Coding of Sweet, Bitter, and Umami Tastes

Cell 112, 293-301 DOI: 10.1016/s0092-8674(03)00071-0

Citation Report

#	Article	IF	CITATIONS
1	TRP channels as cellular sensors. Nature, 2003, 426, 517-524.	13.7	2,380
2	TRPM5 Is a Voltage-Modulated and Ca2+-Activated Monovalent Selective Cation Channel. Current Biology, 2003, 13, 1153-1158.	1.8	353
3	C-proteins as transducers in transmembrane signalling. Progress in Biophysics and Molecular Biology, 2003, 83, 101-130.	1.4	238
4	ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature Reviews Neuroscience, 2003, 4, 529-539.	4.9	722
5	Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochemical and Biophysical Research Communications, 2003, 312, 500-506.	1.0	142
6	Bitter-Sweet Solution in Taste Transduction. Cell, 2003, 112, 283-284.	13.5	38
7	The Receptors for Mammalian Sweet and Umami Taste. Cell, 2003, 115, 255-266.	13.5	1,143
8	Taste and pheromone perception in mammals and flies. Genome Biology, 2003, 4, 220.	13.9	42
9	(+)-(S)-AlapyridaineA General Taste Enhancer?. Chemical Senses, 2003, 28, 371-379.	1.1	64
10	Behavioral Evidence for a Role of Â-Gustducin in Glutamate Taste. Chemical Senses, 2003, 28, 573-579.	1.1	78
11	International Union of Pharmacology. XLIII. Compendium of Voltage-Gated Ion Channels: Transient Receptor Potential Channels. Pharmacological Reviews, 2003, 55, 591-596.	7.1	227
12	Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15160-15165.	3.3	384
13	TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15166-15171.	3.3	329
14	Matching Accessories. Science Signaling, 2003, 2003, pe25-pe25.	1.6	4
15	Challenges in Taste Research: Present Knowledge and Future Implications. ACS Symposium Series, 2003, , 1-24.	0.5	2
16	Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and α ₂ -adrenergic receptors in <i>Xenopus laevis</i> melanophores. American Journal of Physiology - Cell Physiology, 2003, 285, C1255-C1262.	2.1	23
17	Role of the G-Protein Subunit α-Gustducin in Taste Cell Responses to Bitter Stimuli. Journal of Neuroscience, 2003, 23, 9947-9952.	1.7	93
18	Lighting up the Senses: FM1-43 Loading of Sensory Cells through Nonselective Ion Channels. Journal of Neuroscience, 2003, 23, 4054-4065.	1.7	479

ARTICLE IF CITATIONS # Calcium Signaling Mediated by P2Y Receptors in Mouse Taste Cells. Journal of Neurophysiology, 2003, 19 0.9 50 90, 3283-3294. Neurobehavioral Analysis of Taste Function., 2004, , 63-87. 22 Taste Perception: Cracking the Code. PLoS Biology, 2004, 2, e64. 2.6 19 Chemosensory G-Protein-Coupled Receptor Signaling in the Brain. International Review of 0.9 Neurobiology, 2004, 62, 147-157. Insights into the molecular nature of magnesium homeostasis. American Journal of Physiology - Renal 24 1.3 194 Physiology, 2004, 286, F599-F605. The Contribution of Taste Bud Populations to Bitter Avoidance in Mouse Strains Differentially 1.1 Sensitive to Sucrose Octa-acetate and Quinine. Chemical Senses, 2004, 29, 775-795. The Caudal Brainstem and the Control of Food Intake and Energy Balance., 2004, , 195-240. 26 20 Umami Taste Responses Are Mediated by Â-Transducin and Â-Gustducin. Journal of Neuroscience, 2004, 24, 1.7 139 7674-7680. Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees. Proceedings 28 3.3 51 of the National Academy of Sciences of the United States of America, 2004, 101, 14830-14834. â€~One Receptor' Rules in Sensory Neurons. Developmental Neuroscience, 2004, 26, 388-395. 1.0 The Relative Affective Potency of Glycine, L-Serine and Sucrose as Assessed by a Brief-access Taste Test 30 1.1 55 in Inbred Strains of Mice. Chemical Senses, 2004, 29, 489-498. RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. European Journal of Neuroscience, 2004, 19, 1535-1544. 1.2 30 Vanilloid receptor TRPV1: hot on the tongue and inflaming the colon. Neurogastroenterology and 32 1.6 34 Motility, 2004, 16, 697-699. Genes and ligands for odorant, vomeronasal and taste receptors. Nature Reviews Neuroscience, 2004, 589 5,263-278. Ion Channels. British Journal of Pharmacology, 2004, 141, S71-S91. 34 2.7 1 The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. 235 Journal of Physiology, 2004, 558, 147-159. Mouse models to study G-protein-mediated signaling., 2004, 101, 75-89. 36 56 Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function., 2004, 103, 21-80.

	CITATION	KEPORT	
#	Article	IF	CITATIONS
38	TRP ion channels in the nervous system. Current Opinion in Neurobiology, 2004, 14, 362-369.	2.0	301
39	The sweet and the bitter of mammalian taste. Current Opinion in Neurobiology, 2004, 14, 423-427.	2.0	104
40	Taste Perception: How to Make a Gourmet Mouse. Current Biology, 2004, 14, R118-R120.	1.8	9
41	Taste Perception and Coding in Drosophila. Current Biology, 2004, 14, 1065-1079.	1.8	348
42	Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. European Journal of Pharmacology, 2004, 489, 139-149.	1.7	71
43	TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. European Journal of Pharmacology, 2004, 500, 231-241.	1.7	157
44	TRP channels as potential drug targets. Biology of the Cell, 2004, 96, 47-54.	0.7	28
45	Variation in Intake of Sweet and Bitter Solutions by Inbred Strains of Golden Hamsters. Behavior Genetics, 2004, 34, 465-476.	1.4	10
46	Molecular Basis of Bitter Taste: The T2R Family of G Protein-Coupled Receptors. Cell Biochemistry and Biophysics, 2004, 41, 099-112.	0.9	35
47	Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Archiv European Journal of Physiology, 2004, 449, 213-26.	1.3	49
48	Molecular neurophysiology of taste in Drosophila. Cellular and Molecular Life Sciences, 2004, 61, 10-18.	2.4	54
49	Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. Journal of Comparative Neurology, 2004, 468, 311-321.	0.9	207
50	Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. Journal of Comparative Neurology, 2004, 471, 59-71.	0.9	60
51	Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste inDrosophila. Journal of Neurobiology, 2004, 61, 333-342.	3.7	135
52	Phospholipase C-beta 2 as a mammalian taste signaling marker is expressed in the multiple gustatory tissues of medaka fish, Oryzias latipes. Mechanisms of Development, 2004, 121, 985-989.	1.7	25
53	TRP ion channels in the nervous system. Current Opinion in Neurobiology, 2004, , .	2.0	1
54	Taste Representations in the Drosophila Brain. Cell, 2004, 117, 981-991.	13.5	408
55	The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends in Pharmacological Sciences, 2004, 25, 633-639.	4.0	261

	СПАПС	ON KEPORT	
#	Article	IF	Citations
56	The distinctiveness of ionic and nonionic bitter stimuli. Physiology and Behavior, 2004, 80, 421-431.	1.0	48
57	Saccharin stimulates the "deterrent―cell in the blowfly: behavioral and electrophysiological evidence. Physiology and Behavior, 2004, 80, 637-646.	1.0	13
58	The Cellular Basis of Flavour Perception: Taste and Aroma. , 0, , 57-85.		5
59	Sense of Taste in a New World Monkey, the Common Marmoset. II. Link Between Behavior and Nerve Activity. Journal of Neurophysiology, 2004, 92, 1067-1076.	0.9	31
60	Neural Representation of Bitter Taste in the Nucleus of the Solitary Tract. Journal of Neurophysiology, 2005, 94, 3719-3729.	0.9	60
61	Psychophysical Investigations of Cetylpyridinium Chloride in Rats: Its Inherent Taste and Modifying Effects on Salt Taste Behavioral Neuroscience, 2005, 119, 265-279.	0.6	8
62	The development of taste transduction and taste chip technology. Science Bulletin, 2005, 50, 1415.	1.7	9
63	HUMAN TASTE GENETICS. Annual Review of Genomics and Human Genetics, 2005, 6, 217-235.	2.5	152
64	Electrophysiological and behavioural characterization of gustatory responses to antennal â€~bitter' taste in honeybees. European Journal of Neuroscience, 2005, 22, 3161-3170.	1.2	77
65	A Hypothesis for the Chemical Basis for Perception of Sour Taste. Journal of Food Science, 2005, 70, R44-R48.	1.5	22
66	Umami Taste Enhancement of MSG/NaCl Mixtures by Subthreshold L-?-Aromatic Amino Acids. Journal of Food Science, 2005, 70, s401-s405.	1.5	101
67	Ion Channels. British Journal of Pharmacology, 2005, 144, S73-S94.	2.7	3
68	Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO Journal, 2005, 24, 2127-2137.	3.5	92
69	G-protein gamma subunit 1 is required for sugar reception in Drosophila. EMBO Journal, 2005, 24, 3259-3265.	3.5	42
70	Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning. Nature, 2005, 434, 229-234.	13.7	200
71	The receptors and coding logic for bitter taste. Nature, 2005, 434, 225-229.	13.7	470
72	Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature, 2005, 438, 1022-1025.	13.7	408
73	Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium, 2005, 37, 267-278.	1.1	215

#	ARTICLE	IF	CITATIONS
74	TRP channels: An overview. Cell Calcium, 2005, 38, 233-252.	1.1	688
75	Gustatory Perception and Behavior in Drosophila melanogaster. Current Biology, 2005, 15, R673-R684.	1.8	142
76	Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli. Current Biology, 2005, 15, 1948-1952.	1.8	267
77	Effect of metabotropic glutamate receptor agonists and signal transduction modulators on feeding by a caterpillar. Pharmacology Biochemistry and Behavior, 2005, 82, 678-685.	1.3	3
78	Liposome-mediated transfection of mature taste cells. Journal of Neurobiology, 2005, 65, 12-21.	3.7	6
79	Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice. Journal of Comparative Neurology, 2005, 490, 371-390.	0.9	36
80	Chemical and biological modification of cynaropicrin and grosheimin: a structure-bitterness relationship study. Journal of the Science of Food and Agriculture, 2005, 85, 1757-1764.	1.7	36
81	Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 315-324.	1.4	26
82	Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 334-341.	1.4	35
83	The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Archiv European Journal of Physiology, 2005, 451, 204-211.	1.3	144
84	TRP channels and mice deficient in TRP channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 11-18.	1.3	39
85	TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Archiv European Journal of Physiology, 2005, 451, 1-10.	1.3	204
86	Espin cytoskeletal proteins in the sensory cells of rodent taste buds. Journal of Neurocytology, 2005, 34, 171-182.	1.6	11
87	Transduction Mechanisms in Taste Cells. , 2005, , 153-177.		5
88	Invertebrate Phototransduction: Multimolecular Signaling Complexes and the Role of TRP and TRPL Channels. , 2005, , 179-206.		3
89	Pharmacological Properties and Functional Role of a TRP-Related Ion Channel in Lobster Olfactory Receptor Neurons. Journal of Neurophysiology, 2005, 93, 1372-1380.	0.9	32
90	Function and Expression of the Drosophila Gr Genes in the Perception of Sweet, Bitter and Pheromone Compounds. Chemical Senses, 2005, 30, i270-i272.	1.1	17
91	TRP Channels as A Newly Emerging Non-Voltage-Gated Ca2+ Entry Channel Superfamily. Current Pharmaceutical Design, 2005, 11, 1899-1914.	0.9	29

