The Receptors for Mammalian Sweet and Umami Taste

Cell 115, 255-266 DOI: 10.1016/s0092-8674(03)00844-4

Citation Report

#	Article	IF	CITATIONS
1	Subcellular distribution of epothilones in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11743-11748.	3.3	36
2	Alcohol Activates a Sucrose-Responsive Gustatory Neural Pathway. Journal of Neurophysiology, 2004, 92, 536-544.	0.9	72
3	Taste Perception: Cracking the Code. PLoS Biology, 2004, 2, e64.	2.6	19
4	Chemosensory G-Protein-Coupled Receptor Signaling in the Brain. International Review of Neurobiology, 2004, 62, 147-157.	0.9	0
5	Different functional roles of T1R subunits in the heteromeric taste receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14258-14263.	3.3	465
6	Responses of the Rat Chorda Tympani Nerve to Glutamate-Sucrose Mixtures. Chemical Senses, 2004, 29, 473-482.	1.1	20
7	Female Rats show a Bimodal Preference Response to the Artificial Sweetener Sucralose. Chemical Senses, 2004, 29, 523-528.	1.1	41
8	Bitter Taste Receptors for Saccharin and Acesulfame K. Journal of Neuroscience, 2004, 24, 10260-10265.	1.7	315
9	Umami Taste Responses Are Mediated by Â-Transducin and Â-Gustducin. Journal of Neuroscience, 2004, 24, 7674-7680.	1.7	139
10	Stimulus Processing of Glycine is Dissociable from that of Sucrose and Glucose Based on Behaviorally Measured Taste Signal Detection in Sac 'Taster' and 'Non-taster' Mice. Chemical Senses, 2004, 29, 639-649.	1.1	45
11	The Cysteine-rich Region of T1R3 Determines Responses to Intensely Sweet Proteins. Journal of Biological Chemistry, 2004, 279, 45068-45075.	1.6	247
12	Glutamate Taste: Discrimination between the Tastes of Glutamate Agonists and Monosodium Glutamate in Rats. Chemical Senses, 2004, 29, 291-299.	1.1	24
13	Monosodium Glutamate and Sweet Taste: Discrimination between the Tastes of Sweet Stimuli and Glutamate in Rats. Chemical Senses, 2004, 29, 721-729.	1.1	35
14	Allelic Variation of the Tas1r3 Taste Receptor Gene Selectively Affects Behavioral and Neural Taste Responses to Sweeteners in the F2 Hybrids between C57BL/6ByJ and 129P3/J Mice. Journal of Neuroscience, 2004, 24, 2296-2303.	1.7	84
15	Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14830-14834.	3.3	51
16	Oral Zinc Sulfate Solutions Inhibit Sweet Taste Perception. Chemical Senses, 2004, 29, 513-521.	1.1	44
17	Behavioral Comparisons of the Tastes of L-Alanine and Monosodium Glutamate in Rats. Chemical Senses, 2004, 29, 807-814.	1.1	16
18	The Relative Affective Potency of Clycine, L-Serine and Sucrose as Assessed by a Brief-access Taste Test in Inbred Strains of Mice. Chemical Senses, 2004, 29, 489-498.	1.1	55

#	Article	IF	CITATIONS
19	RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. European Journal of Neuroscience, 2004, 19, 1535-1544.	1.2	30
20	Genes and ligands for odorant, vomeronasal and taste receptors. Nature Reviews Neuroscience, 2004, 5, 263-278.	4.9	589
21	Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nature Structural and Molecular Biology, 2004, 11, 706-713.	3.6	249
22	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432, 695-716.	13.7	2,421
23	GPCR interacting proteins (GIP). , 2004, 103, 203-221.		238
24	The sweet and the bitter of mammalian taste. Current Opinion in Neurobiology, 2004, 14, 423-427.	2.0	104
25	Taste Perception: How to Make a Gourmet Mouse. Current Biology, 2004, 14, R118-R120.	1.8	9
26	Taste Perception and Coding in Drosophila. Current Biology, 2004, 14, 1065-1079.	1.8	348
27	Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. European Journal of Pharmacology, 2004, 489, 139-149.	1.7	71
28	Variation in Intake of Sweet and Bitter Solutions by Inbred Strains of Golden Hamsters. Behavior Genetics, 2004, 34, 465-476.	1.4	10
30	'Thermal Taste' Predicts Higher Responsiveness to Chemical Taste and Flavor. Chemical Senses, 2004, 29, 617-628.	1.1	116
31	Genetics of Human Taste Perception. Journal of Dental Research, 2004, 83, 448-453.	2.5	138
32	Taste Representations in the Drosophila Brain. Cell, 2004, 117, 981-991.	13.5	408
33	Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction. Neuron, 2004, 43, 703-714.	3.8	1,159
34	The sixth taste?. Appetite, 2004, 43, 1-3.	1.8	100
35	Dimerization of $\hat{I}\pm 1$ -adrenoceptors. Biochemical Society Transactions, 2004, 32, 847-850.	1.6	9
36	Sense of Taste in a New World Monkey, the Common Marmoset. II. Link Between Behavior and Nerve Activity. Journal of Neurophysiology, 2004, 92, 1067-1076.	0.9	31
37	Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochemical Society Transactions, 2005, 33, 302-305.	1.6	334

#	Article	IF	CITATIONS
38	Interaction of gymnemic acid with cyclodextrins analyzed by isothermal titration calorimetry, NMR and dynamic light scattering. FEBS Journal, 2005, 272, 6154-6160.	2.2	16
39	HUMAN TASTE GENETICS. Annual Review of Genomics and Human Genetics, 2005, 6, 217-235.	2.5	152
40	A Hypothesis for the Chemical Basis for Perception of Sour Taste. Journal of Food Science, 2005, 70, R44-R48.	1.5	22
41	Decreased Oral Self-Administration of Alcohol In ??-Opioid Receptor Knock-Out Mice. Alcoholism: Clinical and Experimental Research, 2005, 29, 730-738.	1.4	107
42	Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning. Nature, 2005, 434, 229-234.	13.7	200
43	The receptors and coding logic for bitter taste. Nature, 2005, 434, 225-229.	13.7	470
44	Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS Journal, 2005, 272, 2947-2955.	2.2	146
45	Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli. Current Biology, 2005, 15, 1948-1952.	1.8	267
46	Effect of metabotropic glutamate receptor agonists and signal transduction modulators on feeding by a caterpillar. Pharmacology Biochemistry and Behavior, 2005, 82, 678-685.	1.3	3
47	Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis. BMC Evolutionary Biology, 2005, 5, 41.	3.2	31
48	Monatin, Its Stereoisomers and Derivatives: Modeling the Sweet Taste Chemoreception Mechanism. European Journal of Organic Chemistry, 2005, 2005, 2518-2525.	1.2	13
49	Sugar concentration of fruits and their detection via color in the Central American spider monkey (Ateles geoffroyi). American Journal of Primatology, 2005, 67, 411-423.	0.8	35
50	Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biology, 2005, 3, 3.	1.7	28
51	Two ethnic-specific polymorphisms in the human Agouti-related protein gene are associated with macronutrient intake. American Journal of Clinical Nutrition, 2005, 82, 1097-1101.	2.2	43
52	Lactisole Interacts with the Transmembrane Domains of Human T1R3 to Inhibit Sweet Taste. Journal of Biological Chemistry, 2005, 280, 15238-15246.	1.6	262
53	Initial Licking Responses of Mice to Sweeteners: Effects of Tas1r3 Polymorphisms. Chemical Senses, 2005, 30, 601-614.	1.1	58
54	Cloning and Characterization of a Novel mGluR1 Variant from Vallate Papillae that Functions as a Receptor for L-glutamate Stimuli. Chemical Senses, 2005, 30, i25-i26.	1.1	102
55	Mouse Strain Differences in Gurmarin-sensitivity of Sweet Taste Responses Are Not Associated with Polymorphisms of the Sweet Receptor Gene, Tas1r3. Chemical Senses, 2005, 30, 491-496.	1.1	11

#	Article	IF	CITATIONS
56	Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance. Pharmacological Reviews, 2005, 57, 289-298.	7.1	338
57	Heterodimerization with β2-Adrenergic Receptors Promotes Surface Expression and Functional Activity of α1D-Adrenergic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 16-23.	1.3	124
58	Pheromone reception in mammals. , 2005, 154, 1-35.		33
59	PLCβ2-Independent Behavioral Avoidance of Prototypical Bitter-Tasting Ligands. Chemical Senses, 2005, 30, 593-600.	1.1	75
60	The Representation of Taste Quality in the Mammalian Nervous System. Behavioral and Cognitive Neuroscience Reviews, 2005, 4, 143-191.	3.9	164
61	Signal Transduction of Umami Taste: Insights from Knockout Mice. Chemical Senses, 2005, 30, i33-i34.	1.1	9
62	What the Tongue Tells the Brain about Taste. Chemical Senses, 2005, 30, i68-i69.	1.1	19
63	Structure–Sweetness Relationship in Egg White Lysozyme: Role of Lysine and Arginine Residues on the Elicitation of Lysozyme Sweetness. Chemical Senses, 2005, 30, 667-681.	1.1	53
64	Identification of the Cyclamate Interaction Site within the Transmembrane Domain of the Human Sweet Taste Receptor Subunit T1R3. Journal of Biological Chemistry, 2005, 280, 34296-34305.	1.6	191
65	Mammalian G Proteins and Their Cell Type Specific Functions. Physiological Reviews, 2005, 85, 1159-1204.	13.1	957
66	Contribution of α-Gustducin to Taste-guided Licking Responses of Mice. Chemical Senses, 2005, 30, 299-316.	1.1	95
67	Genetic Tracing Shows Segregation of Taste Neuronal Circuitries for Bitter and Sweet. Science, 2005, 309, 781-785.	6.0	107
68	Downstream Signaling Effectors for Umami Taste. Chemical Senses, 2005, 30, i31-i32.	1.1	1
69	Introductory Remarks on Umami Research: Candidate Receptors and Signal Transduction Mechanisms on Umami. Chemical Senses, 2005, 30, i21-i22.	1.1	1
70	The Influence of Chemical Gustatory Stimuli and Oral Anaesthesia on Healthy Human Pharyngeal Swallowing. Chemical Senses, 2005, 30, 393-400.	1.1	103
71	Extracellular Acid Block and Acid-enhanced Inactivation of the Ca2+-activated Cation Channel TRPM5 Involve Residues in the S3-S4 and S5-S6 Extracellular Domains. Journal of Biological Chemistry, 2005, 280, 20691-20699.	1.6	53
72	Sensory Systems: Taste Perception. Science Signaling, 2005, 2005, tr20-tr20.	1.6	8
73	Multiple Pathways for Signaling Glutamate Taste in Rodents. Chemical Senses, 2005, 30, i29-i30.	1.1	7

ARTICLE IF CITATIONS # Elucidation of mammalian bitter taste., 2005, 154, 37-72. 125 75 Peripheral gustatory processing of sweet stimuli by golden hamsters. Brain Research Bulletin, 2005, 1.4 66, 70-84. High yield secretion of the sweet-tasting protein lysozyme from the yeast Pichia pastoris. Protein 77 0.6 34 Expression and Purification, 2005, 39, 35-42. Drinking spout orifice size affects licking behavior in inbred mice. Physiology and Behavior, 2005, 85, 78 655-661. Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are 79 1.3 18 selectively expressed in taste receptor cells. Genomics, 2005, 85, 472-482. Taste Recognition: Food for Thought. Neuron, 2005, 48, 455-464. 3.8 Sweet proteins – Potential replacement for artificial low calorie sweeteners. Nutrition Journal, 2005, 81 1.5 122 4, 5. Two families of candidate taste receptors in fishes. Mechanisms of Development, 2005, 122, 1310-1321. 1.7 109 83 Chemical Geneticsâ€. Chemical Reviews, 2006, 106, 2476-2530. 23.0 293 84 Gustation. Fish Physiology, 2006, 25, 45-96. 0.2 Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value?. Science, 2006, 311, 815-819. 85 6.0 589 Orthogonal Activation of the Reengineered A3 Adenosine Receptor (Neoceptor) Using Tailored 86 Nucleoside Agonists. Journal of Medicinal Chemistry, 2006, 49, 2689-2702. Interchromosomal Interactions and Olfactory Receptor Choice. Cell, 2006, 126, 403-413. 87 13.5 543 Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1.2 1078-1084. Contrasting Modes of Evolution Between Vertebrate Sweet/Umami Receptor Genes and Bitter Receptor 89 3.5 236 Genes. Molecular Biology and Evolution, 2006, 23, 292-300. Enhanced sucrose and Polycose preference in sweet $\hat{a} \in \hat{c}$ sensitive $\hat{a} \in (C57BL/6J)$ and $\hat{a} \in \hat{c}$ subsensitive $\hat{a} \in (129P3/J)$ 1.0 mice after experience with these saccharides. Physiology and Behavior, 2006, 87, 745-756. Oral, post-oral and genetic interactions in sweet appetite. Physiology and Behavior, 2006, 89, 525-530. 91 1.0 40 Diverse tastes: Genetics of sweet and bitter perception. Physiology and Behavior, 2006, 88, 215-226.

	C	ITATION REP	ORT	
#	Article		IF	CITATIONS
93	The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes. Physiology and Behavior, 2006, 89, 711-717.		1.0	76
94	Imaging Taste Responses in the Fly Brain Reveals a Functional Map of Taste Category and Behavior. Neuron, 2006, 49, 285-295.		3.8	318
95	Heterogeneous distribution of taste cells in facial and vagal nerve-innervated taste buds. Neuroscience, 2006, 138, 339-350.		1.1	2
96	Water taste: the importance of osmotic sensing in the oral cavity. Journal of Water and Health, 2006 4, 35-40.	, ,	1.1	20
98	Dietary-Free Glutamate: Implications for Research on Fear-Overconsolidation and PTSD. CNS Spectrums, 2006, 11, 14-15.		0.7	2
99	Taste Receptors and Their Variants. , 2006, , 386-411.			2
100	Grape and Wine Biotechnology. , 0, , 453-489.			7
101	Stimulation of taste cells by sweet taste compounds. , 2006, , 3-29.			2
103	Neoculin, a taste-modifying protein, is recognized by human sweet taste receptor. NeuroReport, 200 17, 1241-1244.	16,	0.6	28
104	The Human Sweet Tooth. BMC Oral Health, 2006, 6, S17.		0.8	57
105	Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. Journal of Neurochemistry, 2006, 98, 68-77.	:	2.1	168
106	REGIONAL VARIATION IN SWEET SUPPRESSION. Journal of Sensory Studies, 2006, 21, 348-361.		0.8	5
107	The neural mechanisms of gustation: a distributed processing code. Nature Reviews Neuroscience, 2006, 7, 890-901.		4.9	304
108	The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.		13.7	687
109	The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.		13.7	1,361
110	Comparative chemosensation from receptors to ecology. Nature, 2006, 444, 295-301.		13.7	293
111	Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Archiv European Journal of Physiology, 2006, 453, 125-131.		1.3	55
112	Natural sweet macromolecules: how sweet proteins work. Cellular and Molecular Life Sciences, 2006, 63, 1876-1888.		2.4	64

	CITATION	LEPUKI	
#	Article	IF	CITATIONS
113	Taste perception and coding in the periphery. Cellular and Molecular Life Sciences, 2006, 63, 2000-2015.	2.4	80
114	Signaling in the Chemosensory Systems. Cellular and Molecular Life Sciences, 2006, 63, 1501-1509.	2.4	143
115	Temporal coding in the gustatory system. Neuroscience and Biobehavioral Reviews, 2006, 30, 1145-1160.	2.9	52
116	TRP channels and Ca2+ signaling. Cell Calcium, 2006, 40, 261-275.	1.1	128
117	Gustatory processing: a dynamic systems approach. Current Opinion in Neurobiology, 2006, 16, 420-428.	2.0	74
118	Group IIA phospholipase A2 is coexpressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillae. Journal of Comparative Neurology, 2006, 494, 876-886.	0.9	26
119	Taste dysfunction in patients receiving radiotherapy. Head and Neck, 2006, 28, 508-516.	0.9	84
120	The history of sweet taste: not exactly a piece of cake. Journal of Molecular Recognition, 2006, 19, 188-199.	1.1	35
121	The human perception of taste compounds. , 2006, , 3-35.		1
122	The Liaison of Sweet and Savory. Chemical Senses, 2006, 31, 221-225.	1.1	38
123	Human Taste: Peripheral Anatomy, TasteTransduction, and Coding. , 2006, 63, 152-190.		79
124	Extracellular Production of Neoculin, a Sweet-Tasting Heterodimeric Protein with Taste-Modifying Activity, by Aspergillus oryzae. Applied and Environmental Microbiology, 2006, 72, 3716-3723.	1.4	68
125	Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo. PLoS Biology, 2006, 4, e20.	2.6	852
126	Trpm5 Null Mice Respond to Bitter, Sweet, and Umami Compounds. Chemical Senses, 2006, 31, 253-264.	1.1	289
127	Neurochemistry of the Gustatory System. , 2006, , 109-135.		1
128	Orexin-1 Receptor-Cannabinoid CB1 Receptor Heterodimerization Results in Both Ligand-dependent and -independent Coordinated Alterations of Receptor Localization and Function. Journal of Biological Chemistry, 2006, 281, 38812-38824.	1.6	197
129	Sucrose and Monosodium Glutamate Taste Thresholds and Discrimination Ability of T1R3 Knockout Mice. Chemical Senses, 2006, 31, 351-357.	1.1	110
130	An Analysis of 5'-Inosine and 5'-Guanosine Monophosphate Taste in Rats. Chemical Senses, 2006, 32, 161-172.	1.1	26

