances, 2014, 4, 28300-28308.	1.7	106
788	Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales,) Tj ETQq1 1 0	784314 rg 2.7	BT Overlock

# 789	ARTICLE On the reason why acid treatment of biomass enhances the biosorption capacity of cationic pollutants. Korean Journal of Chemical Engineering, 2014, 31, 68-73.	IF 1.2	CITATIONS 3
790	Adsorption of zearalenone to Japanese acid clay and influencing factors. Mycotoxin Research, 2014, 30, 33-41.	1.3	5
791	Biosorption characteristics of heavy metals (Ni2+, Zn2+, Cd2+, Pb2+) from aqueous solution by Hizikia fusiformis. Environmental Earth Sciences, 2014, 71, 4107-4114.	1.3	21
792	Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads. International Journal of Environmental Science and Technology, 2014, 11, 1861-1868.	1.8	18
793	The role of poly-M and poly-GM sequences in the metal-mediated assembly of alginate gels. Carbohydrate Polymers, 2014, 112, 486-493.	5.1	31
794	Sol–gel derived ion-imprinted silica-supported organic–inorganic hybrid sorbent for selective removal of lead(II) from aqueous solution. Journal of Sol-Gel Science and Technology, 2014, 72, 144-155.	1.1	24
795	Separation of Cr(VI) from Water by Green Reduction Reaction and Adsorptive Removal on Gelatin-Grafted-Yeast Biosorbent. Separation Science and Technology, 2014, 49, 868-876.	1.3	10
796	Two-stage biosorption of selenium from aqueous solution using dried biomass of the baker's yeast Saccharomyces cerevisiae. Journal of Environmental Chemical Engineering, 2014, 2, 532-542.	3.3	51
797	Marine macroalgae Pelvetia canaliculata (Linnaeus) as natural cation exchanger for metal ions separation: A case study on copper and zinc ions removal. Chemical Engineering Journal, 2014, 247, 320-329.	6.6	44
798	Biochemical characterization of Macrocystis pyrifera and Undaria pinnatifida (Phaeophyceae) in relation to their potentiality as biosorbents. Phycologia, 2014, 53, 100-108.	0.6	17
799	Janus-Compartmental Alginate Microbeads Having Polydiacetylene Liposomes and Magnetic Nanoparticles for Visual Lead(II) Detection. ACS Applied Materials & Interfaces, 2014, 6, 10631-10637.	4.0	67
800	Localized synthesis of gold nanoparticles in anisotropic alginate structures. RSC Advances, 2014, 4, 20449.	1.7	23
801	Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. Chemosphere, 2014, 111, 587-595.	4.2	65
802	Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor. Water Research, 2014, 62, 156-166.	5.3	51
803	Sargassum filipendula alginate from Brazil: Seasonal influence and characteristics. Carbohydrate Polymers, 2014, 111, 619-623.	5.1	60
804	The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis. Bioresource Technology, 2014, 160, 43-51.	4.8	72
805	Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chemical Engineering Journal, 2014, 237, 443-454.	6.6	66
806	Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. International Biodeterioration and Biodegradation, 2014, 86, 6-13.	1.9	70

#	Article	IF	CITATIONS
807	Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions. Molecules, 2014, 19, 8276-8288.	1.7	10
808	Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models. International Journal of Environmental Research and Public Health, 2014, 11, 6099-6118.	1.2	33
810	The impact of various cations on the sorption of manganese in the thallus of freshwater algae spirogyra sp. and sea algae palmaria palmata. Ecological Chemistry and Engineering S, 2014, 21, 35-43.	0.3	2
811	Biopolymer–Zeolite Composites as Biosorbents for Separation Processes. , 2014, , 166-197.		0
812	Assessment of Heavy Metal Contamination of Agricultural Soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implication of Seasonal Variation and Indices. , 2014, , 253-278.		0
813	Biosorption of copper (II) on <i>Sargassum angostifolium</i> C.Agardh phaeophyceae biomass. Chemical Speciation and Bioavailability, 2014, 26, 176-183.	2.0	15
814	Experimental Modeling of Cyanobacterial Bloom in a Thermokarst Lake: Fate of Organic Carbon, Trace Metal, and Carbon Sequestration Potential. Aquatic Geochemistry, 2015, 21, 487-511.	1.5	15
815	Differences in the removal mechanisms of Undaria pinnatifida and Phragmites australis as biomaterials for lead removal. Water Science and Technology, 2015, 72, 1226-1233.	1.2	4
816	Commercialization of Marine Algae-Derived Biofuels. , 2015, , 660-671.		4
817	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach. , 2015, , 347-376.		2
817 818	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach. , 2015, , 347-376. Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194.	6.2	2 36
817 818 819	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach., 2015,, 347-376. Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <scp>S</scp> outhern and <scp>A</scp> tlantic <scp>O</scp> ceans. Environmental Microbiology, 2015, 17, 3822-3831.	6.2	2 36 103
817 818 819 820	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach. , 2015, , 347-376.Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194.Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <scp>S</scp> outhern and <scp>A</scp> tlantic <scp>O</scp> ceans. Environmental Microbiology, 2015, 17, 3822-3831.Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> . (Brown algae) as a coagulant. Environmental Progress and Sustainable Energy, 2015, 34, 1427-1434.	6.2 1.8 1.3	2 36 103 13
817 818 819 820 821	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach., 2015,, 347-376.Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194.Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <scp>S</scp> outhern and <scp>A</scp> tlantic <scp>O</scp> ceans. Environmental Microbiology, 2015, 17, 3822-3831.Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> .Removal of Arsenic (III) Present in Ground Water of Bangladesh with Polymer Supported Hydrated Fe(III) Oxides. Dhaka University Journal of Science, 2015, 63, 85-89.	6.2 1.8 1.3 0.1	2 36 103 13
 817 818 819 820 821 822 	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach., 2015,, 347-376.Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194.Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <scp>S</scp> outhern and <scp>A</scp> tlantic <scp>O</scp> ceans. Environmental Microbiology, 2015, 17, 3822-3831.Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> . (Brown algae) as a coagulant. Environmental Progress and Sustainable Energy, 2015, 34, 1427-1434.Removal of Arsenic (III) Present in Ground Water of Bangladesh with Polymer Supported Hydrated Fe(III) Oxides. Dhaka University Journal of Science, 2015, 63, 85-89.Pilot Plant Conversion of Blackcurrant Seeds into New Micronutrient Fertilizer Biocomponents via Biosorption. BioResources, 2015, 11,.	6.2 1.8 1.3 0.1	2 36 103 13 0
 817 818 819 820 821 822 823 	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach., 2015,, 347-376. Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <scp>S</scp> cubern and <scp>A</scp> tlantic <scp>O</scp> ceans. Environmental Microbiology, 2015, 17, 3822-3831. Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> . (Brown algae) as a coagulant. Environmental Progress and Sustainable Energy, 2015, 34, 1427-1434. Removal of Arsenic (III) Present in Ground Water of Bangladesh with Polymer Supported Hydrated Fe(III) Oxides. Dhaka University Journal of Science, 2015, 63, 85-89. Pilot Plant Conversion of Blackcurrant Seeds into New Micronutrient Fertilizer Biocomponents via Biosorption. BioResources, 2015, 11, . Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 2015, 07, .	 6.2 1.8 1.3 0.1 0.5 0.2 	2 36 103 13 0 2
 817 818 819 820 821 822 822 823 824 	Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach. , 2015, , 347-376. Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability. Biotechnology for Biofuels, 2015, 8, 194. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the <sep>S</sep> outhern and <sep>A</sep> tlantic <sep>O</sep> ceans. Environmental Microbiology, 2015, 17, 3822-3831. Removal of sulphur black dye from its aqueous solution using alginate from <i>Sargassum sp</i> . (Brown algae) as a coagulant. Environmental Progress and Sustainable Energy, 2015, 34, 1427-1434. Removal of Arsenic (III) Present in Ground Water of Bangladesh with Polymer Supported Hydrated Fe(III) Oxides. Dhaka University Journal of Science, 2015, 63, 85-89. Pilot Plant Conversion of Blackcurrant Seeds into New Micronutrient Fertilizer Biocomponents via Biosorption. BioResources, 2015, 11, . Microorganisms and Biosorption of Heavy Metals in the Environment: A Review Paper. Journal of Microbial & Biochemical Technology, 2015, 07, . Accessing the potential of Lonchocarpus laxiflorus roots (LLR) plant biomass to remove Cadmium (II) ions from aqueous solutions: Equilibrium and kinetic studies. African Journal of Pure and Applied Chemistry, 2015, 9, 105-112.	 6.2 1.8 1.3 0.1 0.5 0.2 0.1 	2 36 103 13 0 2 2 90

#	ARTICLE	IF	CITATIONS
826	Environmental Research and Public Health, 2015, 12, 8243-8262.	1.2	43
827	Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach. Advances in Materials Science and Engineering, 2015, 2015, 1-21.	1.0	29
828	ADSORPTION OF METHYLENE BLUE ON ALGINATE-GRAFTED-POLY (METHYL METHACRYLATE). Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.3	4
829	Biosorption of Hexavalent Chromium from Aqueous Medium with the Antibiotic Residue. Advance Journal of Food Science and Technology, 2015, 7, 120-128.	0.1	7
830	Potensi Chlorella vulgaris Beijerinck Dalam Remediasi Logam Berat Cd Dan Pb Skala Laboratorium Bioma Berkala Ilmiah Biologi, 2015, 16, 102.	0.1	5
831	Treatment of arsenic (III) contaminated water by dynamically modified iron-coated sand (DMICS). Desalination and Water Treatment, 2015, 53, 2565-2577.	1.0	6
832	Seaweeds: A Promising Source for Sustainable Development. , 2015, , 65-88.		19
833	Phytoremediation Using Algae and Macrophytes: II. , 2015, , 291-296.		2
834	Copper tolerance and distribution of epibiotic bacteria associated with giant kelp Macrocystis pyrifera in southern California. Ecotoxicology, 2015, 24, 1131-1140.	1.1	7
835	An indigenous Halomonas BVR1 strain immobilized in crosslinked chitosan for adsorption of lead and cadmium. International Journal of Biological Macromolecules, 2015, 79, 300-308.	3.6	26
836	Removal of As(V) from wastewater by chemically modified biomass. Journal of Molecular Liquids, 2015, 206, 262-267.	2.3	23
837	Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 2015, 20, 1-18.	1.5	668
838	Coating process for antimicrobial textile surfaces derived from a polyester dyeing process. Journal of Coatings Technology Research, 2015, 12, 1133-1141.	1.2	15
839	Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption, 2015, 21, 645-658.	1.4	23
840	Algae and Environmental Sustainability. , 2015, , .		20
841	S argassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitology Research, 2015, 114, 4305-4317.	0.6	130
842	BIOSORPTION OF COPPER FROM SYNTHETIC WATERS BY USING TOBACCO LEAF: EQUILIBRIUM, KINETIC AND THERMODYNAMIC TESTS. Journal of Environmental Engineering and Landscape Management, 2015, 23, 172-182.	0.4	14
843	Phycoremediation: Future Perspective of Green Technology. , 2015, , 9-21.		3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
844	Remediation of Dyes from Aquatic Ecosystems by Biosorption Method Using Algae. , 2015	,,97-106.		12
845	Morphological Structure Characteristic and Quality of Semi Refined Carrageenan Processe Different Drying Methods. Procedia Environmental Sciences, 2015, 23, 116-122.	d by	1.3	14
846	Pretreatment and Integrated Analysis of Spectral Data Reveal Seaweed Similarities Based c Diversity. Analytical Chemistry, 2015, 87, 2819-2826.	on Chemical	3.2	39
847	Genetic and chemical modification of cells for selective separation and analysis of heavy m biological or environmental significance. TrAC - Trends in Analytical Chemistry, 2015, 66, 9	etals of 0-102.	5.8	101
848	Preparation, characterization, and selective adsorption for lead(II) of imprinted silica-suppc organic–inorganic hybrid sorbent functionalized with chelating S,N-donor atoms. Monat Chemie, 2015, 146, 459-463.	orted shefte Für	0.9	4
849	Heavy metal contamination, sources, and pollution assessment of surface water in the Tiar Mountains of China. Environmental Monitoring and Assessment, 2015, 187, 33.	nshan	1.3	67
850	Marine Algae Biomass for Removal of Heavy Metal Ions. , 2015, , 611-648.			7
851	Marine Macrophytes: Biosorbents. , 2015, , 597-610.			2
852	Novel membrane reactor design for heavy-metal removal by alginate nanoparticles. Journal Industrial and Engineering Chemistry, 2015, 26, 122-128.	of	2.9	33
853	Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion o Magallanes (Chile). Journal of Food Composition and Analysis, 2015, 39, 69-76.	f	1.9	51
854	Arsenic and antimony in water and wastewater: Overview of removal techniques with spec reference to latest advances in adsorption. Journal of Environmental Management, 2015, 1	ial 151, 326-342.	3.8	480
859	Phytoremediation. , 2015, , .			16
860	Response differences between Ectocarpus siliculosus populations to copper stress involve exclusion and induction of the phytochelatin biosynthetic pathway. Aquatic Toxicology, 20 167-175.	cellular)15, 159,	1.9	31
861	Binding of bivalent metal cations by α- <scp>l</scp> -guluronate: insights from the DFT-MD New Journal of Chemistry, 2015, 39, 3987-3994.	simulations.	1.4	19
862	Biosorption of cadmium with brown macroalgae. Chemosphere, 2015, 138, 164-169.		4.2	35
863	Metal Mixture Modeling Evaluation project: 3. Lessons learned and steps forward. Environr Toxicology and Chemistry, 2015, 34, 821-832.	mental	2.2	32
864	A Novel Member of GH16 Family Derived from Sugarcane Soil Metagenome. Applied Bioch Biotechnology, 2015, 177, 304-317.	emistry and	1.4	14
865	Advances in biosorption of microelements $\hat{a} \in $ the starting point for the production of new agrochemicals. Reviews in Inorganic Chemistry, 2015, 35, 115-133.	,	1.8	21

#	Article	IF	CITATIONS
866	Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis. Ecotoxicology and Environmental Safety, 2015, 121, 199-210.	2.9	48
867	Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate. Adsorption, 2015, 21, 445-458.	1.4	9
868	Lead removal from solution by a porous ceramisite made from bentonite, metallic iron, and activated carbon. Environmental Science: Water Research and Technology, 2015, 1, 814-822.	1.2	14
869	Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 2015, 160, 283-296.	3.8	201
870	Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 2015, 22, 795-800.	1.8	80
871	Sorption and desorption of hexavalent chromium using a novel brown marine algae Sargassum myriocystum. Korean Journal of Chemical Engineering, 2015, 32, 2031-2046.	1.2	29
872	Biosorption of Cr(VI) ions from aqueous solutions by a newly isolated <i>Bosea</i> sp. strain Zer-1 from soil samples of a refuse processing plant. Canadian Journal of Microbiology, 2015, 61, 399-408.	0.8	12
873	Acetate-Derived Metabolites from the Brown Alga <i>Lobophora variegata</i> . Journal of Natural Products, 2015, 78, 1716-1722.	1.5	9
874	Feasibility of Laminaria japonica as a feedstock for fast pyrolysis in a bubbling fluidized-bed reactor. Journal of Analytical and Applied Pyrolysis, 2015, 112, 141-149.	2.6	22
875	Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water. Ecological Engineering, 2015, 81, 107-114.	1.6	13
876	Biosorption of Sr(II) from aqueous solutions using aerobic granules: equilibrium and mechanisms. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 193-202.	0.7	15
877	Determination of trace metal baseline values in Posidonia oceanica, Cystoseira sp., and other marine environmental biomonitors: a quality control method for a study in South Tyrrhenian coastal areas. Environmental Science and Pollution Research, 2015, 22, 3640-3651.	2.7	15
878	Overview of anaerobic digestion process for biofuels production from marine macroalgae: A developmental perspective on brown algae. Korean Journal of Chemical Engineering, 2015, 32, 567-575.	1.2	38
879	Study of cobalt (II) biosorption on Sargassum sp. by experimental design methodology. International Journal of Environmental Science and Technology, 2015, 12, 1907-1922.	1.8	19
880	Bioremediation of Heavy Metals by Microalgae. , 2015, , 457-469.		11
881	Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR. Journal of Hazardous Materials, 2015, 297, 112-118.	6.5	47
882	Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 2015, 209, 77-86.	2.3	189
883	Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 2015, 3, 13114-13188.	5.2	206

#	Article	IF	CITATIONS
885	Biosorption of Zn (II) byPseudomonas aeruginosaisolated from a site contaminated with petroleum. Desalination and Water Treatment, 2015, 54, 3372-3379.	1.0	20
886	Enhanced adsorption of aqueous copper(II) ions using dedoped poly-N-phenylglycine nanofibers. Chemical Engineering Journal, 2015, 277, 352-359.	6.6	31
887	Different utilization of alginate and other algal polysaccharides by marine <scp><i>A</i></scp> <i>Iteromonas macleodii</i> ecotypes. Environmental Microbiology, 2015, 17, 3857-3868.	1.8	89
888	Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 2015, 521-522, 246-260.	3.9	241
889	Biosorption of Cd ²⁺ by untreated dried powder of duckweed <i>Lemna aequinoctialis</i> . Desalination and Water Treatment, 2015, 53, 183-194.	1.0	8
891	Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chemical Engineering Journal, 2015, 273, 231-239.	6.6	57
892	"Egg-Box―Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. ACS Nano, 2015, 9, 11225-11233.	7.3	291
893	Architecture-controlled synthesis of M _x O _y (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	5.2	75
894	An adaptive supramolecular organic framework for highly efficient separation of uranium via an in situ induced fit mechanism. Journal of Materials Chemistry A, 2015, 3, 23788-23798.	5.2	70
895	Algal Biorefineries. , 2015, , .		22
895 896	Algal Biorefineries. , 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling. , 2015, , 339-363.		22
895 896 897	Algal Biorefineries., 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling., 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81.	3.7	22 12 66
895 896 897 898	Algal Biorefineries., 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling., 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 2015, 212, 46-51.	3.7	22 12 66 116
895 896 897 898	Algal Biorefineries. , 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling. , 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 2015, 212, 46-51. Biosorption Behavior of Ciprofloxacin ontoEnteromorpha prolifera:Isotherm and Kinetic Studies. International Journal of Phytoremediation, 2015, 17, 957-961.	3.7 2.3 1.7	22 12 66 116 15
895 896 897 898 899 900	Algal Biorefineries. , 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling. , 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 2015, 212, 46-51. Biosorption Behavior of Ciprofloxacin ontoEnteromorpha prolifera:Isotherm and Kinetic Studies. International Journal of Phytoremediation, 2015, 17, 957-961. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Science Journal, 2015, 50, 445-453.	3.7 2.3 1.7 0.6	22 12 66 116 15 25
895 896 897 898 899 900	Algal Biorefineries., 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling., 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 2015, 212, 46-51. Biosorption Behavior of Ciprofloxacin ontoEnteromorpha prolifera:Isotherm and Kinetic Studies. International Journal of Phytoremediation, 2015, 17, 957-961. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Science Journal, 2015, 50, 445-453. Comparison study of biosorption and coagulation/air flotation methods for chromium removal from wastewater: experiments and neural network modeling. RSC Advances, 2015, 5, 91776-91784.	3.7 2.3 1.7 0.6	22 12 66 116 15 25 23
 895 896 897 898 899 900 901 902 	Algal Biorefineries., 2015, , . Rare Earth Elements and Algae: Physiological Effects, Biorefinery and Recycling., 2015, , 339-363. Toxic elements and speciation in seafood samples from different contaminated sites in Europe. Environmental Research, 2015, 143, 72-81. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 2015, 212, 46-51. Biosorption Behavior of Ciprofloxacin ontoEnteromorpha prolifera:Isotherm and Kinetic Studies. International Journal of Phytoremediation, 2015, 17, 957-961. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Science Journal, 2015, 50, 445-453. Comparison study of biosorption and coagulation/air flotation methods for chromium removal from wastewater: experiments and neural network modeling. RSC Advances, 2015, 5, 91776-91784. Enhanced copper(II) biosorption on SiO2-alginate gel composite: A mechanistic study with surface characterization. Korean Journal of Chemical Engineering, 2015, 32, 2116-2123.	 3.7 2.3 1.7 0.6 1.7 1.2 	22 12 66 116 15 25 23 7