	CITATION P	LEPORT	
#	Article	IF	CITATIONS
92	The TRPM Cation Channels in the Immune Context. Current Pharmaceutical Design, 2005, 11, 2765-2778.	0.9	20
93	cDNA Microarray Screening for Taste-bud-specific Genes. Chemical Senses, 2005, 30, i12-i13.	1.1	3
94	Pheromone reception in mammals. , 2005, 154, 1-35.		33
95	Characterization of Bitter Taste Responses of Intestinal STC-1 Cells. Chemical Senses, 2005, 30, 281-290.	1.1	41
96	PLCβ2-Independent Behavioral Avoidance of Prototypical Bitter-Tasting Ligands. Chemical Senses, 2005, 30, 593-600.	1.1	75
97	The Representation of Taste Quality in the Mammalian Nervous System. Behavioral and Cognitive Neuroscience Reviews, 2005, 4, 143-191.	3.9	164
98	International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List. Pharmacological Reviews, 2005, 57, 279-288.	7.1	452
99	Signal Transduction of Umami Taste: Insights from Knockout Mice. Chemical Senses, 2005, 30, i33-i34.	1.1	9
100	Neural substrates within primary visual cortex for interactions between parallel visual pathways. Progress in Brain Research, 2005, 149, 59-64.	0.9	21
101	Structure–Sweetness Relationship in Egg White Lysozyme: Role of Lysine and Arginine Residues on the Elicitation of Lysozyme Sweetness. Chemical Senses, 2005, 30, 667-681.	1.1	53
102	Mammalian G Proteins and Their Cell Type Specific Functions. Physiological Reviews, 2005, 85, 1159-1204.	13.1	957
103	Contribution of α-Gustducin to Taste-guided Licking Responses of Mice. Chemical Senses, 2005, 30, 299-316.	1.1	95
104	Phosphatidylinositol 4,5-Bisphosphate Rescues TRPM4 Channels from Desensitization. Journal of Biological Chemistry, 2005, 280, 39185-39192.	1.6	176
105	Genetic Tracing Shows Segregation of Taste Neuronal Circuitries for Bitter and Sweet. Science, 2005, 309, 781-785.	6.0	107
106	Downstream Signaling Effectors for Umami Taste. Chemical Senses, 2005, 30, i31-i32.	1.1	1
107	Introductory Remarks on Umami Research: Candidate Receptors and Signal Transduction Mechanisms on Umami. Chemical Senses, 2005, 30, i21-i22.	1.1	1
108	Acetylcholine and Acetylcholine Receptors in Taste Receptor Cells. Chemical Senses, 2005, 30, i41-i41.	1.1	15
109	Identification and Functional Characterization of a Voltage-gated Chloride Channel and Its Novel Splice Variant in Taste Bud Cells. Journal of Biological Chemistry, 2005, 280, 36150-36157.	1.6	22

#	Article	IF	CITATIONS
110	The Channel Kinases TRPM6 and TRPM7 Are Functionally Nonredundant. Journal of Biological Chemistry, 2005, 280, 37763-37771.	1.6	172
111	Expression of Phospholipase C-Â4 in Rat Circumvallate Taste Buds. Chemical Senses, 2005, 30, i27-i28.	1.1	3
112	Extracellular Acid Block and Acid-enhanced Inactivation of the Ca2+-activated Cation Channel TRPM5 Involve Residues in the S3-S4 and S5-S6 Extracellular Domains. Journal of Biological Chemistry, 2005, 280, 20691-20699.	1.6	53
113	Multiple Pathways for Signaling Glutamate Taste in Rodents. Chemical Senses, 2005, 30, i29-i30.	1.1	7
114	TARGETED EXPRESSION OF IP3SPONGE AND IP3DSRNA IMPAIRES SUGAR TASTE SENSATION INDROSOPHILA. Journal of Neurogenetics, 2005, 19, 123-141.	0.6	29
115	C-Protein-Dependent and -Independent Pathways in Denatonium Signal Transduction. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1643-1651.	0.6	26
116	International Union of Pharmacology. XLIX. Nomenclature and Structure-Function Relationships of Transient Receptor Potential Channels. Pharmacological Reviews, 2005, 57, 427-450.	7.1	365
118	Elucidation of mammalian bitter taste. , 2005, 154, 37-72.		125
119	Peripheral gustatory processing of sweet stimuli by golden hamsters. Brain Research Bulletin, 2005, 66, 70-84.	1.4	25
120	Drinking spout orifice size affects licking behavior in inbred mice. Physiology and Behavior, 2005, 85, 655-661.	1.0	25
121	The taste cell-related diffuse chemosensory system. Progress in Neurobiology, 2005, 75, 295-307.	2.8	74
122	Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are selectively expressed in taste receptor cells. Genomics, 2005, 85, 472-482.	1.3	18
123	Taste Recognition: Food for Thought. Neuron, 2005, 48, 455-464.	3.8	173
124	Evaluation of Bitter Masking Flavanones from Herba Santa (Eriodictyon californicum(H. & A.) Torr.,) Tj ETQq1 1 0	.784314 r 2.4	gBT_lOverloc
125	Two families of candidate taste receptors in fishes. Mechanisms of Development, 2005, 122, 1310-1321.	1.7	109
126	Inhibition of signal termination-related kinases by membrane-permeant bitter and sweet tastants: potential role in taste signal termination. American Journal of Physiology - Cell Physiology, 2005, 289, C483-C492.	2.1	47
127	The TRP Superfamily of Cation Channels. Science Signaling, 2005, 2005, re3-re3.	1.6	750
128	Umami Changes Intracellular Ca2+Levels Using Intracellular and Extracellular Sources in Mouse Taste Receptor Cells. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2613-2619.	0.6	11

#	Article	IF	Citations
129	TRP ION CHANNELS AND TEMPERATURE SENSATION. Annual Review of Neuroscience, 2006, 29, 135-161.	5.0	682
130	Thermal Gating of TRP Ion Channels: Food for Thought?. Science Signaling, 2006, 2006, pe12-pe12.	1.6	12
131	Separate Populations of Receptor Cells and Presynaptic Cells in Mouse Taste Buds. Journal of Neuroscience, 2006, 26, 3971-3980.	1.7	274
132	Structure–function relationship of the TRP channel superfamily. , 2006, , 61-90.		148
133	Methods for Studying Neutrophil Chemotaxis. Methods in Enzymology, 2006, 406, 605-613.	0.4	10
134	Gustation. Fish Physiology, 2006, 25, 45-96.	0.2	10
135	PERMEATION AND SELECTIVITY OF TRP CHANNELS. Annual Review of Physiology, 2006, 68, 685-717.	5.6	505
136	Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1078-1084.	1.2	57
137	Different expression patterns of TRP genes in murine B and T lymphocytes. Biochemical and Biophysical Research Communications, 2006, 350, 762-767.	1.0	72
138	AN INTRODUCTION TO TRP CHANNELS. Annual Review of Physiology, 2006, 68, 619-647.	5.6	1,378
140	Phospholipase CÎ ² 3 Mediates the Scratching Response Activated by the Histamine H1 Receptor on C-Fiber Nociceptive Neurons. Neuron, 2006, 52, 691-703.	3.8	168
141	Heterogeneous distribution of taste cells in facial and vagal nerve-innervated taste buds. Neuroscience, 2006, 138, 339-350.	1.1	2
142	Taste bud contains both short-lived and long-lived cell populations. Neuroscience, 2006, 141, 2129-2138.	1.1	109
143	Water taste: the importance of osmotic sensing in the oral cavity. Journal of Water and Health, 2006, 4, 35-40.	1.1	20
145	Taste Receptors and Their Variants. , 2006, , 386-411.		2
146	Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. American Journal of Physiology - Cell Physiology, 2006, 291, C726-C739.	2.1	179
147	Stimulation of taste cells by sweet taste compounds. , 2006, , 3-29.		2
148	The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds. Archives of Histology and Cytology, 2006, 69, 189-198.	0.2	33

TION RED

#	Article	IF	CITATIONS
149	Single Neurons in the Nucleus of the Solitary Tract Respond Selectively to Bitter Taste Stimuli. Journal of Neurophysiology, 2006, 96, 2513-2527.	0.9	96
150	Immunolocalization of SNARE proteins in both type II and type III cells of rat taste buds. Archives of Histology and Cytology, 2006, 69, 289-296.	0.2	19
151	Cell lineage and differentiation in taste buds. Archives of Histology and Cytology, 2006, 69, 209-225.	0.2	106
152	Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biology, 2006, 4, 7.	1.7	212
153	Capsaicin, transient receptor potential (TRP) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons. Kaibogaku Zasshi Journal of Anatomy, 2006, 81, 135-155.	1.2	43
154	Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. Journal of Neurochemistry, 2006, 98, 68-77.	2.1	168
155	REGIONAL VARIATION IN SWEET SUPPRESSION. Journal of Sensory Studies, 2006, 21, 348-361.	0.8	5
156	Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neuroscience, 2006, 9, 628-635.	7.1	552
157	The neural mechanisms of gustation: a distributed processing code. Nature Reviews Neuroscience, 2006, 7, 890-901.	4.9	304
158	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125.	2.7	Ο
158 159	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125. The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.	2.7 13.7	0 687
158 159 160	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125. The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938. The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.	2.7 13.7 13.7	0 687 1,361
158 159 160 161	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125.The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus. Journal of Investigative Dermatology, 2006, 126, 1705-1718.	2.7 13.7 13.7 0.3	0 687 1,361 231
158 159 160 161	ION CHANNELS. British Journal of Pharmacology, 2006, 147, 599-S125.The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus. Journal of Investigative Dermatology, 2006, 126, 1705-1718.TRP Channels: Molecular Diversity and Physiological Function. Microcirculation, 2006, 13, 535-550.	2.7 13.7 13.7 0.3 1.0	0 687 1,361 231 46
158 159 160 161 162 163	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125.The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus. Journal of Investigative Dermatology, 2006, 126, 1705-1718.TRP Channels: Molecular Diversity and Physiological Function. Microcirculation, 2006, 13, 535-550.Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Archiv European Journal of Physiology, 2006, 453, 125-131.	2.7 13.7 13.7 0.3 1.0 1.3	0 687 1,361 231 46 55
158 159 160 161 162 163	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125.The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus. Journal of Investigative Dermatology, 2006, 126, 1705-1718.TRP Channels: Molecular Diversity and Physiological Function. Microcirculation, 2006, 13, 535-550.Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Archiv European Journal of Physiology, 2006, 453, 125-131.Taste perception and coding in the periphery. Cellular and Molecular Life Sciences, 2006, 63, 2000-2015.	2.7 13.7 13.7 0.3 1.0 1.3 2.4	0 687 1,361 231 46 55
 158 159 160 161 162 163 164 165 	ION CHANNELS. British Journal of Pharmacology, 2006, 147, S99-S125.The cells and logic for mammalian sour taste detection. Nature, 2006, 442, 934-938.The receptors and cells for mammalian taste. Nature, 2006, 444, 288-294.Neurophysiological, Neuroimmunological, and Neuroendocrine Basis of Pruritus. Journal of Investigative Dermatology, 2006, 126, 1705-1718.TRP Channels: Molecular Diversity and Physiological Function. Microcirculation, 2006, 13, 535-550.Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Archiv European Journal of Physiology, 2006, 453, 125-131.Taste perception and coding in the periphery. Cellular and Molecular Life Sciences, 2006, 63, 2000-2015.Signaling in the Chemosensory Systems. Cellular and Molecular Life Sciences, 2006, 63, 1501-1509.	2.7 13.7 13.7 0.3 1.0 1.3 2.4	0 687 1,361 231 46 55 80 143

		CITATION REPORT	
#	ARTICLE	IF	Citations
167	Temporal coding in the gustatory system. Neuroscience and Biobehavioral Reviews, 2006, 30, 1	145-1160. 2.9	52
168	TRP channels and Ca2+ signaling. Cell Calcium, 2006, 40, 261-275.	1.1	128
169	Cation channels of the transient receptor potential superfamily: Their role in physiological and pathophysiological processes of smooth muscle cells. , 2006, 112, 744-760.		165
170	Group IIA phospholipase A2 is coexpressed with SNAP-25 in mature taste receptor cells of rat circumvallate papillae. Journal of Comparative Neurology, 2006, 494, 876-886.	0.9	26
171	The human perception of taste compounds. , 2006, , 3-35.		1
172	The Liaison of Sweet and Savory. Chemical Senses, 2006, 31, 221-225.	1.1	38
173	Human Taste: Peripheral Anatomy, TasteTransduction, and Coding. , 2006, 63, 152-190.		79
174	Block by Amiloride Derivatives of Odor-Evoked Discharge in Lobster Olfactory Receptor Neurons through Action on a Presumptive TRP Channel. Chemical Senses, 2006, 32, 149-159.	1.1	15
175	The Emerging Role of TRP Channels in Mechanisms of Temperature and Pain Sensation. Current Neuropharmacology, 2006, 4, 183-196.	1.4	66
176	Tastants evoke cAMP signal in taste buds that is independent of calcium signaling. American Jou Physiology - Cell Physiology, 2006, 291, C237-C244.	rnal of 2.1	46
177	Taste Receptors in the Gastrointestinal Tract. I. Bitter taste receptors and α-gustducin in the mammalian gut. American Journal of Physiology - Renal Physiology, 2006, 291, G171-G177.	1.6	197
178	Trpm5 Null Mice Respond to Bitter, Sweet, and Umami Compounds. Chemical Senses, 2006, 31,	253-264. 1.1	289
179	Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste re Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12569-12574.	ceptor. 3.3	428
180	Faithful Expression of GFP from the PLCβ2 Promoter in a Functional Class of Taste Receptor Cell Chemical Senses, 2006, 31, 213-219.	S. 1.1	48
181	Neurochemistry of the Gustatory System. , 2006, , 109-135.		1
182	Gs Is Involved in Sugar Perception in Drosophila melanogaster. Journal of Neuroscience, 2006, 2 6143-6152.	26, 1.7	48
183	Taste Receptor Cells Express Voltage-Dependent Potassium Channels in a Cell Age-Specific Man Chemical Senses, 2006, 31, 739-746.	ner. 1.1	33
184	Rapid Taste Responses in the Gustatory Cortex during Licking. Journal of Neuroscience, 2006, 26 4126-4138.	b, 1.7	147