#	Article	IF	CITATIONS
131	Umami Responses in Mouse Taste Cells Indicate More than One Receptor. Journal of Neuroscience, 2006, 26, 2227-2234.	1.7	130
132	Influence of Response Variability on the Coding Performance of Central Gustatory Neurons. Journal of Neuroscience, 2006, 26, 7433-7443.	1.7	21
133	The Heterodimeric Sweet Taste Receptor has Multiple Potential Ligand Binding Sites. Current Pharmaceutical Design, 2006, 12, 4591-4600.	0.9	155
134	Genomic structure of swine taste receptor family 1 member 3, <i>TAS1R3</i> , and its expression in tissues. Cytogenetic and Genome Research, 2006, 115, 51-61.	0.6	48
135	Variation in the Human TAS1R Taste Receptor Genes. Chemical Senses, 2006, 31, 599-611.	1.1	112
136	A <i>Drosophila</i> gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14110-14115.	3.3	193
137	Differential Spatial Representation of Taste Modalities in the Rat Gustatory Cortex. Journal of Neuroscience, 2007, 27, 1396-1404.	1.7	199
138	Behavioral Discrimination between Sucrose and Other Natural Sweeteners in Mice: Implications for the Neural Coding of T1R Ligands. Journal of Neuroscience, 2007, 27, 11242-11253.	1.7	38
139	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	7.1	274
140	Environmental Sensing and Signal Transduction Pathways Regulating Morphopathogenic Determinants of Candida albicans. Microbiology and Molecular Biology Reviews, 2007, 71, 348-376.	2.9	457
141	Allelic variation of the <i>Tas1r3</i> taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6- <i>Tas1r3</i> congenic mice. Physiological Genomics, 2007, 32, 82-94.	1.0	67
142	Individual Differences in Perceived Bitterness Predict Liking of Sweeteners. Chemical Senses, 2007, 32, 803-810.	1.1	34
143	The use of bitter blockers to replace salt in food products. , 2007, , 221-230.		4
144	Structure, Pharmacology and Therapeutic Prospects of Family C G-Protein Coupled Receptors. Current Drug Targets, 2007, 8, 169-184.	1.0	222
145	Health issues relating to monosodium glutamate use in the diet. , 2007, , 55-76.		4
146	Characterization of Ligands for Fish Taste Receptors. Journal of Neuroscience, 2007, 27, 5584-5592.	1.7	149
147	Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5163-5168.	3.3	1,683
148	Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 19042-19051.	1.6	40

CITATION REP	PORT

#	Article	IF	CITATIONS
149	Characterization of a UBC13 kinase in Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7845-7850.	3.3	24
150	Expression of T1Rs and Gustducin in Palatal Taste Buds of Mice. Chemical Senses, 2007, 32, 255-262.	1.1	44
151	Allosteric Modulation of the Calcium-Sensing Receptor. Current Neuropharmacology, 2007, 5, 180-186.	1.4	51
152	New tools to build synthetic hormonal pathways. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4777-4778.	3.3	3
153	Abnormal Taste Perception in Mice Lacking the Type 3 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2007, 282, 37225-37231.	1.6	138
155	Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16. American Journal of Clinical Nutrition, 2007, 86, 55-63.	2.2	159
156	Peptide Conversion - A Potential Pathway Modulating G-Protein Signaling. Current Drug Targets, 2007, 8, 147-154.	1.0	31
157	Sensory processing in the brain related to the control of food intake. Proceedings of the Nutrition Society, 2007, 66, 96-112.	0.4	173
158	Comparison of l-monosodium glutamate and l-amino acid taste in rats. Neuroscience, 2007, 148,	1.1	16
	200-278.		
159	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17.	1.2	15
159 160	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589.	1.2 1.0	15 72
159 160 161	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017.	1.2 1.0 13.5	15 72 137
159 160 161 162	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017. Time to maximum sweetness intensity of binary and ternary blends of sweeteners. Food Quality and Preference, 2007, 18, 405-415.	1.2 1.0 13.5 2.3	15 72 137 28
159 160 161 162	200273. Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017. Time to maximum sweetness intensity of binary and ternary blends of sweeteners. Food Quality and Preference, 2007, 18, 405-415. The rat GPRC6A: Cloning and characterization. Gene, 2007, 396, 257-267.	1.2 1.0 13.5 2.3 1.0	15 72 137 28 46
159 160 161 162 163	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017. Time to maximum sweetness intensity of binary and ternary blends of sweeteners. Food Quality and Preference, 2007, 18, 405-415. The rat GPRC6A: Cloning and characterization. Gene, 2007, 396, 257-267. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene, 2007, 396, 170-179.	 1.2 1.0 13.5 2.3 1.0 1.0 	 15 72 137 28 46 33
 159 160 161 162 163 164 165 	200270. Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017. Time to maximum sweetness intensity of binary and ternary blends of sweeteners. Food Quality and Preference, 2007, 18, 405-415. The rat GPRC6A: Cloning and characterization. Gene, 2007, 396, 257-267. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene, 2007, 396, 170-179. Characteristic component odors emerge from mixtures after selective adaptation. Brain Research Bulletin, 2007, 72, 1-9.	 1.2 1.0 13.5 2.3 1.0 1.0 1.4 	 15 72 137 28 46 33 49
 159 160 161 162 163 164 165 166 	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17. Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. Biochemical and Biophysical Research Communications, 2007, 358, 585-589. Prominent Roles for Odorant Receptor Coding Sequences in Allelic Exclusion. Cell, 2007, 131, 1009-1017. Time to maximum sweetness intensity of binary and ternary blends of sweeteners. Food Quality and Preference, 2007, 18, 405-415. The rat GPRC6A: Cloning and characterization. Gene, 2007, 396, 257-267. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback. Gene, 2007, 396, 170-179. Characteristic component odors emerge from mixtures after selective adaptation. Brain Research Bulletin, 2007, 72, 1-9. Response properties of the pharyngeal branch of the glossopharyngeal nerve for umami taste in mice and rats. Neuroscience Letters, 2007, 417, 42-45.	 1.2 1.0 1.3.5 2.3 1.0 1.0 1.4 1.0 	 15 72 137 28 46 33 49 16

		CITATION REPORT		
#	Article		IF	CITATIONS
168	Innate versus learned odour processing in the mouse olfactory bulb. Nature, 2007, 450, 503-5	08.	13.7	596
169	Amino Acid-Sensing Mechanisms: Biochemistry and Behavior. , 2007, , 249-269.			3
170	Evolution of Gustation. , 2007, , 329-339.			0
171	Engineering the Melanocortin-4 Receptor to Control Constitutive and Ligand-Mediated Gs Sign Vivo. PLoS ONE, 2007, 2, e668.	naling In	1.1	15
172	Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor. PLoS ONI e1317.	5, 2007, 2,	1.1	42
173	Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metab Journal of Cellular Physiology, 2007, 213, 834-843.	oolism.	2.0	58
174	The G-protein coupling properties of the human sweet and amino acid taste receptors. Develo Neurobiology, 2007, 67, 948-959.	pmental	1.5	33
175	Architecture of the primary taste center ofDrosophila melanogasterlarvae. Journal of Compara Neurology, 2007, 502, 834-847.	tive	0.9	70
176	Consensus meeting: monosodium glutamate – an update. European Journal of Clinical Nutri 61, 304-313.	tion, 2007,	1.3	203
177	Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the huma European Journal of Neuroscience, 2007, 25, 1855-1864.	n brain.	1.2	197
178	Recovery of two independent sweet taste systems during regeneration of the mouse chorda ty nerve after nerve crush. European Journal of Neuroscience, 2007, 26, 1521-1529.	ympani	1.2	17
179	G-protein-coupled receptors: an update. Acta Physiologica, 2007, 190, 3-7.		1.8	32
180	Seven transmembrane receptors: something old, something new. Acta Physiologica, 2007, 19	0, 9-19.	1.8	259
181	Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes, Brain Behavior, 2007, 7, 070321054409001-???.	n and	1.1	69
182	The neural processing of taste. BMC Neuroscience, 2007, 8, S5.		0.8	34
183	Behavioral genetics and taste. BMC Neuroscience, 2007, 8, S3.		0.8	44
184	Heterodimerization and surface localization of G protein coupled receptors. Biochemical Pharmacology, 2007, 73, 1043-1050.		2.0	42
185	Sugar Receptors in Drosophila. Current Biology, 2007, 17, 1809-1816.		1.8	198

#	Article	IF	CITATIONS
186	Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment. Science, 2007, 315, 1723-1725.	6.0	209
187	Taste Receptor Genes. Annual Review of Nutrition, 2007, 27, 389-414.	4.3	373
188	Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugers Archiv European Journal of Physiology, 2007, 454, 735-747.	1.3	71
189	Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776.	1.3	251
190	Transdisciplinary Perspectives on Sweetness. Chemosensory Perception, 2008, 1, 48-57.	0.7	37
191	The taste of sugars. Neuroscience and Biobehavioral Reviews, 2008, 32, 1024-1043.	2.9	49
192	Dimerization and oligomerization of G-protein-coupled receptors: debated structures with established and emerging functions. Journal of Endocrinology, 2008, 196, 435-453.	1.2	84
194	A day in the life of a G proteinâ€coupled receptor: the contribution to function of G proteinâ€coupled receptor dimerization. British Journal of Pharmacology, 2008, 153, S216-29.	2.7	101
195	Engineering GPCR signaling pathways with RASSLs. Nature Methods, 2008, 5, 673-678.	9.0	223
196	Sweet Taste in Man: A Review. Journal of Food Science, 2008, 73, R81-90.	1.5	47
197	The Câ€ŧerminus of the metabotropic glutamate receptor 1b regulates dimerization of the receptor. Journal of Neurochemistry, 2008, 104, 1020-1031.	2.1	16
198	Adenylyl cyclase encoded by <i>AC78C</i> participates in sugar perception in <i>Drosophila melanogaster</i> . European Journal of Neuroscience, 2008, 28, 1956-1966.	1.2	19
199	Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neuroscience, 2008, 9, 96.	0.8	53
200	G protein-coupled receptor dimers: Functional consequences, disease states and drug targets. , 2008, 118, 359-371.		84
201	Central and Peripheral Regulation of Food Intake and Physical Activity: Pathways and Genes. Obesity, 2008, 16, S11-22.	1.5	257
202	Chemistry of Gustatory Stimuli. , 2008, , 27-74.		13
203	Blood Pressure Is Regulated by an α1D-Adrenergic Receptor/Dystrophin Signalosome. Journal of Biological Chemistry, 2008, 283, 18792-18800.	1.6	59
204	Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Molecular and Cellular Neurosciences, 2008, 38, 505-517.	1.0	86

#	Article	IF	CITATIONS
205	Is decreased appetite for food a physiological consequence of alcohol consumption?. Appetite, 2008, 51, 233-243.	1.8	18
206	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	3.8	714
207	A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans. Neuron, 2008, 59, 959-971.	3.8	126
208	Behavioral comparison of sucrose and l-2-amino-4-phosphonobutyrate (l-AP4) tastes in rats: Does l-AP4 have a sweet taste?. Neuroscience, 2008, 155, 522-529.	1.1	4
209	Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E. coli. Protein Expression and Purification, 2008, 58, 263-268.	0.6	45
210	Amino acid and carbohydrate preferences in C57BL/6ByJ and 129P3/J mice. Physiology and Behavior, 2008, 93, 37-43.	1.0	29
211	Gene discovery and the genetic basis of calcium consumption. Physiology and Behavior, 2008, 94, 649-659.	1.0	14
212	The orbitofrontal cortex and beyond: From affect to decision-making. Progress in Neurobiology, 2008, 86, 216-244.	2.8	702
213	Cracking taste codes by tapping into sensory neuron impulse traffic. Progress in Neurobiology, 2008, 86, 245-263.	2.8	33
214	Nutritional Implications of Genetic Taste Variation: The Role of PROP Sensitivity and Other Taste Phenotypes. Annual Review of Nutrition, 2008, 28, 367-388.	4.3	270
215	The Brain, Appetite, and Obesity. Annual Review of Psychology, 2008, 59, 55-92.	9.9	546
216	Gurmarin sensitivity of sweet taste responses is associated with co-expression patterns of T1r2, T1r3, and gustducin. Biochemical and Biophysical Research Communications, 2008, 367, 356-363.	1.0	29
217	The capsaicin receptor participates in artificial sweetener aversion. Biochemical and Biophysical Research Communications, 2008, 376, 653-657.	1.0	30
218	Cα14 is a candidate mediator of sweet/umami signal transduction in the posterior region of the mouse tongue. Biochemical and Biophysical Research Communications, 2008, 376, 504-508.	1.0	39
219	Taste–aroma interactions in a citrus flavoured model beverage system: Similarities and differences between acid and sugar type. Food Quality and Preference, 2008, 19, 323-334.	2.3	50
220	Optimizing oral medications for children. Clinical Therapeutics, 2008, 30, 2120-2132.	1.1	152
221	Studies on Taste: Molecular Biology and Food Science. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1647-1656.	0.6	11
222	Osteoblast expression of an engineered G _s -coupled receptor dramatically increases bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1209-1214.	3.3	96

#	Article	IF	CITATIONS
223	A study of the science of taste: On the origins and influence of the core ideas. Behavioral and Brain Sciences, 2008, 31, 59-75.	0.4	63
224	The labeled line / basic taste versus across-fiber pattern debate: A red herring?. Behavioral and Brain Sciences, 2008, 31, 79-80.	0.4	2
225	Should labeled lines and pattern models be either-or? Issues of scope and definition. Behavioral and Brain Sciences, 2008, 31, 89-90.	0.4	0
226	Synthesizing complex sensations from simple components. Behavioral and Brain Sciences, 2008, 31, 90-91.	0.4	0
227	Taste learning in rodents: Compounds and individual taste cues recognition. Behavioral and Brain Sciences, 2008, 31, 80-81.	0.4	1
228	Language does provide support for basic tastes. Behavioral and Brain Sciences, 2008, 31, 86-87.	0.4	10
229	Basic tastes as cognitive concepts and taste coding as more than spatial. Behavioral and Brain Sciences, 2008, 31, 78-79.	0.4	0
230	The neural structure and organization of taste. Behavioral and Brain Sciences, 2008, 31, 89-89.	0.4	0
231	Taste quality coding in vertebrate receptor molecules and cells. Behavioral and Brain Sciences, 2008, 31, 82-83.	0.4	0
232	And what about basic odors?. Behavioral and Brain Sciences, 2008, 31, 87-88.	0.4	0
233	Salty, bitter, sweet and sour survive unscathed. Behavioral and Brain Sciences, 2008, 31, 76-77.	0.4	3
234	Mathematical techniques and the number of groups. Behavioral and Brain Sciences, 2008, 31, 83-84.	0.4	1
235	The complex facts of taste. Behavioral and Brain Sciences, 2008, 31, 85-86.	0.4	1
236	Basic tastes and basic emotions: Basic problems and perspectives for a nonbasic solution. Behavioral and Brain Sciences, 2008, 31, 88-88.	0.4	9
237	The pervasive core idea in taste is inadequate and misleading. Behavioral and Brain Sciences, 2008, 31, 91-105.	0.4	1
238	The nature of economical coding is determined by the unique properties of objects in the environment. Behavioral and Brain Sciences, 2008, 31, 81-82.	0.4	0
239	On the analysis of spatial neural codes in taste. Behavioral and Brain Sciences, 2008, 31, 84-85.	0.4	0
240	Basic tastes and unique hues. Behavioral and Brain Sciences, 2008, 31, 82-82.	0.4	1

	Сітатіс	n Report	
#	Article	IF	Citations
241	Criteria for basic tastes and other sensory primaries. Behavioral and Brain Sciences, 2008, 31, 77-78.	0.4	0
242	Insights from the colour category controversy. Behavioral and Brain Sciences, 2008, 31, 75-76.	0.4	7
243	Saccharin: Artificial Sweetener, Bitter Tastant, and Sweet Taste Inhibitor. ACS Symposium Series, 2008, , 230-240.	0.5	6
244	Functional Characterization of the Human Sweet Taste Receptor: High-Throughput Screening Assay Development and Structural Function Relation. ACS Symposium Series, 2008, , 368-385.	0.5	12
245	Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiologica Hungarica, 2008, 95, 131-164.	0.9	166
246	Fine Mapping of a Major QTL Influencing Morphine Preference in C57BL/6 and DBA/2 Mice Using Congenic Strains. Neuropsychopharmacology, 2008, 33, 2801-2809.	2.8	18
247	Linoleic acid increases chorda tympani nerve responses to and behavioral preferences for monosodium glutamate by male and female rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R764-R772.	0.9	17
248	The Receptor Basis of Sweet Taste in Mammals. Results and Problems in Cell Differentiation, 2008, 47, 20-23.	0.2	29
249	Involvement of T1R3 in calcium-magnesium taste. Physiological Genomics, 2008, 34, 338-348.	1.0	73
250	Effect of Maillard Reacted Peptides on Human Salt Taste and the Amiloride-Insensitive Salt Taste Receptor (TRPV1t). Chemical Senses, 2008, 33, 665-680.	1.1	50
251	T1R2, T1R3, and the Detection of Sweet Stimuli. ACS Symposium Series, 2008, , 65-75.	0.5	2
252	What Can Psychophysical Studies with Sweetness Inhibitors Teach Us about Taste?. ACS Symposium Series, 2008, , 170-184.	0.5	0
253	Greater Superficial Petrosal Nerve Transection in Rats does not Change Unconditioned Licking Responses to Putatively Sweet Taste Stimuli. Chemical Senses, 2008, 33, 709-723.	1.1	12
254	Genetic Architecture of Sweet Taste. ACS Symposium Series, 2008, , 18-47.	0.5	6
255	A Method to Measure Taste Qualities, Taste Intensity, and Temporal Profile of Compounds Aimed at Human Consumption by Taste Nerve Recordings in Monkeys. ACS Symposium Series, 2008, , 185-201.	0.5	1
256	Sweetness and Sweeteners: What Is All the Excitement About?. ACS Symposium Series, 2008, , 1-16.	0.5	0
257	Multiple Receptor Systems for Clutamate Detection in the Taste Organ. Biological and Pharmaceutical Bulletin, 2008, 31, 1833-1837.	0.6	51
258	Sensory Properties of Neotame: Comparison with Other Sweeteners. ACS Symposium Series, 2008, , 511-529.	0.5	13