#	Article	IF	CITATIONS
904	Statistical optimization of fermentable sugar extraction from the Malaysian brown alga Sargassum binderi. Journal of Applied Phycology, 2015, 27, 2089-2098.	1.5	8
905	Fast artificial neural network (FANN) modeling of Cd(II) ions removal by valonia resin. Desalination and Water Treatment, 2015, 56, 83-96.	1.0	14
906	Equilibrium biosorption studies of wastewater U(VI), Cu(II) and Ni(II) by the brown alga Cystoseira indica in single, binary and ternary metal systems. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 363-376.	0.7	24
907	Macroalgae in biofuel production. Phycological Research, 2015, 63, 1-18.	0.8	86
908	Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics. Applied Energy, 2015, 139, 175-187.	5.1	89
909	Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 2015, 113, 329-352.	2.9	595
910	Interaction of heavy metals with Ca-pretreated Sargassum muticum algal biomass: Characterization as a cation exchange process. Chemical Engineering Journal, 2015, 264, 181-187.	6.6	39
911	Regeneration of adsorbents and recovery of heavy metals: a review. International Journal of Environmental Science and Technology, 2015, 12, 1461-1478.	1.8	325
912	Separation of transition metals and chelated complexes in wastewaters. Environmental Progress and Sustainable Energy, 2015, 34, 761-783.	1.3	15
913	Removal of heavy metals from aqueous solution by poly(ethyleneimine)-functionalized silica: studies on equilibrium isotherm, kinetics, and thermodynamics of interactions. Research on Chemical Intermediates, 2015, 41, 3913-3928.	1.3	8
914	Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnology, 2015, 32, 121-127.	2.4	111
915	Cell surface engineering of microorganisms towards adsorption of heavy metals. Critical Reviews in Microbiology, 2015, 41, 140-149.	2.7	96
916	Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arabian Journal of Chemistry, 2015, 8, 105-117.	2.3	112
917	Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian Journal of Chemistry, 2015, 8, 506-511.	2.3	56
918	Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. Journal of Environmental Chemical Engineering, 2015, 3, 140-149.	3.3	78
919	Polyvinylamine modified polyester fibers $\hat{a} \in $ innovative textiles for the removal of chromate from contaminated groundwater. Journal of Materials Chemistry A, 2015, 3, 386-394.	5.2	18
920	Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. International Journal of Biological Macromolecules, 2015, 72, 862-867.	3.6	103
921	Design of multi-N-functional magnetic PVA microspheres for the rapid removal of heavy metal ions with different valence. Desalination and Water Treatment, 2015, 56, 1809-1819.	1.0	6

#	Article	IF	CITATIONS
922	Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system. Desalination, 2015, 357, 26-35.	4.0	89
923	Nutritive and Xenobiotic Compounds in the Alien Algae Undaria pinnatifida From Argentine Patagonia. Archives of Environmental Contamination and Toxicology, 2015, 68, 553-565.	2.1	17
924	Effect of solution pH on the dynamic of biosorption of Cr(VI) by living plants of Salvinia minima. Ecological Engineering, 2015, 74, 33-41.	1.6	32
925	Application of response surface methodology for the biosorption of Acid Blue 25 dye using raw and HCl-treated macroalgae. Desalination and Water Treatment, 2015, 53, 1710-1723.	1.0	7
926	Lead removal in rats using calcium alginate. Environmental Science and Pollution Research, 2015, 22, 293-304.	2.7	13
927	Synergistic Action of Alginate Chemical Reduction and Laser Irradiation for the Formation of Au Nanoparticles with Controlled Dimensions. Particle and Particle Systems Characterization, 2015, 32, 389-397.	1.2	5
928	Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga <i>Kappaphycus alvarezii</i> . Desalination and Water Treatment, 2015, 55, 1816-1824.	1.0	22
929	Chromium(III) biosorption onto spent grains residual from brewing industry: equilibrium, kinetics and column studies. International Journal of Environmental Science and Technology, 2015, 12, 1591-1602.	1.8	38
930	A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture. International Journal of Environmental Science and Technology, 2015, 12, 1799-1810.	1.8	22
931	Gracilaria waste biomass (sampah rumput laut) as a bioresource for selenium biosorption. Journal of Applied Phycology, 2015, 27, 611-620.	1.5	26
932	Antimicrobial Effects of Silver Nanoparticles Stabilized in Solution by Sodium Alginate. Biochemistry & Molecular Biology Journal, 2016, 2, .	0.3	22
933	Microbes as Potential Tool for Remediation of Heavy Metals: A Review. Journal of Microbial & Biochemical Technology, 2016, 8, .	0.2	159
934	Biosorption of some Heavy Metals by Deinococcus radiodurans Isolated from Soil in Basra Governorate-Iraq. Journal of Bioremediation & Biodegradation, 2016, 07, .	0.5	4
935	STUDY OF BINARY AND SINGLE BIOSORPTION BY THE FLOATING AQUATIC MACROPHYTE Salvinia natans. Brazilian Journal of Chemical Engineering, 2016, 33, 649-660.	0.7	15
936	3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein Journal of Nanotechnology, 2016, 7, 1794-1799.	1.5	37
937	Seaweed Application in Cosmetics. , 2016, , 423-441.		29
938	The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol. Frontiers in Energy Research, 2016, 4, .	1.2	70
939	Colden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations. Journal of Marine Science and Engineering, 2016, 4, 60.	1.2	135

#	Article	IF	CITATIONS
940	A fluorometric assay for quantification of fucoidan, a sulfated polysaccharide from brown algae. Plant Biotechnology, 2016, 33, 117-121.	0.5	6
941	Continuous biosorption of U(VI) and Fe(II) using Cystoseira indica biomass packed bed column: Breakthrough curves studies in single, binary and multi-component systems. Korean Journal of Chemical Engineering, 2016, 33, 2205-2214.	1.2	10
942	Enhanced adsorption and recovery of Pb(II) from aqueous solution by alkaliâ€ŧreated persimmon fallen leaves. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
943	Disentangling metabolic pathways involved in copper resistance in <i>Candida fukuyamaensis</i> RCLâ€3 indigenous yeast. Journal of Basic Microbiology, 2016, 56, 698-710.	1.8	6
944	Adsorbent effect of Chlorella vulgaris and Scenedesmus sp. (Chlorophyta) for the removal of some heavy metals and nutrients / BazA± aÄYır metal ve nutrient gideriminde Chlorella vulgaris ve Scenedesmus sp. (Chlorophyta)'nin adsorbent etkisi. Turkish Journal of Biochemistry, 2016, 41, .	0.3	3
945	Study on proton mineral ions interchange at the solution/bacterial interface. Environmental Progress and Sustainable Energy, 2016, 35, 624-632.	1.3	0
946	Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 2016, 181, 817-831.	3.8	394
947	Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and Technology, 2016, 74, 625-638.	1.2	44
949	Antibacterial mechanism of polyacrylonitrile fiber with organophosphorus groups against Escherichia coli. Fibers and Polymers, 2016, 17, 721-728.	1.1	8
950	Rhenium uptake and distribution in phaeophyceae macroalgae, Fucus vesiculosus. Royal Society Open Science, 2016, 3, 160161.	1.1	12
951	Effects of added oligoguluronate on mechanical properties of Ca – alginate – oligoguluronate hydrogels depend on chain length of the alginate. Carbohydrate Polymers, 2016, 147, 234-242.	5.1	10
952	Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae. Environmental Pollution, 2016, 213, 518-523.	3.7	6
953	Biological substrates: Green alternatives in trace elemental preconcentration and speciation analysis. TrAC - Trends in Analytical Chemistry, 2016, 80, 531-546.	5.8	35
954	Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Applied Biochemistry and Biotechnology, 2016, 180, 41-78.	1.4	66
955	A novel coupled biokinetic-equilibrium model to capture oyster metal bioaccumulation in a contaminated estuary (Sydney estuary, Australia). Environmental Modelling and Software, 2016, 82, 152-166.	1.9	4
956	Molecular Dynamics Simulations of a Poly(ethylene glycol)-Grafted Polyamide Membrane and Its Interaction with a Calcium Alginate Gel. Langmuir, 2016, 32, 4424-4433.	1.6	41
957	Concentrations of trace elements in sea urchins and macroalgae commonly present in <i>Sargassum</i> beds: implications for trophic transfer. Ecological Research, 2016, 31, 785-798.	0.7	12
958	Economical fermentation media for the production of a whole cell catalyst for the treatment of Cr(VI)-containing wastewaters. Revista Argentina De Microbiologia, 2016, 48, 245-251.	0.4	3

#	Article	IF	CITATIONS
959	Investigation on the Performance of Chemically Modified Aquatic Macrophytes—Salvinia molesta for the Micro-Solid Phase Preconcentration of Cd(II) On-Line Coupled to FAAS. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 863-869.	1.3	4
960	Biological Approaches for Remediation of Metal-Contaminated Sites. , 2016, , 65-112.		8
961	Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. Materials Today Communications, 2016, 8, 172-182.	0.9	12
962	Antimony oxyanions uptake by green marine macroalgae. Journal of Environmental Chemical Engineering, 2016, 4, 3441-3450.	3.3	26
963	Investigation of the electro-spinnability of alginate solutions containing gold precursor HAuCl 4. Journal of Colloid and Interface Science, 2016, 483, 60-66.	5.0	3
964	A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology and Biotechnology, 2016, 32, 170.	1.7	124
965	Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater. Bioremediation Journal, 2016, 20, 240-251.	1.0	27
966	Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects. Nanoscale Research Letters, 2016, 11, 363.	3.1	122
967	Cholesterol-Lowering Effect of Calcium Alginate in Rats. Biological and Pharmaceutical Bulletin, 2016, 39, 62-67.	0.6	27
968	Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy and Environment, 2016, 1, 172-177.	4.7	71
969	Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-efficient Technologies, 2016, 2, 175-184.	0.1	365
970	Probiotic Cereal-Based Fermented Functional Foods. , 2016, , 206-222.		1
971	Kinetic, thermodynamic, and equilibrium biosorption of Pb(II), Cu(II), and Ni(II) using dead mushroom biomass under batch experiment. Bioremediation Journal, 2016, 20, 252-261.	1.0	5
972	Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water. Scientific Reports, 2016, 6, 31090.	1.6	7
973	A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 2016, 95, 28-44.	1.6	234
974	Simple synthesis of MoO ₂ /carbon aerogel anodes for high performance lithium ion batteries from seaweed biomass. RSC Advances, 2016, 6, 106230-106236.	1.7	26
975	Production of dietary feed supplements enriched in microelements in a pilot plant biosorption system. International Journal of Environmental Science and Technology, 2016, 13, 1089-1098.	1.8	7
976	Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems. Environmental Science and Pollution Research, 2016, 23, 11985-11997.	2.7	21

#	Article	IF	CITATIONS
977	Cadmium(II), Lead(II), and Copper(II) Biosorption on Baker's Yeast (Saccharomyces cerevesiae). Journal of Environmental Engineering, ASCE, 2016, 142, .	0.7	17
978	Seaweeds: A resource for marine bionanotechnology. Enzyme and Microbial Technology, 2016, 95, 45-57.	1.6	106
979	Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 2016, 13, 1861-1872.	1.8	104
980	Biosorption potential of cerium ions using Spirulina biomass. Journal of Rare Earths, 2016, 34, 644-652.	2.5	67
981	Interactive influence of Fe–Mn and organic matter on pentachlorophenol sorption under oxic and anoxic conditions. Journal of Environmental Chemical Engineering, 2016, 4, 1899-1909.	3.3	5
982	Copper ecotoxicology of marine algae: a methodological appraisal. Chemistry and Ecology, 2016, 32, 786-800.	0.6	26
983	Metal sorption by algal biomass: From batch to continuous system. Algal Research, 2016, 18, 95-109.	2.4	120
984	Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water. International Journal of Environmental Science and Technology, 2016, 13, 2057-2066.	1.8	24
985	Application of taguchi L ₁₆ orthogonal array design to optimize hydrazine biosorption by <i>Sargassum ilicifolium</i> . Environmental Progress and Sustainable Energy, 2016, 35, 1450-1457.	1.3	11
986	Performance study on algal alginate as natural coagulant for the removal of Congo red dye. Desalination and Water Treatment, 2016, 57, 6384-6392.	1.0	26
987	Nanoporous calcined MCM-41 silica for adsorption and removal of Victoria blue dye from different natural water samples. Desalination and Water Treatment, 2016, 57, 5903-5913.	1.0	18
988	Metal Distribution and Contamination Assessment in Drainage Ditch Water in the Main Rice/Vegetable Area of Sichuan Hilly Basin. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 248-253.	1.3	12
989	Valorization of <i>Escherichia coli</i> waste biomass as a biosorbent for removing reactive dyes from aqueous solutions. Desalination and Water Treatment, 2016, 57, 20084-20090.	1.0	15
990	Exposure to chronic and high dissolved copper concentrations impedes meiospore development of the kelps <i>Macrocystis pyrifera</i> and <i>Undaria pinnatifida</i> (Ochrophyta). Phycologia, 2016, 55, 12-20.	0.6	17
991	Biomass characterisation and phylogenetic analysis of microalgae isolated from estuaries: Role in phycoremediation of tannery effluent. Algal Research, 2016, 14, 92-99.	2.4	16
992	Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. Journal of Hazardous Materials, 2016, 308, 75-83.	6.5	238
993	Effective removal of Hg ²⁺ from aqueous solutions and seawater by <i>Malva sylvestris</i> . Desalination and Water Treatment, 2016, 57, 23814-23826.	1.0	25
994	Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals. Journal of Hazardous Materials, 2016, 304, 150-158.	6.5	58

#	Article	IF	CITATIONS
995	Highlighting inconsistencies regarding metal biosorption. Journal of Hazardous Materials, 2016, 304, 553-556.	6.5	67
996	Removal of lead ions from aqueous solutions using sodium alginate-graft-poly(methyl methacrylate) beads. Desalination and Water Treatment, 2016, 57, 15353-15361.	1.0	21
997	Complexation of Trivalent Metal Cations to Mannuronate Type Alginate Models from a Density Functional Study. Journal of Physical Chemistry B, 2016, 120, 3615-3623.	1.2	38
998	Cr and Zn biosorption by Aspergillus niger. Environmental Earth Sciences, 2016, 75, 1.	1.3	18
999	An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga. Environmental Pollution, 2016, 208, 435-441.	3.7	22
1000	Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae. RSC Advances, 2016, 6, 20051-20057.	1.7	17
1001	Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process. Journal of Cleaner Production, 2016, 119, 38-49.	4.6	46
1002	Adsorptive characteristics of the polyurethane-immobilized Corynebacterium glutamicum biosorbent for removal of Reactive Yellow 2 from aqueous solution. Korean Journal of Chemical Engineering, 2016, 33, 945-951.	1.2	7
1003	Comparative Analysis of Mechanisms of Cd ²⁺ and Ni ²⁺ Biosorption by Living and Nonliving <i>Mucoromycote</i> sp. XLC. Geomicrobiology Journal, 2016, 33, 274-282.	1.0	17
1004	BIOSORPTION OF CD, CR, MN, AND PB FROM AQUEOUS SOLUTIONS BY Bacillus SP STRAINS ISOLATED FROM INDUSTRIAL WASTE ACTIVATE SLUDGE. TIP Revista Especializada En Ciencias QuÃmico-BiolÃ ³ gicas, 2016, 19, 5-14.	0.3	40
1005	Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds. Bioprocess and Biosystems Engineering, 2016, 39, 915-923.	1.7	23
1006	The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives—A perspective. Coordination Chemistry Reviews, 2016, 317, 157-166.	9.5	82
1007	Biosorption of malachite green from aqueous solution using brown marine macro algae <i>Sargassum swartzii</i> . Desalination and Water Treatment, 2016, 57, 25288-25300.	1.0	29
1008	Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. Journal of Hazardous Materials, 2016, 306, 386-394.	6.5	77
1009	Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresource Technology, 2016, 201, 33-40.	4.8	93
1010	Effective production of bioenergy from marine <i>Chlorella</i> sp. by high-pressure homogenization. Biotechnology and Biotechnological Equipment, 2016, 30, 81-89.	0.5	17
1011	Bioprocessing of Metals from Packaging Wastes. Environmental Footprints and Eco-design of Products and Processes, 2016, , 139-164.	0.7	1
1012	Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chemical Engineering Journal, 2016, 286, 1-15.	6.6	98

#	Article	IF	CITATIONS
1013	Removal of cobalt(II) ion from water by adsorption using intact and modified <i>Ficus carica</i> leaves as low-cost natural sorbent. Desalination and Water Treatment, 2016, 57, 19890-19902.	1.0	26
1014	Environmental Footprints of Packaging. Environmental Footprints and Eco-design of Products and Processes, 2016, , .	0.7	4
1015	Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. Journal of Colloid and Interface Science, 2016, 461, 326-334.	5.0	34
1016	Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. Journal of Applied Phycology, 2016, 28, 1287-1294.	1.5	40
1017	Isotherm, kinetics and mechanistic studies of methylene blue biosorption onto red seaweed <i>Gracilaria corticata</i> . Desalination and Water Treatment, 2016, 57, 13540-13548.	1.0	20
1018	Evaluation of terrestrial plants extracts for uranium sorption and characterization of potent phytoconstituents. International Journal of Phytoremediation, 2016, 18, 10-15.	1.7	8
1019	Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study. Desalination and Water Treatment, 2016, 57, 14518-14529.	1.0	26
1020	Lead removal by <i>Spirulina platensis</i> biomass. International Journal of Phytoremediation, 2016, 18, 184-189.	1.7	26
1021	Investigation of uranium biosorption from aqueous solutions by Dictyopteris polypodioides brown algae. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 1335-1343.	0.7	41
1022	Comparison of cadmium adsorption process on barley straw in batch and flow reactors. Desalination and Water Treatment, 2016, 57, 1462-1468.	1.0	2
1023	Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 635-644.	0.7	28
1024	Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma, 2016, 253, 111-125.	1.0	34
1025	Biosorption of hexavalent chromium from aqueous solution using chemically modified <i>Spirulina platensis</i> algal biomass: an ecofriendly approach. Desalination and Water Treatment, 2016, 57, 8504-8513.	1.0	8
1026	The brown seaweed Sargassum cymosum: changes in metabolism and cellular organization after long-term exposure to cadmium. Protoplasma, 2017, 254, 817-837.	1.0	19
1027	Removal of mercury ions in a simulated wastewater using functionalized poly(glycidyl methacrylate). Journal of Industrial and Engineering Chemistry, 2017, 47, 446-450.	2.9	19
1028	The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by <i>Microcystis aeruginosa</i> . Environmental Toxicology and Chemistry, 2017, 36, 1856-1863.	2.2	25
1029	Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater. Geochimica Et Cosmochimica Acta, 2017, 199, 48-57.	1.6	14
1030	Occurrence of 210 Po in marine macroalgae inhabiting a coastal nuclear zone, southeast coast of India. Journal of Environmental Radioactivity, 2017, 169-170, 122-130.	0.9	5

#	Article	IF	CITATIONS
1031	Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods. RSC Advances, 2017, 7, 8606-8624.	1.7	47
1032	Enhanced removal of bisphenol-AF by activated carbon-alginate beads with cetyltrimethyl ammonium bromide. Journal of Colloid and Interface Science, 2017, 495, 191-199.	5.0	27
1033	Cation exchange prediction model for copper binding onto raw brown marine macro-algae Ascophyllum nodosum: Batch and fixed-bed studies. Chemical Engineering Journal, 2017, 316, 255-276.	6.6	22
1034	Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5. International Journal of Biological Macromolecules, 2017, 98, 103-110.	3.6	33
1035	Assessment of samarium biosorption from aqueous solution by brown macroalga Turbinaria conoides. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 113-120.	2.7	34
1036	Biosynthesis of Metal and Semiconductor Nanoparticles, Scale-Up, and Their Applications. Soil Biology, 2017, , 21-70.	0.6	5
1037	Studies of selective adsorption, desorption and reuse of chemically altered biomass produced from aquatic macrophytes for treatment of metal-containing wastewater. Water Science and Technology, 2017, 75, 2083-2093.	1.2	7
1038	Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp Journal of Cleaner Production, 2017, 150, 58-64.	4.6	119
1039	Elucidation of the sorptive uptake of fluoride by Ca 2+ -treated and untreated algal biomass of Nostoc sp. (BTA394): Isotherm, kinetics, thermodynamics and safe disposal. Chemical Engineering Research and Design, 2017, 107, 334-345.	2.7	34
1040	Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: Algae biochemical composition and kinetics. Journal of Environmental Management, 2017, 193, 126-135.	3.8	37
1041	Stratification of Extracellular Polymeric Substances (EPS) for Aggregated Anammox Microorganisms. Environmental Science & Technology, 2017, 51, 3260-3268.	4.6	389
1042	Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils. Environmental Pollution, 2017, 224, 89-97.	3.7	49
1043	Impact of inorganic contaminants on microalgae productivity and bioremediation potential. Ecotoxicology and Environmental Safety, 2017, 139, 367-376.	2.9	32
1044	Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment. Food and Chemical Toxicology, 2017, 104, 95-108.	1.8	11
1045	Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium: optimization, kinetic and isotherm studies. Water Science and Technology, 2017, 75, 2631-2638.	1.2	19
1046	Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent. Geosciences Journal, 2017, 21, 373-383.	0.6	13
1047	Bioremediation of As(III) and As(V) from wastewater using living cells of Bacillus arsenicus MTCC 4380. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 25-47.	1.7	4
1048	Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. Bioresource Technology, 2017, 239, 28-36.	4.8	99