#	Article	IF	CITATIONS
185	Umami Responses in Mouse Taste Cells Indicate More than One Receptor. Journal of Neuroscience, 2006, 26, 2227-2234.	1.7	130
186	Influence of Response Variability on the Coding Performance of Central Gustatory Neurons. Journal of Neuroscience, 2006, 26, 7433-7443.	1.7	21
187	Temporal Coding Mediates Discrimination of "Bitter" Taste Stimuli by an Insect. Journal of Neuroscience, 2006, 26, 8900-8908.	1.7	43
188	Human Taste Thresholds Are Modulated by Serotonin and Noradrenaline. Journal of Neuroscience, 2006, 26, 12664-12671.	1.7	171
189	An integrative approach to understanding mechanosensation. Briefings in Bioinformatics, 2007, 8, 258-265.	3.2	4
190	Behavioral Discrimination between Sucrose and Other Natural Sweeteners in Mice: Implications for the Neural Coding of T1R Ligands. Journal of Neuroscience, 2007, 27, 11242-11253.	1.7	38
191	Breadth of Tuning and Taste Coding in Mammalian Taste Buds. Journal of Neuroscience, 2007, 27, 10840-10848.	1.7	230
192	Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2471-2476.	3.3	151
193	Fat and carbohydrate preferences in mice: the contribution of α-gustducin and Trpm5 taste-signaling proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1504-R1513.	0.9	95
194	Individual Differences in Perceived Bitterness Predict Liking of Sweeteners. Chemical Senses, 2007, 32, 803-810.	1.1	34
195	Dietary salt and flavor: mechanisms of taste perception and physiological controls. , 2007, , 77-98.		11
196	Characterization of Ligands for Fish Taste Receptors. Journal of Neuroscience, 2007, 27, 5584-5592.	1.7	149
197	Expression of Gustducin Overlaps with That of Type III IP3 Receptor in Taste Buds of the Rat Soft Palate. Chemical Senses, 2007, 32, 689-696.	1.1	29
198	A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release. Genetics, 2007, 175, 93-105.	1.2	57
199	The Transduction Channel TRPM5 Is Gated by Intracellular Calcium in Taste Cells. Journal of Neuroscience, 2007, 27, 5777-5786.	1.7	174
200	The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6436-6441.	3.3	492
202	Protein kinase C regulates vascular myogenic tone through activation of TRPM4. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2613-H2622.	1.5	141
203	Abnormal Taste Perception in Mice Lacking the Type 3 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2007, 282, 37225-37231.	1.6	138

#	Article	IF	Citations
204	Functional characterization of human bitter taste receptors. Biochemical Journal, 2007, 403, 537-543.	1.7	105
205	Biological functions of TRPs unravelled by spontaneous mutations and transgenic animals. Biochemical Society Transactions, 2007, 35, 120-123.	1.6	16
206	Transient receptor potential channel M5 and phospholipaseC-β2 colocalizing in zebrafish taste receptor cells. NeuroReport, 2007, 18, 1517-1520.	0.6	28
207	Cycloheximide: No ordinary bitter stimulus. Behavioural Brain Research, 2007, 180, 4-17.	1.2	15
208	Transient receptor potential channels as drug targets. Expert Opinion on Therapeutic Targets, 2007, 11, 391-401.	1.5	16
209	Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42, 463-480.	2.3	91
210	Is rat LRRP Ba1-651 a Delta-1-pyrroline-5-carboxylate dehydrogenase activated by changes in the concentration of sweet molecules?. Medical Hypotheses, 2007, 68, 864-867.	0.8	2
212	TRPM5 and Taste Transduction. , 2007, , 287-298.		74
214	Transient Receptor Potential Cation Channels in Disease. Physiological Reviews, 2007, 87, 165-217.	13.1	1,260
215	Evolution of Taste. , 2007, , 423-441.		4
216	Evolution of Gustation. , 2007, , 329-339.		0
217	TRP Channels. Annual Review of Biochemistry, 2007, 76, 387-417.	5.0	1,768
218	Molecular Architecture of Smell and Taste inDrosophila. Annual Review of Neuroscience, 2007, 30, 505-533.	5.0	787
219	Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochemical Society Transactions, 2007, 35, 1191-1194.	1.6	76
220	The G-protein coupling properties of the human sweet and amino acid taste receptors. Developmental Neurobiology, 2007, 67, 948-959.	1.5	33
221	Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds. Journal of Comparative Neurology, 2007, 502, 883-893.	0.9	36
222	Claudin-based permeability barriers in taste buds. Journal of Comparative Neurology, 2007, 502, 1003-1011.	0.9	52
223	Biogenic amine synthesis and uptake in rodent taste buds. Journal of Comparative Neurology, 2007, 505, 302-313.	0.9	80

ARTICLE IF CITATIONS # Quantitative elucidation of the structure–bitterness relationship of cynaropicrin and grosheimin 224 4.2 25 derivatives. Food Chemistry, 2007, 105, 77-83. TRP channels and lipids: fromDrosophilato mammalian physiology. Journal of Physiology, 2007, 578, 1.3 158 9-24. 226 TRPpathies. Journal of Physiology, 2007, 578, 641-653. 1.3 57 Modulation of TRPs by PIPs. Journal of Physiology, 2007, 582, 939-944. 79 The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature 228 21.5 754 Reviews Drug Discovery, 2007, 6, 357-372. Ion Channels. British Journal of Pharmacology, 2007, 150, S96-S121. 2.7 Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes, Brain and 230 1.1 69 Behavior, 2007, 7, 070321054409001-???. Distribution profiles of transient receptor potential melastatin-related and vanilloid-related 231 0.8 channels in prostatic tissue in rat. Asian Journal of Andrology, 2007, 9, 634-640. 232 The neural processing of taste. BMC Neuroscience, 2007, 8, S5. 0.8 34 TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component 0.8 198 in chemosensory cells. BMC Neuroscience, 2007, 8, 49. Qualitative and quantitative differences between taste buds of the rat and mouse. BMC Neuroscience, 234 0.8 61 2007, 8, 5. Transgenic labeling of taste receptor cells in model fish under the control of the 5â€2-upstream region of medaka phospholipase C-beta 2 gene. Gene Expression Patterns, 2007, 7, 149-157. Taste Receptor Genes. Annual Review of Nutrition, 2007, 27, 389-414. 236 4.3 373 An Introduction on TRP Channels., 2007, , 1-19. Expression of the G-protein α-subunit gustducin in mammalian spermatozoa. Journal of Comparative 238 0.7 33 Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 21-34. Influence of temperature on taste perception. Cellular and Molecular Life Sciences, 2007, 64, 377-381. 2.4 A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct 240 0.8 72 populations of enteroendocrine cells. Histochemistry and Cell Biology, 2007, 128, 457-471. Taste and pheromone perception in the fruit fly Drosophila melanogaster. Pflugers Archiv European 241 1.3 Journal of Physiology, 2007, 454, 735-747.

#	Article	IF	CITATIONS
242	Signal transduction and information processing in mammalian taste buds. Pflugers Archiv European Journal of Physiology, 2007, 454, 759-776.	1.3	251
243	Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Archiv European Journal of Physiology, 2007, 455, 157-168.	1.3	104
244	Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell and Tissue Research, 2007, 330, 17-28.	1.5	30
245	Cytokeratin 14 is expressed in immature cells in rat taste buds. Journal of Molecular Histology, 2008, 39, 193-199.	1.0	40
246	Transdisciplinary Perspectives on Sweetness. Chemosensory Perception, 2008, 1, 48-57.	0.7	37
247	Masking Bitter Taste by Molecules. Chemosensory Perception, 2008, 1, 58-77.	0.7	150
248	Expression of Sox2 in mouse taste buds and its relation to innervation. Cell and Tissue Research, 2008, 332, 393-401.	1.5	35
249	Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. Journal of Comparative Neurology, 2008, 509, 514-525.	0.9	214
250	A novel experimental research based on taste cell chips for taste transduction mechanism. Sensors and Actuators B: Chemical, 2008, 131, 24-28.	4.0	45
251	The taste of sugars. Neuroscience and Biobehavioral Reviews, 2008, 32, 1024-1043.	2.9	49
252	Comparative Study on Free Amino Acid Composition of Wild Edible Mushroom Species. Journal of Agricultural and Food Chemistry, 2008, 56, 10973-10979.	2.4	53
254	Calcium taste preferences: genetic analysis and genome screen of C57BL/6J × PWK/PhJ hybrid mice. Gene Brain and Behavior, 2008, 7, 618-628.	^{S,} 1.1	25
255	Construction of a tasteâ€blind medaka fish and quantitative assay of its preference–aversion behavior. Genes, Brain and Behavior, 2008, 7, 924-932.	1.1	22
256	Offâ€response property of an acidâ€activated cation channel complex PKD1L3–PKD2L1. EMBO Reports, 2008, 9, 690-697.	2.0	80
257	The pharmacological challenge to tame the transient receptor potential vanilloidâ€4 (TRPV1) nocisensor. British Journal of Pharmacology, 2008, 155, 1145-1162.	2.7	152
258	Thymol and related alkyl phenols activate the hTRPA1 channel. British Journal of Pharmacology, 2008, 153, 1739-1749.	2.7	133
259	The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nature Immunology, 2008, 9, 1148-1156.	7.0	200
260	Sweet Taste in Man: A Review. Journal of Food Science, 2008, 73, R81-90.	1.5	47

#	Article	IF	CITATIONS
261	Adenylyl cyclase encoded by <i>AC78C</i> participates in sugar perception in <i>Drosophila melanogaster</i> . European Journal of Neuroscience, 2008, 28, 1956-1966.	1.2	19
262	Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neuroscience, 2008, 9, 110.	0.8	74
263	TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neuroscience, 2008, 9, 114.	0.8	63
264	Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice. BMC Neuroscience, 2008, 9, 96.	0.8	53
265	Tonic activity of Gαâ€gustducin regulates taste cell responsivity. FEBS Letters, 2008, 582, 3783-3787.	1.3	71
266	Genetics of Mechanoreceptor Evolution and Development. , 2008, , 75-105.		2
267	Central and Peripheral Regulation of Food Intake and Physical Activity: Pathways and Genes. Obesity, 2008, 16, S11-22.	1.5	257
268	Chemistry of Gustatory Stimuli. , 2008, , 27-74.		13
269	Ric-8B interacts with Gαolf and Gγ13 and co-localizes with Gαolf, Gβ1 and Gγ13 in the cilia of olfactory sensory neurons. Molecular and Cellular Neurosciences, 2008, 38, 341-348.	1.0	64
270	Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Molecular and Cellular Neurosciences, 2008, 38, 505-517.	1.0	86
271	X-ray Crystal Structure of a TRPM Assembly Domain Reveals an Antiparallel Four-stranded Coiled-coil. Journal of Molecular Biology, 2008, 383, 854-870.	2.0	110
272	Food Reward in the Absence of Taste Receptor Signaling. Neuron, 2008, 57, 930-941.	3.8	377
273	Tasteless Food Reward. Neuron, 2008, 57, 806-808.	3.8	5
274	Thermal taste, PROP responsiveness, and perception of oral sensations. Physiology and Behavior, 2008, 95, 581-590.	1.0	149
275	Cracking taste codes by tapping into sensory neuron impulse traffic. Progress in Neurobiology, 2008, 86, 245-263.	2.8	33
276	The Brain, Appetite, and Obesity. Annual Review of Psychology, 2008, 59, 55-92.	9.9	546
277	Free Amino Acids of Tronchuda Cabbage (Brassica oleracea L. Var. <i>costata</i> DC): Influence of Leaf Position (Internal or External) and Collection Time. Journal of Agricultural and Food Chemistry, 2008, 56, 5216-5221.	2.4	24
278	Studies on Taste: Molecular Biology and Food Science. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1647-1656.	0.6	11