#	Article	IF	Citations
259	Molecular Models of Sweet Taste Receptors Provide Insights into Function. ACS Symposium Series, 2008, , 117-132.	0.5	3
260	Comparative Lectin Histochemical Studies on Taste Buds in Five Orders of Mammals. Journal of Veterinary Medical Science, 2008, 70, 65-70.	0.3	5
261	Engineered GPCRs as Tools to Modulate Signal Transduction. Physiology, 2008, 23, 313-321.	1.6	68
262	Heterodimers and Receptor Mosaics of Different Types of G-Protein-Coupled Receptors. Physiology, 2008, 23, 322-332.	1.6	43
263	Making Sense of the Sweet Taste Receptor. ACS Symposium Series, 2008, , 48-64.	0.5	1
264	Quantitative assessment of TRPM5-dependent oral aversiveness of pharmaceuticals using a mouse brief-access taste aversion assay. Behavioural Pharmacology, 2008, 19, 673-682.	0.8	24
265	Genetics and Evolution of Taste. , 2008, , 371-390.		3
266	Patterns of Positive Selection in Six Mammalian Genomes. PLoS Genetics, 2008, 4, e1000144.	1.5	529
267	Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons. PLoS ONE, 2008, 3, e2610.	1.1	24
268	Bitter Taste Receptors Influence Glucose Homeostasis. PLoS ONE, 2008, 3, e3974.	1.1	227
269	TASTE, SMELL AND CHEMESTHESIS IN PRODUCT EXPERIENCE. , 2008, , 91-131.		11
270	Variability in Responses and Temporal Coding of Tastants of Similar Quality in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2008, 99, 644-655.	0.9	55
271	Taste Receptors. , 2008, , 197-217.		5
272	From reward value to decision-making. , 2009, , 97-133.		5
273	Taste, visceral information and exocrine reflexes with glutamate through umami receptors. Journal of Medical Investigation, 2009, 56, 209-217.	0.2	29
274	Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion. PLoS ONE, 2009, 4, e5106.	1.1	254
275	Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Frontiers in Molecular Neuroscience, 2009, 2, 16.	1.4	59
276	Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling. Frontiers in Cellular Neuroscience, 2009, 3, 11.	1.8	26

#	Article	IF	CITATIONS
277	Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 2009, 3, 12.	1.0	210
278	Genetic Variation in Taste and Its Influence on Food Selection. OMICS A Journal of Integrative Biology, 2009, 13, 69-80.	1.0	221
279	Luminal chemosensing and upper gastrointestinal mucosal defenses. American Journal of Clinical Nutrition, 2009, 90, 826S-831S.	2.2	62
280	Mutant 5-Hydroxytryptamine _{1A} Receptor D116A Is a Receptor Activated Solely by Synthetic Ligands with a Rich Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 222-233.	1.3	7
281	Transient Receptor Potential (TRP) Channels and Taste Sensation. Journal of Dental Research, 2009, 88, 212-218.	2.5	64
282	Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E473-E479.	1.8	163
283	Sensory Attributes of Complex Tasting Divalent Salts Are Mediated by TRPM5 and TRPV1 Channels. Journal of Neuroscience, 2009, 29, 2654-2662.	1.7	45
284	Taste and Mouth-Feel Sensations. , 2009, , 129-175.		3
285	Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. American Journal of Physiology - Renal Physiology, 2009, 296, G735-G739.	1.6	201
286	Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647. Chemical Senses, 2009, 34, 789-797.	1.1	44
287	Multiple receptors underlie glutamate taste responses in mice. American Journal of Clinical Nutrition, 2009, 90, 747S-752S.	2.2	56
288	Functional neuroimaging of umami taste: what makes umami pleasant?. American Journal of Clinical Nutrition, 2009, 90, 804S-813S.	2.2	91
289	T1R receptors mediate mammalian sweet and umami taste. American Journal of Clinical Nutrition, 2009, 90, 733S-737S.	2.2	95
290	Umami taste transduction mechanisms. American Journal of Clinical Nutrition, 2009, 90, 753S-755S.	2.2	92
291	The Sour Taste-Modifying Protein (Miraculin), Tyrosinase Inhibitors and Antioxidants from Synsepalum dulcificum. Current Nutrition and Food Science, 2009, 5, 172-179.	0.3	8
292	Luminal l-glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. American Journal of Physiology - Renal Physiology, 2009, 297, G781-G791.	1.6	92
293	Contribution of the T1r3 Taste Receptor to the Response Properties of Central Gustatory Neurons. Journal of Neurophysiology, 2009, 101, 2459-2471.	0.9	46
294	Role of Olfaction in the Conditioned Sucrose Preference of Sweet-Ageusic T1R3 Knockout Mice. Chemical Senses, 2009, 34, 685-694.	1.1	35

#	Article	IF	CITATIONS
295	T1R3 taste receptor is critical for sucrose but not Polycose taste. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R866-R876.	0.9	113
296	Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R960-R971.	0.9	76
297	Analyses of Sweet Receptor Gene (Tas1r2) and Preference for Sweet Stimuli in Species of Carnivora. Journal of Heredity, 2009, 100, S90-S100.	1.0	41
298	T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to polycose: implications for saccharide taste receptors in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R855-R865.	0.9	85
299	Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate. American Journal of Clinical Nutrition, 2009, 90, 789S-799S.	2.2	79
300	Variation in umami perception and in candidate genes for the umami receptor in mice and humans. American Journal of Clinical Nutrition, 2009, 90, 764S-769S.	2.2	62
301	Taste receptors for umami: the case for multiple receptors. American Journal of Clinical Nutrition, 2009, 90, 738S-742S.	2.2	157
302	Glutamate taste and appetite in laboratory mice: physiologic and genetic analyses. American Journal of Clinical Nutrition, 2009, 90, 756S-763S.	2.2	48
303	Monosodium l-glutamate added to a high-energy, high-protein liquid diet promotes gastric emptying. American Journal of Clinical Nutrition, 2009, 89, 431-435.	2.2	58
304	Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes. American Journal of Clinical Nutrition, 2009, 90, 770S-779S.	2.2	120
305	Genetic and Molecular Basis of Individual Differences in Human Umami Taste Perception. PLoS ONE, 2009, 4, e6717.	1.1	108
306	Umami taste dysfunction in patients receiving radiotherapy for head and neck cancer. Oral Oncology, 2009, 45, e19-e23.	0.8	44
307	Sweet, bitter and umami receptors: a complex relationship. Trends in Biochemical Sciences, 2009, 34, 296-302.	3.7	99
308	Evolution of the sugar receptors in insects. BMC Evolutionary Biology, 2009, 9, 41.	3.2	90
309	Genetically-increased taste cell population with G-gustducin-coupled sweet receptors is associated with increase of gurmarin-sensitive taste nerve fibers in mice. BMC Neuroscience, 2009, 10, 152.	0.8	11
310	Voltage-gated sodium channels in taste bud cells. BMC Neuroscience, 2009, 10, 20.	0.8	83
311	Linking peripheral taste processes to behavior. Current Opinion in Neurobiology, 2009, 19, 370-377.	2.0	93
312	Allelic Polymorphism within the TAS1R3 Promoter Is Associated with Human Taste Sensitivity to Sucrose. Current Biology, 2009, 19, 1288-1293.	1.8	185

		CITATION REPORT		
#	Article		IF	Citations
313	Taste Perception: How Sweet It Is (ToÂBe Transcribed by You). Current Biology, 2009, 1	19, R655-R656.	1.8	13
314	Trehalose inhibits inflammatory cytokine production by protecting ll̂ºB-α reduction in n macrophages. Archives of Oral Biology, 2009, 54, 749-756.	nouse peritoneal	0.8	31
315	Molecular mechanisms of taste transduction in vertebrates. Odontology / the Society c Dental University, 2009, 97, 1-7.	of the Nippon	0.9	42
316	Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences, 2009, 6	6, 1661-1671.	2.4	153
317	Primary processes in sensory cells: current advances. Journal of Comparative Physiology Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 1-19.	/ A:	0.7	15
318	The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminis preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. monkey. BMC Physiology, 2009, 9, 1.	hes fascicularis	3.6	34
319	Carbohydrate sensing in the human mouth: effects on exercise performance and brain of Physiology, 2009, 587, 1779-1794.	activity. Journal	1.3	438
320	Interaction between the second messengers cAMP and Ca ²⁺ in mouse proceeds. Journal of Physiology, 2009, 587, 1657-1668.	esynaptic taste	1.3	36
321	Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature, 2 218-223.	009, 459,	13.7	311
322	Molecular genetics and imaging technologies for circuit-based neuroanatomy. Nature, 2 900-907.	2009, 461,	13.7	82
323	Multiple Receptor Systems for Umami Taste in Mice. Annals of the New York Academy (1170, 51-54.	of Sciences, 2009,	1.8	12
324	Behavioral Studies of Umami. Annals of the New York Academy of Sciences, 2009, 117	0, 41-45.	1.8	11
325	Symposium Overview. Annals of the New York Academy of Sciences, 2009, 1170, 39-40	0.	1.8	2
326	Receptors and Transduction of Umami Taste Stimuli. Annals of the New York Academy 2009, 1170, 55-59.	of Sciences,	1.8	28
327	Molecular basis for amino acid sensing by family C Gâ€proteinâ€coupled receptors. Brit Pharmacology, 2009, 156, 869-884.	tish Journal of	2.7	99
328	G proteinâ€coupled receptor heteroâ€dimerization: contribution to pharmacology and Journal of Pharmacology, 2009, 158, 5-14.	function. British	2.7	303
329	Molecular receptors of taste agents. Russian Journal of Bioorganic Chemistry, 2009, 35	, 1-9.	0.3	2
330	The Taste of Carbonation. Science, 2009, 326, 443-445.		6.0	327

#	Article	IF	CITATIONS
331	Phenoxy Herbicides and Fibrates Potently Inhibit the Human Chemosensory Receptor Subunit T1R3. Journal of Medicinal Chemistry, 2009, 52, 6931-6935.	2.9	35
332	Common Sense about Taste: From Mammals to Insects. Cell, 2009, 139, 234-244.	13.5	699
333	Remote Control of Neuronal Activity in Transgenic Mice Expressing Evolved G Protein-Coupled Receptors. Neuron, 2009, 63, 27-39.	3.8	809
334	Antagonism of metabotropic glutamate receptor 4 receptors by (RS)-l±-cyclopropyl-4-phosphonophenylglycine alters the taste of amino acids in rats. Neuroscience, 2009, 163, 1292-1301.	1.1	13
335	Tas1R1–Tas1R3 taste receptor variants in human fungiform papillae. Neuroscience Letters, 2009, 451, 217-221.	1.0	23
336	An Overview on GPCRs and Drug Discovery: Structure-Based Drug Design and Structural Biology on GPCRs. Methods in Molecular Biology, 2009, 552, 51-66.	0.4	111
337	Extraordinary Diversity of Chemosensory Receptor Gene Repertoires Among Vertebrates. Results and Problems in Cell Differentiation, 2009, 47, 57-75.	0.2	45
338	The Sensory Evaluation of Dairy Products. , 2009, , .		99
339	G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, 2009, , .	0.4	5
340	Mammalian Bitter Taste Perception. Results and Problems in Cell Differentiation, 2009, 47, 77-96.	0.2	60
341	Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, 2009, , .	0.2	8
342	Molecular Pharmacology of Promiscuous Seven Transmembrane Receptors Sensing Organic Nutrients. Molecular Pharmacology, 2009, 76, 453-465.	1.0	140
344	Multiple Umami Receptors and Their Variants in Human and Mice. Journal of Health Science, 2009, 55, 674-681.	0.9	12
345	Taste-active Components in Foods, with Concentration on Umami Compounds. Journal of Health Science, 2009, 55, 667-673.	0.9	39
346	Oral carbohydrate sensing and exercise performance. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 447-451.	1.3	101
347	New Frontiers in Gut Nutrient Sensor Research: Monosodium L-Glutamate Added to a High-Energy, High-Protein Liquid Diet Promotes Gastric Emptying: a Possible Therapy for Patients With Functional Dyspepsia. Journal of Pharmacological Sciences, 2010, 112, 33-36.	1.1	15
348	T1r3 taste receptor involvement in gustatory neural responses to ethanol and oral ethanol preference. Physiological Genomics, 2010, 41, 232-243.	1.0	31
349	Major Differences in the Proportion of Amino Acid Fiber Types Transmitting Taste Information From Oral and Extraoral Regions in the Channel Catfish. Journal of Neurophysiology, 2010, 103, 2062-2073.	0.9	9

#	Article	IF	CITATIONS
351	Gustatory Signaling in the Periphery: Detection, Transmission, and Modulation of Taste Information. Biological and Pharmaceutical Bulletin, 2010, 33, 1772-1777.	0.6	37
352	Relating Food Emulsion Structure and Composition to the Way It Is Processed in the Gastrointestinal Tract and Physiological Responses: What Are the Opportunities?. Food Biophysics, 2010, 5, 258-283.	1.4	91
353	The Representation of Information About Taste and Odor in the Orbitofrontal Cortex. Chemosensory Perception, 2010, 3, 16-33.	0.7	69
354	Broad-spectrum amino acid-sensing class C G-protein coupled receptors: Molecular mechanisms, physiological significance and options for drug development. , 2010, 127, 252-260.		68
355	Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Research, 2010, 1325, 53-62.	1.1	59
356	Neural architecture of the primary gustatory center of <i>Drosophila melanogaster</i> visualized with GAL4 and LexA enhancerâ€trap systems. Journal of Comparative Neurology, 2010, 518, 4147-4181.	0.9	74
357	Gs G protein–coupled receptor signaling in osteoblasts elicits age-dependent effects on bone formation. Journal of Bone and Mineral Research, 2010, 25, 584-593.	3.1	26
359	Carbonic Anhydraseâ€IV Mediates the Fizz of Carbonated Beverages. Angewandte Chemie - International Edition, 2010, 49, 2975-2977.	7.2	34
360	Sweet neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1139-1143.	2.5	5
361	lonotropic and metabotropic mechanisms in chemoreception: 'chance or design'?. EMBO Reports, 2010, 11, 173-179.	2.0	88
362	The cells and peripheral representation of sodium taste in mice. Nature, 2010, 464, 297-301.	13.7	550
363	The role of the Sac locus in the alcohol taste preference in inbred mouse strains. Doklady Biological Sciences, 2010, 432, 181-183.	0.2	3
364	Designing customized cell signalling circuits. Nature Reviews Molecular Cell Biology, 2010, 11, 393-403.	16.1	237
365	Soy Sauce and Its Umami Taste: A Link from the Past to Current Situation. Journal of Food Science, 2010, 75, R71-6.	1.5	94
366	Ryanodine receptors selectively contribute to the formation of tasteâ€evoked calcium signals in mouse taste cells. European Journal of Neuroscience, 2010, 32, 1825-1835.	1.2	16
367	Taste, Olfactory and Food-texture Processing in the Brain and the Control of Appetite. , 2010, , 41-56.		7
368	Water as an Independent Taste Modality. Frontiers in Neuroscience, 2010, 4, 175.	1.4	44
369	G Proteins in Gustatory Transduction. , 2010, , 1721-1726.		0

#	Article	IF	CITATIONS
370	SensopercepciÃ ³ n Gustativa: una RevisiÃ ³ n. International Journal of Odontostomatology, 2010, 4, 161-168.	0.0	4
371	Evolution of the Sweet Taste Receptor Gene Tas1r2 in Bats. Molecular Biology and Evolution, 2010, 27, 2642-2650.	3.5	82
372	Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. Journal of Cell Science, 2010, 123, 972-982.	1.2	65
373	Pharmacologic Antagonism of the Oral Aversive Taste-Directed Response to Capsaicin in a Mouse Brief Access Taste Aversion Assay. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 525-530.	1.3	12
374	G-protein-coupled receptor heteromer dynamics. Journal of Cell Science, 2010, 123, 4215-4220.	1.2	46
375	Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Molecular Biology and Evolution, 2010, 27, 2669-2673.	3.5	186
376	Oligomerization of TAS2R Bitter Taste Receptors. Chemical Senses, 2010, 35, 395-406.	1.1	74
377	Genetics of Taste and Smell. Progress in Molecular Biology and Translational Science, 2010, 94, 213-240.	0.9	212
379	Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17791-17796.	3.3	122
380	Glucagon signaling modulates sweet taste responsiveness. FASEB Journal, 2010, 24, 3960-3969.	0.2	66
381	Taste Preference for Fatty Acids Is Mediated by GPR40 and GPR120. Journal of Neuroscience, 2010, 30, 8376-8382.	1.7	347
382	Lrmp/Jaw1 is Expressed in Sweet, Bitter, and Umami Receptor-Expressing Cells. Chemical Senses, 2010, 35, 171-177.	1.1	30
383	Taste Solution Consumption by FHH-Chr nBN Consomic Rats. Chemical Senses, 2010, 35, 473-489.	1.1	6
384	Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1643-R1650.	0.9	84
385	Taste does not determine daily intake of dilute sugar solutions in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1333-R1341.	0.9	28
386	Ligand-Mediated Activation of an Engineered Gs G Protein-Coupled Receptor in Osteoblasts Increases Trabecular Bone Formation. Molecular Endocrinology, 2010, 24, 621-631.	3.7	16
387	Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obsese individuals in 2 distinct populations. American Journal of Clinical Nutrition, 2010, 92, 1501-1510.	2.2	132
388	The T1R2/T1R3 Sweet Receptor and TRPM5 Ion Channel. Progress in Molecular Biology and Translational Science, 2010, 91, 151-208.	0.9	16