#	Article	IF	CITATIONS
1049	Aqueous Phase Biosorption of Pb(II), Cu(II), and Cd(II) onto Cabbage Leaves Powder. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	19
1050	Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 2017, 167, 92-99.	0.9	67
1051	The impact of fluctuation of the Nile River level on water composition. Water Practice and Technology, 2017, 12, 423-431.	1.0	0
1052	Biosorption of metal elements by exopolymer nanofibrils excreted from Leptothrix cells. Water Research, 2017, 122, 139-147.	5.3	19
1053	Adsorption behavior of copper ions on alga <i>Jania adhaerens</i> through SEM and FTIR analyses. Separation Science and Technology, 2017, 52, 2062-2068.	1.3	19
1054	A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresource Technology, 2017, 244, 1341-1348.	4.8	79
1055	Phenomenological mathematical modeling of heavy metal biosorption in fixed-bed columns. Chemical Engineering Journal, 2017, 326, 389-400.	6.6	29
1056	Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 131, 74-78.	1.5	11
1057	Preparation of growth substrate to improve runoff quality from green roofs: physico-chemical characterization, sorption and plant-support experiments. Urban Water Journal, 2017, 14, 804-810.	1.0	7
1058	Desorption of Methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling. Journal of Cleaner Production, 2017, 152, 443-453.	4.6	294
1059	Removal of direct yellow 12 from aqueous solution by adsorption onto spirulina algae as a high-efficiency adsorbent. Journal of Environmental Chemical Engineering, 2017, 5, 1946-1956.	3.3	55
1060	Biosorption of binary heavy metal systems: Phenomenological mathematical modeling. Chemical Engineering Journal, 2017, 313, 364-373.	6.6	42
1061	Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports (Amsterdam, Netherlands), 2017, 13, 58-71.	2.1	565
1062	Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere, 2017, 171, 208-222.	4.2	65
1063	Biosorptive removal of malachite green from aqueous solution using chemically modified brown marine alga Sargassum swartzii. Water Science and Technology, 2017, 75, 598-608.	1.2	7
1064	Nanomaterial Probes in the Environment: Gold Nanoparticle Soil Retention and Environmental Stability as a Function of Surface Chemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 11451-11458.	3.2	22
1065	Contribution of surface functional groups and interface interaction to biosorption of strontium ions by Saccharomyces cerevisiae under culture conditions. RSC Advances, 2017, 7, 50880-50888.	1.7	20
1066	Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia, 2017, 128, 504-511.	1.8	104

#	Article	IF	CITATIONS
1067	Distributions and sources of heavy metals in sediments of the Bohai Sea, China: a review. Environmental Science and Pollution Research, 2017, 24, 24753-24764.	2.7	41
1068	Techno-economic Assessment for Integrating Biosorption into Rare Earth Recovery Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 10148-10155.	3.2	47
1069	A novel extraction-based procedure for the determination of cadmium in marine macro-algae using HR-CS GF AAS. Analytical Methods, 2017, 9, 5400-5406.	1.3	3
1070	Development of Metal Ion Binding Peptides Using Phage Surface Display Technology. Solid State Phenomena, 0, 262, 591-595.	0.3	1
1071	Element-specific behaviour and sediment properties modulate transfer and bioaccumulation of trace elements in a highly-contaminated area (Augusta Bay, Central Mediterranean Sea). Chemosphere, 2017, 187, 230-239.	4.2	19
1072	Continuous metal biosorption applied to industrial effluents: a comparative study using an agricultural by-product and a marine alga. Environmental Earth Sciences, 2017, 76, 1.	1.3	11
1073	Biosorption of toxic metals using the alginate extraction residue from the brown algae Sargassum filipendula as a natural ion-exchanger. Journal of Cleaner Production, 2017, 165, 491-499.	4.6	79
1074	Effects of crosslinking modes on the film forming properties of kelp mulching films. Algal Research, 2017, 26, 74-83.	2.4	19
1075	ET&C Best Paper of 2016. Environmental Toxicology and Chemistry, 2017, 36, 1693-1694.	2.2	0
1076	Nutrient removal by biomass accumulation on artificial substrata in the northern Baltic Sea. Journal of Applied Phycology, 2017, 29, 1707-1720.	1.5	10
1077	A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-efficient Technologies, 2017, 3, 516-527.	0.1	185
1078	Seaweed Polysaccharides: Structure and Applications. , 2017, , 75-116.		14
1079	A High-Performance Catalytic and Recyclability of Phyto-Synthesized Silver Nanoparticles Embedded in Natural Polymer. Journal of Cluster Science, 2017, 28, 3127-3138.	1.7	17
1080	Evaluation of toxicity reduction in textile effluent by different treatment protocols involving marine diatom Odontella aurita on freshwater fish Labeo rohita. Journal of Water Process Engineering, 2017, 20, 232-242.	2.6	7
1081	Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations. Environmental Monitoring and Assessment, 2017, 189, 648.	1.3	29
1082	Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Topics in Current Chemistry, 2017, 375, 89.	3.0	9
1083	Algal Degradation of Organic Pollutants. , 2017, , 1-22.		2
1084	Sustainable Utilization of Marine Algae Biomass for Environmental Bioremediation. , 2017, , 179-217.		2

#	Article	IF	CITATIONS
1085	Prospects and Challenges in Algal Biotechnology. , 2017, , .		15
1086	Cystoseira myricaas for mercury (II) uptake: Isotherm, kinetics, thermodynamic, response surface methodology and fuzzy modeling. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 247-257.	2.7	15
1087	Bioadsorption of Heavy Metals. , 2017, , 233-255.		9
1088	Biosorption of Copper by Saccharomyces cerevisiae: From Biomass Characterization to Process Development. , 2017, , 205-224.		1
1089	Competitive algal biosorption of Al3+, Fe3+, and Zn2+ and treatment application of some industrial effluents from Borg El-Arab region, Egypt. Journal of Applied Phycology, 2017, 29, 3221-3234.	1.5	17
1090	Brown algae (Phaeophyta) for monitoring heavy metals at the Sudanese Red Sea coast. Applied Water Science, 2017, 7, 3817-3824.	2.8	25
1091	Adsorption Processes for Water Treatment and Purification. , 2017, , .		159
1092	Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology – a review. Green Chemistry, 2017, 19, 552-587.	4.6	187
1093	Direct application of sodium alginate solution via dripping technique for effective copper removal and recovery from aqueous solution. Environmental Progress and Sustainable Energy, 2017, 36, 489-493.	1.3	3
1094	Bioremediation of cadmium-contaminated water systems using intact and alkaline-treated alga (Hydrodictyon reticulatum) naturally grown in an ecosystem. International Journal of Phytoremediation, 2017, 19, 453-462.	1.7	7
1095	Application of chemometric methods in modeling of competitive multidye biosorption from ternary system. Journal of the Iranian Chemical Society, 2017, 14, 285-296.	1.2	1
1096	Design of remediation pilot plants for the treatment of industrial metal-bearing effluents (BIOMETAL) Tj ETQq1 1	0.784314	rgBT /Overld
1097	Metal Biosorption in Single―and Multiâ€Metal Solutions by Biosorbents: Indicators of Efficacy in Natural Wastewater. Clean - Soil, Air, Water, 2017, 45, .	0.7	5
1098	3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead (II) removal from aqueous water. Journal of Hazardous Materials, 2017, 325, 178-188.	6.5	94
1099	Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. Journal of Applied Phycology, 2017, 29, 211-221.	1.5	71
1100	Enhanced cytotoxic activity of AgNPs on retinoblastoma Y79 cell lines synthesised using marine seaweed <i>Turbinaria ornata</i> . IET Nanobiotechnology, 2017, 11, 18-23.	1.9	17
1101	Possible Use of the Algae Lessonia nigrescens as a Biosorbent: Differences in Copper Sorption Behavior Using Either Blades or Stipes. Waste and Biomass Valorization, 2017, 8, 1295-1302.	1.8	8
1102	Green macroalgae from the Romanian coast of Black Sea: Physico-chemical characterization and future perspectives on their use as metal anions biosorbents. Chemical Engineering Research and Design 2017 108 34-43	2.7	23

#	Article	IF	CITATIONS
1103	Effects of manganese on the physiology and ultrastructure of Sargassum cymosum. Environmental and Experimental Botany, 2017, 133, 24-34.	2.0	14
1104	Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. Journal of Porous Materials, 2017, 24, 551-557.	1.3	24
1105	Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 2017, 94, 10-27.	3.6	99
1106	Few Layer Graphene sticking by biofilm of freshwater diatom Nitzschia palea as a mitigation to its ecotoxicity. Carbon, 2017, 113, 139-150.	5.4	29
1107	Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. International Journal of Biological Macromolecules, 2017, 95, 484-493.	3.6	217
1108	Simultaneous multidye biosorption by chemically modified <i>Sargassum glaucescens</i> : Doehlert optimization and kinetic, equilibrium, and thermodynamic study in ternary system. Separation Science and Technology, 2017, 52, 583-595.	1.3	7
1109	Protective potential of Lactobacillus species in lead toxicity model in broiler chickens. Animal, 2017, 11, 755-761.	1.3	24
1110	Metal Removal by Seaweed Biomass. , 0, , .		8
1111	Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Marine Drugs, 2017, 15, 388.	2.2	270
1112	Overview of β-Glucans from Laminaria spp.: Immunomodulation Properties and Applications on Biologic Models. International Journal of Molecular Sciences, 2017, 18, 1629.	1.8	24
1113	Polymers and its applications in agriculture. Polimeros, 2017, 27, 256-266.	0.2	92
1115	Alginate-Poly(Ethylene) Glycol and Poly(Ethylene) Oxide Blend Materials. , 2017, , 581-601.		15
1116	Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water. Environmental Science and Pollution Research, 2017, 24, 27879-27896.	2.7	23
1117	Cow Milk Contamination with Heavy Metals (Mercury and Lead) and the Possibility of Heavy Metals Disintegration by the Human Intestinal Bacteria. , 2017, 06, .		5
1118	SCREENING AND IDENTIFICATION OF HEAVY METAL-TOLERANT ENDOPHYTIC FUNGI LASIODIPLODIA THEOBROMAE FROM BOSWELLIA OVALIFOLIOLATA AN ENDEMIC PLANT OF TIRUMALA HILLS. Asian Journal of Pharmaceutical and Clinical Research, 2017, 10, 488.	0.3	8
1119	Impact of surface modification of green algal biomass by phosphorylation on the removal of copper(II) ions from water. Turkish Journal of Chemistry, 2017, 41, 190-208.	0.5	30
1120	The Removal of Heavy Metals by an Immobilized Periphyton Multilevel Bioreactor. , 2017, , 251-268.		1
1121	Yeast Biomass: An Alternative for Bioremediation of Heavy Metals. , 0, , .		30

#	Article	IF	CITATIONS
1122	Simultaneous Removal of Cu and Cd From Soil and Water inÂPaddy Fields by Native Periphyton. , 2017, , 323-349.		1
1123	Alginate and Sericin: Environmental and Pharmaceutical Applications. , 0, , .		14
1124	Bioactive potentials of sulfated polysaccharides isolated from brown seaweed Sargassum spp in related to human health applications: A review. Food Hydrocolloids, 2018, 81, 200-208.	5.6	85
1125	Trace Metal Inference on Seaweeds in Wandoor Area, Southern Andaman Island. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 614-619.	1.3	7
1126	The synthesis of modified alginate flocculants and their properties for removing heavy metal ions of wastewater. Journal of Applied Polymer Science, 2018, 135, 46577.	1.3	22
1127	Controlling the Absorption of Gold Nanoparticles via Green Synthesis Using <i>Sargassum crassifolium</i> Extract. Key Engineering Materials, 0, 765, 44-48.	0.4	11
1128	AFLP analysis revealed a north to south genetic break in the brown alga Sargassum thunbergii along the coast of China. Journal of Applied Phycology, 2018, 30, 2697-2705.	1.5	10
1129	Discovering Metal-Tolerant Endophytic Fungi from the Phytoremediator Plant Phragmites. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	15
1130	Investigation on the role of surfactants in bubble-algae interaction in flotation harvesting of Chlorella vulgaris. Scientific Reports, 2018, 8, 3303.	1.6	15
1131	Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chemical Engineering Journal, 2018, 345, 604-610.	6.6	50
1132	A review on the sorptive elimination of fluoride from contaminated wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 1257-1270.	3.3	59
1133	Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Marine Pollution Bulletin, 2018, 128, 214-222.	2.3	25
1134	Novel humic acid-based carbon materials: adsorption thermodynamics and kinetics for cadmium(II) ions. Colloid and Polymer Science, 2018, 296, 537-546.	1.0	4
1135	Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Annals of Microbiology, 2018, 68, 145-152.	1.1	29
1136	Bioaccessibility of heavy metals in the seaweed <i>Caulerpa racemosa</i> var. <i>corynephora</i> : Human health risk from consumption. Instrumentation Science and Technology, 2018, 46, 628-644.	0.9	22
1137	Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Applied Microbiology and Biotechnology, 2018, 102, 1599-1615.	1.7	23
1138	Molecular Simulations of the Hydration Behavior of a Zwitterion Brush Array and Its Antifouling Property in an Aqueous Environment. Langmuir, 2018, 34, 2245-2257.	1.6	46
1139	Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. Journal of Hazardous Materials, 2018, 347, 160-167.	6.5	52

#	Article	IF	CITATIONS
1140	In vitro bioavailability of chlorophyll pigments from edible seaweeds. Journal of Functional Foods, 2018, 41, 25-33.	1.6	40
1141	Biosorption Strategies in the Remediation of Toxic Pollutants from Contaminated Water Bodies. Energy, Environment, and Sustainability, 2018, , 127-163.	0.6	4
1142	Adsorption isotherms and kinetic studies for the defluoridation from aqueous solution using eco-friendly raw marine green algae, Ulva lactuca. Environmental Monitoring and Assessment, 2018, 190, 14.	1.3	23
1143	Bioremediation of Heavy Metals. Environmental Chemistry for A Sustainable World, 2018, , 277-311.	0.3	15
1145	Cadmium biosorption by alginate extraction waste and process overview in Life Cycle Assessment context. Journal of Cleaner Production, 2018, 178, 166-175.	4.6	64
1146	Enhanced Hg(II) Adsorption by Monocarboxylic-Acid-Modified Microalgae Residuals in Simulated and Practical Industrial Wastewater. Energy & Fuels, 2018, 32, 4461-4468.	2.5	20
1147	Antibacterial efficacy of seagrass Cymodocea serrulata-engineered silver nanoparticles against prawn pathogen Vibrio parahaemolyticus and its combative effect on the marine shrimp Penaeus monodon. Aquaculture, 2018, 493, 158-164.	1.7	15
1148	Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 2018, 25, 16640-16651.	2.7	27
1149	Urban Ecology, Water Quality and Climate Change. Water Science and Technology Library, 2018, , .	0.2	0
1150	Mechanisms of Cu2+ biosorption on Lessonia nigrescens dead biomass: Functional groups interactions and morphological characterization. Journal of Environmental Chemical Engineering, 2018, 6, 2696-2704.	3.3	28
1151	Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property. Materials Science and Engineering C, 2018, 89, 25-32.	3.8	113
1152	Elimination of Chromium(VI) from Waste Water Using Various Biosorbents. Water Science and Technology Library, 2018, , 267-274.	0.2	2
1153	Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. Journal of Alloys and Compounds, 2018, 749, 517-522.	2.8	43
1154	Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion. Chemosphere, 2018, 191, 520-526.	4.2	36
1155	Bio- and Nanosorbents from Natural Resources. Springer Series on Polymer and Composite Materials, 2018, , .	0.5	0
1156	Tracking trace elements into complex coral reef trophic networks. Science of the Total Environment, 2018, 612, 1091-1104.	3.9	28
1157	Time-since-invasion increases native mesoherbivore feeding rates on the invasive alga, Sargassum muticum (Yendo) Fensholt. Journal of the Marine Biological Association of the United Kingdom, 2018, 98, 1935-1944.	0.4	5
1158	Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. ChemSusChem, 2018, 11, 334-355.	3.6	92

#	Article	IF	CITATIONS
1159	Relationship of Biodiversity with Heavy Metal Tolerance and Sorption Capacity: A Meta-Analysis Approach. Environmental Science & Technology, 2018, 52, 184-194.	4.6	76
1160	Culture of Spirogyra sp. in a flat-panel airlift photobioreactor. 3 Biotech, 2018, 8, 6.	1.1	14
1161	Application of ecofriendly cation exchangers (Gracilaria caudata and Gracilaria cervicornis) for metal ions separation and recovery from a synthetic petrochemical wastewater: Batch and fixed bed studies. Journal of Cleaner Production, 2018, 172, 1928-1945.	4.6	40
1162	Alginate-Based Nanosorbents for Water Remediation. Springer Series on Polymer and Composite Materials, 2018, , 103-121.	0.5	0
1163	Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. Journal of Applied Phycology, 2018, 30, 2047-2060.	1.5	53
1164	Cell Surface Display of MerR on Saccharomyces cerevisiae for Biosorption of Mercury. Molecular Biotechnology, 2018, 60, 12-20.	1.3	17
1165	Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture, 2018, 10, 950-974.	4.6	540
1166	Synthesis and Physicochemical Characterization of Multiwalled Carbon Nanotubes/Hydroxamic Alginate Nanocomposite Scaffolds. Journal of Nanomaterials, 2018, 2018, 1-12.	1.5	12
1167	Removal of Hg(II) from Aqueous Solution by Bacillus subtilis ATCC 6051 (B1). Journal of Bioprocessing & Biotechniques, 2018, 08, .	0.2	11
1168	Thorium Harmful Impacts on the Physiological Parameters of the Adult Male Albino Rats and Their Mitigation Using the Alginate. Toxicology and Environmental Health Sciences, 2018, 10, 253-260.	1.1	4
1169	Effects of Temperature and pH on the Growth of <i>Sargassum linearifolium</i> and <i>S. podacanthum</i> in Potassium-Fortified Inland Saline Water. American Journal of Applied Sciences, 2018, 15, 186-197.	0.1	9
1170	Biosorbents in the Metallic Ions Determination. , 2018, , .		0
1171	Cellular and Ultrastructure Alteration of Plant Roots in Response to Metal Stress. , 2018, , .		7
1172	Algae as a Budding Tool for Mitigation of Arsenic from Aquatic Systems. , 2018, , 269-297.		4
1173	Phytoremediation for the Elimination of Metals, Pesticides, PAHs, and Other Pollutants from Wastewater and Soil. , 2018, , 101-136.		23
1174	Treatment of Wastewater Using Seaweed: A Review. International Journal of Environmental Research and Public Health, 2018, 15, 2851.	1.2	89
1175	Biosorption potential of two brown seaweeds in the removal of chromium. Water Science and Technology, 2018, 78, 2564-2576.	1.2	12
1176	Synthesis and application of nanocomposite based on nano sodium alginate from brown seaweed impregnation TiO2 as a catalyst for synthesis 5-hydroxymethylfurfural from fructose. AIP Conference Proceedings, 2018, , .	0.3	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1177	Freshwater green macroalgae as a biosorbent of Cr(III) ions. Open Chemistry, 2018, 16, 68	9-701.	1.0	13
1178	Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Contaminated Sites. Separations, 2018, 5, 54.	Metal	1.1	91
1179	Fucoidan Extracted from the New Zealand Undaria pinnatifida—Physicochemical Compar Five Other Fucoidans: Unique Low Molecular Weight Fraction Bioactivity in Breast Cancer Marine Drugs, 2018, 16, 461.	ison against Cell Lines.	2.2	47
1180	Bioremoval of toxic dye by using different marine macroalgae. Turkish Journal of Botany, 2 15-27.	018, 42,	0.5	51
1181	Copper pollution exacerbates the effects of ocean acidification and warming on kelp micro early life stages. Scientific Reports, 2018, 8, 14763.	scopic	1.6	77
1182	Biosorption of Cu(II) Ions by Kelps, Large Brown Algae Seaweeds, Saccharina japonica and sculpera. Journal of Sustainable Metallurgy, 2018, 4, 455-460.	Saccharina	1.1	4
1183	Impact of inorganic contaminants on microalgal biofuel production through multiple converse pathways. Biomass and Bioenergy, 2018, 119, 237-245.	ersion	2.9	12
1185	A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM- techniques. PLoS ONE, 2018, 13, e0205590.	EDX and FTIR	1.1	46
1186	Biosorption of zinc from aqueous solution by cyanobacterium Fischerella ambigua ISC67: optimization, kinetic, isotherm and thermodynamic studies. Water Science and Technolog 1525-1534.	y, 2018, 78,	1.2	17
1187	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evo Reaction at All pH Values. Small, 2018, 14, e1802824.	ution	5.2	99
1188	Quantitative growth evolution of gold nanoparticles synthesized using aqueous Elaeis gui (oil palm) leaves extract. Materials Chemistry and Physics, 2018, 220, 240-248.	ieensis	2.0	13
1189	Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sa Equilibrium, kinetic, and thermodynamic studies. Environmental Technology and Innovatio 91-103.	wdust: n, 2018, 12,	3.0	76
1190	Biosorption optimization, characterization, immobilization and application of Gelidium am biomass for complete Pb2+ removal from aqueous solutions. Scientific Reports, 2018, 8, 1	ansii 3456.	1.6	78
1192	Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granula Extracellular polymeric substances contribution and soluble microbial products release. Jou Colloid and Interface Science, 2018, 527, 87-94.	r sludge: Irnal of	5.0	38
1193	The impact of seaweed cultivation on ecosystem services - a case study from the west coa Sweden. Marine Pollution Bulletin, 2018, 133, 53-64.	st of	2.3	94
1194	Macroalgae Biomass as Sorbent for Metal Ions. , 2018, , 69-112.			12
1195	A Systematic Analysis and Review of the Fundamental Acid-Base Properties of Biosorbents Environmental Chemistry for A Sustainable World, 2018, , 73-133.		0.3	4
1196	Hexavalent Chromium removal from simulated and real effluents using Artocarpus heterop peel biosorbent - Batch and continuous studies. Journal of Molecular Liquids, 2018, 265, 7	hyllus 79-790.	2.3	61