#	Article	IF	CITATIONS
279	Systems analysis of the single photon response in invertebrate photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10354-10359.	3.3	30
280	A study of the science of taste: On the origins and influence of the core ideas. Behavioral and Brain Sciences, 2008, 31, 59-75.	0.4	63
281	The labeled line / basic taste versus across-fiber pattern debate: A red herring?. Behavioral and Brain Sciences, 2008, 31, 79-80.	0.4	2
282	Should labeled lines and pattern models be either-or? Issues of scope and definition. Behavioral and Brain Sciences, 2008, 31, 89-90.	0.4	0
283	Synthesizing complex sensations from simple components. Behavioral and Brain Sciences, 2008, 31, 90-91.	0.4	0
284	Taste learning in rodents: Compounds and individual taste cues recognition. Behavioral and Brain Sciences, 2008, 31, 80-81.	0.4	1
285	Language does provide support for basic tastes. Behavioral and Brain Sciences, 2008, 31, 86-87.	0.4	10
286	Basic tastes as cognitive concepts and taste coding as more than spatial. Behavioral and Brain Sciences, 2008, 31, 78-79.	0.4	0
287	The neural structure and organization of taste. Behavioral and Brain Sciences, 2008, 31, 89-89.	0.4	0
288	Taste quality coding in vertebrate receptor molecules and cells. Behavioral and Brain Sciences, 2008, 31, 82-83.	0.4	0
289	And what about basic odors?. Behavioral and Brain Sciences, 2008, 31, 87-88.	0.4	0
290	Salty, bitter, sweet and sour survive unscathed. Behavioral and Brain Sciences, 2008, 31, 76-77.	0.4	3
291	Mathematical techniques and the number of groups. Behavioral and Brain Sciences, 2008, 31, 83-84.	0.4	1
292	The complex facts of taste. Behavioral and Brain Sciences, 2008, 31, 85-86.	0.4	1
293	Basic tastes and basic emotions: Basic problems and perspectives for a nonbasic solution. Behavioral and Brain Sciences, 2008, 31, 88-88.	0.4	9
294	The pervasive core idea in taste is inadequate and misleading. Behavioral and Brain Sciences, 2008, 31, 91-105.	0.4	1
295	Functional Expression of M3, a Muscarinic Acetylcholine Receptor Subtype, in Taste Bud Cells of Mouse Fungiform Papillae. Chemical Senses, 2008, 33, 47-55.	1.1	21
296	The nature of economical coding is determined by the unique properties of objects in the environment. Behavioral and Brain Sciences, 2008, 31, 81-82.	0.4	0

#	Article	IF	CITATIONS
297	On the analysis of spatial neural codes in taste. Behavioral and Brain Sciences, 2008, 31, 84-85.	0.4	0
298	Basic tastes and unique hues. Behavioral and Brain Sciences, 2008, 31, 82-82.	0.4	1
299	Criteria for basic tastes and other sensory primaries. Behavioral and Brain Sciences, 2008, 31, 77-78.	0.4	0
300	Insights from the colour category controversy. Behavioral and Brain Sciences, 2008, 31, 75-76.	0.4	7
301	The Candidate Sour Taste Receptor, PKD2L1, Is Expressed by Type III Taste Cells in the Mouse. Chemical Senses, 2008, 33, 243-254.	1.1	174
302	A Double TRPtych: Six Views of Transient Receptor Potential Channels in Disease and Health. Journal of Neuroscience, 2008, 28, 11778-11784.	1.7	8
303	Supertasting and PROP Bitterness Depends on More Than the TAS2R38 Gene. Chemical Senses, 2008, 33, 255-265.	1.1	263
304	TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants. Journal of Neurophysiology, 2008, 99, 1451-1460.	0.9	129
305	TRP_2, a Lipid/Trafficking Domain That Mediates Diacylglycerol-induced Vesicle Fusion. Journal of Biological Chemistry, 2008, 283, 34384-34392.	1.6	26
306	The taste transduction channel TRPM5 is a locus for bitterâ€sweet taste interactions. FASEB Journal, 2008, 22, 1343-1355.	0.2	74
307	The Olfactory Sensory Map in Drosophila. Advances in Experimental Medicine and Biology, 2008, 628, 102-114.	0.8	96
308	Brain Development in Drosophila melanogaster. Advances in Experimental Medicine and Biology, 2008, ,	0.8	11
309	New Whiffs About Chemesthesis. Focus on "TRPM5-Expressing Solitary Chemosensory Cells Respond to Odorous Irritants― Journal of Neurophysiology, 2008, 99, 1055-1056.	0.9	2
310	Evidence for Two Populations of Bitter Responsive Taste Cells in Mice. Journal of Neurophysiology, 2008, 99, 1503-1514.	0.9	48
311	A Method to Measure Taste Qualities, Taste Intensity, and Temporal Profile of Compounds Aimed at Human Consumption by Taste Nerve Recordings in Monkeys. ACS Symposium Series, 2008, , 185-201.	0.5	1
312	The Use of Rodent Models to Link Neurobiological Processes with the Psychophysics of Sweet Taste. ACS Symposium Series, 2008, , 355-366.	0.5	0
313	Perception and Acceptance of Sweeteners. ACS Symposium Series, 2008, , 285-295.	0.5	0
314	Sweetness and Sweeteners: What Is All the Excitement About?. ACS Symposium Series, 2008, , 1-16.	0.5	0

#	Article	IF	CITATIONS
315	Multiple Receptor Systems for Glutamate Detection in the Taste Organ. Biological and Pharmaceutical Bulletin, 2008, 31, 1833-1837.	0.6	51
316	Permeation of Amphipathic Sweeteners into Taste-Bud Cells and Their Interactions with Post-Receptor Signaling Components: Possible Implications for Sweet-Taste Quality. ACS Symposium Series, 2008, , 241-255.	0.5	4
317	Emerging Roles of TRPM Channels. Novartis Foundation Symposium, 2008, , 248-262.	1.2	11
318	Quantitative assessment of TRPM5-dependent oral aversiveness of pharmaceuticals using a mouse brief-access taste aversion assay. Behavioural Pharmacology, 2008, 19, 673-682.	0.8	24
319	Food ingredients and cognitive performance. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 706-710.	1.3	10
320	Phylogeny of Chemical Sensitivity. , 2008, , 1-25.		1
321	Taste Transduction. , 2008, , 219-236.		4
322	Hedonic Taste in Drosophila Revealed by Olfactory Receptors Expressed in Taste Neurons. PLoS ONE, 2008, 3, e2610.	1.1	24
323	Mitochondrial Calcium Buffering Contributes to the Maintenance of Basal Calcium Levels in Mouse Taste Cells. Journal of Neurophysiology, 2008, 100, 2177-2191.	0.9	35
324	Variability in Responses and Temporal Coding of Tastants of Similar Quality in the Nucleus of the Solitary Tract of the Rat. Journal of Neurophysiology, 2008, 99, 644-655.	0.9	55
325	Taste Receptors. , 2008, , 197-217.		5
326	Behavioral Analysis of Taste Function in Rodent Models. , 2008, , 409-427.		6
327	Aquatic Animal Models in the Study of Chemoreception. , 2008, , 97-133.		22
328	Oral Chemesthesis and Taste. , 2008, , 345-369.		8
329	The Fathers of Italian Histology. European Journal of Histochemistry, 2009, 51, 1.	0.6	5
330	Bitter-Responsive Gustatory Neurons in the Rat Parabrachial Nucleus. Journal of Neurophysiology, 2009, 101, 1598-1612.	0.9	49
331	Sweet taste signaling functions as a hypothalamic glucose sensor. Frontiers in Integrative Neuroscience, 2009, 3, 12.	1.0	210
332	Gustation in Fish: Search for Prototype of Taste Perception. Results and Problems in Cell Differentiation, 2009, 47, 97-120.	0.2	20

#	Article	IF	CITATIONS
333	Transient Receptor Potential (TRP) Channels and Taste Sensation. Journal of Dental Research, 2009, 88, 212-218.	2.5	64
334	Activity of the Neuronal Cold Sensor TRPM8 Is Regulated by Phospholipase C via the Phospholipid Phosphoinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2009, 284, 1570-1582.	1.6	126
335	Nicotine activates TRPM5-dependent and independent taste pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1596-1601.	3.3	77
336	Sensory Attributes of Complex Tasting Divalent Salts Are Mediated by TRPM5 and TRPV1 Channels. Journal of Neuroscience, 2009, 29, 2654-2662.	1.7	45
337	Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut, 2009, 58, 337-346.	6.1	156
338	From Pheromones to Behavior. Physiological Reviews, 2009, 89, 921-956.	13.1	291
339	Origin of the Genetic Components of the Vomeronasal System in the Common Ancestor of all Extant Vertebrates. Molecular Biology and Evolution, 2009, 26, 407-419.	3.5	95
340	Multiple receptors underlie glutamate taste responses in mice. American Journal of Clinical Nutrition, 2009, 90, 747S-752S.	2.2	56
341	Residual Chemosensory Capabilities in Double P2X2/P2X3 Purinergic Receptor Null Mice: Intraoral or Postingestive Detection?. Chemical Senses, 2009, 34, 799-808.	1.1	25
342	Metabotropic glutamate receptor type 1 in taste tissue. American Journal of Clinical Nutrition, 2009, 90, 743S-746S.	2.2	88
343	Umami taste transduction mechanisms. American Journal of Clinical Nutrition, 2009, 90, 753S-755S.	2.2	92
344	Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R960-R971.	0.9	76
345	Combined In Silico and In Vivo Analyses Reveal Role of Hes1 in Taste Cell Differentiation. PLoS Genetics, 2009, 5, e1000443.	1.5	33
346	Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evolutionary Biology, 2009, 9, 12.	3.2	111
347	Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 2009, 9, 228.	3.2	110
348	Voltage-gated sodium channels in taste bud cells. BMC Neuroscience, 2009, 10, 20.	0.8	83
349	Contribution of the inositol 1,4,5-trisphosphate transduction cascade to the detection of "bitter― compounds in blowflies. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, 309-316.	0.8	7
350	Phosphoinositide regulation of non-canonical transient receptor potential channels. Cell Calcium, 2009, 45, 554-565.	1.1	81

#	ARTICLE	IF	Citations
351	Expression of the voltageâ€gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its nullâ€mutation on taste preferences. Journal of Comparative Neurology, 2009, 512, 384-398.	0.9	32
352	Inward rectifier channel, ROMK, is localized to the apical tips of glialâ€like cells in mouse taste buds. Journal of Comparative Neurology, 2009, 517, 1-14.	0.9	68
353	Molecular mechanisms of taste transduction in vertebrates. Odontology / the Society of the Nippon Dental University, 2009, 97, 1-7.	0.9	42
354	Synaptophysin as a probable component of neurotransmission occurring in taste receptor cells. Journal of Molecular Histology, 2009, 40, 59-70.	1.0	12
355	Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences, 2009, 66, 1661-1671.	2.4	153
356	Primary processes in sensory cells: current advances. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 1-19.	0.7	15
357	The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey. BMC Physiology, 2009, 9, 1.	3.6	34
358	Resynthesis of phosphatidylinositol 4,5â€bisphosphate mediates adaptation of the caffeine response in rat taste receptor cells. Journal of Physiology, 2009, 587, 363-377.	1.3	11
359	Sodium–calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells. Journal of Physiology, 2009, 587, 4077-4089.	1.3	21
360	Cellâ€toâ€cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. Journal of Physiology, 2009, 587, 5899-5906.	1.3	102
361	Gustatory and Homeostatic Functions of the Rodent Parabrachial Nucleus. Annals of the New York Academy of Sciences, 2009, 1170, 383-391.	1.8	13
362	Parabrachial Coding of Sapid Sucrose:. Annals of the New York Academy of Sciences, 2009, 1170, 347-364.	1.8	33
363	Receptors and Transduction of Umami Taste Stimuli. Annals of the New York Academy of Sciences, 2009, 1170, 55-59.	1.8	28
364	Symposium Overview. Annals of the New York Academy of Sciences, 2009, 1170, 95-97.	1.8	1
365	Molecular receptors of taste agents. Russian Journal of Bioorganic Chemistry, 2009, 35, 1-9.	0.3	2
366	The Taste of Carbonation. Science, 2009, 326, 443-445.	6.0	327
367	Common Sense about Taste: From Mammals to Insects. Cell, 2009, 139, 234-244.	13.5	699
368	The calcium-sensing receptor in taste tissue. Biochemical and Biophysical Research Communications, 2009, 378, 414-418.	1.0	85