ARTICLE IF CITATIONS # The Emerging Role of Promiscuous 7TM Receptors as Chemosensors for Food Intake. Vitamins and 389 0.7 22 Hormones, 2010, 84, 151-184. Carbohydrate mouth rinse: does it improve endurance exercise performance?. Nutrition Journal, 2010, 1.5 9, 33. 391 The cell biology of taste. Journal of Cell Biology, 2010, 190, 285-296. 2.3 689 Effect of Oxidized Arachidonic Acid and Hexanal on the Mouse Taste Perception of Bitterness and Umami. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1884-1890. Functional crosstalk between GPCRs: with or without oligomerization. Current Opinion in 393 1.7 95 Pharmacology, 2010, 10, 6-13. Generation and characterization of T1R2-LacZ knock-in mouse. Biochemical and Biophysical Research 394 1.0 Communications, 2010, 402, 495-499. 395 Coding in the mammalian gustatory system. Trends in Neurosciences, 2010, 33, 326-334. 4.2 162 An analysis of licking microstructure in three strains of mice. Appetite, 2010, 54, 320-330. 396 1.8 New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. International 397 1.6 27 Review of Cell and Molecular Biology, 2010, 279, 101-134. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species. Chemical 1.1 38 Senses, 2011, 36, 453-475. The Gustatory and Olfactory Systems During Infancy: Implications for Development of Feeding 399 0.8 83 Behaviors in the High-Risk Neonate. Clinics in Perinatology, 2011, 38, 627-641. Sensory Functions for Degenerin/Epithelial Sodium Channels (DEG/ENaC). Advances in Genetics, 2011, 400 0.8 74 76, 1-26. Comparison of differences between PWD/PhJ and C57BL/6J mice in calcium solution preferences and 401 1.0 8 chorda tympani nerve responses. Physiology and Behavior, 2011, 102, 496-502. Metabolic Sensing in Brain Dopamine Systems. Results and Problems in Cell Differentiation, 2011, 52, 0.2 69-86. Constitutive Gs activation using a single-construct tetracycline-inducible expression system in 403 2.4 9 embryonic stem cells and mice. Stem Cell Research and Therapy, 2011, 2, 11. A Gustotopic Map of Taste Qualities in the Mammalian Brain. Science, 2011, 333, 1262-1266. 404 335 The sweet taste of true synergy: positive allosteric modulation of the human sweet taste receptor. 405 4.0 62 Trends in Pharmacological Sciences, 2011, 32, 631-636. The Molecular and Cellular Basis of Bitter Taste in Drosophila. Neuron, 2011, 69, 258-272. 3.8 346

#	Article	IF	CITATIONS
407	Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology, 2011, 61, 770-777.	2.0	98
408	Cyclophosphamide-induced disruption of umami taste functions and taste epithelium. Neuroscience, 2011, 192, 732-745.	1.1	34
409	Sensing Via Intestinal Sweet Taste Pathways. Frontiers in Neuroscience, 2011, 5, 23.	1.4	56
410	Stereoselective Synthesis of Amides Sharing the Guanosine 5′-Monophosphate Scaffold and Umami Enhancement Studies Using Human Sensory and hT1R1/rT1R3 Receptor Assays. Journal of Agricultural and Food Chemistry, 2011, 59, 8875-8885.	2.4	13
411	Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2–T1R3 sweet receptors. Biochemical and Biophysical Research Communications, 2011, 413, 41-45.	1.0	35
412	Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats. Journal of Neurophysiology, 2011, 106, 3145-3156.	0.9	13
414	Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals. PLoS ONE, 2011, 6, e22602.	1.1	49
415	A Basic Knowledge of Sweetness. Journal of the Brewing Society of Japan, 2011, 106, 818-825.	0.1	5
416	Segregation of gustatory cortex in response to salt and umami taste studied through event-related potentials. NeuroReport, 2011, 22, 299-303.	0.6	21
417	Smell, Taste, and Flavor. Chemical and Functional Properties of Food Components Series, 2011, , 35-64.	0.1	2
418	Expression of α-gustducin in mammalian retinas. NeuroReport, 2011, 22, 146-150.	0.6	5
419	Pleasure Molecules. , 2011, , 140-167.		Ο
420	Man-Made Healers. , 2011, , 190-213.		0
421	G proteinâ€coupled receptors: walking handâ€inâ€hand, talking handâ€inâ€hand?. British Journal of Pharmacology, 2011, 163, 246-260.	2.7	36
422	Luminal chemosensing in the duodenal mucosa. Acta Physiologica, 2011, 201, 77-84.	1.8	26
423	THE NEURAL REPRESENTATION OF ORAL TEXTURE INCLUDING FAT TEXTURE. Journal of Texture Studies, 2011, 42, 137-156.	1.1	45
424	Taste, olfactory and food texture reward processing in the brain and obesity. International Journal of Obesity, 2011, 35, 550-561.	1.6	143
425	Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior, 2011, 105, 4-13.	1.0	194

#	Article	IF	CITATIONS
426	The functional role of the T1R family of receptors in sweet taste and feeding. Physiology and Behavior, 2011, 105, 14-26.	1.0	72
427	Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiology and Behavior, 2011, 104, 709-721.	1.0	158
428	Remembering Nutrient Quality of Sugar in Drosophila. Current Biology, 2011, 21, 746-750.	1.8	165
429	Umami taste receptor functions as an amino acid sensor via Gαs subunit in N1E-115 neuroblastoma cells. Journal of Cellular Biochemistry, 2011, 113, n/a-n/a.	1.2	6
430	Allosteric Modulation of Family C G-Protein-Coupled Receptors: from Molecular Insights to Therapeutic Perspectives. Pharmacological Reviews, 2011, 63, 59-126.	7.1	193
431	Invited Review Article: An odor-sensing system—powerful technique for foodstuff studies. Review of Scientific Instruments, 2011, 82, 111101.	0.6	74
432	Expression of taste receptors in Solitary Chemosensory Cells of rodent airways. BMC Pulmonary Medicine, 2011, 11, 3.	0.8	198
433	Chemosensory processing in the tasteâ€reward pathway. Flavour and Fragrance Journal, 2011, 26, 231-238.	1.2	18
434	Genetics of sweet taste preferences. Flavour and Fragrance Journal, 2011, 26, 286-294.	1.2	67
435	Mutually exclusive expression of $G\hat{I}$ tia and $G\hat{I}$ t14 reveals diversification of taste receptor cells in zebrafish. Journal of Comparative Neurology, 2011, 519, 1616-1629.	0.9	38
438	Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angewandte Chemie - International Edition, 2011, 50, 2220-2242.	7.2	146
439	Optochemical Genetics. Angewandte Chemie - International Edition, 2011, 50, 12156-12182.	7.2	341
440	Transgenic mice: beyond the knockout. American Journal of Physiology - Renal Physiology, 2011, 300, F291-F300.	1.3	21
441	Remote Control of Neuronal Signaling. Pharmacological Reviews, 2011, 63, 291-315.	7.1	293
442	A comparative analysis of neural taste processing in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2171-2180.	1.8	26
443	Behavioral Evidence for a Glucose Polymer Taste Receptor That Is Independent of the T1R2+3 Heterodimer in a Mouse Model. Journal of Neuroscience, 2011, 31, 13527-13534.	1.7	69
444	Characterization of Human Fungiform Papillae Cells in Culture. Chemical Senses, 2011, 36, 601-612.	1.1	27
445	Reduced Sweetness of a Monellin (MNEI) Mutant Results from Increased Protein Flexibility and Disruption of a Distant Poly-(L-Proline) II Helix. Chemical Senses, 2011, 36, 425-434.	1.1	20

#	Article	IF	CITATIONS
446	Duodenal Chemosensing and Mucosal Defenses. Digestion, 2011, 83, 25-31.	1.2	22
447	CABA, Its Receptors, and GABAergic Inhibition in Mouse Taste Buds. Journal of Neuroscience, 2011, 31, 5782-5791.	1.7	59
448	Genetic Approaches to Reveal the Connectivity of Adult-Born Neurons. Frontiers in Neuroscience, 2011, 5, 48.	1.4	9
449	Glucose transporters and ATP-gated K ⁺ (K _{ATP}) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5431-5436.	3.3	181
451	Human Genetic Polymorphisms in T1R1 and T1R3 Taste Receptor Subunits Affect Their Function. Chemical Senses, 2011, 36, 527-537.	1.1	58
452	Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats. Journal of Neurophysiology, 2011, 106, 2606-2621.	0.9	24
453	Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R218-R235.	0.9	50
454	Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1351-R1363.	0.9	5
455	The consequences of gustatory deafferentation on body mass and feeding patterns in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R611-R623.	0.9	12
456	Gustatory neural responses to umami stimuli in the parabrachial nucleus of C57BL/6J mice. Journal of Neurophysiology, 2012, 107, 1545-1555.	0.9	26
457	Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E464-E474.	1.8	60
458	Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. British Journal of Nutrition, 2012, 107, 621-630.	1.2	100
459	Genomic and Genetic Evidence for the Loss of Umami Taste in Bats. Genome Biology and Evolution, 2012, 4, 73-79.	1.1	51
460	Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 336-344.	1.7	55
461	Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. British Journal of Nutrition, 2012, 108, 778-793.	1.2	42
462	Brain Responses to High-Protein Diets. Advances in Nutrition, 2012, 3, 322-329.	2.9	80
463	Mechanisms for Sweetness. Journal of Nutrition, 2012, 142, 1134S-1141S.	1.3	90
464	Nutritional sensing and its utility in treating obesity. Expert Review of Endocrinology and Metabolism, 2012, 7, 209-221.	1.2	0

#	Article	IF	CITATIONS
465	Overview of sensory perception. , 2012, , 3-23.		2
466	Improvement of the bitter taste of drugs by complexation with cyclodextrins: applications, evaluations and mechanisms. Therapeutic Delivery, 2012, 3, 633-644.	1.2	43
467	Pathophysiology of GPCR Homo- and Heterodimerization: Special Emphasis on Somatostatin Receptors. Pharmaceuticals, 2012, 5, 417-446.	1.7	20
468	Do Pancreatic β Cells "Taste―Nutrients to Secrete Insulin?. Science Signaling, 2012, 5, pe36.	1.6	35
469	Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli. Journal of Neurophysiology, 2012, 108, 3221-3232.	0.9	11
472	Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proceedings of the Nutrition Society, 2012, 71, 488-501.	0.4	98
473	Effect of NaCl and sucrose tastants on protein composition of oral fluid analysed by SELDI-TOF-MS. Archives of Oral Biology, 2012, 57, 1200-1210.	0.8	11
474	Genetic Predisposition and Taste Preference: Impact on Food Intake and Risk of Chronic Disease. Current Nutrition Reports, 2012, 1, 175-183.	2.1	18
475	Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1119-R1133.	0.9	160
476	JAK/STAT: The Enigma within the Mystery of NMDAR-LTD. Neuron, 2012, 73, 211-213.	3.8	4
477	Food for Thought: The Physiological Relevance of Ghrelin and Dopamine D2 Receptor Heterodimerization in the Regulation of Appetite. Neuron, 2012, 73, 210-211.	3.8	2
478	Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor. Protein Expression and Purification, 2012, 83, 75-83.	0.6	36
479	The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, 2012, 107, 50-58.	1.0	46
480	G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 2012, 11, 603-619.	21.5	209
481	Glucose transporter/T1R3â€expressing cells in rat tracheal epithelium. Journal of Anatomy, 2012, 221, 138-150.	0.9	18
482	G proteinâ€coupled receptors participate in cytokinesis. Cytoskeleton, 2012, 69, 810-818.	1.0	69
483	Umami taste in mice uses multiple receptors and transduction pathways. Journal of Physiology, 2012, 590, 1155-1170.	1.3	87
484	Primary Processes in Sensory Cells: Current Advances. Advances in Experimental Medicine and Biology, 2012, 739, 32-58.	0.8	1

	CITATION	Report	
#	Article	IF	Citations
485	Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Biochemical and Biophysical Research Communications, 2012, 427, 431-437.	1.0	24
486	Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiology and Behavior, 2012, 107, 533-539.	1.0	28
487	The association of bovine T1R family of receptors polymorphisms with cattle growth traits. Research in Veterinary Science, 2012, 93, 783-787.	0.9	8
488	Primary Culture of Mammalian Taste Epithelium. Methods in Molecular Biology, 2012, 945, 95-107.	0.4	14
489	Nutrient sensing and signalling by the gut. Proceedings of the Nutrition Society, 2012, 71, 446-455.	0.4	67
490	Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Research, 2012, 1475, 1-10.	1.1	58
491	Genetic Labeling of Tas1r1 and Tas2r131 Taste Receptor Cells in Mice. Chemical Senses, 2012, 37, 897-911.	1.1	70
492	Gustatory sensation of I- and d-amino acids in humans. Amino Acids, 2012, 43, 2349-2358.	1.2	134
493	Occurrence and role of umami molecules in foods. International Journal of Food Sciences and Nutrition, 2012, 63, 871-881.	1.3	22
494	Taste Preferences. Progress in Molecular Biology and Translational Science, 2012, 108, 383-426.	0.9	25
496	The Emotional Systems. , 2012, , 1328-1350.		5
497	The Neurobiology of Gustation. , 2012, , 741-767.		1
499	Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E524-32.	3.3	187
500	The Calcium-Sensing Receptor Beyond Extracellular Calcium Homeostasis: Conception, Development, Adult Physiology, and Disease. Annual Review of Physiology, 2012, 74, 271-297.	5.6	124
501	Changing Senses: Chemosensory Signaling and Primate Evolution. Advances in Experimental Medicine and Biology, 2012, 739, 206-217.	0.8	8
502	Taste Perception, Race, and Ethnicity: A Novel Link to Differences in Cardiometabolic Risk?. Current Cardiovascular Risk Reports, 2012, 6, 238-244.	0.8	2
503	Patterns of immunoreactivity specific for gustducin and for NCAM differ in developing rat circumvallate papillae and their taste buds. Acta Histochemica, 2012, 114, 259-269.	0.9	0
504	Taste receptor signalling – from tongues to lungs. Acta Physiologica, 2012, 204 <u>, 158-168.</u>	1.8	201 _

	CITATION	Report	
#	Article	IF	CITATIONS
505	Detecting sweet and umami tastes in the gastrointestinal tract. Acta Physiologica, 2012, 204, 169-177.	1.8	20
506	Sweeteners interacting with the transmembrane domain of the human sweet-taste receptor induce sweet-taste synergisms in binary mixtures. Food Chemistry, 2012, 130, 561-568.	4.2	33
507	Mechanism of taste; electrochemistry, receptors and signal transduction. Journal of Electrostatics, 2012, 70, 7-14.	1.0	10
508	Behavioral responses to glutamate receptor agonists and antagonists implicate the involvement of brain-expressed mGluR4 and mGluR1 in taste transduction for umami in mice. Physiology and Behavior, 2012, 105, 709-719.	1.0	29
509	The gut–brain dopamine axis: A regulatory system for caloric intake. Physiology and Behavior, 2012, 106, 394-399.	1.0	115
510	Minireview: Nutrient Sensing by G Protein-Coupled Receptors. Molecular Endocrinology, 2013, 27, 1188-1197.	3.7	69
511	Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience, 2013, 250, 166-180.	1.1	6
512	Functional dissection of sweet and bitter taste pathways. Journal of Oral Biosciences, 2013, 55, 66-72.	0.8	7
513	Complex evolutionary history of the vertebrate sweet/umami taste receptor genes. Science Bulletin, 2013, 58, 2198-2204.	1.7	20
514	Functional diversification of taste cells in vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 210-214.	2.3	15
515	Oligomerization of Sweet and Bitter Taste Receptors. Methods in Cell Biology, 2013, 117, 229-242.	0.5	10
516	Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity?. Chemical Senses, 2013, 38, 719-728.	1.1	23
517	Enteroendocrine profile of α-transducin immunoreactive cells in the gastrointestinal tract of the European sea bass (Dicentrarchus labrax). Fish Physiology and Biochemistry, 2013, 39, 1555-1565.	0.9	13
518	Developing a sense of taste. Seminars in Cell and Developmental Biology, 2013, 24, 200-209.	2.3	61
519	Gustatory Neural Pathways Revealed by Genetic Tracing from Taste Receptor Cells. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1359-1362.	0.6	22
520	Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid–base balance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2170-2175.	1.1	39
521	Olfatto e gusto. EMC - Neurologia, 2013, 13, 1-11.	0.0	0
522	Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Biochimie, 2013, 95, 1502-1505.	1.3	33

#	Article	IF	CITATIONS
523	Umami evaluation in taste epithelium on microelectrode array by extracellular electrophysiological recording. Biochemical and Biophysical Research Communications, 2013, 438, 334-339.	1.0	14
524	Saccharin enhances neurite extension by regulating organization of the microtubules. Life Sciences, 2013, 93, 732-741.	2.0	1
525	Taste buds as peripheral chemosensory processors. Seminars in Cell and Developmental Biology, 2013, 24, 71-79.	2.3	157
526	Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H501-H513.	1.5	12
527	An efficient Escherichia coli expression system for the production of a functional N-terminal domain of the T1R3 taste receptor. Bioengineered, 2013, 4, 25-29.	1.4	8
528	mTORC2: actin on your memory. Nature Neuroscience, 2013, 16, 379-380.	7.1	11
529	Gustatory Stimuli Representing Different Perceptual Qualities Elicit Distinct Patterns of Neuropeptide Secretion from Taste Buds. Journal of Neuroscience, 2013, 33, 7559-7564.	1.7	14
530	Tuning synaptic activity with light-controlled GPCRs. Nature Neuroscience, 2013, 16, 377-379.	7.1	1
531	Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. Journal of Biological Chemistry, 2013, 288, 32475-32489.	1.6	110
532	Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review. Food and Bioprocess Technology, 2013, 6, 607-627.	2.6	112
533	Sensing of amino acids by the gut-expressed taste receptor T1R1-T1R3 stimulates CCK secretion. American Journal of Physiology - Renal Physiology, 2013, 304, G271-G282.	1.6	155
534	Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System. Journal of Neuroscience, 2013, 33, 15235-15247.	1.7	44
535	From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Frontiers in Physiology, 2013, 4, 117.	1.3	52
536	Taste perception: from the tongue to the testis. Molecular Human Reproduction, 2013, 19, 349-360.	1.3	105
537	Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor). Journal of Biological Chemistry, 2013, 288, 36863-36877.	1.6	101
538	Genetic loss or pharmacological blockade of testes-expressed taste genes causes male sterility. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12319-12324.	3.3	61
539	Impact of T1r3 and Trpm5 on Carbohydrate Preference and Acceptance in C57BL/6 Mice. Chemical Senses, 2013, 38, 421-437.	1.1	37
540	The structure of brazzein, a sweet-tasting protein from the wild African plantPentadiplandra brazzeana. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 642-647.	2.5	27