#	Article	IF	CITATIONS
1197	Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2018, , 23-71.	0.3	83
1198	Biosorption of Cr(VI) from wastewater using <i>Sorghastrum Nutans L.ÂNash</i> . Chemistry and Ecology, 2018, 34, 762-785.	0.6	11
1199	Biosorption and Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Microalgae. Environmental Chemistry for A Sustainable World, 2018, , 215-247.	0.3	8
1200	Absorption of Heavy Metal Ions by Alginate. , 2018, , 255-268.		9
1201	Phycochemical Constituents and Biological Activities of Fucus spp Marine Drugs, 2018, 16, 249.	2.2	114
1202	Proteome responses of Gracilaria lemaneiformis exposed to lead stress. Marine Pollution Bulletin, 2018, 135, 311-317.	2.3	18
1203	Highly crystalline cellulose from brown seaweed Saccharina japonica: isolation, characterization and microcrystallization. Cellulose, 2018, 25, 5523-5533.	2.4	37
1204	Investigation of the simultaneous biosorption of toxic metals through a mixture design application. Journal of Cleaner Production, 2018, 200, 890-899.	4.6	22
1205	Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Marine Drugs, 2018, 16, 65.	2.2	308
1206	Fundamentals of bionanocomposites. , 2018, , 351-377.		7
1207	A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass. Applied Energy, 2018, 224, 1-12.	5.1	28
1208	Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent. Sustainable Environment Research, 2018, 28, 289-297.	2.1	39
1209	Batch and Fixed Bed Biosorption of Copper by Acidified Algae Waste Biomass. Industrial & Engineering Chemistry Research, 2018, 57, 11767-11777.	1.8	27
1210	Multi-component mathematical model based on mass transfer coefficients for prediction of the Zn and Cd ions biosorption data by E. densa in a continuous system. Journal of Environmental Chemical Engineering, 2018, 6, 5141-5149.	3.3	9
1211	Analysis of some sorption isotherms for the removal of Ni ²⁺ Pb ²⁺ and Cu ²⁺ using orange peel adsorbent. Bayero Journal of Pure and Applied Sciences, 2018, 10, 414.	0.1	1
1212	Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnology Advances, 2018, 36, 1984-2016.	6.0	106
1213	The differences of cell wall in roots between two contrasting soybean cultivars exposed to cadmium at young seedlings. Environmental Science and Pollution Research, 2018, 25, 29705-29714.	2.7	54
1214	Two-step process: Enhanced strategy for wastewater treatment using microalgae. Bioresource Technology, 2018, 268, 608-615.	4.8	13

#	Article	IF	CITATIONS
1215	Bioaccessibility of target essential elements and contaminants from Fucus spiralis. Journal of Food Composition and Analysis, 2018, 74, 10-17.	1.9	17
1216	Application of Biosorption for Removal of Heavy Metals from Wastewater. , 0, , .		127
1217	Recent advances on biosorption by aerobic granular sludge. Journal of Hazardous Materials, 2018, 357, 253-270.	6.5	79
1218	Ocean-based sorbents for decontamination of metal-bearing wastewaters: a review. Environmental Technology Reviews, 2018, 7, 139-155.	2.1	12
1219	Fluctuations in the strength of chemical antifouling defenses in a red macroalga in response to variations in epibiont colonization pressure. Marine Biology, 2018, 165, 1.	0.7	10
1220	Performance analysis of different textile effluent treatment processes involving marine diatom Odontella aurita. Environmental Technology and Innovation, 2018, 11, 153-164.	3.0	8
1221	Biosorption Potential of <i>Vetiveria zizanioides</i> for the Removal of Chromium(VI) from Synthetic Wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22, .	1.2	13
1222	The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application. International Journal of Biological Macromolecules, 2018, 117, 1169-1178.	3.6	14
1223	Biosorption of Malachite Green dye by the brown alga <i>Dictyota cervicornis</i> : Kinetics and isotherm study. Coloration Technology, 2018, 134, 292-298.	0.7	9
1224	Development of tri-component antibacterial hybrid fibres for potential use in wound care. Journal of Wound Care, 2018, 27, 394-402.	0.5	11
1225	Studies on bioremediation of Zn and acid waters using Botryococcus braunii. Journal of Environmental Chemical Engineering, 2018, 6, 3849-3859.	3.3	12
1226	Ultrahigh adsorption capacity of starch derived zinc based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation. Journal of Cleaner Production, 2018, 197, 511-524.	4.6	74
1227	Solidâ€phase extraction using octadecylâ€bonded silica modified with photosynthetic pigments from <i>Spinacia oleracea</i> L. for the preconcentration of lead(II) ions from aqueous samples. Journal of Separation Science, 2018, 41, 3129-3142.	1.3	8
1228	Recent Trends in Biosorption of Heavy Metals by Actinobacteria. , 2018, , 257-275.		12
1229	Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. Journal of Environmental Management, 2018, 223, 215-253.	3.8	68
1230	Biomass Enriched with Minerals via Biosorption Process as a Potential Ingredient of Horse Feed. Waste and Biomass Valorization, 2019, 10, 3403-3418.	1.8	9
1231	Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution. Environmental Geochemistry and Health, 2019, 41, 297-308.	1.8	28
1232	Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 195-213.	8.3	611

#	Article	IF	CITATIONS
1233	Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresource Technology Reports, 2019, 5, 261-279.	1.5	91
1234	Potential protective effects of the edible alga <i>Arthrospira platensis</i> against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Applied Physiology, Nutrition and Metabolism, 2019, 44, 271-281.	0.9	16
1235	Combined effects of seasonal variation and drying methods on the physicochemical properties and antioxidant activity of sugar kelp (Saccharina latissima). Journal of Applied Phycology, 2019, 31, 1311-1332.	1.5	47
1236	Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis. Science of the Total Environment, 2019, 648, 1201-1209.	3.9	68
1237	Equilibrium study of binary mixture biosorption of Cr(III) and Zn(II) by dealginated seaweed waste: investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Environmental Science and Pollution Research, 2019, 26, 28470-28480.	2.7	19
1238	Biphasic cellular adaptations and ecological implications of <i>Alteromonas macleodii</i> degrading a mixture of algal polysaccharides. ISME Journal, 2019, 13, 92-103.	4.4	74
1239	Immobilization of mercury using high-phosphate culture-modified microalgae. Environmental Pollution, 2019, 254, 112966.	3.7	46
1240	Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental Monitoring and Assessment, 2019, 191, 585.	1.3	68
1241	Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water (Switzerland), 2019, 11, 1326.	1.2	16
1242	Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresource Technology, 2019, 291, 121836.	4.8	33
1243	Microalgae. , 2019, , 97-128.		13
1244	Biochar from A Freshwater Macroalga as A Potential Biosorbent for Wastewater Treatment. Water (Switzerland), 2019, 11, 1390.	1.2	58
1245	Alginate: Pharmaceutical and Medical Applications. Biologically-inspired Systems, 2019, , 649-691.	0.4	11
1246	Sorption and biosorption of Gd-based contrast agents in the water environment. Chemical Papers, 2019, 73, 2995-3003.	1.0	5
1247	A Critical Insight into Biomass Derived Biosorbent for Bioremediation of Dyes. ChemistrySelect, 2019, 4, 9762-9775.	0.7	14
1248	Methods of extraction, physicochemical properties of alginates and their applications in biomedical field – a review. Open Chemistry, 2019, 17, 738-762.	1.0	94
1250	Biosorption-Cum-Bioaccumulation of Heavy Metals from Industrial Effluent by Brown Algae: Deep Insight. , 2019, , 249-270.		3
1251	Fixed bed biosorption of silver and investigation of functional groups on acidified biosorbent from algae biomass. Environmental Science and Pollution Research, 2019, 26, 36354-36366.	2.7	15

#	Δρτιςι ε	IF	
π 1253	Baseline study on the levels of heavy metals in seawater and macroalgae near an abandoned mine in Manicani, Guiuan, Eastern Samar, Philippines. Marine Pollution Bulletin, 2019, 149, 110549.	2.3	11
1254	Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. International Journal of Biological Macromolecules, 2019, 141, 1280-1286.	3.6	50
1255	Cadmium–Bacteria Complexation and Subsequent Bacteriaâ€Facilitated Cadmium Transport in Saturated Porous Media. Journal of Environmental Quality, 2019, 48, 1524-1533.	1.0	5
1256	Adsorption studies of hexavalent chromium [Cr (VI)] on micro-scale biomass of Sargassum dentifolium, Seaweed. Journal of Environmental Chemical Engineering, 2019, 7, 103444.	3.3	35
1257	Application of Calophyllum Inophyllum Seed Husk as a Low-cost Biosorbent for Efficient Removal of Heavy Metals from Wastewater for a Safer Environment. Current Environmental Engineering, 2019, 6, 159-172.	0.6	2
1258	A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy and Fuels, 2019, 3, 292-301.	2.5	41
1259	Investigating the fate of copper in a laboratoryâ€based toxicity test with embryos of <i>Mytilus galloprovincialis</i> : Copper mass balance of a closed bioassay. Environmental Toxicology and Chemistry, 2019, 38, 561-574.	2.2	3
1260	Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions. Journal of Applied Phycology, 2019, 31, 2669-2685.	1.5	28
1261	Phenol and Cr(VI) removal using materials derived from harmful algal bloom biomass: Characterization and performance assessment for a biosorbent, a porous carbon, and Fe/C composites. Journal of Hazardous Materials, 2019, 368, 477-486.	6.5	40
1262	Mushrooms, Seaweed, and Their Derivatives as Functional Feed Additives for Aquaculture: An Updated View. Studies in Natural Products Chemistry, 2019, 62, 41-90.	0.8	12
1263	Characterization and evaluation of reactive dye adsorption onto Biochar Derived from <i>Turbinaria conoides</i> Biomass. Environmental Progress and Sustainable Energy, 2019, 38, 13143.	1.3	31
1264	The Fabrication of Calcium Alginate Beads as a Green Sorbent for Selective Recovery of Cu(â¡) from Metal Mixtures. Crystals, 2019, 9, 255.	1.0	47
1266	Microbial Nanobionics. Nanotechnology in the Life Sciences, 2019, , .	0.4	7
1267	Green Synthesis of Microbial Nanoparticle: Approaches to Application. Nanotechnology in the Life Sciences, 2019, , 35-60.	0.4	25
1268	Highly-dispersed Fe2O3@C electrode materials for Pb2+ removal by capacitive deionization. Carbon, 2019, 153, 12-20.	5.4	56
1269	Distribution, assessment and coupling relationship of heavy metals and macroinvertebrates in sediments of the Weihe River Basin. Sustainable Cities and Society, 2019, 50, 101665.	5.1	27
1271	Treatment of Sb(V) and Co(II) containing wastewater by electrocoagulation and enhanced Sb(V) removal with Co(II) presence. Separation and Purification Technology, 2019, 227, 115649.	3.9	20
1272	Investigating trivalent chromium biosorption-driven extracellular polymeric substances changes of Synechocystis sp. PCC 7806 by parallel factor analysis (PARAFAC) analysis. Bioresource Technology Reports, 2019, 7, 100249.	1.5	4

#	Article	IF	CITATIONS
1273	<i>Grewia</i> spp. Biopolymer as Low-Cost Biosorbent for Hexavalent Chromium Removal. Journal of Chemistry, 2019, 2019, 1-7.	0.9	2
1274	Tracing the natural and anthropogenic influence on the trace elemental chemistry of estuarine macroalgae and the implications for human consumption. Science of the Total Environment, 2019, 685, 259-272.	3.9	18
1275	Competitive biosorption of Cu2+ and Ag+ ions on brown macro-algae waste: kinetic and ion-exchange studies. Environmental Science and Pollution Research, 2019, 26, 23416-23428.	2.7	30
1276	Recovery of Critical Rare-Earth Elements Using ETS-10 Titanosilicate. Industrial & Engineering Chemistry Research, 2019, 58, 11121-11126.	1.8	9
1277	Alginate as a feature of osmotolerance differentiation among soil bacteria isolated from wild legumes growing in Portugal. Science of the Total Environment, 2019, 681, 312-319.	3.9	12
1278	Biosorption of Heavy Metals and Dyes from Industrial Effluents by Microalgae. , 2019, , 599-634.		18
1279	Developing Designer Microalgal Consortia: A Suitable Approach to Sustainable Wastewater Treatment. , 2019, , 569-598.		10
1280	Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 2019, 57, 147-165.	3.8	155
1281	Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environmental Science and Pollution Research, 2019, 26, 19097-19118.	2.7	75
1282	Magnetic enrichment behavior of monodispersed MFe2O4 nanoferrites (M= Mg, Ca, Ni, Co, and Cu). Ceramics International, 2019, 45, 15980-15989.	2.3	8
1283	Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water (Switzerland), 2019, 11, 633.	1.2	40
1284	Cooking effects on bioaccessibility of chlorophyll pigments of the main edible seaweeds. Food Chemistry, 2019, 295, 101-109.	4.2	25
1285	Yeast Cell Surface Engineering. , 2019, , .		2
1286	Fucoidans from the phaeophyta Scytosiphon lomentaria: Chemical analysis and antiviral activity of the galactofucan component. Carbohydrate Research, 2019, 478, 18-24.	1.1	44
1287	Biotechnological Tools in the Remediation of Cadmium Toxicity. , 2019, , 497-520.		1
1288	Adsorption of Cd(II) in water by mesoporous ceramic functional nanomaterials. Royal Society Open Science, 2019, 6, 182195.	1.1	9
1289	Energy Production: Biomass – Marine. , 2019, , 29-41.		0
1290	Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology, 2019, 35, 75.	1.7	124

Т

#	Article	IF	CITATIONS	
1291	A Comparative Study for the Identification of Superior Biomass Facilitating Biosorption of Copper and Lead Ions: A Single Alga or a Mixture of Algae. International Journal of Environmental Research, 2019, 13, 533-546.	1.1	10	
1292	The proton binding properties of biosorbents. Environmental Chemistry Letters, 2019, 17, 1281-1298.	8.3	6	
1293	"Green―polymeric electrospun fibers based on tree-gum hydrocolloids. , 2019, , 127-172.		6	
1294	A critical study of interactive fluoride adsorption by raw marine organisms and a synthetic organic 2-amino-3-cyano-4(4-nitrophenyl)-6-phenylpyridine as adsorbent tools. Environmental Monitoring and Assessment, 2019, 191, 311.	1.3	9	
1295	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	2.5	44	
1296	Thermogravimetric Characteristics and Non-isothermal Kinetics of Macro-Algae With an Emphasis on the Possible Partial Gasification at Higher Temperatures. Frontiers in Energy Research, 2019, 7, .	1.2	10	
1297	Advanced molecular interaction in Cu2+-alginate beads with high M/G ratio for the intercalation of Li+ and Mg2+ ions. Journal of Molecular Structure, 2019, 1187, 172-178.	1.8	4	
1298	Removal of cerium from different aqueous solutions using different adsorbents: A review. Chemical Engineering Research and Design, 2019, 124, 345-362.	2.7	50	
1299	Novel Magnetic Nanostructured Beads for Cadmium(II) Removal. Nanomaterials, 2019, 9, 356.	1.9	24	
1300	Novel macroalgae (seaweed) biorefinery systems for integrated chemical, protein, salt, nutrient and mineral extractions and environmental protection by green synthesis and life cycle sustainability assessments. Green Chemistry, 2019, 21, 2635-2655.	4.6	102	
1301	The effect of biochar mild air oxidation on the optimization of lead(II) adsorption from wastewater. Journal of Environmental Management, 2019, 240, 404-420.	3.8	75	
1302	Biomass-Derived Porous Carbon Materials for Supercapacitor. Frontiers in Chemistry, 2019, 7, 274.	1.8	162	
1303	Physiological mechanisms of exogenous calcium on alleviating salinity-induced stress in rice (Oryza) Tj ETQq0 0 0	rgBT /Ove 1.4	erlock 10 Tf 5	
1304	Effects of characteristics of cation exchange membrane on desalination performance of membrane capacitive deionization. Desalination, 2019, 458, 116-121.	4.0	23	
1305	Development of MCM-41 mesoporous silica nanoparticles as a platform for pramipexole delivery. Journal of Drug Delivery Science and Technology, 2019, 51, 26-35.	1.4	26	
1306	Biosorption of Pb(II) ions from aqueous solution using alginates extracted from Djiboutian seaweeds and deposited on silica particles. Pure and Applied Chemistry, 2019, 91, 459-475.	0.9	11	
1307	Biosorption of nickel(II) and copper(II) ions from synthetic and real effluents by alginate-based biosorbent produced from seaweed Sargassum sp Environmental Science and Pollution Research, 2019, 26, 11100-11112.	2.7	21	
1309	Microparticles based on natural and synthetic polymers for cosmetic applications. International Journal of Biological Macromolecules, 2019, 129, 952-956.	3.6	47	
		Citation R	EPORT	
------	---	--------------------------------------	-------	-----------
#	Article		IF	CITATIONS
1310	Bioremediation Options for Heavy Metal Pollution. Journal of Health and Pollution, 201	9, 9, 191203.	1.8	180
1311	Influence of the drying method on the sorption properties the biomass of Chlorella <i>sorokiniana</i> microalgae. E3S Web of Conferences, 2019, 124, 01051.		0.2	3
1312	Simultaneous biosorption of nickel and cadmium by the brown algae Cystoseria indica by isotherm and kinetic models. Applied Biological Chemistry, 2019, 62, .	characterized	0.7	38
1313	Why is NanoSIMS elemental imaging of arsenic in seaweed (Laminaria digitata) import understanding of arsenic biochemistry in addition to speciation information?. Journal o Atomic Spectrometry, 2019, 34, 2295-2302.	ant for f Analytical	1.6	20
1314	Isolation and Bioactive Potential of Fucoidan from Marine Macroalgae <i>Turbinaria co ChemistrySelect, 2019, 4, 14114-14119.</i>	noides.	0.7	16
1315	Adsorption of indium by waste biomass of brown alga Ascophyllum nodosum. Scientifi 9, 16763.	c Reports, 2019,	1.6	19
1316	Lanthanides and Algae. , 0, , .			5
1317	Biosorption of Cd2+ from aqueous solution by Ca2+/Mg2+ type Citrus paradisi Macf. p Water Science and Technology, 2019, 80, 1205-1212.	beel biosorbents.	1.2	5
1318	Comparative study on the growth, carotenoid, fibre and mineral content of the seawee lentillifera cultivated indoors and in the sea. IOP Conference Series: Earth and Environn Science, 2019, 370, 012019.	ed Caulerpa nental	0.2	4
1319	Cucumber peel bead biosorbent for multi-ion decontamination of drinking water collec mine region in New Zealand. Environmental Technology (United Kingdom), 2019, 42, 1	ted from a -17.	1.2	5
1320	Calcium Alginate Thin Films Derived from <i>Sargassum natans</i> for the Selective AcCd ²⁺ , Cu ²⁺ lons. Industrial & amp; EResearch, 2019, 58, 1417-1425.	lsorption of ngineering Chemistry	1.8	31
1321	Removal of divalent nickel from aqueous solution using blue-green marine algae: adsor modeling and applicability of various isotherm models. Separation Science and Techno 943-961.	ption logy, 2019, 54,	1.3	40
1322	Biorefinery Approach for Red Seaweeds Biomass as Source for Enzymes Production: Fo Industry. Energy, Environment, and Sustainability, 2019, , 413-446.	od and Biofuels	0.6	1
1323	Performance of aquatic weed - Waste Myriophyllum spicatum immobilized in alginate l removal of Pb(II). Journal of Environmental Management, 2019, 232, 97-109.	beads for the	3.8	24
1325	"Smart―sensing interface for the improvement of electrochemical immunosensor enzyme-Fenton reaction triggered destruction of Fe3+ cross-linked alginate hydrogel. S Actuators B: Chemical, 2019, 281, 857-863.	based on Sensors and	4.0	32
1326	Biofortification of hens' eggs with microelements by innovative bioâ€based dietary of Animal Physiology and Animal Nutrition, 2019, 103, 485-492.	v supplement. Journal	1.0	10
1327	Insights into the single and binary adsorption of copper(II) and nickel(II) on hexagonal Performance and mechanistic studies. Journal of Environmental Chemical Engineering,	boron nitride: 2019, 7, 102872.	3.3	24
1328	Concentrations of various elements in seaweed and seawater from Shen'ao Bay, Nan'a Guangdong coast, China: Environmental monitoring and the bioremediation potential Science of the Total Environment, 2019, 659, 632-639.	o Island, of the seaweed.	3.9	30

#	Article	IF	CITATIONS
1329	Cellulose and <i>Saccharomyces cerevisiae</i> Embark To Recover Europium from Phosphor Powder. ACS Omega, 2019, 4, 940-952.	1.6	31
1330	Salinity-dependent nanostructures and composition of cell surface and its relation to Cd toxicity in an estuarine diatom. Chemosphere, 2019, 215, 807-814.	4.2	15
1331	Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environmental Technology and Innovation, 2019, 13, 82-93.	3.0	35
1332	Improving the quality of runoff from green roofs through synergistic biosorption and phytoremediation techniques: A review. Sustainable Cities and Society, 2019, 46, 101381.	5.1	35
1333	MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environmental Science and Pollution Research, 2019, 26, 3697-3705.	2.7	14
1334	Investigation on biosorption of V (III), Ti(IV), and U(VI) ions from a contaminated effluent by a newly isolated strain of <i>Galdieria sulphuraria</i> . Separation Science and Technology, 2019, 54, 2222-2239.	1.3	7
1335	Fertlizers. , 2019, , 91-116.		10
1336	Biosorption of nickel(II) and copper(II) ions by Sargassum sp. in nature and alginate extraction products. Bioresource Technology Reports, 2019, 5, 43-50.	1.5	45
1337	A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. International Journal of Biological Macromolecules, 2019, 124, 451-459.	3.6	101
1338	An ecoâ€friendly approach for copper (II) biosorption on alga <i>Cystoseira indica</i> and its characterization. Environmental Progress and Sustainable Energy, 2019, 38, S323.	1.3	11
1339	The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 395-410.	5.4	32
1340	Effect of different kinds of complex iron on the growth of <i>Anabaena flos-aquae</i> . Environmental Technology (United Kingdom), 2019, 40, 2889-2896.	1.2	11
1341	Enhanced biosorption of transition metals by living <i>Chlorella vulgaris</i> immobilized in Ca-alginate beads. Environmental Technology (United Kingdom), 2019, 40, 1793-1809.	1.2	36
1342	Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 2019, 11, 458-492.	4.6	144
1343	Cyanobacteria: The Eco-Friendly Tool for the Treatment of Industrial Wastewaters. , 2020, , 389-413.		3
1344	Phycoremediation: An Integrated and Eco-friendly Approach for Wastewater Treatment and Value-Added Product Potential. , 2020, , 305-331.		1
1345	Reuse of the alginate extraction waste from <i>Sargassum filipendula</i> for Ni(II) biosorption. Chemical Engineering Communications, 2020, 207, 17-30.	1.5	17
1346	Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere, 2020, 238, 124680.	4.2	267