#	Article	IF	CITATIONS
369	Identification of the vesicular nucleotide transporter (VNUT) in taste cells. Biochemical and Biophysical Research Communications, 2009, 388, 1-5.	1.0	56
370	Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol. Neuropharmacology, 2009, 56, 814-820.	2.0	74
371	Bitter-responsive brainstem neurons: Characteristics and functions. Physiology and Behavior, 2009, 97, 592-603.	1.0	15
372	Release of Endogenous Opioids From Duodenal Enteroendocrine Cells Requires Trpm5. Gastroenterology, 2009, 137, 598-606.e2.	0.6	74
373	Mammalian Bitter Taste Perception. Results and Problems in Cell Differentiation, 2009, 47, 77-96.	0.2	60
374	Chemosensory Systems in Mammals, Fishes, and Insects. Results and Problems in Cell Differentiation, 2009, , .	0.2	8
375	X-ray Crystal Structure Of A Trpm Assembly Domain Reveals An Antiparallel Four-stranded Coiled-coil. Biophysical Journal, 2009, 96, 392a.	0.2	23
377	Thermal taster status associates with oral sensations elicited by wine. Australian Journal of Grape and Wine Research, 2010, 16, 361-367.	1.0	36
378	Signalling mechanisms in mouse bitter responsive taste cells. NeuroReport, 2009, 20, 936-940.	0.6	6
379	Roles of Phospholipase C Isozymes in Organogenesis and Embryonic Development. Physiology, 2009, 24, 332-341.	1.6	28
380	Multiple Umami Receptors and Their Variants in Human and Mice. Journal of Health Science, 2009, 55, 674-681.	0.9	12
381	Gustatory Signaling in the Periphery: Detection, Transmission, and Modulation of Taste Information. Biological and Pharmaceutical Bulletin, 2010, 33, 1772-1777.	0.6	37
382	Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores. Sensors, 2010, 10, 3411-3443.	2.1	362
383	Perception of Beer Flavour Associates with Thermal Taster Status. Journal of the Institute of Brewing, 2010, 116, 239-244.	0.8	25
384	TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Archiv European Journal of Physiology, 2010, 460, 69-76.	1.3	105
385	lce cube stimulation helps to improve dysgeusia. Odontology / the Society of the Nippon Dental University, 2010, 98, 82-84.	0.9	14
386	Heteromerization of TRP channel subunits: extending functional diversity. Protein and Cell, 2010, 1, 802-810.	4.8	64
387	Expression of Six1 and Six4 in mouse taste buds. Journal of Molecular Histology, 2010, 41, 205-214.	1.0	12

ARTICLE IF CITATIONS Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior 388 0.8 23 circumvallate taste buds of mice. BMC Neuroscience, 2010, 11, 129. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. 389 1.1 59 Brain Research, 2010, 1325, 53-62. 390 The cells and peripheral representation of sodium taste in mice. Nature, 2010, 464, 297-301. 13.7 550 Intracellular Ca²⁺ and TRPM5â€mediated membrane depolarization produce ATP secretion from taste receptor cells. Journal of Physiology, 2010, 588, 2343-2350. Ryanodine receptors selectively contribute to the formation of tasteâ€evoked calcium signals in mouse 392 1.2 16 taste cells. European Journal of Neuroscience, 2010, 32, 1825-1835. Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels. PLoS ONE, 2010, 5, e10519. 393 1.1 Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary 394 1.1 78 Chemosensory Cells. PLoS ONE, 2010, 5, e11924. Sodium/Calcium Exchangers Selectively Regulate Calcium Signaling in Mouse Taste Receptor Cells. Journal of Neurophysiology, 2010, 104, 529-538. A proton current drives action potentials in genetically identified sour taste cells. Proceedings of 396 3.3 151 the National Academy of Sciences of the United States of America, 2010, 107, 22320-22325. Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. Journal of Cell 1.2 Science, 2010, 123, 972-982. Mutants in Phospholipid Signaling Attenuate the Behavioral Response of Adult Drosophila to 398 1.1 24 Trehalose. Chemical Senses, 2010, 35, 663-673. Action Potential–Enhanced ATP Release From Taste Cells Through Hemichannels. Journal of 399 0.9 Neurophysiology, 2010, 104, 896-901. Loss of high-frequency glucose-induced Ca ²⁺ oscillations in pancreatic islets correlates with impaired glucose tolerance in <i> Trpm5 ^{â^'/â''} </i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5208-5213. 400 3.3 187 Calcium Signaling in Taste Cells: Regulation Required. Chemical Senses, 2010, 35, 753-765. 1.1 402 Oligomerization of TAS2R Bitter Taste Receptors. Chemical Senses, 2010, 35, 395-406. 1.1 74 Genetics of Taste and Smell. Progress in Molecular Biology and Translational Science, 2010, 94, 213-240. Capacitance Measurements of Regulated Exocytosis in Mouse Taste Cells. Journal of Neuroscience, 404 1.7 36 2010, 30, 14695-14701. The Search for Mechanisms Underlying the Sour Taste Evoked by Acids Continues. Chemical Senses, 1.1 2010, 35, 545-547.

#	Article	IF	CITATIONS
406	Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB Journal, 2010, 24, 4058-4067.	0.2	32
407	<i>Drosophila</i> TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8440-8445.	3.3	160
408	TRP channels: new targets for visceral pain. Gut, 2010, 59, 126-135.	6.1	69
409	International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacological Reviews, 2010, 62, 381-404.	7.1	502
410	Overexpression of Human Transient Receptor Potential M5 Upregulates Endogenous Human Transient Receptor Potential A1 in a Stable HEK Cell Line. Assay and Drug Development Technologies, 2010, 8, 695-702.	0.6	5
411	Nutrient Selection in the Absence of Taste Receptor Signaling. Journal of Neuroscience, 2010, 30, 8012-8023.	1.7	135
412	Taste Preference for Fatty Acids Is Mediated by GPR40 and GPR120. Journal of Neuroscience, 2010, 30, 8376-8382.	1.7	347
413	Lrmp/Jaw1 is Expressed in Sweet, Bitter, and Umami Receptor-Expressing Cells. Chemical Senses, 2010, 35, 171-177.	1.1	30
414	The Receptor Potential of Frog Taste Cells in Response to Cold and Warm Stimuli. Chemical Senses, 2010, 35, 491-499.	1.1	1
415	Taste Function in Mice with a Targeted Mutation of the Pkd1l3 Gene. Chemical Senses, 2010, 35, 565-577.	1.1	68
416	Association between Common Variation in Genes Encoding Sweet Taste Signaling Components and Human Sucrose Perception. Chemical Senses, 2010, 35, 579-592.	1.1	82
417	Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1643-R1650.	0.9	84
418	A TRP channel contributes to insulin secretion by pancreaticÂβ-cells. Islets, 2010, 2, 331-333.	0.9	14
419	Naturally-Occurring Mutation in the Calcium-Sensing Receptor Reveals the Significance of Extracellular Domain Loop III Region for Class C G-Protein-Coupled Receptor Function. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E245-E252.	1.8	5
420	Reception and Transmission of Taste Information in Type II and Type III Taste Bud Cells. Journal of Oral Biosciences, 2010, 52, 358-364.	0.8	1
421	The T1R2/T1R3 Sweet Receptor and TRPM5 Ion Channel. Progress in Molecular Biology and Translational Science, 2010, 91, 151-208.	0.9	16
422	Triphenylphosphine Oxide Is a Potent and Selective Inhibitor of the Transient Receptor Potential Melastatin-5 Ion Channel. Assay and Drug Development Technologies, 2010, 8, 703-713.	0.6	56
423	The cell biology of taste. Journal of Cell Biology, 2010, 190, 285-296.	2.3	689

#	Article	IF	CITATIONS
424	Molecular mechanisms underlying nutrient detection by incretin-secreting cells. International Dairy Journal, 2010, 20, 236-242.	1.5	50
425	Association of thermal taste and PROP responsiveness with food liking, neophobia, body mass index, and waist circumference. Food Quality and Preference, 2010, 21, 589-601.	2.3	43
426	Genetic tracing of the neural pathway for bitter taste in t2r5-WGA transgenic mice. Biochemical and Biophysical Research Communications, 2010, 400, 734-738.	1.0	21
427	TRPM Channels Mediate Zinc Homeostasis and Cellular Growth during Drosophila Larval Development. Cell Metabolism, 2010, 12, 386-397.	7.2	40
428	Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 2010, 49, 429-437.	5.3	169
429	The role of transient receptor potential vanilloid-1 on neural responses to acids by the chorda tympani, glossopharyngeal and superior laryngeal nerves in mice. Neuroscience, 2010, 165, 1476-1489.	1.1	38
430	New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. International Review of Cell and Molecular Biology, 2010, 279, 101-134.	1.6	27
431	The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003962-a003962.	2.3	344
433	FXYD6, a Na,K-ATPase Regulator, Is Expressed in Type II Taste Cells. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1061-1066.	0.6	11
434	Sensory Functions for Degenerin/Epithelial Sodium Channels (DEG/ENaC). Advances in Genetics, 2011, 76, 1-26.	0.8	74
435	Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. Advances in Experimental Medicine and Biology, 2011, 704, 831-846.	0.8	7
436	Metabolic Sensing in Brain Dopamine Systems. Results and Problems in Cell Differentiation, 2011, 52, 69-86.	0.2	40
437	Receptor Agonism and Antagonism of Dietary Bitter Compounds. Journal of Neuroscience, 2011, 31, 14775-14782.	1.7	103
438	The Non-selective Monovalent Cationic Channels TRPM4 and TRPM5. Advances in Experimental Medicine and Biology, 2011, 704, 147-171.	0.8	78
439	A Gustotopic Map of Taste Qualities in the Mammalian Brain. Science, 2011, 333, 1262-1266.	6.0	335
440	TRP Channels in the Cardiopulmonary Vasculature. Advances in Experimental Medicine and Biology, 2011, 704, 781-810.	0.8	26
441	Stereoselective Synthesis of Amides Sharing the Guanosine 5′-Monophosphate Scaffold and Umami Enhancement Studies Using Human Sensory and hT1R1/rT1R3 Receptor Assays. Journal of Agricultural and Food Chemistry, 2011, 59, 8875-8885.	2.4	13
442	Methodological Considerations to Understand the Sensory Function of TRP Channels. Current Pharmaceutical Biotechnology, 2011, 12, 3-11.	0.9	13

#	Article	IF	CITATIONS
443	The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic β-Cells. Diabetes and Metabolism Journal, 2011, 35, 451.	1.8	52
444	TRP Channels in the Digestive System. Current Pharmaceutical Biotechnology, 2011, 12, 24-34.	0.9	88
445	Sweet taste signaling and the formation of memories of energy sources. Frontiers in Systems Neuroscience, 2011, 5, 99.	1.2	17
446	Expression of α-gustducin in mammalian retinas. NeuroReport, 2011, 22, 146-150.	0.6	5
447	Glucose sensing and signalling; regulation of intestinal glucose transport. Proceedings of the Nutrition Society, 2011, 70, 185-193.	0.4	113
448	Synergistic Effects of Sour Taste and Low Temperature in Suppressing the Bitterness of Aminoleban EN. Chemical and Pharmaceutical Bulletin, 2011, 59, 536-540.	0.6	16
449	Transient Receptor Potential Melastatin 7 (TRPM7) Cation Channels, Magnesium and the Vascular System in Hypertension. Circulation Journal, 2011, 75, 237-245.	0.7	65
450	Enzymatic hydrolysis of soy proteins and the hydrolysates utilisation. International Journal of Food Science and Technology, 2011, 46, 2447-2459.	1.3	103
451	Transient Receptor Potential Channel M4 and M5 in Magnocellular Cells in Rat Supraoptic and Paraventricular Nuclei. Journal of Neuroendocrinology, 2011, 23, 1204-1213.	1.2	32
452	Genetic tracing of the gustatory neural pathway originating from Pkd1l3â€expressing type III taste cells in circumvallate and foliate papillae. Journal of Neurochemistry, 2011, 119, 497-506.	2.1	16
453	TRP channels in neurogastroenterology: opportunities for therapeutic intervention. British Journal of Pharmacology, 2011, 162, 18-37.	2.7	77
454	G PROTEIN OUPLED RECEPTORS. British Journal of Pharmacology, 2011, 164, S5.	2.7	16
455	Transient receptor proteins illuminated: Current views on TRPs and disease. Veterinary Journal, 2011, 187, 153-164.	0.6	23
456	Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. , 2011, 131, 142-170.		197
457	Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior, 2011, 105, 4-13.	1.0	194
458	Exploring phospholipase C-coupled Ca2+ signalling networks using boolean modelling. IET Systems Biology, 2011, 5, 174-184.	0.8	5
459	A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium, 2011, 50, 9-26.	1.1	38
460	Umami taste receptor functions as an amino acid sensor via Gαs subunit in N1E-115 neuroblastoma cells. Journal of Cellular Biochemistry, 2011, 113, n/a-n/a.	1.2	6