#	Article	IF	CITATIONS
541	Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chemical Senses, 2013, 38, 745-758.	1.1	17
542	Prostaglandin E Receptor EP1 Forms a Complex with Dopamine D1 Receptor and Directs D1-Induced cAMP Production to Adenylyl Cyclase 7 through Mobilizing GβγSubunits in Human Embryonic Kidney 293T Cells. Molecular Pharmacology, 2013, 84, 476-486.	1.0	15
543	Taste responses in mice lacking taste receptor subunit T1R1. Journal of Physiology, 2013, 591, 1967-1985.	1.3	92
544	Sweet umami: the twain shall meet. Journal of Physiology, 2013, 591, 1597-1597.	1.3	2
545	Transgenic labeling of higher order neuronal circuits linked to phospholipase Câ€Î²2–expressing taste bud cells in medaka fish. Journal of Comparative Neurology, 2013, 521, 1781-1802.	0.9	7
546	Long-Term Ingestion of Monosodium L-Glutamate Did Not Induce Obesity, Dyslipidemia or Insulin Resistance: A Two-Generation Study in Mice. Journal of Nutritional Science and Vitaminology, 2013, 59, 129-135.	0.2	15
547	Modulation of central gustatory coding by temperature. Journal of Neurophysiology, 2013, 110, 1117-1129.	0.9	31
549	Human Biology of Taste. Annals of Saudi Medicine, 2013, 33, 217-222.	0.5	48
550	Synesthesia, Cross-Modality, and Language Evolution. , 2013, , .		20
551	Gαo Is Required for L-Canavanine Detection in Drosophila. PLoS ONE, 2013, 8, e63484.	1.1	19
552	Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS ONE, 2013, 8, e68174.	1.1	15
553	Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice. PLoS ONE, 2013, 8, e70257.	1.1	50
554	A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131. PLoS ONE, 2013, 8, e82820.	1.1	58
555	Taste genetics. , 0, , 72-80.		0
557	Effect of Diet on Preference and Intake of Sucrose in Obese Prone and Resistant Rats. PLoS ONE, 2014, 9, e111232.	1.1	32
558	A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds. PLoS ONE, 2014, 9, e112152.	1.1	22
559	Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists. Endocrinology and Metabolism, 2014, 29, 12.	1.3	40
560	Taste Sensation in <i>Drosophila melanoganster</i> . Hanyang Medical Reviews, 2014, 34, 130.	0.4	15

#	Article	IF	CITATIONS
561	Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. American Journal of Physiology - Renal Physiology, 2014, 307, G1100-G1107.	1.6	42
562	Taste Receptor Gene Expression Outside the Gustatory System. Topics in Medicinal Chemistry, 2014, , 1-34.	0.4	7
563	Medicinal Chemistry of Plant Naturals as Agonists/Antagonists for Taste Receptors. Topics in Medicinal Chemistry, 2014, , 35-71.	0.4	3
564	Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics. Endocrine Reviews, 2014, 35, 602-647.	8.9	114
565	Glutamate prevents intestinal atrophy <i>via</i> luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB Journal, 2014, 28, 2073-2087.	0.2	40
566	Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener. Sensors, 2014, 14, 7359-7373.	2.1	25
567	RGS21, a regulator of taste and mucociliary clearance?. Laryngoscope, 2014, 124, E56-63.	1.1	7
568	Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends. Food Science and Nutrition, 2014, 2, 768-785.	1.5	12
569	Tachykinin: recent developments and novel roles in health and disease. Biomolecular Concepts, 2014, 5, 225-243.	1.0	45
570	The involvement of the T1R3 receptor protein in the control of glucose metabolism in mice at different levels of glycemia. Journal of Evolutionary Biochemistry and Physiology, 2014, 50, 334-344.	0.2	14
571	Differences in BOLD Responses to Intragastrically Infused Glucose and Saccharin in Rats. Chemical Senses, 2014, 39, 683-691.	1.1	12
572	Longitudinal Analysis of Calorie Restriction on Rat Taste Bud Morphology and Expression of Sweet Taste Modulators. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 532-544.	1.7	13
573	Persistent enhancement of ethanol drinking following a monosodium glutamate-substitution procedure in C57BL6/J and DBA/2J mice. Alcohol, 2014, 48, 55-61.	0.8	11
574	Peripheral Coding of Taste. Neuron, 2014, 81, 984-1000.	3.8	357
575	Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice. Neuroscience, 2014, 258, 47-61.	1.1	27
576	Taste receptors of the gut: emerging roles in health and disease. Gut, 2014, 63, 179-190.	6.1	251
577	Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosensors and Bioelectronics, 2014, 54, 385-392.	5.3	29
578	Recent advances in taste cell- and receptor-based biosensors. Sensors and Actuators B: Chemical, 2014, 201, 75-85.	4.0	35

#	Article	IF	CITATIONS
579	Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales. Genome Biology and Evolution, 2014, 6, 1254-1265.	1.1	113
580	Human protein status modulates brain reward responses to food cues. American Journal of Clinical Nutrition, 2014, 100, 113-122.	2.2	64
581	Extensive Lesions in the Gustatory Cortex in the Rat Do Not Disrupt the Retention of a Presurgically Conditioned Taste Aversion and Do Not Impair Unconditioned Concentration-Dependent Licking of Sucrose and Quinine. Chemical Senses, 2014, 39, 57-71.	1.1	24
582	G Protein–Coupled Receptors Revisited: Therapeutic Applications Inspired by Synthetic Biology. Annual Review of Pharmacology and Toxicology, 2014, 54, 227-249.	4.2	23
583	Molecular Basis of Taste Sense: Involvement of GPCR Receptors. Critical Reviews in Food Science and Nutrition, 2014, 54, 771-780.	5.4	21
584	Temperature systematically modifies neural activity for sweet taste. Journal of Neurophysiology, 2014, 112, 1667-1677.	0.9	17
585	Sweet Taste Receptors Regulate Basal Insulin Secretion and Contribute to Compensatory Insulin Hypersecretion During the Development of Diabetes in Male Mice. Endocrinology, 2014, 155, 2112-2121.	1.4	52
586	<i>Arabidopsis</i> NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science, 2014, 345, 933-937.	6.0	173
587	Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science, 2014, 345, 929-933.	6.0	169
588	Heterogeneous binary interactions of taste primaries: Perceptual outcomes, physiology, and future directions. Neuroscience and Biobehavioral Reviews, 2014, 47, 70-86.	2.9	30
589	Chemogenetic Tools to Interrogate Brain Functions. Annual Review of Neuroscience, 2014, 37, 387-407.	5.0	412
590	Bioelectronic Tongue Using Heterodimeric Human Taste Receptor for the Discrimination of Sweeteners with Human-like Performance. ACS Nano, 2014, 8, 9781-9789.	7.3	75
591	The Importance of the Presence of a 5'-Ribonucleotide and the Contribution of the T1R1 + T1R3 Heterodimer and an Additional Low-Affinity Receptor in the Taste Detection of L-Glutamate as Assessed Psychophysically. Journal of Neuroscience, 2014, 34, 13234-13245.	1.7	19
592	Glucose sensing mechanisms in hypothalamic cell models: Glucose inhibition of AgRP synthesis and secretion. Molecular and Cellular Endocrinology, 2014, 382, 262-270.	1.6	34
593	Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiology and Behavior, 2014, 126, 25-29.	1.0	34
594	Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain. Physiology and Behavior, 2014, 130, 108-112.	1.0	2
595	Development of sweetness sensor with selectivity to negatively charged high-potency sweeteners. Sensors and Actuators B: Chemical, 2014, 201, 329-335.	4.0	25
596	Return of the glucoreceptor: Glucose activates the glucoseâ€sensing receptor T1R3 and facilitates metabolism in pancreatic βâ€cells. Journal of Diabetes Investigation, 2015, 6, 256-263.	1.1	33

#	Article	IF	CITATIONS
598	Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells. Biological and Pharmaceutical Bulletin, 2015, 38, 674-679.	0.6	26
600	On the connection between nonmonotonic taste behavior and molecular conformation in solution: The case of rebaudioside-A. Journal of Chemical Physics, 2015, 143, 244301.	1.2	10
603	Muscle regulatory factors regulate T1R3 taste receptor expression. Biochemical and Biophysical Research Communications, 2015, 468, 568-573.	1.0	23
604	Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene. PLoS ONE, 2015, 10, e0130997.	1.1	33
605	Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. BioMed Research International, 2015, 2015, 1-10.	0.9	125
606	Dual Mechanism for Bitter Avoidance in <i>Drosophila</i> . Journal of Neuroscience, 2015, 35, 3990-4004.	1.7	87
607	Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology and Behavior, 2015, 152, 381-388.	1.0	98
608	Dried Bonito Dashi: Taste Qualities Evaluated Using Conditioned Taste Aversion Methods in Wild-Type and T1R1 Knockout Mice. Chemical Senses, 2015, 40, 125-140.	1.1	14
609	Ligand Recognition of Taste Receptors. ACS Symposium Series, 2015, , 183-192.	0.5	1
610	Sweet and bitter taste in the brain of awake behaving animals. Nature, 2015, 527, 512-515.	13.7	179
611	Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R552-R560.	0.9	69
612	Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout mice. Physiology and Behavior, 2015, 140, 156-163.	1.0	17
613	Taste receptors. , 2015, , 297-329.		0
614	Bitter taste and nicotine preference: evidence for sex differences in rats. American Journal of Drug	11	15
	and Alcohol Aduse, 2015, 41, 57-67.	1.1	
615	Non-Nutritive Sweeteners and Obesity. Annual Review of Food Science and Technology, 2015, 6, 119-136.	5.1	38
615 616	 and Alcohol Abuse, 2015, 41, 57-67. Non-Nutritive Sweeteners and Obesity. Annual Review of Food Science and Technology, 2015, 6, 119-136. α-Transducin and α-gustducin immunoreactive cells in the stomach of common sole (Solea solea) fed with mussel meal. Fish Physiology and Biochemistry, 2015, 41, 603-612. 	5.1	38 9
615 616 617	and Alcohol Abuse, 2015, 41, 57-67. Non-Nutritive Sweeteners and Obesity. Annual Review of Food Science and Technology, 2015, 6, 119-136. α-Transducin and α-gustducin immunoreactive cells in the stomach of common sole (Solea solea) fed with mussel meal. Fish Physiology and Biochemistry, 2015, 41, 603-612. Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction, and Internal Nutrient Sensing. Current Biology, 2015, 25, 621-627.	5.1 0.9 1.8	38 9 205

#	Article	IF	Citations
619	Taste and Smell, Psychology of. , 2015, , 26-31.		2
620	The role of dopamine in the pursuit of nutritional value. Physiology and Behavior, 2015, 152, 408-415.	1.0	26
621	Perceptual and Neural Responses to Sweet Taste in Humans and Rodents. Chemosensory Perception, 2015, 8, 46-52.	0.7	21
622	Chemosensory Receptor Specificity and Regulation. Annual Review of Neuroscience, 2015, 38, 331-349.	5.0	56
623	Taste, olfactory, and food reward value processing in the brain. Progress in Neurobiology, 2015, 127-128, 64-90.	2.8	199
624	High Calorie Diet and the Human Brain. , 2015, , .		10
625	Mice Perceive Synergistic Umami Mixtures as Tasting Sweet. Chemical Senses, 2015, 40, 295-303.	1.1	15
626	Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. Chemosensory Perception, 2015, 8, 61-77.	0.7	1
627	Taste Sensors with Gustatory Cells. , 2015, , 197-224.		1
628	In Vivo Bioelectronic Tongue. , 2015, , 289-307.		Ο
629	Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes. Genome Biology and Evolution, 2015, 7, 2705-2715.	1.1	54
630	G Protein–Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Molecular Pharmacology, 2015, 88, 561-571.	1.0	64
631	The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nature Communications, 2015, 6, 8867.	5.8	101
632	Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Chemical Senses, 2015, 40, 577-586.	1.1	64
633	Dietary sugars: their detection by the gut–brain axis and their peripheral and central effects in health and diseases. European Journal of Nutrition, 2015, 54, 1-24.	1.8	50
634	Heightened Avidity for Trisodium Pyrophosphate in Mice Lacking Tas1r3. Chemical Senses, 2015, 40, 53-59.	1.1	5
635	Tasting calories differentially affects brain activation during hunger and satiety. Behavioural Brain Research, 2015, 279, 139-147.	1.2	24
636	Functional characterization of sugar receptors in the western honeybee, Apis mellifera. Journal of Asia-Pacific Entomology, 2015, 18, 19-26.	0.4	38

	CITATION	IREPORT	
#	Article	IF	CITATIONS
637	Limbic systems for emotion and for memory, but no single limbic system. Cortex, 2015, 62, 119-157.	1.1	268
638	The neural representation of taste quality at the periphery. Nature, 2015, 517, 373-376.	13.7	123
639	Flavor: Brain processing. , 2016, , 143-160.		1
640	G Protein–Coupled Taste Receptors. , 2016, , 227-244.		8
641	The Sweetener-Sensing Mechanisms of the Ghrelin Cell. Nutrients, 2016, 8, 795.	1.7	20
642	Acute Effects of Sugars and Artificial Sweeteners on Small Intestinal Sugar Transport: A Study Using CaCo-2 Cells As an In Vitro Model of the Human Enterocyte. PLoS ONE, 2016, 11, e0167785.	1.1	18
643	Structureâ€function relationships of brazzein variants with altered interactions with the human sweet taste receptor. Protein Science, 2016, 25, 711-719.	3.1	19
644	Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Scientific Reports, 2016, 5, 17825.	1.6	50
645	Post-oral sugar detection rapidly and chemospecifically modulates taste-guided behavior. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R742-R755.	0.9	12
646	A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Scientific Reports, 2016, 6, 34871.	1.6	121
647	A Taste Circuit that Regulates Ingestion by Integrating Food and Hunger Signals. Cell, 2016, 165, 715-729.	13.5	119
648	What Does Diabetes "Taste―Like?. Current Diabetes Reports, 2016, 16, 49.	1.7	20
649	Dynamic taste responses of parabrachial pontine neurons in awake rats. Journal of Neurophysiology, 2016, 115, 1314-1323.	0.9	23
650	Reward Systems in the Brain and Nutrition. Annual Review of Nutrition, 2016, 36, 435-470.	4.3	69
651	Molecular Mechanisms of Reception and Perireception in Crustacean Chemoreception: A Comparative Review. Chemical Senses, 2016, 41, 381-398.	1.1	76
652	DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring's risk of obesity in Psammomys obesus. International Journal of Obesity, 2016, 40, 1079-1088.	1.6	10
653	Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6035-6040.	3.3	85
654	Why do we like sweet taste: A bitter tale?. Physiology and Behavior, 2016, 164, 432-437.	1.0	95

#	Article	IF	CITATIONS
655	Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsensitive (129P3/J) mice revisited. Physiology and Behavior, 2016, 165, 286-290.	1.0	6
656	Motivation Explained. Advances in Motivation Science, 2016, 3, 187-249.	2.2	7
657	Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochemistry and Cell Biology, 2016, 146, 673-683.	0.8	25
658	Glutamate: Tastant and Neuromodulator in Taste Buds. Advances in Nutrition, 2016, 7, 823S-827S.	2.9	15
659	Variation in human sweet taste receptor may result in different levels of sweet intensity variability between sweet stimuli. International Journal of Food Science and Technology, 2016, 51, 1958-1966.	1.3	7
660	Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor. Chemical Senses, 2016, 41, 755-762.	1.1	78
661	Gs/Gi Regulation of Bone Cell Differentiation: Review and Insights from Engineered Receptors. Hormone and Metabolic Research, 2016, 48, 689-699.	0.7	10
662	Genetics of Amino Acid Taste and Appetite. Advances in Nutrition, 2016, 7, 806S-822S.	2.9	64
663	Sweet Structural Signatures Unveiled in Ketohexoses. Chemistry - A European Journal, 2016, 22, 16829-16837.	1.7	12
664	Effects of Daily Exposure to Saccharin and Sucrose on Testicular Biologic Functions in Mice. Biology of Reproduction, 2016, 95, 116-116.	1.2	28
667	Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E688-E698.	1.8	30
668	Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano, 2016, 10, 7287-7296.	7.3	78
669	Expression of genes related to sweet taste receptors and monosaccharides transporters along the gastrointestinal tracts at different development stages in goats. Livestock Science, 2016, 188, 111-119.	0.6	6
670	Ulex Europaeus Agglutinin-1 Is a Reliable Taste Bud Marker for In Situ Hybridization Analyses. Journal of Histochemistry and Cytochemistry, 2016, 64, 205-215.	1.3	3
671	Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats. Journal of Neuroscience, 2016, 36, 113-124.	1.7	30
672	Metabotropic glutamate receptors are involved in the detection of IMP and l-amino acids by mouse taste sensory cells. Neuroscience, 2016, 316, 94-108.	1.1	30
673	Taste of Fat: A Sixth Taste Modality?. Physiological Reviews, 2016, 96, 151-176.	13.1	191
674	Molecular mechanism of sweetness sensation. Physiology and Behavior, 2016, 164, 453-463.	1.0	92