#	Article	IF	CITATIONS
1347	Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess and Biosystems Engineering, 2020, 43, 153-167.	1.7	116
1348	Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Archives of Microbiology, 2020, 202, 1-16.	1.0	63
1349	Strontium ion substituted alginateâ€based hydrogel fibers and its coordination binding model. Journal of Applied Polymer Science, 2020, 137, 48571.	1.3	24
1350	Synergistic effect of ClO4â^ and Sr2+ adsorption on alginate-encapsulated organo-montmorillonite beads: Implication for radionuclide immobilization. Journal of Colloid and Interface Science, 2020, 560, 338-348.	5.0	20
1351	Bioremediation of Toxic Heavy Metals Using Marine Algae Biomass. Environmental Chemistry for A Sustainable World, 2020, , 69-98.	0.3	10
1352	Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. Science of the Total Environment, 2020, 698, 134169.	3.9	126
1353	Baltic Fucus vesiculosus as potential bio-sorbent for Zn removal: Mechanism insight. Chemosphere, 2020, 238, 124652.	4.2	12
1354	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
1355	Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. Arabian Journal of Chemistry, 2020, 13, 4629-4643.	2.3	100
1356	Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview. International Journal of Food Science and Technology, 2020, 55, 1199-1206.	1.3	39
1357	Hierarchical magnesium oxide microspheres for removal of heavy ions from water and efficient bacterial inactivation. Journal of Materials Science, 2020, 55, 4408-4419.	1.7	23
1358	The application of seaweeds in environmental biotechnology. Advances in Botanical Research, 2020, 95, 85-111.	0.5	12
1359	Potential-responsive ions-selectively capture effect for efficient removal of copper ions from wastewater. Electrochimica Acta, 2020, 330, 135249.	2.6	18
1360	Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 2020, 190, 110089.	2.9	78
1361	Insight into zinc(II) biosorption on alginate extraction residue: Kinetics, isotherm and thermodynamics. Journal of Environmental Chemical Engineering, 2020, 8, 103629.	3.3	16
1362	Lead-induced oxidative stress triggers root cell wall remodeling and increases lead absorption through esterification of cell wall polysaccharide. Journal of Hazardous Materials, 2020, 385, 121524.	6.5	20
1363	Studies on the removal of copper ions from industrial effluent by Azadirachta indica powder. Applied Water Science, 2020, 10, 1.	2.8	22
1364	Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101458.	1.5	16

#	Article	IF	Citations
1365	Adsorption of U(VI) and Th(IV) ions removal from aqueous solutions by pretreatment with Cystoseira barbata. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 595-603.	0.7	6
1366	Removal of hexavalent chromium by ecofriendly raw marine green alga Ulva fasciata: Kinetic, thermodynamic and isotherm studies. Egyptian Journal of Aquatic Research, 2020, 46, 325-331.	1.0	24
1367	Plant Responses to Soil Pollution. , 2020, , .		10
1368	Application of a dealginated seaweed derivative for the simultaneous metal ions removal from real and synthetic effluents. Journal of Water Process Engineering, 2020, 37, 101546.	2.6	12
1369	Coastal pollution from the industrial park Quintero bay of central Chile: Effects on abundance, morphology, and development of the kelp Lessonia spicata (Phaeophyceae). PLoS ONE, 2020, 15, e0240581.	1.1	23
1370	Structural features of brown algae cellulose. Cellulose, 2020, 27, 9787-9800.	2.4	23
1371	Major Natural Vegetation in Coastal and Marine Wetlands: Edible Seaweeds. , 0, , .		0
1372	Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chemical Society Reviews, 2020, 49, 8315-8334.	18.7	34
1373	Two-step adsorption model for Pb ion accumulation at the algae-water interface in the presence of fulvic acid. Science of the Total Environment, 2020, 742, 140606.	3.9	12
1374	Characterization and biosorption of silver by biomass waste from the alginate industry. Journal of Cleaner Production, 2020, 271, 122588.	4.6	11
1375	Indigenous waste plant materials: An easy and cost-effective approach for the removal of heavy metals from water. Current Research in Green and Sustainable Chemistry, 2020, 3, 100040.	2.9	8
1376	Comparison of Organic Materials for the Passive Treatment of Synthetic Neutral Mine Drainage Contaminated by Nickel: Adsorption and Desorption Kinetics and Isotherms. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
1377	A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. Frontiers in Plant Science, 2020, 11, 556312.	1.7	57
1378	Fungal Tolerance: An Alternative for the Selection of Fungi with Potential for the Biological Recovery of Precious Metals. Applied Sciences (Switzerland), 2020, 10, 8096.	1.3	3
1379	Crosslinked alginate/sericin particles for bioadsorption of ytterbium: Equilibrium, thermodynamic and regeneration studies. International Journal of Biological Macromolecules, 2020, 165, 1911-1923.	3.6	20
1380	Toxicological evaluation of Sargassum Wightii greville derived fucoidan in wistar rats: Haematological, biochemical and histopathological evidences. Toxicology Reports, 2020, 7, 874-882.	1.6	12
1381	Heavy Metal Removal via Phycoremediation. , 2020, , .		0
1382	Integration of Fenton's reaction based processes and cation exchange processes in textile wastewater treatment as a strategy for water reuse. Journal of Environmental Management, 2020, 272, 111082.	3.8	33

#	Article	IF	CITATIONS
1383	Sr in coccoliths of Scyphosphaera apsteinii: Partitioning behavior and role in coccolith morphogenesis. Geochimica Et Cosmochimica Acta, 2020, 285, 41-54.	1.6	9
1384	The novel usage of dead biomass of green algae of Schizomeris leibleinii for biosorption of copper(II) from aqueous solutions: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 2020, 8, 104272.	3.3	40
1385	Strategic Design of Antimicrobial Hydrogels Containing Biomimetic Additives for Enhanced Matrix Responsiveness and HDFa Wound Healing Rates. ACS Applied Bio Materials, 2020, 3, 5750-5758.	2.3	4
1386	Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae. Environmental Pollution, 2020, 266, 115374.	3.7	32
1387	Biosorption of heavy metal arsenic from Industrial Sewage of Davangere District, Karnataka, India, using indigenous fungal isolates. SN Applied Sciences, 2020, 2, 1.	1.5	14
1388	Biosorption of Sr2+ and Cs+ onto Undaria pinnatifida: Isothermal titration calorimetry and molecular dynamics simulation. Journal of Molecular Liquids, 2020, 319, 114146.	2.3	24
1389	Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass. Scientific Reports, 2020, 10, 17439.	1.6	32
1392	Evaluation of microalgal-based nanoparticles in the adsorption of heavy metals from wastewater. IOP Conference Series: Materials Science and Engineering, 2020, 805, 012030.	0.3	11
1393	Total mercury bias in soil analysis by CV-AFS: causes, consequences and a simple solution based on sulfhydryl cotton fiber as a clean-up step. Analytical Methods, 2020, 12, 3756-3762.	1.3	2
1394	Nanobiotechnology: A Multidisciplinary Field of Science. Nanotechnology in the Life Sciences, 2020, , .	0.4	6
1395	Human Hair Biogenic Fiber as a Biosorbent of Multiple Heavy Metals from Aqueous Solutions. Journal of Natural Fibers, 2022, 19, 2018-2033.	1.7	4
1396	Multidisciplinary Analysis of Cystoseira sensu lato (SE Spain) Suggest a Complex Colonization of the Mediterranean. Journal of Marine Science and Engineering, 2020, 8, 961.	1.2	6
1397	Characterization and biological investigation of silver nanoparticles biosynthesized from <i>Galaxaura rugosa</i> against multidrug-resistant bacteria. Journal of Taibah University for Science, 2020, 14, 1651-1659.	1.1	11
1398	Inexpensive Organic Materials and Their Applications towards Heavy Metal Attenuation in Waters from Southern Peru. Water (Switzerland), 2020, 12, 2948.	1.2	10
1399	Present status of hybrid materials for potable water decontamination: a review. Environmental Science: Water Research and Technology, 2020, 6, 3214-3248.	1.2	19
1400	The Removal of Residual Concentration of Hazardous Metals in Wastewater from a Neutralization Station Using Biosorbent—A Case Study Company Gutra, Czech Republic. International Journal of Environmental Research and Public Health, 2020, 17, 7225.	1.2	8
1401	Membrane Biosorption: Recent Advances and Challenges. Current Pollution Reports, 2020, 6, 152-172.	3.1	12
1402	Optimizing binary biosorption of cobalt and nickel ions on brown algae using a central composite design. International Journal of Environmental Science and Technology, 2020, 17, 4759-4774.	1.8	10

#	Article	IF	CITATIONS
1403	New perception of the continuous biosorption of cadmium on a seaweed derivative waste. Journal of Water Process Engineering, 2020, 36, 101322.	2.6	16
1404	Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 2020, 27, 183-193.	1.0	110
1405	Cadmium binding characterization and mechanism of a newly isolated strain <scp><i>Cystobasidium oligophagum</i> QN</scp> â€3. Biotechnology Progress, 2020, 36, e3029.	1.3	1
1406	Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 2020, 398, 125657.	6.6	235
1407	Relationships between invertebrate benthos, environmental drivers and pollutants at a subcontinental scale. Marine Pollution Bulletin, 2020, 157, 111316.	2.3	8
1408	Biosorption of Zn (II) ions from aqueous solution by immobilized <i>Aspergillus fumigatus</i> . Journal of Applied Sciences and Environmental Management, 2020, 23, 1991.	0.1	1
1409	Green Microalgae Scenedesmus Obliquus Utilization for the Adsorptive Removal of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) from Water Samples. International Journal of Environmental Research and Public Health, 2020, 17, 3707.	1.2	25
1410	Biosorption of cobalt and its effect on growth and metabolites of Synechocystis pevalekii and Scenedesmus bernardii: Isothermal analysis. Environmental Technology and Innovation, 2020, 19, 100953.	3.0	27
1411	Phosphorus adsorption behavior of industrial waste biomass-based adsorbent, esterified polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers in aqueous solution. Journal of Hazardous Materials, 2020, 400, 123217.	6.5	33
1412	Present status of biomass-derived carbon-based composites for supercapacitor application. , 2020, , 373-415.		10
1413	Utilization of seaweed waste: Biosorption of toxic compounds onto invasive seaweed and seaweed wastes. , 2020, , 613-639.		1
1414	Low-cost adsorbents for removal of inorganic impurities from wastewater. , 2020, , 173-203.		28
1415	A Porous Material Made from Curdlan by EDTAD Functionalization Shows High Adsorption Capacity on Removal of Cu2+ and Zn2+ from Water. Journal of Polymers and the Environment, 2020, 28, 1368-1377.	2.4	3
1416	Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum. Environmental Pollution, 2020, 262, 114331.	3.7	13
1417	Physico hemical characterization of alginates isolated from a Tunisian <scp><i>Padina pavonica</i></scp> algae as a sustainable biomaterial. Polymer International, 2020, 69, 1130-1139.	1.6	7
1418	Biosorption as green technology for the recovery and separation of rare earth elements. World Journal of Microbiology and Biotechnology, 2020, 36, 52.	1.7	51
1419	Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, 2020, , .	0.4	9
1420	Mechanistic insight to mycoremediation potential of a metal resistant fungal strain for removal of hazardous metals from multimetal pesticide matrix. Environmental Pollution, 2020, 262, 114255.	3.7	28

#	Article	IF	Citations
1421	Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity. Molecules, 2020, 25, 2847.	1.7	19
1422	A step forward on mathematical modeling of barium removal from aqueous solutions using seaweeds as natural cation exchangers: Batch and fixed-bed systems. Chemical Engineering Journal, 2020, 401, 126019.	6.6	9
1423	Microbial Diversity, Interventions and Scope. , 2020, , .		4
1424	What do we know about the utilization of the Sargassum species as biosorbents of trace metals in Brazil?. Journal of Environmental Chemical Engineering, 2020, 8, 103941.	3.3	16
1425	Microbial remediation progress and future prospects. , 2020, , 187-214.		6
1426	Efficacy of Immobilized Biomass of the Seaweeds Ulva lactuca and Ulva fasciata for Cadmium Biosorption. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 37-49.	0.7	16
1427	Synthesized β-cyclodextrin modified graphene oxide (β-CD-GO) composite for adsorption of cadmium and their toxicity profile in cervical cancer (HeLa) cell lines. Process Biochemistry, 2020, 93, 28-35.	1.8	52
1428	Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. Environmental Science and Pollution Research, 2020, 27, 16599-16611.	2.7	31
1429	Physiological and ultrastructural responses of the brown seaweed Undaria pinnatifida to triphenyltin chloride (TPTCL) stress. Marine Pollution Bulletin, 2020, 153, 110978.	2.3	5
1430	Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. Marine Environmental Research, 2020, 155, 104874.	1.1	26
1431	Efficient removal of disinfection by-products precursors and inhibition of bacterial detachment by strong interaction of EPS with coconut shell activated carbon in ozone/biofiltration. Journal of Hazardous Materials, 2020, 392, 122077.	6.5	38
1432	Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Science of the Total Environment, 2020, 715, 136978.	3.9	62
1433	Layer-by-Layer-Assembled antifouling films with surface microtopography inspired by Laminaria japonica. Applied Surface Science, 2020, 511, 145564.	3.1	36
1434	Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources, Conservation and Recycling, 2020, 156, 104688.	5.3	79
1435	Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquatic Botany, 2020, 163, 103208.	0.8	8
1436	Effect of copper (ii) biosorption over light metal cation desorption in the surface of macrocystis pyrifera biomass. Journal of Environmental Chemical Engineering, 2020, 8, 103729.	3.3	12
1437	Neoteric approach for efficient eco-friendly dye removal and recovery using algal-polymer biosorbent sheets: Characterization, factorial design, equilibrium and kinetics. International Journal of Biological Macromolecules, 2020, 157, 494-509.	3.6	40
1438	Ameliorative and protective effects of fucoidan and sodium alginate against lead-induced oxidative stress in Sprague Dawley rats. International Journal of Biological Macromolecules, 2020, 158, 662-669.	3.6	11

_			
C_{17}	ΓΛΤΙ	ON	
	IAU		NEFORT

#	Article	IF	CITATIONS
1439	Multifunctional eco-friendly sorbent based on marine brown algae and bivalve shells for subsequent uptake of Congo red dye and copper(II) ions. Journal of Environmental Chemical Engineering, 2020, 8, 103915.	3.3	46
1440	Trade-offs between nutritional quality and abundance determine diet selection in juvenile benthic green turtles. Journal of Experimental Marine Biology and Ecology, 2020, 527, 151373.	0.7	6
1441	The scientometric analysis of the research on the algal science, technology, and medicine. , 2020, , 3-18.		2
1442	100 Citation classics in the algal science, technology, and medicine: A scientometric analysis. , 2020, , 19-38.		1
1443	Biosorption of chemical species by Sargassum algal biomass: Equilibrium data, part I. , 2020, , 675-696.		3
1444	Antitumoral effects of fucoidan on bladder cancer. Algal Research, 2020, 47, 101884.	2.4	9
1445	Acidic polymeric sorbents for the removal of metallic pollution in water: A review. Reactive and Functional Polymers, 2020, 152, 104599.	2.0	63
1446	Biosorption of cadmium and nickel ions using marine macrophyte, <i>Cymodocea nodosa</i> . Chemistry and Ecology, 2020, 36, 458-474.	0.6	16
1447	Improvement of the sorption behavior of aluminum silicate composite toward 134Cs and 60Co radionuclides by non-living biomass of Chlorella vulgaris. Environmental Science and Pollution Research, 2020, 27, 21109-21125.	2.7	21
1448	Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere, 2021, 269, 128755.	4.2	21
1449	Green and efficient removal of heavy metals from Porphyra haitanensis using natural deep eutectic solvents. Journal of the Science of Food and Agriculture, 2021, 101, 2930-2939.	1.7	8
1450	Production of high-performance lead(II) ions adsorbents from pea peels waste as a sustainable resource. Waste Management and Research, 2021, 39, 584-593.	2.2	10
1451	A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydrate Polymers, 2021, 252, 117175.	5.1	80
1452	Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization. Science of the Total Environment, 2021, 755, 142654.	3.9	60
1453	Biological-based methods for the removal of volatile organic compounds (VOCs) and heavy metals. Environmental Science and Pollution Research, 2021, 28, 2485-2508.	2.7	49
1454	Competition among rare earth elements on sorption onto six seaweeds. Journal of Rare Earths, 2021, 39, 734-741.	2.5	16
1455	pH evolution around the AZ31/Steel galvanic couple under gelled-electrolytes: A numerical and experimental study. Corrosion Science, 2021, 178, 109061.	3.0	10
1456	Genome-wide CRISPR-Cas9 screening in Bombyx mori reveals the toxicological mechanisms of environmental pollutants, fluoride and cadmium. Journal of Hazardous Materials, 2021, 410, 124666.	6.5	11

#	Article	IF	CITATIONS
1457	Sargassum contamination and consequences for downstream uses: a review. Journal of Applied Phycology, 2021, 33, 567-602.	1.5	38
1458	Efficient adsorptive removal of Zinc by green marine macro alga Caulerpa scalpelliformis –Characterization, Optimization, Modeling, Isotherm, Kinetic, Thermodynamic, Desorption and Regeneration Studies. Surfaces and Interfaces, 2021, 22, 100798.	1.5	18
1459	Geographical Variability of Mineral Elements and Stability of Restrictive Mineral Elements in Terrestrial Cyanobacteria Across Gradients of Climate, Soil, and Atmospheric Wet Deposition Mineral Concentration. Frontiers in Microbiology, 2021, 11, 582655.	1.5	3
1460	Equilibrium and desorption studies of the competitive binary biosorption of silver(I) and copper(II) ions on brown algae waste. Journal of Environmental Chemical Engineering, 2021, 9, 104840.	3.3	26
1461	Enhancing inhibition of disinfection byproducts formation and opportunistic pathogens growth during drinking water distribution by Fe2O3/Coconut shell activated carbon. Environmental Pollution, 2021, 268, 115838.	3.7	4
1462	Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere, 2021, 268, 128855.	4.2	120
1463	Effect of sampling time on the heavy metal concentrations of brown algae: A bioindicator study on the Arabian Gulf coast. Chemosphere, 2021, 263, 127998.	4.2	18
1464	Phycoremediation – An emerging technique for dye abatement: An overview. Chemical Engineering Research and Design, 2021, 147, 214-225.	2.7	29
1465	The biosorption of reactive red dye onto orange peel waste: a study on the isotherm and kinetic processes and sensitivity analysis using the artificial neural network approach. Environmental Science and Pollution Research, 2021, 28, 2848-2859.	2.7	21
1466	Role of bacteria and algae in remediation of heavy metals from wastewater treatment plants. , 2021, , 23-46.		1
1467	Promising Algae-Based Biotechnology for Terbium Removal and Recovery from Waste(Water). , 2021, , 1-25.		0
1468	Opening the <i>Egg Box</i> : NMR spectroscopic analysis of the interactions between s-block cations and kelp monosaccharides. Dalton Transactions, 2021, 50, 13246-13255.	1.6	3
1469	Phytotoxicity and accumulation of Cu in mature and young leaves of submerged macrophyte Hydrilla verticillata (L.f.) Royle. Ecotoxicology and Environmental Safety, 2021, 208, 111684.	2.9	8
1470	Adsorbent. Interface Science and Technology, 2021, 33, 71-210.	1.6	24
1472	Recycling Waste Biopolymers via Electrospinning for Water Treatment: Waste to Wealth Roadmap, Future Perspective, and Challenges. , 2021, , 1-34.		0
1473	Biosorbents for heavy metal removal. , 2021, , 377-394.		4
1474	Fluoride Contamination in Underground Water and Its Treatment. , 2021, , 249-280.		2
1475	Biosorption of heavy metals using fungal biosorbents $\hat{a} \in A$ review. , 2021, , 331-352.		2