#	Article	IF	Citations
461	Allosteric Modulation of Family C G-Protein-Coupled Receptors: from Molecular Insights to Therapeutic Perspectives. Pharmacological Reviews, 2011, 63, 59-126.	7.1	193
462	The role of spiking and bursting pacemakers in the neuronal control of breathing. Journal of Biological Physics, 2011, 37, 241-261.	0.7	50
463	Identification of TRPM5 Ion Channels in Type-II Taste Cells of Mice. Neurophysiology, 2011, 43, 173-181.	0.2	1
464	The history of TRP channels, a commentary and reflection. Pflugers Archiv European Journal of Physiology, 2011, 461, 499-506.	1.3	95
465	B6-MSM Consomic Mouse Strains Reveal Multiple Loci for Genetic Variation in Sucrose Octaacetate Aversion. Behavior Genetics, 2011, 41, 716-723.	1.4	8
466	Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1. BMC Neuroscience, 2011, 12, 34.	0.8	6
467	Expression of taste receptors in Solitary Chemosensory Cells of rodent airways. BMC Pulmonary Medicine, 2011, 11, 3.	0.8	198
468	Reduction of Bitterness of Antihistaminic Drugs by Complexation with Î ² -Cyclodextrins. Journal of Pharmaceutical Sciences, 2011, 100, 1935-1943.	1.6	46
469	Molecular biology of mammalian bitter taste receptors. A review Flavour and Fragrance Journal, 2011, 26, 260-268.	1.2	42
470	Chemosensory processing in the tasteâ€reward pathway. Flavour and Fragrance Journal, 2011, 26, 231-238.	1.2	18
471	Functional diversity of taste cells. A review Flavour and Fragrance Journal, 2011, 26, 214-217.	1.2	12
472	Mutually exclusive expression of $\hat{Gl_{\pm}}$ ia and $\hat{Gl_{\pm}}$ 14 reveals diversification of taste receptor cells in zebrafish. Journal of Comparative Neurology, 2011, 519, 1616-1629.	0.9	38
474	Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angewandte Chemie - International Edition, 2011, 50, 2220-2242.	7.2	146
475	Improvement of some physicochemical properties of arundic acid, (R)-(â^')-2-propyloctanonic acid, by complexation with hydrophilic cyclodextrins. International Journal of Pharmaceutics, 2011, 413, 63-72.	2.6	10
476	Effects of luminal thymol on epithelial transport in human and rat colon. American Journal of Physiology - Renal Physiology, 2011, 300, G1132-G1143.	1.6	43
477	Cell Signaling Mechanisms of Gustatory Perception of Lipids: Can the Taste Cells be the Target of Anti-obesity Agents?. Current Medicinal Chemistry, 2011, 18, 3417-3422.	1.2	16
478	Mechanisms of Nociceptive Transduction and Transmission: A Machinery for Pain Sensation and Tools for Selective Analgesia. International Review of Neurobiology, 2011, 97, 143-177.	0.9	22
479	Goα Is Involved in Sugar Perception in Drosophila. Chemical Senses, 2011, 36, 69-81.	1.1	24

#	Article	IF	CITATIONS
480	Expression of Calcium Binding Proteins in Mouse Type II Taste Cells. Journal of Histochemistry and Cytochemistry, 2011, 59, 530-539.	1.3	10
481	Transient Receptor Potential Channel Type M5 Is Essential for Fat Taste. Journal of Neuroscience, 2011, 31, 8634-8642.	1.7	95
482	Transient Receptor Potential Cation Channels in Pancreatic β Cells. Reviews of Physiology, Biochemistry and Pharmacology, 2011, 161, 87-110.	0.9	61
483	NONRUMINANT NUTRITION SYMPOSIUM: Intestinal glucose sensing and regulation of glucose absorption: Implications for swine nutrition1. Journal of Animal Science, 2011, 89, 1854-1862.	0.2	29
484	TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. American Journal of Physiology - Cell Physiology, 2012, 302, C210-C219.	2.1	56
485	Molecular Basis of Olfaction and Taste. , 2012, , 904-915.		1
486	Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 336-344.	1.7	55
487	T1R3: how to indulge the gut's sweet tooth. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E813-E814.	1.8	2
488	Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Molecular Human Reproduction, 2012, 18, 289-297.	1.3	76
489	Mechanisms for Sweetness. Journal of Nutrition, 2012, 142, 1134S-1141S.	1.3	90
490	A NOVEL BITTER DETECTION BIOSENSOR BASED ON LIGHT ADDRESSABLE POTENTIOMETRIC SENSOR. Journal of Innovative Optical Health Sciences, 2012, 05, 1250008.	0.5	14
491	Mechanisms of Taste Bud Cell Loss after Head and Neck Irradiation. Journal of Neuroscience, 2012, 32, 3474-3484.	1.7	76
492	Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia. Journal of Biological Chemistry, 2012, 287, 41706-41719.	1.6	28
493	The Cellular Building Blocks of Breathing. , 2012, 2, 2683-2731.		60
494	GÂ-gustducin Is Extensively Coexpressed with Sweet and Bitter Taste Receptors in both the Soft Palate and Fungiform Papillae but Has a Different Functional Significance. Chemical Senses, 2012, 37, 241-251.	1.1	24
495	The Role of TRP Proteins in Mast Cells. Frontiers in Immunology, 2012, 3, 150.	2.2	62
496	A Conditioned Aversion Study of Sucrose and SC45647 Taste in TRPM5 Knockout Mice. Chemical Senses, 2012, 37, 391-401.	1.1	18
497	Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to bitter, sweet, and umami taste stimuli. Journal of Neurophysiology, 2012, 108, 3221-3232.	0.9	11

#	Article	IF	CITATIONS
498	Sweet-bitter and umami-bitter taste interactions in single parabrachial neurons in C57BL/6J mice. Journal of Neurophysiology, 2012, 108, 2179-2190.	0.9	38
499	Extracellular Quaternary Ammonium Blockade of Transient Receptor Potential Vanilloid Subtype 1 Channels Expressed in <i>Xenopus laevis</i> Oocytes. Molecular Pharmacology, 2012, 82, 1129-1135.	1.0	4
500	Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1119-R1133.	0.9	160
501	<scp>TRP</scp> Channels. , 2012, 2, 563-608.		134
502	The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, 2012, 107, 50-58.	1.0	46
503	G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature Reviews Drug Discovery, 2012, 11, 603-619.	21.5	209
504	Glucose transporter/T1R3â€expressing cells in rat tracheal epithelium. Journal of Anatomy, 2012, 221, 138-150.	0.9	18
505	Umami taste in mice uses multiple receptors and transduction pathways. Journal of Physiology, 2012, 590, 1155-1170.	1.3	87
506	The Ca2+-Activated Monovalent Cation-Selective Channels TRPM4 and TRPM5. Methods in Pharmacology and Toxicology, 2012, , 103-125.	0.1	2
507	Primary Processes in Sensory Cells: Current Advances. Advances in Experimental Medicine and Biology, 2012, 739, 32-58.	0.8	1
508	Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiology and Behavior, 2012, 107, 533-539.	1.0	28
509	Somatosensory factors in taste perception: Effects of active tasting and solution temperature. Physiology and Behavior, 2012, 107, 488-495.	1.0	44
510	Influence of Stimulus Temperature on Orosensory Perception and Variation with Taste Phenotype. Chemosensory Perception, 2012, 5, 243-265.	0.7	32
511	Hormones and bioactive substances that affect peripheral taste sensitivity. Journal of Oral Biosciences, 2012, 54, 67-72.	0.8	5
512	Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Research, 2012, 1475, 1-10.	1.1	58
513	Genetic Labeling of Tas1r1 and Tas2r131 Taste Receptor Cells in Mice. Chemical Senses, 2012, 37, 897-911.	1.1	70
514	Occurrence and role of umami molecules in foods. International Journal of Food Sciences and Nutrition, 2012, 63, 871-881.	1.3	22
515	Taste Preferences. Progress in Molecular Biology and Translational Science, 2012, 108, 383-426.	0.9	25

#	Article	IF	CITATIONS
516	In Silico Methods Applied in Food Chemistry: A Short Review with Bitter and Mutagenic Compounds. Letters in Drug Design and Discovery, 2012, 9, 527-534.	0.4	4
518	Mutagenesis and Temperature-Sensitive Little Machines. , 0, , .		4
519	A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds. PLoS ONE, 2012, 7, e30032.	1.1	24
520	Glutamate May Be an Efferent Transmitter That Elicits Inhibition in Mouse Taste Buds. PLoS ONE, 2012, 7, e30662.	1.1	28
521	Quality Coding by Neural Populations in the Early Olfactory Pathway: Analysis Using Information Theory and Lessons for Artificial Olfactory Systems. PLoS ONE, 2012, 7, e37809.	1.1	20
522	Immunohistochemical Detection of TAS2R38 Protein in Human Taste Cells. PLoS ONE, 2012, 7, e40304.	1.1	41
523	Receptors Responsive to Protein Breakdown Products in G-Cells and D-Cells of Mouse, Swine and Human. Frontiers in Physiology, 2012, 3, 65.	1.3	52
524	Leucettamols, Bifunctionalized Marine Sphingoids, Act as Modulators of TRPA1 and TRPM8 Channels. Marine Drugs, 2012, 10, 2435-2447.	2.2	19
525	Identification of new binding partners of the chemosensory signaling protein Gγ13 expressed in taste and olfactory sensory cells. Frontiers in Cellular Neuroscience, 2012, 6, 26.	1.8	13
526	The Insular Cortex Controls Food Preferences Independently of Taste Receptor Signaling. Frontiers in Systems Neuroscience, 2012, 6, 5.	1.2	32
527	The Neurobiology of Gustation. , 2012, , 741-767.		1
528	Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E524-32.	3.3	187
529	Changing Senses: Chemosensory Signaling and Primate Evolution. Advances in Experimental Medicine and Biology, 2012, 739, 206-217.	0.8	8
530	Orosensory and Homeostatic Functions of the Insular Taste Cortex. Chemosensory Perception, 2012, 5, 64-79.	0.7	54
531	Taste receptor signalling – from tongues to lungs. Acta Physiologica, 2012, 204, 158-168.	1.8	201
532	Detecting sweet and umami tastes in the gastrointestinal tract. Acta Physiologica, 2012, 204, 169-177.	1.8	20
533	Chemical genetics: receptor–ligand pairs for rapid manipulation of neuronal activity. Current Opinion in Neurobiology, 2012, 22, 54-60.	2.0	25
534	The gut–brain dopamine axis: A regulatory system for caloric intake. Physiology and Behavior, 2012, 106, 394-399.	1.0	115