#	Article	IF	CITATIONS
675	Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice. Chemical Senses, 2016, 41, 25-34.	1.1	8
676	Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chemical Reviews, 2016, 116, 6707-6741.	23.0	151
677	Understanding the impact of taste changes in oncology care. Supportive Care in Cancer, 2016, 24, 1917-1931.	1.0	60
678	Expression patterns of taste receptor type 1 subunit 3 and α-gustducin in the mouse testis during development. Acta Histochemica, 2016, 118, 20-30.	0.9	21
679	Taste information derived from T1R-expressing taste cells in mice. Biochemical Journal, 2016, 473, 525-536.	1.7	27
680	Expression of serotonin receptor genes in cranial ganglia. Neuroscience Letters, 2016, 617, 46-51.	1.0	3
681	Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study. Neuroscience, 2016, 316, 151-166.	1.1	27
684	The Taste of Caffeine. Journal of Caffeine Research, 2017, 7, 39-52.	1.0	29
685	Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiology and Behavior, 2017, 173, 188-199.	1.0	16
686	Human cell-based taste perception – a bittersweet job for industry. Natural Product Reports, 2017, 34, 484-495.	5.2	20
687	Sweeteners and sweetness enhancers. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 279-285.	1.3	53
688	The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Applied Physiology, Nutrition and Metabolism, 2017, 42, 793-801.	0.9	25
689	Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 2017, 17, 66.	1.6	48
690	Increases in circulating amino acids with in-feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids, 2017, 49, 1587-1599.	1.2	44
691	Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction. Journal of Biological Chemistry, 2017, 292, 11508-11530.	1.6	20
692	Milk protein synthesis is regulated by T1R1/T1R3, a G protein-coupled taste receptor, through the mTOR pathway in the mouse mammary gland. Molecular Nutrition and Food Research, 2017, 61, 1601017.	1.5	20
693	Comparison of the Tastes of L-Alanine and Monosodium Glutamate in C57BL/6J Wild Type and T1r3 Knockout Mice. Chemical Senses, 2017, 42, 563-573.	1.1	7
694	Glucose elicits cephalic-phase insulin release in mice by activating K _{ATP} channels in taste cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R597-R610.	0.9	48

#	Article	IF	CITATIONS
695	Structural basis for perception of diverse chemical substances by T1r taste receptors. Nature Communications, 2017, 8, 15530.	5.8	102
696	Perception of odors and tastes in autism spectrum disorders: A systematic review of assessments. Autism Research, 2017, 10, 1045-1057.	2.1	42
697	An Examination of the Role of L-Glutamate and Inosine 5′-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor. Chemical Senses, 2017, 42, 393-404.	1.1	17
699	Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus. Journal of Physiological Sciences, 2017, 67, 459-465.	0.9	19
702	The anatomy of mammalian sweet taste receptors. Proteins: Structure, Function and Bioinformatics, 2017, 85, 332-341.	1.5	41
703	Cd36 is a candidate lipid sensor involved in the sensory detection of fatty acid in zebrafish. Physiology and Behavior, 2017, 182, 34-39.	1.0	11
704	A largeâ€scale expression strategy for multimeric extracellular protein complexes using Drosophila S2 cells and its application to the recombinant expression of heterodimeric ligandâ€binding domains of taste receptor. Protein Science, 2017, 26, 2291-2301.	3.1	8
705	Detection of maltodextrin and its discrimination from sucrose are independent of the T1R2 + T1R3 heterodimer. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R450-R462.	0.9	9
706	The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiology and Behavior, 2017, 181, 100-109.	1.0	44
707	Whole transcriptome profiling of taste bud cells. Scientific Reports, 2017, 7, 7595.	1.6	69
708	New Methods to Study Gustatory Coding. Journal of Visualized Experiments, 2017, , .	0.2	0
709	Psychophysical Evaluation of Sweetness Functions Across Multiple Sweeteners. Chemical Senses, 2017, 42, 111-120.	1.1	42
710	Rewiring the taste system. Nature, 2017, 548, 330-333.	13.7	99
711	The individual environment, not the family is the most important influence on preferences for common non-alcoholic beverages in adolescence. Scientific Reports, 2017, 7, 16822.	1.6	4
712	Actin cytoskeleton–dependent regulation of corticotropin-releasing factor receptor heteromers. Molecular Biology of the Cell, 2017, 28, 2386-2399.	0.9	17
713	Class C G protein-coupled receptors: reviving old couples with new partners. Biophysics Reports, 2017, 3, 57-63.	0.2	38
714	Taste buds: cells, signals and synapses. Nature Reviews Neuroscience, 2017, 18, 485-497.	4.9	371
715	Taste receptors and gustatory associated G proteins in channel catfish, Ictalurus punctatus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21, 1-9.	0.4	4

ARTICLE IF CITATIONS Limbic Structures, Emotion, and Memory., 2017,,. 716 7 Evaluation of the association between the TAS1R2 and TAS1R3 variants and food intake and nutritional status in children. Genetics and Molecular Biology, 2017, 40, 415-420. On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the 720 1.7 9 Musculoskeletal System. Molecules, 2017, 22, 469. Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. Evidence-based 0.5 Complementary and Alternative Medicine, 2017, 2017, 1-30. Influence of the Number of Chewing Cycles on the Sweetness and Saltiness Intensity of Agarose Gel. 722 0.3 3 Food Science and Technology Research, 2017, 23, 437-448. Oral Sensations (Taste and Mouth-Feel)., 2017, , 103-136. Tracking traumatic head injuries with the chemical senses. World Journal of Otorhinolaryngology -724 0.7 2 Head and Neck Surgery, 2018, 4, 46-49. In-silico prediction of sweetness using structure-activity relationship models. Food Chemistry, 2018, 4.2 24 253, 127-131. 726 Structureâ€"Function Relationships of Olfactory and Taste Receptors. Chemical Senses, 2018, 43, 81-87. 1.1 45 DNA Methylation of T1R1 Gene in the Vegetarian Adaptation of Grass Carp Ctenopharyngodon idella. 727 1.6 Scientific Reports, 2018, 8, 6934. Identifying the interactions between natural, non-caloric sweeteners and the human sweet receptor 728 31 4.2 by molecular docking. Food Chemistry, 2018, 264, 164-171. Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein 729 1.1 Signaling-21 (RGS21). Chemical Senses, 2018, 43, 367-378. Behavioral evidence that select carbohydrate stimuli activate T1R-independent receptor mechanisms. 730 1.8 17 Appetite, 2018, 122, 26-31. Loss of the nutrient sensor TAS1R3 leads to reduced bone resorption. Journal of Physiology and 1.3 Biochemistry, 2018, 74, 3-8. DNA methylation patterns at sweet taste transducing genes are associated with BMI and carbohydrate 732 1.8 25 intake in an adult population. Appetite, 2018, 120, 230-239. A novel functional screening assay to monitor sweet taste receptor activation <i>in vitro</i>. 1.2 Flavour and Fragrance Journal, 2018, 33, 173-183. d-Leucine: Evaluation in an epilepsy model. Epilepsy and Behavior, 2018, 78, 202-209. 734 0.9 6 Fabrication and implementation of printed sensors for taste sensing applications. Sensors and Actuators A: Physical, 2018, 269, 53-61.

#	Article	IF	CITATIONS
736	Receptor Regulation in Taste: Can Diet Influence How We Perceive Foods?. J, 2018, 1, 106-115.	0.6	5
737	TasteBud. , 2018, , .		12
738	Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules, 2018, 23, 2531.	1.7	9
739	Salt an Essential Nutrient: Advances in Understanding Salt Taste Detection Using Drosophila as a Model System. Journal of Experimental Neuroscience, 2018, 12, 117906951880689.	2.3	14
740	Taste receptor T1R1/T1R3 promotes the tumoricidal activity of hepatic CD49a+CD49bâ^'natural killer cells. European Journal of Immunology, 2018, 48, 2031-2041.	1.6	5
741	Mutations in the guanylate cyclase <i>gcyâ€28</i> neuronally dissociate naÃ⁻ve attraction and memory retrieval. European Journal of Neuroscience, 2018, 48, 3367-3378.	1.2	4
742	Functional decline of sweet taste sensitivity of colobine monkeys. Primates, 2018, 59, 523-530.	0.7	4
743	T1R2 receptor-mediated glucose sensing in the upper intestine potentiates glucose absorption through activation of local regulatory pathways. Molecular Metabolism, 2018, 17, 98-111.	3.0	32
744	A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Research, 2018, 28, 1013-1025.	5.7	68
745	Molecular evolution of umami/sweet taste receptor genes in reptiles. PeerJ, 2018, 6, e5570.	0.9	6
746	Luminal Chemosensing and Mucosal Defenses in the Upper GI Tract. , 2018, , 709-719.		1
747	Taste sensitivity to a mixture of monosodium glutamate and inosine 5′-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R802-R810.	0.9	7
748	Sugar sensor genes in the murine gastrointestinal tract display a cephalocaudal axis of expression and a diurnal rhythm. Physiological Genomics, 2018, 50, 448-458.	1.0	10
750	Chemogenetic Tools for Causal Cellular and Neuronal Biology. Physiological Reviews, 2018, 98, 391-418.	13.1	97
751	Sweeteners and sweet taste enhancers in the food industry. Food Science and Technology, 2018, 38, 181-187.	0.8	35
752	Diurnal Variation of Sweet Taste Recognition Thresholds Is Absent in Overweight and Obese Humans. Nutrients, 2018, 10, 297.	1.7	14
753	Altered salt taste response and increased tongue epithelium Scnna1 expression in adult Engrailed-2 null mice. Physiology and Behavior, 2018, 194, 410-419.	1.0	8
754	The Effect of Tas1r3 Gene Polymorphism on Preference and Consumption of Sucrose and Low-Calorie Sweeteners in Interstrain Hybrid Mice of the First Filial Generation. Journal of Evolutionary Biochemistry and Physiology, 2018, 54, 221-233.	0.2	1

#	Article	IF	CITATIONS
755	Memory Function in Feeding Habit Transformation of Mandarin Fish (Siniperca chuatsi). International Journal of Molecular Sciences, 2018, 19, 1254.	1.8	15
756	Bitter Fruit: Inverse Associations Between PTC and Antidesma bunius Perception. Chemical Senses, 2018, 43, 447-450.	1.1	0
757	Diet during Pregnancy is Implicated in the Regulation of Hypothalamic RNA Methylation and Risk of Obesity in Offspring. Molecular Nutrition and Food Research, 2018, 62, e1800134.	1.5	12
758	Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biology, 2018, 16, e2001959.	2.6	98
759	Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends in Neurosciences, 2018, 41, 526-539.	4.2	22
760	High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosensors and Bioelectronics, 2018, 117, 628-636.	5.3	49
761	Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Scientific Reports, 2019, 9, 11620.	1.6	15
762	Expression patterns of l-amino acid receptors in the murine STC-1 enteroendocrine cell line. Cell and Tissue Research, 2019, 378, 471-483.	1.5	7
763	Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Chemical Senses, 2019, 44, 571-582.	1.1	13
764	Basic Taste: A Perceptual Concept. Journal of Agricultural and Food Chemistry, 2019, 67, 13860-13869.	2.4	30
765	Taste and smell processing in the brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 97-118.	1.0	76
766	Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring. Physiology and Behavior, 2019, 212, 112709.	1.0	6
767	Research on the relationship between sensory profile and physicochemical properties of paocai, a Chinese fermented vegetable. Journal of Food Processing and Preservation, 2019, 43, e14237.	0.9	6
768	Sour Sensing from the Tongue to the Brain. Cell, 2019, 179, 392-402.e15.	13.5	158
769	Umami as an â€~Alimentary' Taste. A New Perspective on Taste Classification. Nutrients, 2019, 11, 182.	1.7	81
770	Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Scientific Reports, 2019, 9, 8834.	1.6	8
771	Quality and microbial flora changes of radish paocai during multiple fermentation rounds. Food Control, 2019, 106, 106733.	2.8	53
772	SatB2-Expressing Neurons in the Parabrachial Nucleus Encode Sweet Taste. Cell Reports, 2019, 27, 1650-1656.e4.	2.9	39

#	Article	IF	CITATIONS
774	Branched chain amino acids stimulate gut satiety hormone cholecystokinin secretion through activation of the umami taste receptor T1R1/T1R3 using an <i>in vitro</i> porcine jejunum model. Food and Function, 2019, 10, 3356-3367.	2.1	33
775	Sophorolipid Biosurfactants Activate Taste Receptor Type 1 Member 3â€Mediated Taste Responses and Block Responses to Bitter Taste <i>In Vitro</i> and <i>In Vivo</i> . Journal of Surfactants and Detergents, 2019, 22, 441-449.	1.0	14
776	Next-Gen Approaches to Flavor-Related Metabolism. Annual Review of Plant Biology, 2019, 70, 187-212.	8.6	36
777	Distinct representations of basic taste qualities in human gustatory cortex. Nature Communications, 2019, 10, 1048.	5.8	56
778	Clutamatergic Signaling Along The Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 2019, 20, 1482.	1.8	183
779	Is there adaptation in the human genome for taste perception and phase I biotransformation?. BMC Evolutionary Biology, 2019, 19, 39.	3.2	11
781	Graphite-Polyimide Sensor. Smart Sensors, Measurement and Instrumentation, 2019, , 129-168.	0.4	0
782	Digestion, absorption, metabolism, and physiological effects of lactose. , 2019, , 49-111.		2
783	The Origin of Unpleasant Aftertastes in Synthetic Sweeteners: A Hypothesis. Frontiers in Molecular Biosciences, 2018, 5, 119.	1.6	2
784	Sweet and Umami Taste Perception Differs with Habitual Exercise in Males. Nutrients, 2019, 11, 155.	1.7	22
785	Bitter taste receptor T2R7 and umami taste receptor subunit T1R1 are expressed highly in Vimentin-negative taste bud cells in chickens. Biochemical and Biophysical Research Communications, 2019, 511, 280-286.	1.0	13
786	Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Frontiers in Genetics, 2019, 10, 1272.	1.1	88
787	A Pharmacological Perspective on the Study of Taste. Pharmacological Reviews, 2019, 71, 20-48.	7.1	12
788	The Functional and Neurobiological Properties of Bad Taste. Physiological Reviews, 2019, 99, 605-663.	13.1	58
789	Secretion of a gastrointestinal hormone, cholecystokinin, by hop-derived bitter components activates sympathetic nerves in brown adipose tissue. Journal of Nutritional Biochemistry, 2019, 64, 80-87.	1.9	23
790	T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R448-R462.	0.9	23
791	The Chemosensory Receptor Repertoire of a True Shark Is Dominated by a Single Olfactory Receptor Family. Genome Biology and Evolution, 2019, 11, 398-405.	1.1	29
792	Spilanthol Enhances Sensitivity to Sodium in Mouse Taste Bud Cells. Chemical Senses, 2019, 44, 91-103.	1.1	9

#	Article	IF	CITATIONS
793	Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews, 2019, 119, 36-93.	23.0	159
794	Flavor Enhancers and Modifiers. , 2019, , 101-103.		0
795	The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia, 2019, 128, 14-43.	0.7	206
796	Bitter and sweet tasting molecules: It's complicated. Neuroscience Letters, 2019, 700, 56-63.	1.0	48
797	Characterization of mouse chorda tympani responses evoked by stimulation of anterior or posterior fungiform taste papillae. Neuroscience Research, 2019, 141, 43-51.	1.0	1
798	Longâ€ŧerm effect of early antibiotic exposure on amino acid profiles and gene expression of transporters and receptors in the small intestinal mucosa of growing pigs with different dietary protein levels. Journal of the Science of Food and Agriculture, 2020, 100, 235-244.	1.7	3
799	Continuing challenges in targeting oligomeric GPCR-based drugs. Progress in Molecular Biology and Translational Science, 2020, 169, 213-245.	0.9	8
800	Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. Journal of Neurophysiology, 2020, 123, 843-859.	0.9	17
801	Advances in umami taste and aroma of edible mushrooms. Trends in Food Science and Technology, 2020, 96, 176-187.	7.8	144
802	Parallel loss of sweet and umami taste receptor function from phocids and otarioids suggests multiple colonizations of the marine realm by pinnipeds. Journal of Biogeography, 2020, 47, 235-249.	1.4	10
803	Receptor, signal transduction and evolution of sweet, umami and bitter taste. Marine Life Science and Technology, 2020, 2, 6-15.	1.8	3
804	Associations between Psycho-Hedonic Responses to Sweet and Savoury Tastes with Diet and Body Composition in a Sample of Asian Females. Foods, 2020, 9, 1318.	1.9	9
805	Loss of the nutrient receptor Tas1R3 reduces atherosclerotic plaque accumulation and hepatic steatosis in ApoEâ^/â^ mice. Journal of Physiology and Biochemistry, 2020, 76, 623-636.	1.3	4
806	Nutrient-conditioned intake stimulation does not require a distinctive flavor cue in rats. Appetite, 2020, 154, 104793.	1.8	4
807	An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Archiv European Journal of Physiology, 2020, 472, 1667-1691.	1.3	6
808	Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS ONE, 2020, 15, e0235913.	1.1	3
809	Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biological Anthropological Approach. Advances in Nutrition, 2020, 11, 1671-1685.	2.9	3
810	FGF21 signaling in glutamatergic neurons is required for weight loss associated with dietary protein dilution. Scientific Reports, 2020, 10, 19521.	1.6	29

		LPORT	
#	Article	IF	CITATIONS
811	Invited review: Astringency in whey protein beverages. Journal of Dairy Science, 2020, 103, 5793-5804.	1.4	24
812	Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, 2020, , .	0.8	6
813	Expression of the Tas1r3 and Pept1 genes in the digestive tract of wagyu cattle. Translational Animal Science, 2020, 4, 980-985.	0.4	1
814	Insights into the Function and Evolution of Taste 1 Receptor Gene Family in the Carnivore Fish Gilthead Seabream (Sparus aurata). International Journal of Molecular Sciences, 2020, 21, 7732.	1.8	9
815	Microphysiology of Taste Buds. , 2020, , 187-210.		5
816	Chemical and Sensory Characteristics of Soy Sauce: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 11612-11630.	2.4	104
817	Why low concentrations of salt enhance sweet taste. Acta Physiologica, 2020, 230, e13560.	1.8	2
818	Research on sensing characteristics of three human umami receptors via receptorâ€based biosensor. Flavour and Fragrance Journal, 2020, 35, 695-702.	1.2	15
819	Using Museum Guests as Crowdsourced Participants in Human Subject Research. Curator, 2020, 63, 407-429.	0.2	0
820	G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Frontiers in Pharmacology, 2020, 11, 587664.	1.6	90
821	New Insights on the Evolution of the Sweet Taste Receptor of Primates Adapted to Harsh Environments. Animals, 2020, 10, 2359.	1.0	2
822	Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochemical and Biophysical Research Communications, 2020, 533, 704-709.	1.0	9
823	<scp>l</scp> â€Glutamate stimulates cholecystokinin secretion via the <scp>T1R1</scp> / <scp>T1R3</scp> mediated <scp>PLC</scp> / <scp>TRPM5</scp> transduction pathway. Journal of the Science of Food and Agriculture, 2020, 100, 4818-4825.	1.7	3
824	Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice. Physiology and Behavior, 2020, 222, 112945.	1.0	16
825	Recent advances in development of biosensors for taste-related analyses. TrAC - Trends in Analytical Chemistry, 2020, 129, 115925.	5.8	34
826	Extraoral Taste Receptors. , 2020, , 353-381.		1
827	Olfaction contributes to the learned avidity for glucose relative to fructose in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R901-R916.	0.9	13
828	Determinants of Sweetness Preference: A Scoping Review of Human Studies. Nutrients, 2020, 12, 718.	1.7	29