# 1476	ARTICLE Overview and Prospectus of Algal Biogenesis of Nanoparticles. , 2021, , 121-134.	IF	CITATIONS 8
1477	Plant–Microbe Interactions in Bioremediation of Toxic Wastes in Tropical Environment. , 2021, , 163-194.		1
1478	Rotatable central composite design versus artificial neural network for modeling biosorption of Cr6+ by the immobilized Pseudomonas alcaliphila NEWG-2. Scientific Reports, 2021, 11, 1717.	1.6	21
1479	Biosorption. Interface Science and Technology, 2021, , 587-628.	1.6	12
1480	Remediation of Heavy Metals Through Genetically Engineered Microorganism. Environmental and Microbial Biotechnology, 2021, , 315-366.	0.4	2
1481	Kinetic and equilibrium isotherm studies for the removal of acid blue 113 dye by dried <i>corallina officinalis</i> alga as a novel eco-friendly adsorbent. E3S Web of Conferences, 2021, 240, 02004.	0.2	6
1482	Microbial biosorbents for heavy metal removal. , 2021, , 213-262.		6
1483	Seaweeds as Indicators and Potential Remediators of Metal Pollution. , 2021, , 51-92.		2
1484	Biosorption of cyanate by two strains of Chlamydomonas reinhardtii: evaluation of the removal efficiency and antioxidants activity. International Journal of Phytoremediation, 2021, 23, 1030-1040.	1.7	1
1485	Seaweed Biomass Utilization Pathways in Microbes and Their Applications in the Production of Biofuels. Energy, Environment, and Sustainability, 2021, , 99-120.	0.6	0
1486	Biosorption efficacy of living and non-living algal cells of Microcystis aeruginosa to toxic metals. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12149.	0.5	2
1487	Contact Vs. Non-Contact Cleaning: Correlating Interfacial Reaction Mechanisms to Processing Methodologies for Enhanced FEOL/BEOL Post-CMP Cleaning. Solid State Phenomena, 0, 314, 237-246.	0.3	4
1488	Simultaneous bioremediation of cationic copper ions and anionic methyl orange azo dye by brown marine alga Fucus vesiculosus. Scientific Reports, 2021, 11, 3555.	1.6	36
1489	Effects of nitrogen depletion on the biosorption capacities of Neochloris minuta and Neochloris alveolaris for five heavy metals. Applied Water Science, 2021, 11, 1.	2.8	13
1490	Heavy metals biosorption mechanism of partially delignified products derived from mango (Mangifera) Tj ETQqO 32891-32904.	0 0 rgBT /0 2.7	Overlock 10 7
1491	Characterisation and chemometric evaluation of 17 elements in ten seaweed species from Greenland. PLoS ONE, 2021, 16, e0243672.	1.1	16
1492	Industrial Wastewater: Health Concern and Treatment Strategies. The Open Biology Journal, 2021, 9, 1-10.	0.5	6
1493	Biosorption capacity of genus Dictyota facing organochlorine pesticide pollutions in coastal areas of the Lesser Antilles. Aquatic Botany, 2021, 169, 103346.	0.8	2

#	Article	IF	CITATIONS
1494	Preparation of Porous Mo(VI)-Imprinted Algae for Recognizing Molybdenum(VI). Solvent Extraction and Ion Exchange, 2021, 39, 622-638.	0.8	2
1495	Batch and Fixed-Bed Biosorption of Pb (II) Using Free and Alginate-Immobilized Spirulina. Processes, 2021, 9, 466.	1.3	6
1496	Biosorption of Uranyl Ions from Aqueous Solution by Parachlorella sp. AA1. International Journal of Environmental Research and Public Health, 2021, 18, 3641.	1.2	2
1497	Source apportionment of heavy metals in sediments of the urban rivers flowing into Haizhou Bay, Eastern China: using multivariate statistical analyses and Pb-Sr isotope fingerprints. Environmental Science and Pollution Research, 2021, 28, 36354-36366.	2.7	12
1498	New derivatives of urea-grafted alginate for improving the sorption of mercury ions in aqueous solutions. Materials Research Express, 2021, 8, 035303.	0.8	11
1499	Innovative Ultrasound-Assisted Approaches towards Reduction of Heavy Metals and Iodine in Macroalgal Biomass. Foods, 2021, 10, 649.	1.9	12
1501	Use of biomass-derived adsorbents for the removal of petroleum pollutants from water: a mini-review. Environmental Systems Research, 2021, 10, 25.	1.5	26
1502	Characterization and Use of Char Produced from Pyrolysis of Post-Consumer Mixed Plastic Waste. Water (Switzerland), 2021, 13, 1188.	1.2	28
1503	Biosorption of aluminum ions from aqueous solutions using non-conventional low-cost materials: A review. Journal of Water Process Engineering, 2021, 40, 101925.	2.6	30
1504	Valorization of pelagic sargassum biomass into sustainable applications: Current trends and challenges. Journal of Environmental Management, 2021, 283, 112013.	3.8	50
1505	Remediation of Cr(VI) from wastewater using biochar of Indian Grass. IOP Conference Series: Materials Science and Engineering, 2021, 1145, 012115.	0.3	1
1506	Platinum-group elements sorption by living macroalgae under different contamination scenarios. Journal of Environmental Chemical Engineering, 2021, 9, 105100.	3.3	14
1507	Antidegradation Property of Alginate Materials by Riveting Functionalized Carbon Nanotubes on the Sugar Chain. ACS Omega, 2021, 6, 12813-12819.	1.6	0
1508	Kinetic and isotherm studies of Cu(II) adsorption by beads and film of alginate/zeolite 4A composites. IOP Conference Series: Earth and Environmental Science, 2021, 749, 012013.	0.2	1
1509	Efficiency of extremophilic microbial mats for removing Pb(II), Cu(II), and Ni(II) ions from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 53365-53378.	2.7	5
1510	Application of basalt fibers in a biological contact oxidation reactor for the treatment of landfill leachate. Journal of Cleaner Production, 2021, 297, 126648.	4.6	11
1511	The effect of pulsed electric field-assisted treatment parameters on crude aqueous extraction of Laminaria digitata. Journal of Applied Phycology, 2021, 33, 3287-3296.	1.5	8
1512	Application of alginate extraction residue for Al(III) ions biosorption: a complete batch system evaluation. Environmental Science and Pollution Research, 2021, 28, 51826-51840.	2.7	5

#	Article	IF	CITATIONS
1513	Analysis of intra-thallus and temporal variability of trace elements and nitrogen in Fucus vesiculosus: Sampling protocol optimization for biomonitoring. Journal of Hazardous Materials, 2021, 412, 125268.	6.5	4
1514	Effect of Fucus extract and biomass enriched with Cu(II) and Zn(II) ions on the growth of garden cress (Lepidium sativum) under laboratory conditions. Italian Journal of Agronomy, 2021, 16, .	0.4	0
1515	Utilization of algae for bio-extraction of POPs in highly polluted coastal area, eastern Alexandria, Mediterranean Sea. International Journal of Environmental Science and Technology, 2022, 19, 3975-3988.	1.8	1
1516	Removal of Sr, Co, and Mn from seawater by Sargassum horneri in mono- and multi-nuclide contamination scenarios. Journal of Applied Phycology, 2021, 33, 2587-2596.	1.5	2
1517	Effect of growth conditions on cell wall composition and cadmium adsorption in Chlorella vulgaris: A new approach to biosorption research. Journal of Hazardous Materials, 2021, 411, 125059.	6.5	25
1518	Physicochemical modification of chitosan adsorbent: a perspective. Biomass Conversion and Biorefinery, 2023, 13, 5557-5575.	2.9	19
1519	A novel technique for Cd removal from soil based on alginate-derived floatable spheres. Chemical Engineering Journal, 2021, 414, 128777.	6.6	12
1520	Effect of nanomolar concentrations of lanthanum on Desmodesmus quadricauda cultivated under environmentally relevant conditions. Aquatic Toxicology, 2021, 235, 105818.	1.9	6
1521	A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies. Resources, Conservation and Recycling, 2021, 169, 105519.	5.3	54
1522	Removal of metals from aqueous solutions using dried Cladophora parriaudii of varying biochemical composition. Journal of Environmental Management, 2021, 290, 112620.	3.8	2
1523	Organic matter interference with steroid hormone removal by single-walled carbon nanotubesÂâ~'Âultrafiltration composite membrane. Water Research, 2021, 199, 117148.	5.3	17
1524	Removal of Heavy Metals from Wastewater by Adsorption. , 0, , .		8
1525	Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Water Environment Research, 2021, 93, 1882-1909.	1.3	23
1526	Biosorption for Removal of Nitratesand Phosphates: A Review. larjset, 2021, 8, .	0.0	0
1527	Bioretention systems for stormwater management: Recent advances and future prospects. Journal of Environmental Management, 2021, 292, 112766.	3.8	81
1528	Characterization of Sargassum patens C. Agardh Enzymatic Extracts Using Crude Enzyme from Shewanella oneidensis PKA 1008 and Their Anti-inflammatory Effects. Biotechnology and Bioprocess Engineering, 0, , 1.	1.4	4
1529	Synthesis and characterization of biomorphic 1D-SiC nanoceramics from novel macroalga precursor material. Journal of Cleaner Production, 2021, 312, 127808.	4.6	5
1530	Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals. Energies, 2021, 14, 5427.	1.6	21

# 1531	ARTICLE The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae. Journal of Hazardous Materials,	IF 6.5	CITATIONS
1532	2021, 415, 125691. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents. Environmental Pollution, 2021, 283, 117111.	3.7	27
1533	Role of Adsorbents in Treatment of Pollutants from Aqueous Medium. Oriental Journal of Chemistry, 2021, 37, 868-879.	0.1	1
1534	Fixed bed biosorption and ionic exchange of aluminum by brown algae residual biomass. Journal of Water Process Engineering, 2021, 42, 102117.	2.6	7
1535	Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environmental Research, 2021, 199, 111240.	3.7	15
1536	Biosorption of rare-earth and toxic metals from aqueous medium using different alternative biosorbents: evaluation of metallic affinity. Environmental Science and Pollution Research, 2022, 29, 79788-79797.	2.7	4
1537	New biosorbents based on the seeds, leaves and husks powder of <i>Moringa oleifera</i> for the effective removal of various toxic pollutants. International Journal of Environmental Analytical Chemistry, 2023, 103, 6859-6884.	1.8	11
1538	Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients, 2021, 13, 3178.	1.7	25
1539	Natural community of macroalgae from chromium-contaminated site for effective remediation of Cr(VI)-containing leachates. Science of the Total Environment, 2021, 786, 147501.	3.9	9
1540	Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International Journal of Molecular Sciences, 2021, 22, 10529.	1.8	149
1541	Trace elements in pelagic Sargassum species in the Mexican Caribbean: Identification of key variables affecting arsenic accumulation in S. fluitans. Science of the Total Environment, 2022, 806, 150657.	3.9	21
1542	Removal of Heavy Metals (Cd2+, Cu2+, Ni2+, Pb2+) from Aqueous Solution Using Hizikia fusiformis as an Algae-Based Bioadsorbent. Applied Sciences (Switzerland), 2021, 11, 8604.	1.3	12
1543	Trace-minerals and lipid quality indices in seaweeds growing at Okha, India: A health risk assessment. Regional Studies in Marine Science, 2021, 47, 101966.	0.4	2
1544	Surface modified polymer-magnetic-algae nanocomposite for the removal of chromium- equilibrium and mechanism studies. Environmental Research, 2021, 201, 111626.	3.7	47
1545	Ulva lactuca: A bioindicator for anthropogenic contamination and its environmental remediation capacity. Marine Environmental Research, 2021, 171, 105468.	1.1	19
1546	Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281, 130886.	4.2	61
1547	Preparative separation of three terpenoids from edible brown algae Sargassum fusiforme by high-speed countercurrent chromatography combined with preparative high-performance liquid chromatography. Algal Research, 2021, 59, 102449.	2.4	11
	Chapable and underwater super electic collulage perofiter/electrone relative relative for a single and		

#	Article		CITATIONS
1549	Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 2021, 272, 118471.	5.1	76
1550	Selective incorporation of rare earth elements by seaweeds from Cape Mondego, western Portuguese coast. Science of the Total Environment, 2021, 795, 148860.	3.9	5
1551	Adsorption performance of an amine-functionalized MCM–41 mesoporous silica nanoparticle system for ciprofloxacin removal. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100536.	1.7	22
1552	Plant and bacteria mediated green synthesis of silver nanoparticles. , 2022, , 155-178.		4
1553	Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review. Chemosphere, 2022, 287, 132250.	4.2	22
1554	Bioprospecting of novel algal species with nanobiotechnology. , 2022, , 41-74.		2
1555	Strategies to cope with the emerging waste water contaminants through adsorption regimes. , 2022, , 61-106.		7
1556	Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants. Journal of Hazardous Materials, 2022, 423, 126921.	6.5	27
1557	Immobilized fungal technology: a new perspective for bioremediation of heavy metals. , 2021, , 541-559.		0
1558	Sustainable production of bioadsorbents from municipal and industrial wastes in a circular bioeconomy context. , 2021, , 639-668.		2
1559	Effects of seaweed extracts on the inÂvitro multiplication of plants. , 2021, , 211-230.		2
1560	Current Approaches in Bioremediation of Toxic Contaminants by Application of Microbial Cells; Biosurfactants and Bioemulsifiers of Microbial Origin. , 2021, , 217-263.		3
1561	Integration of Nanotechnologies for Sustainable Remediation of Environmental Pollutants. , 2021, , 53-71.		0
1562	A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research, 2021, 28, 9050-9066.	2.7	366
1563	Alginate: Pharmaceutical and Medical Applications. Biologically-inspired Systems, 2019, , 649-691.	0.4	1
1565	Natural and Synthetic Polymeric Scaffolds. , 2009, , 415-442.		12
1566	Hydrogen Production from Algal Pathways. , 2019, , 975-1002.		1
1567	Some Effective Methods for Treatment of Wastewater from Cu Production. Environmental Chemistry for A Sustainable World, 2021, , 313-440.	0.3	1

ARTICLE IF CITATIONS Lichens as an Alternative Biosorbent: A Review., 2015, , 233-241. 6 1568 Algal Degradation of Organic Pollutants., 2019, , 565-586. Environmental Friendly Technologies for Wastewater Treatment: Biosorption of Heavy Metals Using 1570 Low Cost Materials and Solar Photocatalysis. NATO Science for Peace and Security Series C: 0.1 2 Environmental Security, 2011, , 159-173. Recovery of Rare Earths, Precious Metals and Bioreduction of Toxic Metals from Wastewater Using 1571 0.4 Algae. Microorganisms for Sustainability, 2020, , 267-297. The scientometric analysis of the research on the algal bioremediation., 2020, , 607-627. 1572 2 Effects of encapsulation on the chemical inhibition of anaerobic hydrogen- and methane-producing 1573 1.5 microbial cells. Bioresource Technology Reports, 2020, 11, 100451. Evaluating seaweed farming as an eco-engineering strategy for â€[™] shoreline infrastructure. 1574 1.6 7 Ecological Engineering, 2020, 152, 105857. Encapsulation and immobilization of the S-layer protein of Lysinibacillus sphaericus in an alginate 1.9 matrix for chromium adsorption. International Biodeterioration and Biodegradation, 2017, 116, 141-146. Characterization and cytoprotective properties of Sargassum natans fucoidan against urban 1576 aerosol-induced keratinocyte damage. International Journal of Biological Macromolecules, 2020, 159, 3.6 11 773-781. CHAPTER 4. Removal of Pollutants from the Environment Using Sorbents and Nanocatalysts. RSC Detection Science, 0, , 74-89 CHAPTER 4. Natural Polysaccharides as Treatment Agents for Wastewater. RSC Green Chemistry, 2013, , 1579 0.0 10 51-81. Biosorption of Elements. RSC Green Chemistry, 2013, , 80-113. 1580 0.0 Biosorption of Pb<sup&gt;2+&lt;/sup&gt; and 1582 Cr<sup&gt;2+&lt;/sup&gt; Using &lt;i&gt;Moringa Oleifera&lt;/i&gt; 0.1 10 and Their Adsorption Isotherms. Science Journal of Analytical Chemistry, 2015, 3, 100. Algal Biosorption of Heavy Metals., 2016, , 131-146. 1584 Polymeric Scaffolds for Tissue Engineering Applications., 2007, , 8-1-8-18. 5 Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterranean Marine 126 Science, 2012, 13, 49. Antioxidant and anti-inflammatory potential of the aqueous extract and polysaccharide fraction from brown marine macroalgae Padina sp. from Gulf of Mannar of Peninsular India. Journal of Coastal Life 1586 0.2 3 Medicine, 2013, , . Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from 1.1 Coal-Fired Power Generation. PLoS ONE, 2012, 7, e36470.

ARTICLE

Variation in Patterns of Metal Accumulation in Thallus Parts of Lessonia trabeculata (Laminariales;) Tj ETQq0 0 0 rgBT/Overlogg 10 Tf 50

1589	Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae. PLoS ONE, 2014, 9, e94706.	1.1	33
1590	The Sequential Application of Macroalgal Biosorbents for the Bioremediation of a Complex Industrial Effluent. PLoS ONE, 2014, 9, e101309.	1.1	13
1591	Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS ONE, 2015, 10, e0135395.	1.1	7
1592	In vitro biological activity of Hydroclathrus clathratus and its use as an extracellular bioreductant for silver nanoparticle formation. Green Processing and Synthesis, 2020, 9, 416-428.	1.3	8
1593	A review of common parameters and descriptors used in studies of the impacts of heavy metal pollution on marine macroalgae: identification of knowledge gaps and future needs. Acta Botanica Brasilica, 2020, 34, 460-477.	0.8	2
1594	Recovery of copper (II) absorbed in biomass of Cladosporium cladosporioides. Scientia Agricola, 2013, 70, 147-151.	0.6	9
1595	Classification, Source, and Effect of Environmental Pollutants and Their Biodegradation. Journal of Environmental Pathology, Toxicology and Oncology, 2017, 36, 55-71.	0.6	21
1596	Low-Cost Technologies for Mining Wastewater Treatment. Journal of Environmental Science and Engineering B, 2017, 6, .	0.0	3
1597	An evaluation of chromium and zinc biosorption by a sea weed (Sargassum sp.) under optimized conditions. Indian Journal of Science and Technology, 2009, 2, 1-4.	0.5	6
1598	Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line. Journal of the East Asian Society of Dietary Life, 2015, 25, 990.	0.4	5
1599	Prospects for Bioethanol Production from Macroalgae. Trends in Renewable Energy, 2015, , .	0.1	13
1600	Equilibrium, Kinetic and Thermodynamic Studies of Europium Adsorption by Biopolymeric Composite. International Journal of Chemical Engineering and Applications (IJCEA), 2017, 8, 334-339.	0.3	4
1601	Remediation of Heavy Metal Pollution in Soil by Microbial Immobilization with Carbon Microspheres. International Journal of Environmental Science and Development, 2020, 11, 43-47,.	0.2	9
1602	Bio-Sorption Potential of V. zizanioides Grass and Roots for the Removal of Cr (VI). Journal of Surface Science and Technology, 2018, 34, 19-29.	0.3	4
1603	POLISSACARÃDEOS EXTRAÃDOS DE ALGAS MARINHAS E SUAS APLICAÇÕES BIOTECNOLÓGICAS: UMA REVISÃ Revista Brasileira De Inovação TecnolÃ3gica Em Saúde ISSN 2236-1103, 0, , .	f8:0	5
1604	Hexavalent Chromium Uptake from Aqueous Solutions using Raw Biomass of the Invasive Brown Seaweed Sargassum muticum from the Moroccan Shorelines: Kinetics and Isotherms. European Scientific Journal, 2016, 12, 243.	0.0	4
1605	Cystoseira barbata İle Toryum Biyosorpsiyonu. Deu Muhendislik Fakultesi Fen Ve Muhendislik, 2019, 21, 461-468.	0.1	2

#	Article	IF	CITATIONS
1606	Utilización de subproductos agroindustriales para la bioadsorción de metales pesados. TIP Revista Especializada En Ciencias QuÃmico-Biológicas, 0, 23, .	0.3	5
1607	Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electronic Journal of Biotechnology, 2007, 10, 0-0.	1.2	62
1608	On the adsorption of a cationic artificial dye on spent tea leaves. WIT Transactions on the Built Environment, 2014, , .	0.0	5
1609	MARINE MICRO AND MACRO ALGAL SPECIES AS BIOSORBENTS FOR HEAVY METALS. Environmental Engineering and Management Journal, 2007, 6, 237-251.	0.2	108
1610	BIOSORPTION OF ANTIMONY BY BROWN ALGAE S. muticum AND A. nodosum. Environmental Engineering and Management Journal, 2015, 14, 455-463.	0.2	37
1611	Algae: A potential source for nanoparticle synthesis. Journal of Applied and Natural Science, 2018, 10, 1134-1140.	0.2	22
1612	Effectiveness of domestic wastewater treatment using floating rafts a promising phyto-remedial approach: A review. Journal of Applied and Natural Science, 2017, 9, 1931-1942.	0.2	9
1613	A review on electrospun bio-based polymers for water treatment. EXPRESS Polymer Letters, 2015, 9, 839-880.	1.1	78
1614	Recovery of Copper from Leached Tailing Solutions by Biosorption. Minerals (Basel, Switzerland), 2020, 10, 158.	0.8	16
1615	Effects of Fucoidan on Neuronal Cell Proliferation: Association with NO Production through the iNOS Pathway. Preventive Nutrition and Food Science, 2007, 12, 74-78.	0.7	13
1616	Composition of Amino Acids, Minerals, and Heavy Metals in Differently Cooked Laver (Porphyra) Tj ETQq0 0 0 rg	BT /Overlo 0.2	ck 10 Tf 50 3 16
1617	Sustainable Production Process of Biological Mineral Feed Additives. American Journal of Applied Sciences, 2009, 6, 1093-1105.	0.1	6
1618	The Possibilities of the Application of Feed Additives from Macroalgae in Sustainable Mineral Animal Feeding. American Journal of Applied Sciences, 2009, 6, 1458-1466.	0.1	5
1619	Biosorption of Lead (II) and Cadmium (II) from Aqueous Solutions by Protonated Sargassum Sp. Biomass. Biotechnology, 2005, 5, 21-26.	0.5	13
1620	Adsorption of Chromium Using Blue Green Algae-Modeling and Application of Various Isotherms. International Journal of Chemical Technology, 2017, 10, 1-22.	0.3	21
1621	Biopotential Application of Synthesis Nanoparticles as Antimicrobial Agents by Using Laurencia papillosa. International Journal of Pharmacology, 2017, 13, 303-312.	0.1	16
1622	Removal of Arsenic Using Acetobacter xylinum Cellulose. Journal of Biological Sciences, 2007, 8, 209-212.	0.1	7
1623	Kinetics Modeling of Lead (II) and Cadmium (II) Biosorption from Aqueous Solutions by Brown Algae Sargassum sp. Biomass. Pakistan Journal of Biological Sciences, 2005, 8, 1250-1255.	0.2	4