#	Article	IF	CITATIONS
535	Electrical excitability of taste cells. Mechanisms and possible physiological significance. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 169-185.	0.3	4
536	Down-Regulation of TRPM5s During the Development of the Rat Neocortex and Hippocampus. Neurophysiology, 2013, 45, 112-119.	0.2	0
537	Minireview: Nutrient Sensing by G Protein-Coupled Receptors. Molecular Endocrinology, 2013, 27, 1188-1197.	3.7	69
538	Transient receptor potential channels and energy homeostasis. Trends in Endocrinology and Metabolism, 2013, 24, 554-560.	3.1	43
540	Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience, 2013, 250, 166-180.	1.1	6
541	Functional dissection of sweet and bitter taste pathways. Journal of Oral Biosciences, 2013, 55, 66-72.	0.8	7
542	Sweet Preference Modified by Early Experience in Mice and the Related Molecular Modulations on the Peripheral Pathway. Journal of Molecular Neuroscience, 2013, 51, 225-236.	1.1	13
543	Gustatory sensory cells express a receptor responsive to protein breakdown products (GPR92). Histochemistry and Cell Biology, 2013, 140, 137-145.	0.8	18
544	Modifying Bitterness in Functional Food Systems. Critical Reviews in Food Science and Nutrition, 2013, 53, 464-481.	5.4	61
545	Amino acid sensing in the gastrointestinal tract. Amino Acids, 2013, 45, 451-461.	1.2	140
546	Spices: The Savory and Beneficial Science of Pungency. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 164, 1-76.	0.9	125
547	An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals. Neuron, 2013, 79, 725-737.	3.8	215
548	Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sensors and Actuators B: Chemical, 2013, 176, 497-504.	4.0	37
549	Functional diversification of taste cells in vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 210-214.	2.3	15
550	Chemosensors in the Nose: Guardians of the Airways. Physiology, 2013, 28, 51-60.	1.6	61
551	Regulation of transient receptor potential channels by the phospholipase C pathway. Advances in Biological Regulation, 2013, 53, 341-355.	1.4	59
552	The Bad Taste of Medicines: Overview of Basic Research on Bitter Taste. Clinical Therapeutics, 2013, 35, 1225-1246.	1.1	196
553	Enantiomer-specific selection of amino acids. Amino Acids, 2013, 45, 1353-1364.	1.2	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
554	Developing a sense of taste. Seminars in Cell and Developmental Biology, 2013, 24, 20	00-209.	2.3	61
555	Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Foc 2013, 136, 612-616.	od Chemistry,	4.2	52
556	Denatonium stimulates Ca2+ signaling in taste cells of type I. Biochemistry (Moscow) Series A: Membrane and Cell Biology, 2013, 7, 242-244.	Supplement	0.3	0
557	The Concise Guide to PHARMACOLOGY 2013/14: G Protein oupled Receptors. Brit Pharmacology, 2013, 170, 1459-1581.	ish Journal of	2.7	528
558	Drosophila TRP channels and animal behavior. Life Sciences, 2013, 92, 394-403.		2.0	145
559	High salt recruits aversive taste pathways. Nature, 2013, 494, 472-475.		13.7	297
560	The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal gluc Molecular Metabolism, 2013, 2, 47-53.	cose sensing.	3.0	99
561	Phylogenetic analysis and expression of zebrafish transient receptor potential melasta genes. Developmental Dynamics, 2013, 242, 1236-1249.	tin family	0.8	36
562	Extracellular potentials recording in intact taste epithelium by microelectrode array for sensor. Biosensors and Bioelectronics, 2013, 43, 186-192.	r a taste	5.3	36
563	Modulation of sweet responses of taste receptor cells. Seminars in Cell and Developm 2013, 24, 226-231.	ental Biology,	2.3	43
564	Umami evaluation in taste epithelium on microelectrode array by extracellular electrop recording. Biochemical and Biophysical Research Communications, 2013, 438, 334-33	physiological 9.	1.0	14
565	Endogenous metabolites as ligands for G protein-coupled receptors modulating risk fa metabolic and cardiovascular disease. American Journal of Physiology - Heart and Circu Physiology, 2013, 304, H501-H513.	ctors for Ilatory	1.5	12
566	CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and uma 2013, 495, 223-226.	mi tastes. Nature,	13.7	405
567	Oral and extra-oral taste perception. Seminars in Cell and Developmental Biology, 201	3, 24, 240-246.	2.3	74
568	Increased Levels of Extracellular Dopamine in the Nucleus Accumbens and Amygdala c Ingesting a Low Concentration of a Long-Chain Fatty Acid. Bioscience, Biotechnology Biochemistry, 2013, 77, 2175-2180.	of Rats by and	0.6	19
569	Sucrose and Non-nutritive Sweeteners Can Suppress the Bitterness of Vegetables Inde Taster Phenotype. Chemosensory Perception, 2013, 6, 127-139.	ependent of PTC	0.7	15
570	Characterizing the conductance underlying depolarization-induced slow current in cer Purkinje cells. Journal of Neurophysiology, 2013, 109, 1174-1181.	ebellar	0.9	36
571	Taste dysfunction in BTBR mice due to a mutation of <i>Itpr3</i> , the inositol triphosp gene. Physiological Genomics, 2013, 45, 834-855.	hate receptor 3	1.0	23

#	Article	IF	CITATIONS
572	Chemosensory TRP Channels in the Respiratory Tract: Role in Toxic Lung Injury and Potential as "Sweet Spots―for Targeted Therapies. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 165, 31-65.	0.9	26
573	TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response. American Journal of Physiology - Renal Physiology, 2013, 305, G106-G117.	1.6	14
574	Insect GPCRs and TRP Channels: Putative Targets for Insect Repellents. Interdisciplinary Bio Central, 2013, 5, 6.1-6.7.	0.1	5
575	The Cellular and Molecular Basis of Bitter Tastant-Induced Bronchodilation. PLoS Biology, 2013, 11, e1001501.	2.6	108
576	Drosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons. PLoS Genetics, 2013, 9, e1003710.	1.5	85
577	Taste perception: from the tongue to the testis. Molecular Human Reproduction, 2013, 19, 349-360.	1.3	105
578	Effects of Early Intraoral Acesulfame-K Stimulation to Mice on the Adult's Sweet Preference and the Expression of Â-Gustducin in Fungiform Papilla. Chemical Senses, 2013, 38, 447-455.	1.1	27
579	Impact of T1r3 and Trpm5 on Carbohydrate Preference and Acceptance in C57BL/6 Mice. Chemical Senses, 2013, 38, 421-437.	1.1	37
580	Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiological Reviews, 2013, 93, 1019-1137.	13.1	1,281
581	Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chemical Senses, 2013, 38, 745-758.	1.1	17
582	Taste responses in mice lacking taste receptor subunit T1R1. Journal of Physiology, 2013, 591, 1967-1985.	1.3	92
583	Transgenic labeling of higher order neuronal circuits linked to phospholipase Câ€Î²2–expressing taste bud cells in medaka fish. Journal of Comparative Neurology, 2013, 521, 1781-1802.	0.9	7
584	Multimodal function of the sweet taste receptor expressed in pancreatic \hat{l}^2 -cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocrine Journal, 2013, 60, 1191-1206.	0.7	74
585	Modulation of central gustatory coding by temperature. Journal of Neurophysiology, 2013, 110, 1117-1129.	0.9	31
586	TRPM Channels Phosphorylation as a Potential Bridge Between Old Signals and Novel Regulatory Mechanisms of Insulin Secretion. Current Diabetes Reviews, 2013, 9, 117-125.	0.6	0
587	Neuropeptide Receptors. Colloquium Series on Neuropeptides, 2013, 2, 1-167.	1.0	3
588	Pragmatically on the sense of taste – a short treatise based on culinary art. Przeglad Gastroenterologiczny, 2013, 6, 338-344.	0.3	1
589	Human Biology of Taste. Annals of Saudi Medicine, 2013, 33, 217-222.	0.5	48

		CITATION REPORT		
#	Article		IF	CITATIONS
590	Functional Cell Types in Taste Buds Have Distinct Longevities. PLoS ONE, 2013, 8, e53	399.	1.1	144
591	Conformational and Functional Effects Induced by D- and L-Amino Acid Epimerization of Encoded Peptide from the Skin Secretion of Hypsiboas punctatus. PLoS ONE, 2013, 8,	on a Single Gene e59255.	1.1	21
592	Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste 2013, 8, e68174.	2 Cells. PLoS ONE,	1.1	15
593	DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: G protein-coupled receptors in nutr chemosensation and gastrointestinal hormone secretion1. Journal of Animal Science, 2 1946-1956.	ient 2013, 91,	0.2	16
594	TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet 2, e00658.	cells. ELife, 2013,	2.8	49
595	A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds. PLoS ONE, 2	014, 9, e112152.	1.1	22
596	Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slov afterdepolarization in mouse prefrontal cortex neurons. Frontiers in Cellular Neuroscie 267.	ω nce, 2014, 8,	1.8	38
597	High-Caloric and Chocolate Stimuli Processing in Healthy Humans: An Integration of Fu Imaging and Electrophysiological Findings. Nutrients, 2014, 6, 319-341.	inctional	1.7	25
598	Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act a Endocrinology and Metabolism, 2014, 29, 12.	ıs Biased Agonists.	1.3	40
599	TRP Channels in Neuronal and Glial Signal Transduction. , 0, , .			6
600	Sensory coding of olfaction and taste. , 0, , 49-65.			1
601	Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and b reflexes. Proceedings of the National Academy of Sciences of the United States of Ame 8287-8292.	ladder erica, 2014, 111,	3.3	134
602	Taste Receptor Gene Expression Outside the Gustatory System. Topics in Medicinal Ch 1-34.	emistry, 2014, ,	0.4	7
603	Bitter taste receptor agonists elicit Gâ€proteinâ€dependent negative inotropy in the n Journal, 2014, 28, 4497-4508.	nurine heart. FASEB	0.2	72
604	TRPM5. Handbook of Experimental Pharmacology, 2014, 222, 489-502.		0.9	26
605	Taste Bud Homeostasis in Health, Disease, and Aging. Chemical Senses, 2014, 39, 3-16	5.	1.1	117
606	Orexin and melanin-concentrating hormone neurons: a hypothalamic interface for slee regulation. Bioscience Horizons, 2014, 7, hzu008-hzu008.	p and feeding	0.6	1
607	Bitter Taste Causes Hostility. Personality and Social Psychology Bulletin, 2014, 40, 158	9-1597.	1.9	27

#	Article	IF	CITATIONS
608	Increase in cytosolic Ca ²⁺ produced by hypoxia and other depolarizing stimuli activates a nonâ€selective cation channel in chemoreceptor cells of rat carotid body. Journal of Physiology, 2014, 592, 1975-1992.	1.3	24
609	<i>>Sonic hedgehog</i> –expressing basal cells are general postâ€mitotic precursors of functional taste receptor cells. Developmental Dynamics, 2014, 243, 1286-1297.	0.8	89
611	Dried Bonito Dashi: A Preferred Fish Broth Without Postoral Reward Actions in Mice. Chemical Senses, 2014, 39, 159-166.	1.1	15
612	Peripheral Coding of Taste. Neuron, 2014, 81, 984-1000.	3.8	357
613	Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosensors and Bioelectronics, 2014, 54, 385-392.	5.3	29
614	Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, 2014, , .	0.9	24
615	Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chemical Senses, 2014, 39, 295-311.	1.1	29
616	Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales. Genome Biology and Evolution, 2014, 6, 1254-1265.	1.1	113
617	Extensive Lesions in the Gustatory Cortex in the Rat Do Not Disrupt the Retention of a Presurgically Conditioned Taste Aversion and Do Not Impair Unconditioned Concentration-Dependent Licking of Sucrose and Quinine. Chemical Senses, 2014, 39, 57-71.	1.1	24
618	Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity. British Journal of Pharmacology, 2014, 171, 646-662.	2.7	78
619	Gating of Thermally Activated Channels. Current Topics in Membranes, 2014, 74, 51-87.	0.5	35
620	Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16401-16406.	3.3	171
621	Molecular Basis of Taste Sense: Involvement of GPCR Receptors. Critical Reviews in Food Science and Nutrition, 2014, 54, 771-780.	5.4	21
622	Temperature systematically modifies neural activity for sweet taste. Journal of Neurophysiology, 2014, 112, 1667-1677.	0.9	17
623	Sweet Taste Receptors Regulate Basal Insulin Secretion and Contribute to Compensatory Insulin Hypersecretion During the Development of Diabetes in Male Mice. Endocrinology, 2014, 155, 2112-2121.	1.4	52
624	Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies. Handbook of Experimental Pharmacology, 2014, 223, 937-962.	0.9	47
625	Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds. Journal of Neuroscience, 2014, 34, 2689-2701.	1.7	44
626	Adenylyl cyclase-mediated effects contribute to increased Isoprenaline-induced cardiac contractility in TRPM4-deficient mice. Journal of Molecular and Cellular Cardiology, 2014, 74, 307-317.	0.9	15