#	Article	IF	CITATIONS
829	The Role of Post-Ingestive Feedback in the Development of an Enhanced Appetite for the Orosensory Properties of Glucose over Fructose in Rats. Nutrients, 2020, 12, 807.	1.7	7
830	Influences of nonâ€nutritive sweeteners on ovarian and uterine expression of T1R2 and T1R3 in peripubertal female guinea pigs. Animal Science Journal, 2020, 91, e13348.	0.6	4
831	Selective Peripheral Taste Dysfunction in APP/PS1 Mutant Transgenic Mice. Journal of Alzheimer's Disease, 2020, 76, 1-9.	1.2	1
832	Expansion of sweet taste receptor genes in grass carp (Ctenopharyngodon idellus) coincided with vegetarian adaptation. BMC Evolutionary Biology, 2020, 20, 25.	3.2	17
833	Gustatory ultrastructures of an amphihaline migratory fish hilsa Tenualosa ilisha. Microscopy Research and Technique, 2020, 83, 507-513.	1.2	1
834	Structure-based screening for discovery of sweet compounds. Food Chemistry, 2020, 315, 126286.	4.2	25
835	Expression analysis of taste receptor genes (T1R1, T1R3, and T2R4) in response to bacterial, viral and parasitic infection in rainbow trout, Oncorhynchus mykiss. Fish and Shellfish Immunology, 2020, 101, 176-185.	1.6	8
836	Structure-Dependent Activity of Plant-Derived Sweeteners. Molecules, 2020, 25, 1946.	1.7	17
837	Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity, 2020, 52, 683-699.e11.	6.6	63
838	Sweet Taste Receptor Expression and Its Activation by Sucralose to Regulate Glucose Absorption in Mouse Duodenum. Journal of Food Science, 2021, 86, 540-545.	1.5	13
839	Amino Acid Sensing in Metabolic Homeostasis and Health. Endocrine Reviews, 2021, 42, 56-76.	8.9	48
840	The regulation of gastric ghrelin secretion. Acta Physiologica, 2021, 231, e13588.	1.8	21
841	Potential improvement of the thermal stability of sweet-tasting proteins by structural calculations. Food Chemistry, 2021, 345, 128750.	4.2	10
842	Factors affecting detection of a bimodal sour-savory mixture and inter-individual umami taste perception. Food Quality and Preference, 2021, 89, 104147.	2.3	9
843	Taste transduction and channel synapses in taste buds. Pflugers Archiv European Journal of Physiology, 2021, 473, 3-13.	1.3	70
844	Targeting Enteroendocrine Cells to Treat Metabolic Disease. , 2021, , .		1
845	Taste Receptor Signaling. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	5
846	Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell, 2021, 184, 257-271.e16.	13.5	37

#	Article	IF	CITATIONS
847	Rapid Throughput Concentration-Response Analysis of Human Taste Discrimination. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 133-145.	1.3	4
848	The role of the intramolecular interactions in the structural behavior of biomolecules: Insights from rotational spectroscopy. , 2021, , 93-141.		15
849	Receptors Taste Receptors. , 2021, , 314-322.		0
850	Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients, 2021, 13, 667.	1.7	19
851	A review of taste sense in chickens : behavioral responses to umami taste and expression of umami taste receptor. Nihon Chikusan Gakkaiho, 2021, 92, 17-23.	0.0	0
852	Recent Advances in Neural Circuits for Taste Perception in Hunger. Frontiers in Neural Circuits, 2021, 15, 609824.	1.4	11
853	Effects of gastrointestinal delivery of non-caloric tastants on energy intake: a systematic review and meta-analysis. European Journal of Nutrition, 2021, 60, 2923-2947.	1.8	6
854	Genetics of mouse behavioral and peripheral neural responses to sucrose. Mammalian Genome, 2021, 32, 51-69.	1.0	2
855	Salt Sensation and Regulation. Metabolites, 2021, 11, 175.	1.3	7
856	Lezzet Algısının Oluşmasında Çevresel ve Genetik Faktörlerin Etkileri. Medical Journal of Western Blac Sea, 2021, 5, 7-18.	k _{0.2}	2
857	Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence. Journal of Neuroscience, 2021, 41, 4850-4866.	1.7	15
858	Umami taste in edible seaweeds: The current comprehension and perception. International Journal of Gastronomy and Food Science, 2021, 23, 100301.	1.3	34
859	Bitter, sweet, and umami signaling in taste cells: it's not as simple as we thought. Current Opinion in Physiology, 2021, 20, 159-164.	0.9	7
860	Sweet taste of heavy water. Communications Biology, 2021, 4, 440.	2.0	19
861	Determination of flavorâ€potentiating compounds in different Italian tomato varieties. Journal of Food Biochemistry, 2021, 45, e13736.	1.2	5
862	Chronic administration of caffeine alters acesulfame-K intake and features of fungiform taste buds in mice. International Journal of Food Sciences and Nutrition, 2021, 72, 1046-1056.	1.3	0
863	Mechanisms of umami taste perception: From molecular level to brain imaging. Critical Reviews in Food Science and Nutrition, 2022, 62, 7015-7024.	5.4	16
864	Western Diet Induced Remodelling of the Tongue Proteome. Proteomes, 2021, 9, 22.	1.7	5

<u> </u>			-			
Спт	ΆΤΙ	ON	l K	FΡ	OR1	Г

#	Article	IF	CITATIONS
865	Correlation between in vitro binding activity of sweeteners to cloned human sweet taste receptor and sensory evaluation. Food Science and Biotechnology, 2021, 30, 675-682.	1.2	9
866	Genetic Taste Sensitivity and Dental Caries in Children and Adolescents: a Systematic Review and Metaâ€analysis. International Journal of Paediatric Dentistry, 2021, , .	1.0	3
867	Association study of taste preference: Analysis in the Lithuanian population. Food Science and Nutrition, 2021, 9, 4310-4321.	1.5	3
868	A Chromosome-Level Genome Assembly of the Mandarin Fish (Siniperca chuatsi). Frontiers in Genetics, 2021, 12, 671650.	1.1	8
869	The umami receptor T1R1–T1R3 heterodimer is rarely formed in chickens. Scientific Reports, 2021, 11, 12318.	1.6	7
870	Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinology and Metabolism, 2021, 36, 469-477.	1.3	5
871	Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Frontiers in Human Neuroscience, 2021, 15, 667709.	1.0	22
872	Bioinspired Solid‣tate Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. Small, 2021, 17, e2100495.	5.2	17
873	Glutamate - A multifaceted molecule: Endogenous neurotransmitter, controversial food additive, design compound for anti-cancer drugs. A critical appraisal. Food and Chemical Toxicology, 2021, 153, 112290.	1.8	17
874	TAS1R2 rs35874116 and TRPM5 rs886277 polymorphisms are not related with risk of obesity. International Journal of Clinical Practice, 2021, 75, e14562.	0.8	2
876	Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 3140-3148.	1.4	12
877	Predicted Structure of Fully Activated Tas1R3/1R3′ Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. Journal of the American Chemical Society, 2021, 143, 16824-16838.	6.6	6
878	Association of single nucleotide polymorphisms with taste and food preferences of the Hungarian general and Roma populations. Appetite, 2021, 164, 105270.	1.8	7
879	Odour-induced umami – Olfactory contribution to umami taste in seaweed extracts (dashi) by sensory interactions. International Journal of Gastronomy and Food Science, 2021, 25, 100363.	1.3	13
880	Pharmacological significance of extra-oral taste receptors. European Journal of Pharmacology, 2021, 910, 174480.	1.7	18
881	Evolution of glutamatergic signaling and synapses. Neuropharmacology, 2021, 199, 108740.	2.0	36
882	Subchronic and mild social defeat stress downregulates peripheral expression of sweet and umami taste receptors in male mice. Biochemical and Biophysical Research Communications, 2021, 579, 116-121.	1.0	3
883	Differential fructose and glucose appetition in DBA/2, 129P3 and C57BL/6Â×Â129P3 hybrid mice revealed by sugar versus non-nutritive sweetener tests. Physiology and Behavior, 2021, 241, 113590.	1.0	2

#	Article	IF	Citations
884	Human-like performance umami electrochemical biosensor by utilizing co-electrodeposition of ligand binding domain T1R1-VFT and Prussian blue. Biosensors and Bioelectronics, 2021, 193, 113627.	5.3	24
885	Knockout of t1r1 gene in zebrafish (Danio rerio) by CRISPR/Cas9 reveals its roles in regulating feeding behavior. Aquaculture, 2021, 545, 737189.	1.7	4
886	Microbial composition and correlation between microbiota and quality-related physiochemical characteristics in chongqing radish paocai. Food Chemistry, 2022, 369, 130897.	4.2	47
887	Pharmacology of the Umami Taste Receptor. Handbook of Experimental Pharmacology, 2021, , 109-136.	0.9	3
888	What Does the Taste System Tell Us About the Nutritional Composition and Toxicity of Foods?. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	8
889	Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: An overview. Toxicology Reports, 2021, 8, 938-961.	1.6	50
890	Loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
892	Metabolism and Functions of Amino Acids in Sense Organs. Advances in Experimental Medicine and Biology, 2020, 1265, 201-217.	0.8	11
893	Information Processing in the Gustatory System. , 2014, , 783-796.		1
894	Gustatory and reward brain circuits in the control of food intake. Advances and Technical Standards in Neurosurgery, 2011, 36, 31-59.	0.2	27
895	Post-Genome Biology of Primates Focusing on Taste Perception. Primatology Monographs, 2012, , 79-91.	0.8	3
896	The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cellular and Molecular Life Sciences, 2020, 77, 3469-3502.	2.4	39
897	The function and allosteric control of the human sweet taste receptor. Advances in Pharmacology, 2020, 88, 59-82.	1.2	22
898	Association between chemistry and taste of tea: A review. Trends in Food Science and Technology, 2020, 101, 139-149.	7.8	218
900	Introducing Evolutionary Thinking For Medicine. , 2007, , 3-16.		6
901	Global spatial patterns of infectious diseases and human evolution. , 2007, , 19-30.		7
902	Human genetic variation of medical significance. , 2007, , 51-62.		1
903	Intimate relations: Evolutionary conflicts of pregnancy and childhood. , 2007, , 65-76.		5

#	Article	IF	Citations
904	How hormones mediate trade-offs in human health and disease. , 2007, , 77-94.		12
905	Functional significance of MHC variation in mate choice, reproductive outcome, and disease risk. , 2007, , 95-108.		3
906	The ecology and evolution of antibiotic-resistant bacteria. , 2007, , 125-138.		9
907	Pathogen evolution in a vaccinated world. , 2007, , 139-152.		11
908	The evolution and expression of virulence. , 2007, , 153-168.		30
909	Evolutionary origins of diversity in human viruses. , 2007, , 169-184.		2
910	The population structure of pathogenic bacteria. , 2007, , 185-198.		4
911	Emergence of new infectious diseases. , 2007, , 215-228.		7
912	Evolutionary biology as a foundation for studying aging and aging-related disease. , 2007, , 241-252.		3
913	Evolution, developmental plasticity, and metabolic disease. , 2007, , 253-264.		8
914	Lifestyle, diet, and disease: comparative perspectives on the determinants of chronic health risks. , 2007, , 265-276.		8
917	The Pharmacology and Signaling of Bitter, Sweet, and Umami Taste Sensing. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 87-98.	3.4	63
918	Comparing Sensory Experience in Bitter Taste Perception of Phenylthiocarbamide within and between Human Twins and Singletons: Intrapair Differences in Thresholds and Genetic Variance Estimates. Anthropologischer Anzeiger, 2008, 66, 211-224.	0.2	3
919	The Human Sweet Tooth and Its Relationship to Obesity. Nutrition and Disease Prevention, 2004, , 51-70.	0.1	3
920	Macronutrients. , 2008, , 283-294.		1
921	Neural Representation of Fat Texture in the Mouth. Frontiers in Neuroscience, 2009, , 197-223.	0.0	6
922	Sensory Attributes and the Way We Perceive Them. , 2006, , 7-24.		2
923	Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception. PLoS ONE, 2011, 6, e23165.	1.1	13

	CITATION	I REPORT	
#	ARTICLE	IF	CITATIONS
924	Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca2+ and cAMP Concentrations in Spermatozoa. PLoS ONE, 2012, 7, e32354.	1.1	65
925	Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds. PLoS ONE, 2012, 7, e35380.	1.1	139
926	A Smell That Causes Seizure. PLoS ONE, 2012, 7, e41899.	1.1	24
927	Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells. PLoS ONE, 2012, 7, e43140.	1.1	45
928	Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, Macaca mulatta. PLoS ONE, 2012, 7, e45426.	1.1	13
929	A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells. PLoS ONE, 2013, 8, e54500.	1.1	87
930	A High Throughput In Vivo Assay for Taste Quality and Palatability. PLoS ONE, 2013, 8, e72391.	1.1	12
931	Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass. PLoS ONE, 2014, 9, e86454.	1.1	52
932	Insights into the Origin of Nematode Chemosensory GPCRs: Putative Orthologs of the Srw Family Are Found across Several Phyla of Protostomes. PLoS ONE, 2014, 9, e93048.	1.1	26
933	Identification and Characterization of Novel Renal Sensory Receptors. PLoS ONE, 2014, 9, e111053.	1.1	55
934	L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors. PLoS ONE, 2015, 10, e0130088.	1.1	27
935	SOX2 regulates homeostasis of taste bud cells and lingual epithelial cells in posterior tongue. PLoS ONE, 2020, 15, e0240848.	1.1	14
936	Deciphering the Genes for Taste Receptors for Fructose in Drosophila. Molecules and Cells, 2017, 40, 731-736.	1.0	5
937	Signaling Mechanisms Controlling Taste Cell Function. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 125-137.	0.4	11
938	GENETIC AND BEHAVIORAL INFLUENCES OF QUININE AND MONOSODIUM GLUTAMATE ON Drosophila melanogaster. Egyptian Journal of Genetics and Cytology, 2014, 43, 377-391.	0.1	2
939	Sugars and Sweeteners: Structure, Properties and In Silico Modeling. Current Medicinal Chemistry, 2020, 27, 5-22.	1.2	3
940	Duodenal Luminal Chemosensing; Acid, ATP, and Nutrients. Current Pharmaceutical Design, 2014, 20, 2760-2765.	0.9	25
941	Genetics of Taste Receptors. Current Pharmaceutical Design, 2014, 20, 2669-2683.	0.9	153

#	Article	IF	CITATIONS
942	Heteromerization of G Protein-Coupled Receptors: Relevance to Neurological Disorders and Neurotherapeutics. CNS and Neurological Disorders - Drug Targets, 2010, 9, 636-650.	0.8	44
944	Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets?. Diabetes and Metabolism Journal, 2020, 44, 509.	1.8	36
945	Polymorphisms of TAS1R3 and GNAT3 Genes Are Associated with Patients with Taste Disorder. Journal of Life Science, 2011, 21, 412-416.	0.2	2
946	Mouse neutrophils express functional umami taste receptor T1R1/T1R3. BMB Reports, 2014, 47, 649-654.	1.1	25
947	Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. ELife, 2017, 6, .	2.8	63
948	Molecular basis of fatty acid taste in Drosophila. ELife, 2017, 6, .	2.8	92
949	The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2021, 46, .	1.1	2
950	Molecular aspects of fructose metabolism and metabolic disease. Cell Metabolism, 2021, 33, 2329-2354.	7.2	100
951	The Human Sweet Tooth and Its Relationship to Obesity. , 2004, , 67-86.		4
952	Future directions: using biotechnology to discover new sweeteners, bitter blockers and sweetness potentiators. , 2006, , 404-414.		0
953	Neural Coding in the rNST. Frontiers in Neuroscience, 2006, , 83-105.	0.0	1
954	Neural Coding in the rNST. , 2006, , 101-124.		1
956	The evolutionary context of human aging and degenerative disease. , 2007, , 301-312.		2
957	Health consequences of ecogenetic variation. , 2007, , 43-50.		1
958	Cancer as a microevolutionary process. , 2007, , 289-300.		0
959	Evolution of parasites. , 2007, , 229-238.		6
960	Perspectives on human health and disease from evolutionary and behavioral ecology. , 2007, , 109-122.		1
961	Medically relevant variation in the human genome. , 2007, , 31-42.		0

		EPORT	
#	Article	IF	Citations
962	Cancer: evolutionary origins of vulnerability. , 2007, , 277-288.		0
963	Whole-genome analysis of pathogen evolution. , 2007, , 199-214.		Ο
964	Neural Ensemble Recordings from Central Gustatory-Reward Pathways in Awake and Behaving Animals. Frontiers in Neuroscience, 2007, , 189-218.	0.0	1
965	The Functions of Sweet Taste Receptors in Gastrointestinal System. The Journal of the Kyushu Dental Society, 2008, 62, 143-146.	0.0	0
967	SENSORY TRANSDUCTION., 2009,, 371-407.		1
968	Handbook of Reward and Decision Making. , 2009, , .		2
969	Hexose Transport Across Mammalian Epithelia. , 2010, , 323-352.		0
970	Genetic Polymorph isms and Haplotype Analysis of Sweet Taste Receptor TAS1R2 Gene in the Korean Population. Journal of Life Science, 2010, 20, 462-465.	0.2	0
971	Biologische Signale. Springer-Lehrbuch, 2011, , 553-638.	0.1	0
972	Dietary Proteins and Satiety-Related Neuronal Pathways in the Brain. , 2011, , 407-421.		1
973	Role of Dietary Free Glutamate in Gastrointestinal Function. Journal of Nutrition & Food Sciences, 2012, 02, .	1.0	0
974	The Lingual Taste Papillae: A Delicate and Complicated Nature's Design for Taste Modalities Perception. Cellular Origin and Life in Extreme Habitats, 2012, , 343-356.	0.3	0
975	Taste profile characterization of white ginseng by electronic tongue analysis. African Journal of Biotechnology, 2012, 11, .	0.3	0
976	Is Sugar as Addictive as Cocaine?. , 2012, , 231-237.		3
978	Dimerization of Chemokine Receptors and its Novel Roles in Drug Discovery. Lecture Notes in Electrical Engineering, 2014, , 657-667.	0.3	0
979	Non-nutritive Sweeteners. , 2014, , 63-84.		0
980	The effect of L-cysteine on appetite in humans. Endocrine Abstracts, 0, , .	0.0	0
981	Review of Development of Sweetness Sensor. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 51-56.	0.0	0