#	Article	IF	CITATIONS
1624	Equilibrium and Spectroscopic Studies on Biosorption of Mercury by Algae Biomass. Pakistan Journal of Biological Sciences, 2006, 9, 777-782.	0.2	22
1625	Bioremoval of Hexavalent Chromium from Aqueous Solutions by the Brown Seaweed Dictyopteris polypodioides. Research Journal of Environmental Toxicology, 2015, 9, 218-230.	1.0	13
1626	Biosorption of Copper by Bacterial Adsorbents: A Review. Research Journal of Environmental Toxicology, 2015, 9, 45-58.	1.0	18
1627	Biosorption of Cadmium as Toxic Metal from Aqueous Solutions by Marine Green Algae Ulva compressa (Linnaeus). Research Journal of Environmental Toxicology, 2016, 11, 28-34.	1.0	7
1628	Biosorption of Heavy Metals. , 2019, , 1898-1909.		4
1629	Column Biosorption of Lead, Cadmium, Copper, and Arsenic ions onto Algae. Journal of Bioprocessing & Biotechniques, 2013, 03, .	0.2	29
1630	Biosorption of Neodymium by Selected Photoautotrophic and Heterotrophic Species. Journal of Chemical Engineering & Process Technology, 2015, 06, .	0.1	4
1632	Adsorptive Removal of Ni(II) from Water Using Alginate-Fixed Water Hyacinth: Effect of Organic Substances. American Journal of Analytical Chemistry, 2013, 04, 373-378.	0.3	3
1633	Biosorption of Trivalent Chromium from Aqueous Solution by Red Seaweed Polysiphonia nigrescens. Journal of Water Resource and Protection, 2011, 03, 832-843.	0.3	12
1634	Review of Ecological Floating Bed Restoration in Polluted Water. Journal of Water Resource and Protection, 2013, 05, 1203-1209.	0.3	8
1635	Use of Sediment and Algae for Biomonitoring the Coast of Honaïne (Far West Algerian). Open Journal of Ecology, 2016, 06, 159-166.	0.4	11
1636	Metals in New Zealand <i>Undaria pinnatifida</i> (Wakame). Open Journal of Marine Science, 2014, 04, 163-173.	0.3	1
1637	Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera. Algae, 2011, 26, 265-275.	0.9	16
1638	Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production. KSBB Journal, 2014, 29, 414-420.	0.1	4
1639	Heavy Metal Contents and Food Safety Assessment of Processed Seaweeds and Cultured Lavers. Journal of the Korean Society for Marine Environment & Energy, 2016, 19, 203-210.	0.1	3
1640	Nickel Ion Adsorption Behavior of Ceriporia lacerata Isolated from Mine Tailings in Korea. Journal of Soil and Groundwater Environment, 2015, 20, 22-31.	0.1	1
1641	Biosorption of cationic Hg2+ and Remazol brilliant blue anionic dye from binary solution using Gelidium corneum biomass. Scientific Reports, 2021, 11, 20908.	1.6	18
1642	The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnology for Biofuels, 2021, 14, 209.	6.2	67

ARTICLE IF CITATIONS Retrospective and Prospective Bioremediation Technologies for Industrial Effluent Treatment. 0.4 0 1643 Emerging Contaminants and Associated Treatment Technologies, 2022, , 343-372. Effect of Pyrolysis Temperature on Copper Aqueous Removal Capability of Biochar Derived from the 1644 1.3 Kelp Macrócystis pyrifera. Applied Sciences (Switzerland), 2021, 11, 9223. The Irish kelp, Fucus vesiculosus, a highly potential green bio sorbent for Cd (II) removal: Mechanism, 1645 4.6 5 quantitative and qualitative approaches. Journal of Cleaner Production, 2021, 327, 129422. Biosorption of Rhodamine B onto Waste Activated Sludge: Equilibrium and Kinetic Modelling. Journal 1646 0.0 of Environmental Science International, 2005, 14, 881-888. Effects of Fucoidan on NO Production and Phagocytosis of Macrophages and the Proliferation of 1647 0.7 5 Neuron Cells. Preventive Nutrition and Food Science, 2005, 10, 344-348. Binding of Toxic Metal Ions to Alginate Natural Polyelectrolyte. Journal of Ion Exchange, 2007, 18, 174-179. 1648 0.1 Biosorption and Flotation of Lead and Chromium using Waste Activated Sludge. The Journal of the 1650 0.0 0 Korea Contents Association, 2009, 9, 444-450. 10.2478/s11814-009-0274-8., 2011, 26, 1748. 1651 Developing a new certified reference material of brown algae for trace metal analysis., 2011, , . 0 1652 Physiological responses of Fucus serratus (Phaeophyceae) to high doses of cadmium exposure. 0.2 Hangug Eobyeong Haghoeji, 2011, 24, 141-152. Evaluation of Removal Efficiencies of Heavy Metals Using Brown Seaweed Biosorbent Under Different 1654 0.0 1 Biosorption Systems. Korean Journal of Environmental Agriculture, 2011, 30, 310-315. Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization 0.1 Process for Bioethanol Production. KSBB Journal, 2011, 26, 400-406. Biosorption of Pb(Ii) from Aqueous Solution by Brown Seaweeds. Indian Journal of Applied Research, 1656 0.0 0 2011, 3, 58-62. Removal of Ni (II) and Cu (II) from their Solutions and Waste Water by Nonliving Biomass of 0.4 Pseudomonas oleovorans. Hydrology Current Research, 2012, 03, . Differential Handling of Toxic Chemicals by Stress Shock Algae. International Journal of 1658 0.0 0 Environmental Pollution and Remediation, 0, , . Periphyton and Earthworms as Biological Indicators of Metal Pollution in Streams of Blantyre City, Malawi., 0, , . Availability of Chicken Feather for Removal of Hexavalent Chromium and Oil. Journal of 1660 0.0 1 Environmental Science International, 2012, 21, 369-375. Application of Principal Component Analysis to Elucidate Experimental and Theoretical Information.,

#	Article	IF	CITATIONS
1662	Possible Phytoremediation of Chlor-alkali Waste by Using <i>Sesbania Aculeata</i> . Pers. International Journal of Ecosystem, 2012, 2, 88-92.	1.0	0
1663	Heavy Metal Uptake and Tolerance of Charophytes. , 2013, , 111-120.		0
1664	Dynamic Cr(III) uptake by Macrocystis pyrifera and Undaria pinnatifida biomasses. Electronic Journal of Biotechnology, 2013, 16, .	1.2	1
1665	Adsorption Behavior of Sr Ion on Calcium-Alginate-Chitosan. Porrime, 2014, 38, 557-565.	0.0	0
1666	REMOÇÃO DE ÃONS DE COBRE E ZINCO EM SOLUÇÃO AQUOSA USANDO MACROALGA MARINHA PELVETIA CANALICULATA COMO BIOSSORVENTE. , 0, , .	٨	0
1667	APLICAÇÃO DA TÉCNICA SR-TXRF PARA AVALIAÇÃO DO MECANISMO DE SORÇÃO DO METAL PESADO PELA BIOMASSA EGERIA DENSA INATIVA. , 0, , .	CD(II)	0
1668	Factors affecting toxic lead(II) ion bioremediation by Fusarium equiseti isolated from the mangrove soil environment of southeast Borneo. Malaysian Journal of Microbiology, 2015, , .	0.1	0
1669	BIOADSORÇÃO E DESSORÇÃO DOS ÃONS Cd2+ E Zn2+ PELO RESÃĐUO DA EXTRAÇÃO DO ALGINATO DA MARINHA Sargassum filipendula. , 0, , .	ALGA	0
1670	The Potential of Sargassum oligocystum Harvested From Persian Gulf for the Adsorption of Copper Ions From Aqueous Solutions. Avicenna Journal of Environmental Health Engineering, 2015, 2, .	0.3	0
1671	Sorption of Cd2+ Ions From Aqueous Solutions on Organic Wastes / Sorpcja Jonów Cd2+ Z Roztworów Wodnych Na Odpadach Organicznych. Archives of Mining Sciences, 2015, 60, 677-686.	0.6	1
1672	BIOADSORÇÃO E DESSORÇÃO DOS ÃONS CU2+, NI2+ E PB2+ PELO RESÃĐUO DA EXTRAÇÃO DO ALGINA ALGA SARGASSUM FILIPENDULA. , 0, , .	.TO DA	0
1673	Scaffolds, Polymeric: Tissue Engineering. , 0, , 7072-7084.		0
1674	SHORT-TERM EXPOSURE OF FRESHWATER ALGAE TO LEAD ORGANIC COMPOUNDS STUDIED WITH NON-INVASIVE ELECTRICAL AND LUMINESCENT METHODS. Inżynieria Ekologiczna, 2016, , 26-35.	0.2	0
1675	Efficacy of Mosquito Repellent and Adulticidal Activities of Halophila Ovalis Extract Against Filaria Vectors. Journal of Tropical Diseases, 2016, 04, .	0.1	3
1676	Evaluating the Effects of Municipal Waste and Wastewater on Absorption of Nickel and Cadmium of Helianthus Annuus Plant. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2016, 64, 741-749.	0.2	0
1677	Metal Sorption Capabilities of Two Common Plants in Tropical Wetlands - Bambusa vulgaris and Raffia bambusa. Journal of Applied Science and Technology, 2016, 16, 73-80.	0.3	0
1678	Evaluation of Novel Synthesized Magnetic Bacterial Bio-composite Material for Lead Bioremediation. Journal of Pure and Applied Microbiology, 2016, 10, 3201-3212.	0.3	1
1679	Biocomposites and Polymer Blends for Wastewater Treatment. , 2017, , 473-499.		0

#	Article	IF	CITATIONS
1680	EFFECT OF SOME INDIGENOUS DIFFERENT PLANT AND ALGAL EXTRACTS AS ANTIMICROBIAL AGENTS AND FOOD PRESERVATIVES. Fayoum Journal of Agricultural Research and Development, 2017, 31, 95-114.	0.0	0
1682	Hydrogen Production from Algal Pathways. , 2018, , 1-28.		0
1683	Hemp fibers (Cannabis sativa) impregnated by Ca-alginate gel as a novel biosorbent for the removal of Pb(II) and Zn(II) ions. Materials Protection, 2018, 59, 67-76.	0.1	0
1684	Bioaccumulation of Heavy Metals in Water and Algae of Mukkombu in the River Cauvery System, Tiruchirappalli District, Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1067-1072.	0.0	1
1685	Biosorption of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 270-281.	0.3	0
1686	Kinetic, Equilibrium and Thermodynamic Studies of Nickel Adsorption in Batch on a Red Alga Corallina Elongata. Advances in Science, Technology and Innovation, 2018, , 1311-1320.	0.2	0
1687	Biosorption of Heavy Metals: Potential and Applications of Yeast Cells for Cadmium Removal. Microorganisms for Sustainability, 2019, , 237-271.	0.4	3
1688	TRACE TOXIC MINERAL LEVELS OF SEA LETTUCE (Ulva spp.) FROM COAST OF ISTANBUL. Aquatic Research, 0, , 154-160.	0.3	0
1689	Alginate. , 2019, , 1-2.		0
1690	Seaweed Biotechnology. , 2019, , 145-196.		2
1691	Metal Pollution in Water: Toxicity, Tolerance and Use of Algae as a Potential Remediation Solution. Grand Challenges in Biology and Biotechnology, 2019, , 471-500.	2.4	2
1692	Phycoremediation of Pollutants for Ecosystem Restitution. Microorganisms for Sustainability, 2019, , 67-87.	0.4	2
1693	A Study on Biosorption of Calcium Ion Using Aerobic Granular Sludge. Journal of Environmental Science International, 2019, 28, 677-687.	0.0	0
1694	Padina pavonica algae as a Heavy metals Bio-Indicator in Inter tidal Sediments of Bushehr Coasts, Persian Gulf. UqyÄnÅ«s/shinÄsÄ«, 2020, 11, 127-137.	0.1	0
1695	Adsorption of low molecular weight food relevant polyphenols on cross-linked agarose gel. Journal of Molecular Liquids, 2022, 347, 117972.	2.3	6
1696	Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Marine Drugs, 2021, 19, 620.	2.2	64
1697	Current Trends in Algae-Mediated Synthesis of Metal and Metal Oxide Nanoparticles (Phyconanotechnology). Nanotechnology in the Life Sciences, 2020, , 111-143.	0.4	3
1698	Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste. Chemical and Biochemical Engineering Quarterly, 2020, 34, 169-180.	0.5	3

#	Article	IF	CITATIONS
1699	Natural and Synthetic Polymeric Scaffolds. , 2021, , 257-283.		2
1700	Binary Biosorption of Cadmium(II) and Nickel(II) onto <i>Planococcus</i> sp. Isolated from Wastewater: Kinetics, Equilibrium and Thermodynamic Studies. Industrial Biotechnology, 2020, 16, 386-393.	0.5	3
1701	Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field. Environmental Pollution, 2022, 292, 118277.	3.7	5
1702	Microbially synthesized silver nanoparticles: Mechanism and advantages—A review. , 2022, , 439-478.		0
1703	Microbial Clean-Up Strategy for Eating Garbage. , 2020, , 231-245.		1
1704	Role of Beneficial Microbes in the Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences, 2020, , 227-262.	0.4	1
1705	Inorganic Soil Contaminants and Their Biological Remediation. , 2020, , 133-153.		1
1706	Lignocellulosic Biomass. , 2020, , 499-535.		0
1707	Nanobioremediation Technologies for Potential Application in Environmental Cleanup. Environmental Chemistry for A Sustainable World, 2020, , 53-73.	0.3	4
1709	Biosorption of Nickel (II) and Cadmium (II). Environmental Chemistry for A Sustainable World, 2020, , 373-391.	0.3	0
1710	Scientific Insights Into Modified and Non-Modified Biomaterials for Sorption of Heavy Metals From Water. , 2020, , 807-827.		1
1711	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35
1712	Assessment of the Antigenotoxic Effects of Alginate and ZnO/Alginate–Nanocomposites Extracted from Brown Alga Fucus vesiculosus in Mice. Polymers, 2021, 13, 3839.	2.0	8
1713	Removal of Toxic Heavy Metals from Contaminated Aqueous Solutions Using Seaweeds: A Review. Sustainability, 2021, 13, 12311.	1.6	22
1715	Development of an amperometric sensor based on the synergistic action between alginic acid and nPEDOT on a gold nanoparticle-modified screen–printed carbon electrode for As(III) determination in natural water samples. International Journal of Electrochemical Science, 0, , ArticleID:211235.	0.5	0
1716	Scientific Insights Into Modified and Non-Modified Biomaterials for Sorption of Heavy Metals From Water. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 13-39.	0.3	0
1717	Macroalgal Value Chain. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 22-109.	0.3	0
1720	Nanotechnology for the Remediation of Heavy Metals and Metalloids in Contaminated Water. Environmental Chemistry for A Sustainable World, 2021, , 177-209.	0.3	0

#	ARTICLE	IF	CITATIONS
1721	system by Abies bornmulleriana cones. Water Science and Technology, 2020, 82, 3032-3046.	1.2	2
1722	Biosorption: Principles, and Applications. Lecture Notes in Civil Engineering, 2021, , 501-510.	0.3	2
1723	Terbium Excitation Spectroscopy as a Detection Method for Chromatographic Separation of Lanthanide-Binding Biomolecules. ACS Omega, 2020, 5, 27050-27056.	1.6	1
1725	Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck). Analytical Chemistry Insights, 2008, 3, 135-43.	2.7	55
1726	Opportunities and Challenges in Heavy Metal Removal from Water. Environmental Chemistry for A Sustainable World, 2021, , 347-366.	0.3	1
1727	Cyanobacterial and microalgal bioremediation: an efficient and eco-friendly approach toward industrial wastewater treatment and value-addition. , 2022, , 343-362.		1
1728	Algal biomass as a promising tool for CO2 sequestration and wastewater bioremediation: an integration of green technology for different aspects. , 2022, , 149-166.		2
1729	How alginate monomers contribute to organic fouling on polyamide membrane surfaces?. Journal of Membrane Science, 2022, 643, 120078.	4.1	7
1730	Biomonitoring coastal pollution on the Arabian Gulf and the Gulf of Aden using macroalgae: A review. Marine Pollution Bulletin, 2021, 175, 113156.	2.3	4
1731	Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorganic Chemistry and Applications, 2021, 2021, 1-26.	1.8	14
1732	Bioaccumulation of arsenic(V) from wastewater by live and dead <i>Spirogyra</i> sp Journal of Basic Microbiology, 2022, 62, 489-497.	1.8	3
1733	Bioaccumulation of Fluoride in Plants and Its Microbially Assisted Remediation: A Review of Biological Processes and Technological Performance. Processes, 2021, 9, 2154.	1.3	13
1734	A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. Science of the Total Environment, 2022, 818, 151784.	3.9	22
1735	Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. Journal of Fungi (Basel, Switzerland), 2021, 7, 1035.	1.5	11
1736	Algal Biomass Valorization for the Removal of Heavy Metal lons. Environmental Footprints and Eco-design of Products and Processes, 2022, , 267-302.	0.7	3
1737	Variation in population and reproductive parameters of the amphipods, Cymadusa filosa Savigny, 1816 and Sunamphitoe pelagica (H. Milne Edwards, 1830), associated with Sargassum beds in an historically impacted bay. Nauplius, 0, 29, .	0.3	1
1738	Occurrence of heterotrophic nitrification-aerobic denitrification induced by decreasing salinity in a halophilic AGS SBR treating hypersaline wastewater. Chemical Engineering Journal, 2022, 431, 134133.	6.6	29
1739	Exploring of promising bacteria from the rhizosphere of maize, cocoa and lamtoro. Biodiversitas, 2020, 21, .	0.2	Ο