# 982	ARTICLE Effect of Soft Drink Consumption on Human Health. , 2015, , 133-158.	IF	Citations 0
983	Gustatory Receptor-Based Taste Sensors. , 2015, , 241-263.		0
984	Chemogenetic Deconstruction of Feeding Circuits. Neuromethods, 2015, , 61-81.	0.2	0
985	Food and Feeding of Fishes. What Do We Need to Know?. Transylvanian Review of Systematical and Ecological Research, 2015, 17, 71-84.	0.9	5
986	Nutrients Modulate T1r2 Transcript Levels in MIN 6 and Primary Cultured Taste Buds Cells under High Glucose Condition. Food and Nutrition Sciences (Print), 2016, 07, 312-319.	0.2	1
987	Die chemischen Sinne. , 2018, , 277-308.		0
991	Sweet and Umami Taste. , 2020, , 211-230.		0
992	Behavioral Analysis of Taste Function in Rodent Models. , 2020, , 169-186.		1
996	Whole-Brain Mapping of the Expression Pattern of T1R2, a Subunit Specific to the Sweet Taste Receptor. Frontiers in Neuroanatomy, 2021, 15, 751839.	0.9	6
997	Mechanisms of Carboxylic Acid Attraction in Drosophila melanogaster. Molecules and Cells, 2021, 44, 900-910.	1.0	14
998	Chronic Effects of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism. International Journal of Molecular Sciences, 2021, 22, 137.	1.8	6
999	Taste and chirality: l-glucose sweetness is mediated by TAS1R2/TAS2R3 receptor. Food Chemistry, 2022, 373, 131393.	4.2	10
1000	Taste Genetics. , 2020, , 264-279.		1
1001	Flavor Processing in the Brain. , 2020, , 298-317.		0
1002	Psychobiology of Tasting and Its Role in Food Perception. , 2020, , 318-332.		1
1003	Chemistry of Gustatory Stimuli. , 2020, , 24-64.		0
1004	Determination of Numerical Papillae Distribution Affecting the Taste Sensitivity on the Tongue with Image Processing Techniques. Lecture Notes on Data Engineering and Communications Technologies, 2020, , 153-170.	0.5	0
1005	Effect of food domestication on the growth of Elopichthys bambusa. Reproduction and Breeding, 2021, 1, 157-166.	0.8	6

~		~	
(11		1JED(דסר
\sim	IAL	NLP	ואכ

#	Article	IF	CITATIONS
1007	Taste bud regeneration and the search for taste progenitor cells. Archives Italiennes De Biologie, 2010, 148, 107-18.	0.1	37
1008	T1R and T2R receptors: the modulation of incretin hormones and potential targets for the treatment of type 2 diabetes mellitus. Current Opinion in Investigational Drugs, 2010, 11, 447-54.	2.3	24
1010	It's all a matter of taste: gustatory processing and ingestive decisions. Missouri Medicine, 2010, 107, 247-51.	0.3	2
1013	Taste in birds. , 2022, , 205-222.		1
1014	Impact of Nutritional Intervention on Taste Perception—A Scoping Review. Foods, 2021, 10, 2747.	1.9	8
1016	Saccharin Stimulates Insulin Secretion Dependent on Sweet Taste Receptor-Induced Activation of PLC Signaling Axis. Biomedicines, 2022, 10, 120.	1.4	5
1017	Encoding Taste: From Receptors to Perception. Handbook of Experimental Pharmacology, 2021, , 53-90.	0.9	5
1018	The Application of In Silico Methods on Umami Taste Receptor. Handbook of Experimental Pharmacology, 2021, , .	0.9	1
1019	Chicken taste receptors and perception: recent advances in our understanding of poultry nutrient-sensing systems. World's Poultry Science Journal, 2022, 78, 5-20.	1.4	1
1020	Evaluation and Design of Food Flavor by Cell-based Assay of Chemosensory Receptors. Journal of the Japanese Society for Food Science and Technology, 2022, 69, 1-7.	0.1	1
1021	The preference for sugar over sweetener depends on a gut sensor cell. Nature Neuroscience, 2022, 25, 191-200.	7.1	71
1022	Synergism, Bifunctionality, and the Evolution of a Gradual Sensory Trade-off in Hummingbird Taste Receptors. Molecular Biology and Evolution, 2022, 39, .	3.5	7
1023	A functional division of <i>Drosophila</i> sweet taste neurons that is value-based and task-specific. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
1024	Sodium Reduction in Bouillon: Targeting a Food Staple to Reduce Hypertension in Sub-saharan Africa. Frontiers in Nutrition, 2022, 9, 746018.	1.6	3
1025	Assessment of the triangle test methodology for determining umami discrimination status. Chemical Senses, 2022, 47, .	1.1	4
1026	A Dynamic Mass Redistribution Assay for the Human Sweet Taste Receptor Uncovers G-Protein Dependent Biased Ligands. Frontiers in Pharmacology, 2022, 13, 832529.	1.6	6
1027	Rotational Spectrum and Conformational Analysis of Perillartine: Insights into the Structure–Sweetness Relationship. Molecules, 2022, 27, 1924.	1.7	1
1028	Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. Fundamental Research, 2022, , .	1.6	0

#	Article	IF	CITATIONS
1029	Oral Microbiota-Host Interaction Mediated by Taste Receptors. Frontiers in Cellular and Infection Microbiology, 2022, 12, 802504.	1.8	3
1030	Reduction of sodium chloride: a review. Journal of the Science of Food and Agriculture, 2022, 102, 3931-3939.	1.7	12
1031	Dietary experience with glucose and fructose fosters heightened avidity for glucose-containing sugars independent of TRPM5 taste transduction in mice. Nutritional Neuroscience, 2022, , 1-12.	1.5	2
1032	Molecular insights into human taste perception and umami tastants: A review. Journal of Food Science, 2022, 87, 1449-1465.	1.5	16
1033	Development of a screening system for agents that modulate taste receptor expression with the CRISPR-Cas9 system in medaka. Biochemical and Biophysical Research Communications, 2022, 601, 65-72.	1.0	1
1034	Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II. , 2021, 13, 17-32.		5
1035	Taste Cells and Calcium Signaling. Food and Nutritional Components in Focus, 2015, , 413-430.	0.1	0
1042	Why Taste Is Pharmacology. Handbook of Experimental Pharmacology, 2022, , .	0.9	1
1045	Conditioned Taste Aversion to L-Amino Acid Taste Stimuli and Oral Transcriptional Changes to Type 1 Taste Receptors T1R1 and T1R3 on Chronic Exposure to L-Alanine Solution in Chickens. Journal of Poultry Science, 2022, 59, 348-356.	0.7	3
1046	Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells, 2022, 11, 1493.	1.8	26
1047	Behavioral responses to sweet compounds via T1R2-independent pathways in chickens. Poultry Science, 2022, 101, 101928.	1.5	3
1048	SARS-CoV-2 Infection and Taste Alteration: An Overview. Life, 2022, 12, 690.	1.1	15
1049	Kinetics of a new porcine taste-bud tissue biosensor for the detection of umami substances and their synergistic effect. Biosensors and Bioelectronics, 2022, 210, 114304.	5.3	9
1050	Elucidation of Response Mechanism of a Potentiometric Sweetness Sensor with a Lipid/Polymer Membrane for Uncharged Sweeteners. Chemosensors, 2022, 10, 166.	1.8	6
1051	The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutrition Research, 2022, 106, 47-59.	1.3	8
1052	The Ile191Val Variant of the TAS1R2 Subunit of Sweet Taste Receptors Is Associated With Reduced HbA1c in a Human Cohort With Variable Levels of Glucose Homeostasis. Frontiers in Nutrition, 2022, 9, .	1.6	2
1053	Impact of sweet, umami, and bitter taste receptor (TAS1R and TAS2R) genomic and expression alterations in solid tumors on survival. Scientific Reports, 2022, 12, .	1.6	8
1054	Lactose on the basolateral side of mammary epithelial cells inhibits milk production concomitantly with signal transducer and activator of transcription 5 inactivation. Cell and Tissue Research, 2022, 389, 501-515.	1.5	4

#	Article	IF	CITATIONS
1055	Identification of novel umami molecules <i>via</i> QSAR models and molecular docking. Food and Function, 2022, 13, 7529-7539.	2.1	5
1056	Decreased taste sensitivity to sucrose in dopamine D3 receptor mutant mice. Chemical Senses, 2022, 47,	1.1	Ο
1057	Effect of Saccharomyces cerevisiae culture mitigates heat stress-related dame in dairy cows by multi-omics. Frontiers in Microbiology, 0, 13, .	1.5	2
1058	The neural basis of sugar preference. Nature Reviews Neuroscience, 2022, 23, 584-595.	4.9	16
1059	Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. International Journal of Molecular Sciences, 2022, 23, 8225.	1.8	1
1063	Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Developmental Dynamics, 2023, 252, 81-103.	0.8	5
1064	Ablation of <i>Tas1r1</i> Reduces Lipid Accumulation Through Reducing the <i>de Novo</i> Lipid Synthesis and Improving Lipid Catabolism in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 10248-10258.	2.4	2
1065	High-sucrose diet exposure is associated with selective and reversible alterations in the rat peripheral taste system. Current Biology, 2022, 32, 4103-4113.e4.	1.8	12
1066	Sweet taste receptor agonists attenuate macrophage $L\hat{a}\in \hat{I}^2$ expression and eosinophilic inflammation linked to autophagy deficiency in myeloid cells. Clinical and Translational Medicine, 2022, 12, .	1.7	0
1067	Flavor. , 2023, , 233-256.		0
1067 1068	Flavor. , 2023, , 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It. , 2022, , 75-111.		0
1067 1068 1069	 Flavor., 2023, , 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, , 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. 	1.8	0 0 6
1067 1068 1069 1071	Flavor., 2023, , 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, , 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. Glutamate-Sodium Discrimination Status in Adults Is Associated with Salt Recognition Threshold and Habitual Intake of Discretionary Food and Meat: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2022, 19, 11101.	1.8	0 0 6 0
1067 1068 1069 1071	 Flavor., 2023, 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. Glutamate-Sodium Discrimination Status in Adults Is Associated with Salt Recognition Threshold and Habitual Intake of Discretionary Food and Meat: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2022, 19, 11101. Gut–brain circuits for fat preference. Nature, 2022, 610, 722-730. 	1.8 1.2 13.7	0 0 6 0 41
1067 1068 1069 1071 1072	Flavor., 2023, , 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, , 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. Glutamate-Sodium Discrimination Status in Adults Is Associated with Salt Recognition Threshold and Habitual Intake of Discretionary Food and Meat: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2022, 19, 11101. Guta€"brain circuits for fat preference. Nature, 2022, 610, 722-730. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. Journal of Agricultural and Food Chemistry, 2022, 70, 11652-11666.	1.8 1.2 13.7 2.4	0 0 6 0 41 15
1067 1068 1069 1071 1072 1073	Flavor., 2023, 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. Glutamate-Sodium Discrimination Status in Adults Is Associated with Salt Recognition Threshold and Habitual Intake of Discretionary Food and Meat: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2022, 19, 11101. Guta@c"brain circuits for fat preference. Nature, 2022, 610, 722-730. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. Journal of Agricultural and Food Chemistry, 2022, 70, 11652-11666. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science, 2022, 377, 1298-1304.	1.8 1.2 13.7 2.4 6.0	0 0 6 0 41 15 23
1067 1068 1069 1071 1072 1073 1074	Flavor., 2023, 233-256. Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It., 2022, 75-111. Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022, 23, 9677. Glutamate-Sodium Discrimination Status in Adults Is Associated with Salt Recognition Threshold and Habitual Intake of Discretionary Food and Meat: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 2022, 19, 11101. Gut–brain circuits for fat preference. Nature, 2022, 610, 722-730. Typical Umami Ligand-Induced Binding Interaction and Conformational Change of T1R1-VFT. Journal of Agricultural and Food Chemistry, 2022, 70, 11652-11666. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science, 2022, 377, 1298-1304. The effect of adulteration with a bitter tastant, denatonium benzoate, on the reinforcing value of sucrose. Behavioural Processes, 2022, 203, 104771.	1.8 1.2 13.7 2.4 6.0 0.5	0 0 6 0 41 15 23

		CITATION REPOR	Т	
#	Article	IF		Citations
1077	How Subjects Can Emerge from Neurons. Process Studies, 2019, 48, 40-58.	0.0)	1
1078	Role of feeding specialization in taste receptor loss: insights from sweet and umami receptor evolution in Carnivora. Chemical Senses, 2022, 47, .	1.1		0
1079	Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerve transection. PeerJ, 0, 10, e14455.	0.9)	0
1080	The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiological Reviews, 2023, 103, 1423-1485.	13.	1	6
1081	Associations between Sweet Taste Sensitivity and Polymorphisms (SNPs) in the TAS1R2 and TA Genes, Gender, PROP Taster Status, and Density of Fungiform Papillae in a Genetically Homoge Sardinian Cohort. Nutrients, 2022, 14, 4903.	S1R3 neous 1.7		2
1083	Influence of alkylation and esterification of 2-(4-methoxyphenoxy) propionic acid on sweet inhil property and its manipulating mechanism. International Journal of Food Properties, 2023, 26, 1	bition 1.3 08-121. 1.3		1
1084	Advances in Optical Tools to Study Taste Sensation. Molecules and Cells, 2022, 45, 877-882.	1.0		0
1085	The feeding ecology of grass carp: A review. Reviews in Aquaculture, 2023, 15, 1335-1354.	4.6		2
1086	E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chemical Research in Toxicolog 35, 2194-2209.	y, 2022, 1.7		2
1087	Sweet Taste Receptor Gene and Caries Trajectory in the Life Course. Journal of Dental Research, 102, 422-430.	2023, <u>2.5</u>		2
1088	Mimicking the Biological Sense of Taste In Vitro Using a Taste Organoidsâ€onâ€aâ€Chip Syster Science, 2023, 10, .	n. Advanced 5.6		8
1089	A Novel Mechanism for T1R-Independent Taste Responses to Concentrated Sugars. Journal of Neuroscience, 2023, 43, 965-978.	1.7		1
1090	Savory Signaling: T1R Umami Receptor Modulates Endoplasmic Reticulum Calcium Store Conte Release Dynamics in Airway Epithelial Cells. Nutrients, 2023, 15, 493.	nt and 1.7		4
1091	Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor. Journa Microbiology and Biotechnology, 2023, 33, 203-210.	l of 0.9)	0
1092	G Protein-Coupled Receptors: Conformational "Gatekeepers―of Transmembrane Signal Tra and Diversification. , 2011, , 188-229.	Insduction		0
1093	Coronavirus infection in chemosensory cells. Journal of NeuroVirology, 0, , .	1.0		0
1094	Zebrafish and medaka <scp>T1R</scp> (taste receptor type 1) proteins mediate highly sensitiv recognition of <scp>I</scp> â€proline. FEBS Open Bio, 0, , .	2 1.0		2
1095	Barbel regeneration and function divergence in red-tail catfish (Hemibagrus wyckioides) based of chromosome-level genomes and comparative transcriptomes. International Journal of Biologica Macromolecules, 2023, 232, 123374.	on the 3.6		1

#	Article	IF	CITATIONS
1096	Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients, 2023, 15, 1260.	1.7	2
1098	A transcription factor Etv1/Er81 is involved in the differentiation of sweet, umami, and sodium taste cells. ENeuro, 0, , ENEURO.0236-22.2023.	0.9	2
1099	Early-life influences of low-calorie sweetener consumption on sugar taste. Physiology and Behavior, 2023, 264, 114133.	1.0	0
1100	Systematic analysis reveals novel insight into the molecular determinants of function, diversity and evolution of sweet taste receptors T1R2/T1R3 in primates. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
1102	Sensitivity of human sweet taste receptor subunits T1R2 and T1R3 to activation by glucose enantiomers. Chemical Senses, 2023, 48, .	1.1	3
1103	Taste Function in Adult Humans from Lean Condition to Stage II Obesity: Interactions with Biochemical Regulators, Dietary Habits, and Clinical Aspects. Nutrients, 2023, 15, 1114.	1.7	2
1105	Sweet taste receptor subunit T1R3 regulates casein secretion and phosphorylation of STAT5 in mammary epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119448.	1.9	2
1106	Modification of a Novel Umami Octapeptide with Trypsin Hydrolysis Sites via Homology Modeling and Molecular Docking. Journal of Agricultural and Food Chemistry, 2023, 71, 5326-5336.	2.4	5
1119	Umami Taste Signaling from the Taste Bud to Cortex. , 2024, , 43-71.		0
1127	Smell and Taste-Based Interactions Enabled Through Advances in Digital Technology. , 2023, , 1-31.		0
1129	Commentary: Is obesity associated with taste alterations? a systematic review. Frontiers in Endocrinology, 0, 14, .	1.5	0
1138	Smell and Taste-Based Interactions Enabled Through Advances in Digital Technology. , 2024, , 1-31.		0
1140	Role of protein-rich diet in brain functions. , 2024, , 505-523.		0

1140 Role of protein-rich diet in brain functions. , 2024, , 505-523.