ARTICLE IF CITATIONS On the Binding Affinity and Thermodynamics of Sodium Alginate-Heavy Metal Ion Interactions for 1740 0.4 0 Efficient Bioremediation. SSRN Electronic Journal, 0, , . Importance of biofilters in heavy metal removal: Fundamental to recent advances., 2022, , 1-18. 1741 Accumulation and degradation of organotin compounds in cultivated sporophytes of the brown alga 1742 1.5 1 Undaria pinnatifida. Journal of Applied Phycology, 2022, 34, 577-587. Pollution, risks, and sources of heavy metals in sediments from the urban rivers flowing into 1743 2.7 Haizhou Bay, China. Environmental Science and Pollution Research, 2022, 29, 38054-38065. Anticancer and Antimicrobial Activity of Red Sea Seaweeds Extracts-Mediated Gold Nanoparticles. 1744 0.3 9 Journal of Pure and Applied Microbiology, 2022, 16, 207-225. 1746 A Review on the Resistance and Accumulation of Heavy Metals by Different Microbial Strains., 0, , . Can algae reclaim polychlorinated biphenylâ€"contaminated soils and sediments?., 2022, , 273-283. 1747 1 Valorization of Seaweeds Biomass as Source an Eco-Friendly and Efficient Depressant of Calcite in the 1748 1.8 Flotation of Apatite Containing Ore. Waste and Biomass Valorization, 0, , 1. Recent trends and future perspectives in applications of biofiltration., 2022, , 113-136. 1749 1 Modified grafted nano cellulose based bio-sorbent for uranium (VI) adsorption with kinetics 1.2 modeling and thermodynamics. Korean Journal of Chemical Engineering, 2022, 39, 408-422. Process Technology for the Removal of Cr(VI) from Wastewater Using Pig Iron Sludge. Chemical 1751 4 0.9 Engineering and Technology, 2022, 45, 543-551. Application of filamentous fungi in microalgae-based wastewater remediation for biomass harvesting 2.4 and utilization: From mechanisms to practical application. Algal Research, 2022, 62, 102614. Recovery of precious metals from industrial wastewater towards resource recovery and 1753 4.0 67 environmental sustainability: A critical review. Desalination, 2022, 527, 115510. Promising Algae-Based Biotechnology for Terbium Removal and Recovery from Waste(Water)., 2022,, 1754 1885-1909. Recycling Waste Biopolymers via Electrospinning for Water Treatment: Waste to Wealth Roadmap, 1755 0 Future Perspective, and Challenges., 2022, , 1827-1860. Fabrication of magnetic <scp>Fe₃O₄</scp>/mO₂</scp>/iO₂</scp>/iO₂</scp>/polypyrrole heterostructure for efficient adsorption of Mn⁷⁺ from aqueous solution. Journal of Applied Polymer Science, 2022, 139. The seaweed holobiont: from microecology to biotechnological applications. Microbial 1757 2.0 27 Biotechnology, 2022, 15, 738-754. 1760 Algae for Nanocellulose Production. Nanotechnology in the Life Sciences, 2021, , 293-343.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1766	Potentiality of enzymes as a green tool in degradation of petroleum hydrocarbons. , 2022	.,, 337-351.		1
1767	Lead induced-toxicity in vegetables, its mitigation strategies, and potential health risk ass review. International Journal of Environmental Science and Technology, 0, , 1.	essment: a	1.8	2
1768	Multivariate optimization applied to the synthesis and reuse of a new sugarcane bagasse- biosorbent to remove Cd(II) and Pb(II) from aqueous solutions. Environmental Science an Research, 2022, 29, 79954-79976.	based d Pollution	2.7	2
1769	Biochar for removal of dyes in contaminated water: an overview. Biochar, 2022, 4, 1.		6.2	93
1770	lodine from brown algae in human nutrition, with an emphasis on bioaccessibility, bioavai chemistry, and effects of processing: A systematic review. Comprehensive Reviews in Foo Food Safety, 2022, 21, 1517-1536.	lability, d Science and	5.9	26
1771	Phycoremediation: a means for restoration of water contamination. Environmental Sustai 2022, 5, 25-38.	nability,	1.4	0
1772	Field and laboratory investigations on factors affecting the diel variation of arsenic in Hua Creek from Shimen Realgar Mine, China: implications for arsenic transport in an alkali stre Environmental Geochemistry and Health, 2023, 45, 687-705.	ngshui :am.	1.8	3
1773	Voltammetric Determination of Copper by Biosorptionâ€based Mesorhizobium opporton Microbial Biosensor. Electroanalysis, 0, , .	stum Modified	1.5	Ο
1774	Selective Adsorption of Ba2+ Using Chemically Modified Alginate Beads with Enhanced Ba and its Application to 131Cs Production. Nuclear Engineering and Technology, 2022, , .	a2+ Affinity	1.1	1
1775	One-Step Preparative Separation of Fucoxanthin from Three Edible Brown Algae by Elution Countercurrent Chromatography. Marine Drugs, 2022, 20, 257.	ı-Extrusion	2.2	3
1776	The Emerging Evidence for a Protective Role of Fucoidan from Laminaria japonica in Chron Disease-Triggered Cognitive Dysfunction. Marine Drugs, 2022, 20, 258.	nic Kidney	2.2	8
1777	Identification of Li as a reference element in Sargassum bioaccumulation of conservative- elements (Mg, Mo, Sb, Cs and U). Marine Chemistry, 2022, 242, 104110.	type	0.9	0
1778	Integrative artificial intelligence models for Australian coastal sediment lead prediction: A investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 2022, 309, 114711.	ı	3.8	15
1779	On the binding affinity and thermodynamics of sodium alginate-heavy metal ion interaction efficient adsorption. Carbohydrate Polymer Technologies and Applications, 2022, 3, 1002	ons for 03.	1.6	4
1780	Electrochemically active microorganisms sense charge transfer resistance for regulating b electroactivity, spatio-temporal distribution, and catabolic pathway. Chemical Engineering 2022, 442, 136248.	iofilm g Journal,	6.6	14
1781	Influential Mechanism of Natural Organic Matters with Calcium Ion on the Anion Exchang Fouling Behavior via xDLVO Theory. Membranes, 2021, 11, 968.	e Membrane	1.4	10
1782	Synthesis of Alginate Nanogels with Polyvalent 3D Transition Metal Cations: Applications Immobilization. Polymers, 2022, 14, 1277.	in Urease	2.0	5
1783	Experimental Modeling Investigations on the Biosorption of Methyl Violet 2B Dye by the B Seaweed Cystoseira tamariscifolia. Sustainability, 2022, 14, 5285.	Brown	1.6	14

#		IF	CITATIONS
1784	An environmentally friendly gradient treatment system of copper-containing wastewater by coupling thermally regenerative battery and electrodeposition cell. Separation and Purification Technology, 2022–295–121243	3.9	8
1785	A triple threat: ocean warming, acidification and rare earth elements exposure triggers a superior antioxidant response and pigment production in the adaptable Ulva rigida. Environmental Advances, 2022. 100235.	2.2	2
1786	Photocatalytic and biological activities of green synthesized SnO2 nanoparticles using Chlorella vulgaris. Journal of Applied Microbiology, 2022, 133, 3265-3275.	1.4	7
1787	Methane production from peroxymonosulfate pretreated algae biomass: Insights into microbial mechanisms, microcystin detoxification and heavy metal partitioning behavior. Science of the Total Environment, 2022, 834, 155500.	3.9	4
1788	A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnology Advances, 2022, 59, 107967.	6.0	8
1789	Use of Active and Passive Verb Forms in Papers from the Field of Chemical Engineering. Communications - Scientific Letters of the University of Zilina, 2014, 16, 102-108.	0.3	0
1792	A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environmental Science and Pollution Research, 2022, 29, 48185-48209.	2.7	16
1793	A systematic review on leaching of rare earth metals from primary and secondary sources. Minerals Engineering, 2022, 184, 107632.	1.8	23
1794	Biosorption of heavy metals from water: mechanism, critical evaluation and translatability of methodology. Environmental Technology Reviews, 2022, 11, 91-117.	2.1	4
1795	Role of biosorption technology in removing cadmium from water and soil. , 2022, , 405-422.		Ο
1796	Application of Deinococcus radiodurans for bioremediation of radioactive wastes. , 2022, , 717-732.		1
1797	Algal Nanobiotechnology and Its Applications. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 418-441.	0.4	0
1798	Biosorption of Lead II Using <i>Foeniculum vulgare</i> in the Aqueous Phase. Journal of Hazardous, Toxic, and Radioactive Waste, 2022, 26, .	1.2	0
1799	Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. Science of the Total Environment, 2022, 842, 156641.	3.9	13
1800	Algal-based biomaterials for environmental remediation of heavy metals. , 2022, , 157-184.		0
1801	A cost-effective and eco-friendly biosorption technology for complete removal of nickel ions from an aqueous solution: Optimization of process variables. Green Processing and Synthesis, 2022, 11, 631-647.	1.3	3
1802	Porphyra tenera Protects against PM2.5-Induced Cognitive Dysfunction with the Regulation of Gut Function. Marine Drugs, 2022, 20, 439.	2.2	3
1803	Ameliorative effects of Sargassum stolonifolium amendment on physiological and biochemical parameters in Brassica chinensis L. under cadmium contaminated soil. Semina:Ciencias Agrarias, 2022, 43, 1907-1940.	0.1	1

#	Article	IF	CITATIONS
1804	Removal of Divalent Nickel from Aqueous Solution Using Blue Green Marine Algae: Adsorption Modelling and Applicability of Various Isotherm Models. , 0, , .		0
1805	Removal of Pb ²⁺ from Water Using Sustainable Brown Seaweed Phlorotannins. Langmuir, 2022, 38, 8324-8333.	1.6	3
1806	Comparison of Heavy Metals and Arsenic Species in Seaweeds Collected from Different Regions in Korea. Applied Sciences (Switzerland), 2022, 12, 7000.	1.3	6
1807	Phycoremediation: Use of Algae to Sequester Heavy Metals. Hydrobiology, 2022, 1, 288-303.	0.9	17
1808	Physiological and proteomic responses of Chlamydomonas reinhardtii to arsenate and lead mixtures. Ecotoxicology and Environmental Safety, 2022, 242, 113856.	2.9	3
1809	HEAVY METALS CLEARANCE WITH USE OF CALCIUM ALGINATE. Ekologiya Cheloveka (Human Ecology), 2014, 21, 20-24.	0.2	2
1810	Biosorption potential of Bacillus anthracis PM21 for the sequestration of cadmium, chromium, and nickel from contaminated water. International Journal of Environmental Science and Technology, 2023, 20, 6185-6196.	1.8	2
1811	The Role of Hemicellulose in Cadmium Tolerance in Ramie (Boehmeria nivea (L.) Gaud.). Plants, 2022, 11, 1941.	1.6	10
1812	Bioaccumulation of Heavy Metals by Bacteria Isolates from Mambilla Mining Site, Nguroje, Taraba State, Nigeria. Biotechnology, 2022, 21, 156-162.	0.5	0
1813	Comparative Assessment of Bioactive Compounds, Nutritive, Mineral Composition and In-Vitro Bioactivity of Marine Macro Algae Valoniopsis Pachynema and Dictyota Ciliolata. International Journal of Life Science and Pharma Research, 0, , .	0.1	0
1814	Trace metal content from holopelagic Sargassum spp. sampled in the tropical North Atlantic Ocean: Emphasis on spatial variation of arsenic and phosphorus. Chemosphere, 2022, 308, 136186.	4.2	10
1815	Selective Accumulation of Rare-Earth and Heavy Metal Ions by a Fucoidan-Inorganic Composite Material. Separations, 2022, 9, 219.	1.1	1
1818	Fabrication of succinate-alginate xerogel films for in vitro coupling of osteogenesis and neovascularization. , 2022, 141, 213122.		0
1819	Review of Strength Improvements of Biocemented Soils. International Journal of Geomechanics, 2022, 22, .	1.3	34
1820	The emerging potential of natural and synthetic algae-based microbiomes for heavy metal removal and recovery from wastewaters. Environmental Research, 2022, 215, 114238.	3.7	11
1821	Biodegradation of Pollutants. , 2022, , 1-27.		0
1822	Design and principles of adsorbent-based reactors for modular wastewater treatment. , 2022, , 129-148.		0
1823	Biosorptive Potential of <i>Pseudomonas species</i> RY12 Toward Zinc Heavy Metal in Agriculture Soil Irrigated with Contaminated Waste Water. Dose-Response, 2022, 20, 155932582211173.	0.7	1

#	Article	IF	CITATIONS
1824	Optimal exogenous calcium alleviates the damage of Snow-melting agent to Salix matsudana seedlings. Frontiers in Plant Science, 0, 13, .	1.7	2
1825	Effect of nitrogen source and nickel concentration on green microalga Botryococcus braunii growth and its remediation potential. Journal of Applied Phycology, 2022, 34, 2941-2954.	1.5	2
1826	Chemical contaminant levels in edible seaweeds of the Salish Sea and implications for their consumption. PLoS ONE, 2022, 17, e0269269.	1.1	7
1827	Arsenic Biosorption by the Macroalgae Chondracanthus chamissoi and Cladophora sp Processes, 2022, 10, 1967.	1.3	5
1828	Do we know the cellular location of heavy metals in seaweed? An up-to-date review of the techniques. Science of the Total Environment, 2023, 856, 159215.	3.9	3
1829	Improving growing substrates by adding the seaweed Cystoseira baccata. Journal of Applied Phycology, 0, , .	1.5	1
1830	Dialdehyde modification of laminarin for facile synthesis of ultrafine silver nanoparticles with excellent antibacterial and wound healing properties. International Journal of Biological Macromolecules, 2022, 222, 1364-1375.	3.6	10
1832	Wastewater Treatment and Remediation of Harmful Substances Using Green Materials. , 2022, , 1-10.		0
1834	Sequential ultrasound-assisted digestion procedure for determination of cadmium and lead contaminants in sea grapes and some seaweed products. Journal of Food Measurement and Characterization, 2023, 17, 607-614.	1.6	1
1835	Effects of beach wrack on the fate of mercury at the land-sea interface – A preliminary study. Environmental Pollution, 2022, 315, 120394.	3.7	3
1836	Element pattern in two dominant species of seaweed from Betsukari coastline - Mashike, Hokkaido, Japan. Environmental Pollution, 2023, 316, 120473.	3.7	0
1837	Clarification of Wines Using Polysaccharides Extracted from Seaweeds. American Journal of Enology and Viticulture, 2005, 56, 52-59.	0.9	33
1838	Biopolymer recovery from waste activated sludge toward self-healing mortar crack. Science of the Total Environment, 2023, 858, 160107.	3.9	3
1839	Synthesis and characterization of graphene oxide/alginate and application of central composite design in the adsorption of Th(IV) on the nanobiocomposites. Radiochimica Acta, 2022, .	0.5	0
1840	Adsorptive-desorptive performance of <i>Chlorella vulgaris</i> for the removal of vanadium from aqueous solutions. Chemistry and Ecology, 2023, 39, 24-43.	0.6	1
1841	Anammox-based granulation cycle for sustainable granular sludge biotechnology from mechanisms to strategies: A critical review. Water Research, 2023, 228, 119353.	5.3	12
1842	Sargassum tenerrimum-mediated green synthesis of silver nanoparticles along with antimicrobial activity. Applied Nanoscience (Switzerland), 0, , .	1.6	0
1843	Computational modelling of geochemical speciation of the trace metals in the wastewater treatment process optimization. Applied Water Science, 2022, 12, .	2.8	1

#	Article	IF	CITATIONS
1844	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
1845	Towards sustainable wastewater treatment by biological methods – A challenges and advantages of recent technologies. Urban Climate, 2023, 47, 101378.	2.4	16
1846	Global decrease in heavy metal concentrations in brown algae in the last 90 years. Journal of Hazardous Materials, 2023, 445, 130511.	6.5	3
1847	Simultaneous removal of inorganic and organic pollutants from multicomponent solutions by the use of zeolitic materials obtained from fly ash waste. Clean Technologies and Environmental Policy, 2023, 25, 1133-1148.	2.1	2
1848	Copper uptake and subcellular distribution in five marine phytoplankton species. Frontiers in Marine Science, 0, 9, .	1.2	1
1849	Algae as biosorption agents for recovering environments contaminated by trace metals: an overview of a potentially useful tool for mine disasters in Brazil. , 2023, 78, 1-14.		3
1850	Role of Alginate Composition on Copper Ion Uptake in the Presence of Histidine or Beta-Amyloid. Molecules, 2022, 27, 8334.	1.7	1
1851	Health Risk Assessment Based on Source Identification of Heavy Metal(loid)s: A Case Study of Surface Water in the Lijiang River, China. Toxics, 2022, 10, 726.	1.6	4
1852	Biosorption of Cd2+, Cu2+, Ni2+, Pb2+ by four different macroalgae species (Costaria costata, Hizikia) Tj ETQqO and Technology, 2023, 20, 10113-10122.	0 0 rgBT / 1.8	Overlock 10 ⁻ 2
1853	Sugarcane Bagasse and Corn Stalk Biomass as a Potential Sorbent for the Removal of Pb(II) and Cd(II) from Aqueous Solutions. Trends in Sciences, 2022, 20, 6221.	0.2	5
1854	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	38
1855	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .	1.6	0
1856	Expression of a Heat Shock Protein 70 from the Brown Alga Ectocarpus sp. Imparts Salinity Stress Tolerance in Arabidopsis thaliana. Journal of Applied Phycology, 2023, 35, 803-819.	1.5	3
1857	Exploiting Marine Fungi in the Removal of Hazardous Pollutants and Biomass Valorisation. Environmental Challenges and Solutions, 2023, , 117-146.	0.5	2
1858	Removal of Heavy Metals and Organic Pollutants by Marine Microalgae. Environmental Challenges and Solutions, 2023, , 29-64.	0.5	0
1859	Application of Response Surface Methodology for Optimization of the Biosorption Process from Copper-Containing Wastewater. Molecules, 2023, 28, 444.	1.7	0
1860	Coagulation Study on Extracted Algal Alginate from Red Algae as Natural Coagulant for Remediation of Textile Dye Congo Red. Environment and Natural Resources Journal, 2023, 21, 1-12.	0.4	1
1861	Nature-inspired biogenic synthesis of silver nanoparticles for antibacterial applications. Materials Today Chemistry, 2023, 27, 101339.	1.7	17

#	Article	IF	CITATIONS
1862	Electrochemical Oxidation of Pb II Using Carbon Electrodes Doped with Nanocellulose-FeOx. Fibers, 2023, 11, 8.	1.8	1
1863	Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. TrAC - Trends in Analytical Chemistry, 2023, 158, 116891.	5.8	9
1864	The role of biomass elemental composition and ion-exchange in metal sorption by algae. Chemosphere, 2023, 314, 137675.	4.2	9
1865	Photocatalysis Combined with Microalgae to Promote the Degradation and Detoxification of Tetracycline Hydrochloride. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	4
1866	Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches. Energies, 2023, 16, 1108.	1.6	5
1867	Nanomaterials originated from microbes for the removal of toxic pollutants from water. , 2023, , 347-363.		0
1868	The characteristics of actinomyces strptomyces griseorubiginosus 83 – the effective biosorbent of silver. E3S Web of Conferences, 2023, 371, 01038.	0.2	0
1869	Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability, 2023, 15, 5521.	1.6	11
1870	Urban mining from biomass, brine, sewage sludge, phosphogypsum and e-waste for reducing the environmental pollution: Current status of availability, potential, and technologies with a focus on LCA and TEA. Environmental Research, 2023, 224, 115523.	3.7	13
1871	Fundamentals in applications of algae biomass: A review. Journal of Environmental Management, 2023, 338, 117830.	3.8	7
1872	Multilayer adsorption of lead (Pb) and fulvic acid by Chlorella pyrenoidosa: Mechanism and impact of environmental factors. Chemosphere, 2023, 329, 138596.	4.2	4
1873	Valorization of Sargassum Biomass as Potential Material for the Remediation of Heavy-Metals-Contaminated Waters. International Journal of Environmental Research and Public Health, 2023, 20, 2559.	1.2	6
1875	Valorisation of the invasive alga Rugulopteryx okamurae through the production of monomeric sugars. Applied Microbiology and Biotechnology, 2023, 107, 1971-1982.	1.7	3
1876	Effects of Lead and Zinc Exposure on Uptake and Exudation Levels, Chlorophyll-a, and Phycobiliproteins in Sarcodia suiae. International Journal of Environmental Research and Public Health, 2023, 20, 2821.	1.2	1
1877	A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models. Environmental Science and Pollution Research, 2023, 30, 39474-39493.	2.7	18
1878	Heavy Metal Removal from Aqueous Solutions Using Biomaterials and/or Functional Composites: Recent Advances and the Way Forward in Wastewater Treatment Using Digitalization. Journal of Composites Science, 2023, 7, 84.	1.4	26
1879	Highly effective sequestration of Cd(â¡) from aqueous solution using marine diatom biomass: Adsorption performances and mechanism. Frontiers in Environmental Science, 0, 11, .	1.5	0
1880	Biodegradation of Pollutants. , 2023, , 899-925.		0

#	Article	IF	CITATIONS
1881	Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers, 2023, 15, 1243.	2.0	15
1882	Challenges and Approaches in E-waste Management. , 2023, , 101-111.		0
1883	Phycoremediation. , 2023, , 451-469.		0
1884	Ecological Significance of Seaweed Biomass Production and Its Role in Sustainable Agriculture. Advanced Technologies and Societal Change, 2023, , 161-181.	0.8	0
1885	Structuring algae as buffers for heavy metals and trace elements in the Canary Islands intertidal habitat. Marine Pollution Bulletin, 2023, 190, 114890.	2.3	5
1886	Relationship of Trace Elements Concentration and Growth Rate in <i>Alsidium triquetrum</i> (Rhodophyta). American Journal of Plant Sciences, 2023, 14, 323-338.	0.3	0
1887	Intensification of strontium (II) ion biosorption on Sargassum sp via response surface methodology. Scientific Reports, 2023, 13, .	1.6	6
1888	Biofabricated yeast: super-soldier for detoxification of heavy metals. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	0
1896	Engineered yeast as a hyperaccumulator for heavy metal removal and recycling from waste streams. , 2023, , 503-520.		0
1909	A concise review of the genus Asperococcus (Phaeophyceae: Chordariaceae). Journal of Applied Phycology, 0, , .	1.5	0
1911	Activated Carbon from Agricultural Waste for the Removal of Pollutants from Aqueous Solution. Composites Science and Technology, 2023, , 465-483.	0.4	0
1912	Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)—a circular bioresource utilization approach. Environmental Science and Pollution Research, 2023, 30, 84999-85045.	2.7	0
1916	Metal biosorption onto non-living algae: a critical review on metal recovery from wastewater. Green Chemistry, 2023, 25, 5775-5788.	4.6	3
1918	Alginate. , 2023, , 83-84.		0
1934	Microbial Nanomaterial Synthesis: Types and Applications. Environmental and Microbial Biotechnology, 2023, , 3-28.	0.4	1
1940	Biological Treatment of Heavy Metals with Algae. , 0, , .		1
1945	Recent Advancements in Bioremediation of Xenobiotics Using Microbes. , 2023, , 355-374.		0
1947	Biological Mineral Recovery Geothermal Fluid. , 2023, , .		1

#	Article	IF	CITATIONS
1959	Physico Chemical and Biological Treatment Techniques for Lead Removal from Wastewater: A Review. Environmental Contamination Remediation and Management, 2024, , 243-262.	0.5	0
1964	Marine Phytoplankton: Bioactive Compounds and Their Applications in Medicine. , 2023, , 251-282.		0
1977	Recovery of Heavy Metals by Biosorption and Regeneration of the Adsorbents. Advances in Environmental Engineering and Green Technologies Book Series, 2024, , 291-306.	0.3	0