#	Article	IF	CITATIONS
627	Why fat is so preferable: from oral fat detection to inducing reward in the brain. Bioscience, Biotechnology and Biochemistry, 2014, 78, 363-369.	0.6	17
628	Heterogeneous binary interactions of taste primaries: Perceptual outcomes, physiology, and future directions. Neuroscience and Biobehavioral Reviews, 2014, 47, 70-86.	2.9	30
629	Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine. Pharmacological Reviews, 2014, 66, 676-814.	7.1	440
630	TRPs in Taste and Chemesthesis. Handbook of Experimental Pharmacology, 2014, 223, 827-871.	0.9	107
631	Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, 2014, , .	0.9	22
632	Effects of sucrose detection threshold and weight status on intake of fruit and vegetables in children. Appetite, 2014, 83, 309-316.	1.8	8
633	Salty Taste Deficits in CALHM1 Knockout Mice. Chemical Senses, 2014, 39, 515-528.	1.1	38
634	Extrasensory perception: Odorant and taste receptors beyond the nose and mouth. , 2014, 142, 41-61.		98
635	Ca2+ handling and sensitivity in airway smooth muscle: Emerging concepts for mechanistic understanding and therapeutic targeting. Pulmonary Pharmacology and Therapeutics, 2014, 29, 108-120.	1.1	32
636	Differences in saccharin preference and genetic alterations of the Tas1r3 gene among senescence-accelerated mouse strains and their parental AKR/J strain. Physiology and Behavior, 2014, 130, 108-112.	1.0	2
637	Cell signaling mechanisms of oro-gustatory detection of dietary fat: Advances and challenges. Progress in Lipid Research, 2014, 53, 82-92.	5.3	81
638	Acid Sensing Ion Channels. , 2015, , 403-414.		0
639	Return of the glucoreceptor: Glucose activates the glucoseâ€sensing receptor T1R3 and facilitates metabolism in pancreatic βâ€cells. Journal of Diabetes Investigation, 2015, 6, 256-263.	1.1	33
641	Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells. Biological and Pharmaceutical Bulletin, 2015, 38, 674-679.	0.6	26
643	Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets. PLoS ONE, 2015, 10, e0138373.	1.1	24
644	Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning. Neurology Research International, 2015, 2015, 1-13.	0.5	26
645	Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons. Journal of Neurophysiology, 2015, 113, 2700-2712.	0.9	17
646	Taste Responsiveness to Sweeteners Is Resistant to Elevations in Plasma Leptin. Chemical Senses, 2015, 40, 223-231.	1.1	14

		CITATION REPORT		
#	Article		IF	CITATIONS
647	Reception of Aversive Taste. Integrative and Comparative Biology, 2015, 55, 507-517.		0.9	12
648	Normal Taste Acceptance and Preference of PANX1 Knockout Mice. Chemical Senses, 2	.015, 40, 453-459.	1.1	26
649	Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biod Biophysical Research Communications, 2015, 460, 22-25.	chemical and	1.0	117
651	Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signal buds. Cancer Medicine, 2015, 4, 245-252.	ng in taste	1.3	57
652	Ligand Recognition of Taste Receptors. ACS Symposium Series, 2015, , 183-192.		0.5	1
653	Sweet and bitter taste in the brain of awake behaving animals. Nature, 2015, 527, 512	515.	13.7	179
654	Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout m and Behavior, 2015, 140, 156-163.	ice. Physiology	1.0	17
655	Electronic noses and tongues in food safety assurance. , 2015, , 265-283.			4
656	Taste receptors. , 2015, , 297-329.			0
657	Molecular evidence for the loss of three basic tastes in penguins. Current Biology, 2015	5, 25, R141-R142.	1.8	51
658	The endocrinology of taste receptors. Nature Reviews Endocrinology, 2015, 11, 213-22	7.	4.3	101
659	Calcium signaling in taste cells. Biochimica Et Biophysica Acta - Molecular Cell Research 2025-2032.	, 2015, 1853,	1.9	15
660	Postnatal reduction of BDNF regulates the developmental remodeling of taste bud inne Developmental Biology, 2015, 405, 225-236.	rvation.	0.9	17
661	Antennal gustatory perception and behavioural responses in Trissolcus brochymenae fe of Insect Physiology, 2015, 78, 15-25.	males. Journal	0.9	4
662	Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways Pharmacology, 2015, 97, 173-177.	. Biochemical	2.0	74
663	Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds. Diabetes, 2015,	64, 3751-3762.	0.3	53
664	Brain glucose sensing in homeostatic and hedonic regulation. Trends in Endocrinology Metabolism, 2015, 26, 455-466.	and	3.1	66
665	Electrogustometry and Contact Endoscopy Findings in Patients With Head and Neck M Treated With Chemotherapy, Radiotherapy, or Radiochemotherapy. Chemical Senses, 2	alignancies 015, 40, 165-171.	1.1	10

#	Article	IF	CITATIONS
666	Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. International Immunopharmacology, 2015, 29, 143-147.	1.7	21
667	Stimulation of GLP-1 Secretion Downstream of the Ligand-Gated Ion Channel TRPA1. Diabetes, 2015, 64, 1202-1210.	0.3	50
668	Molecular Mechanisms of Taste Recognition: Considerations about the Role of Saliva. International Journal of Molecular Sciences, 2015, 16, 5945-5974.	1.8	62
669	Perceptual and Neural Responses to Sweet Taste in Humans and Rodents. Chemosensory Perception, 2015, 8, 46-52.	0.7	21
670	A Binary Genetic Approach to Characterize TRPM5 Cells in Mice. Chemical Senses, 2015, 40, 413-425.	1.1	34
671	The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Bioscience, Biotechnology and Biochemistry, 2015, 79, 658-663.	0.6	11
672	A proton current associated with sour taste: distribution and functional properties. FASEB Journal, 2015, 29, 3014-3026.	0.2	47
673	The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity. Current Allergy and Asthma Reports, 2015, 15, 72.	2.4	53
674	Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. Chemosensory Perception, 2015, 8, 61-77.	0.7	1
675	Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacology Research and Perspectives, 2015, 3, e00155.	1.1	64
676	How taste works: cells, receptors and gustatory perception. Cellular and Molecular Biology Letters, 2015, 20, 699-716.	2.7	33
677	Gustatoty Epithelium-Based Taste Sensors. , 2015, , 225-240.		0
678	In Vivo Bioelectronic Tongue. , 2015, , 289-307.		0
679	Differential Regulation of ERK1/2 and mTORC1 Through T1R1/T1R3 in MIN6 Cells. Molecular Endocrinology, 2015, 29, 1114-1122.	3.7	16
680	The pharmacology of bitter taste receptors and their role in human airways. , 2015, 155, 11-21.		40
681	Taste receptors in innate immunity. Cellular and Molecular Life Sciences, 2015, 72, 217-236.	2.4	113
682	ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets. Cellular and Molecular Neurobiology, 2015, 35, 1-6.	1.7	72
683	Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons. Chemical Senses, 2016, 41, 457-471.	1.1	15

# 684	ARTICLE Drinking Water Analysis Using Electronic Tongues. , 2016, , 255-264.	IF	CITATIONS
685	Protein/amino-acid modulation of bone cell function. BoneKEy Reports, 2016, 5, 827.	2.7	23
686	TRPV1: A Target for Rational Drug Design. Pharmaceuticals, 2016, 9, 52.	1.7	85
687	G Protein–Coupled Taste Transduction. , 2016, , 271-285.		3
688	Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets. Frontiers in Pharmacology, 2016, 7, 58.	1.6	25
689	Leptin suppresses sweet taste responses of enteroendocrine STC-1 cells. Neuroscience, 2016, 332, 76-87.	1.1	9
691	Distribution and Origin of VIPâ€, SPâ€, and Phospholipase Cβ ₂ â€Immunoreactive Nerves in the Tongue of the Bullfrog, <i>Rana catesbeiana</i> . Anatomical Record, 2016, 299, 929-942.	0.8	2
692	Denatonium and 6- <i>n</i> -Propyl-2-thiouracil, Agonists of Bitter Taste Receptor, Inhibit Contraction of Various Types of Smooth Muscles in the Rat and Mouse. Biological and Pharmaceutical Bulletin, 2016, 39, 33-41.	0.6	15
693	Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae). Scientific Reports, 2016, 6, 39358.	1.6	6
694	Adeno-Associated Virus-Mediated Gene Transfer into Taste CellsIn Vivo. Chemical Senses, 2016, 42, bjw101.	1.1	5
695	Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. Journal of Biological Chemistry, 2016, 291, 15358-15377.	1.6	171
696	Functional Gustatory Role of Chemoreceptors in Drosophila Wings. Cell Reports, 2016, 15, 1442-1454.	2.9	50
697	Bitter taste receptors: Extraoral roles in pathophysiology. International Journal of Biochemistry and Cell Biology, 2016, 77, 197-204.	1.2	85
698	Dynamic taste responses of parabrachial pontine neurons in awake rats. Journal of Neurophysiology, 2016, 115, 1314-1323.	0.9	23
699	Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 305-319.	1.3	14
700	Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochemistry and Cell Biology, 2016, 146, 673-683.	0.8	25
701	Variation in human sweet taste receptor may result in different levels of sweet intensity variability between sweet stimuli. International Journal of Food Science and Technology, 2016, 51, 1958-1966.	1.3	7
702	Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Research International, 2016, 89, 27-38.	2.9	74

#	Article	IF	CITATIONS
703	Is the Association Between Sweet and Bitter Perception due to Genetic Variation?. Chemical Senses, 2016, 41, 737-744.	1.1	21
704	Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunology, 2016, 9, 1353-1359.	2.7	107
705	Kissing bugs can generalize and discriminate between different bitter compounds. Journal of Physiology (Paris), 2016, 110, 99-106.	2.1	16
706	Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments. Annals of the New York Academy of Sciences, 2016, 1380, 104-120.	1.8	33
707	Wine pH Prevails over Buffering Capacity of Human Saliva. Journal of Agricultural and Food Chemistry, 2016, 64, 8154-8159.	2.4	27
708	TRPM4-mediated control of FcεRI-evoked Ca2+ elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Scientific Reports, 2016, 6, 32981.	1.6	9
709	Effects of Daily Exposure to Saccharin and Sucrose on Testicular Biologic Functions in Mice. Biology of Reproduction, 2016, 95, 116-116.	1.2	28
711	Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 2016, 6, 29094.	1.6	56
712	Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E688-E698.	1.8	30
713	The Effect of Temperature on Umami Taste. Chemical Senses, 2016, 41, 537-545.	1.1	15
714	Bcl11b/Ctip2 is required for development of lingual papillae in mice. Developmental Biology, 2016, 416, 98-110.	0.9	9
715	Longâ€lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence. European Journal of Neuroscience, 2016, 43, 671-680.	1.2	34
716	The Way Evaluation Tastes: Tasting as an Embodied Cue of Evaluation. Current Psychology, 2016, 35, 309-315.	1.7	7
717	Taste of Fat: A Sixth Taste Modality?. Physiological Reviews, 2016, 96, 151-176.	13.1	191
718	Molecular mechanism of sweetness sensation. Physiology and Behavior, 2016, 164, 453-463.	1.0	92
719	Prostaglandin E ₂ constrains systemic inflammation through an innate lymphoid cell–IL-22 axis. Science, 2016, 351, 1333-1338.	6.0	156
720	Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice. Chemical Senses, 2016, 41, 25-34.	1.1	8
721	Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. Journal of Neuroscience, 2016, 36, 1942-1953.	1.7	98

#	Article	IF	CITATIONS
722	Expression patterns of taste receptor type 1 subunit 3 and α-gustducin in the mouse testis during development. Acta Histochemica, 2016, 118, 20-30.	0.9	21
723	Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 2016, 351, 1329-1333.	6.0	707
724	Taste information derived from T1R-expressing taste cells in mice. Biochemical Journal, 2016, 473, 525-536.	1.7	27
725	Detection of bitterness in vitro by a novel male mouse germ cell-based biosensor. Sensors and Actuators B: Chemical, 2016, 223, 461-469.	4.0	22
726	Application of isothermal titration calorimeter for screening bitterness-suppressing molecules of quinine. Food Chemistry, 2016, 190, 1007-1012.	4.2	5
728	A novel label-free bioengineered cell-based biosensor for salicin detection. Sensors and Actuators B: Chemical, 2017, 238, 1151-1158.	4.0	24
729	Activation of bitter taste receptors in pulmonary nociceptors sensitizes TRPV1 channels through the PLC and PKC signaling pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L326-L333.	1.3	9
730	A sweet taste receptorâ€dependent mechanism of glucosensing in hypothalamic tanycytes. Glia, 2017, 65, 773-789.	2.5	58
731	Trpm5 expression in the olfactory epithelium. Molecular and Cellular Neurosciences, 2017, 80, 75-88.	1.0	17
732	Human cell-based taste perception – a bittersweet job for industry. Natural Product Reports, 2017, 34, 484-495.	5.2	20
733	Tollâ€like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation. Obesity, 2017, 25, 1237-1245.	1.5	37
734	Electrogustometry Thresholds, Tongue Tip Vascularization, Density, and Form of the Fungiform Papillae Following Smoking Cessation. Chemical Senses, 2017, 42, 419-423.	1.1	14
735	Genetic strategies to analyze primary TRP channel-expressing cells in mice. Cell Calcium, 2017, 67, 91-104.	1.1	15
736	Bitter taste receptors as targets for tocolytics in preterm labor therapy. FASEB Journal, 2017, 31, 4037-4052.	0.2	39
737	The cellular mechanism for water detection in the mammalian taste system. Nature Neuroscience, 2017, 20, 927-933.	7.1	99
738	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	5.8	136
740	Primary and secondary metabolites of an European edible mushroom and its nutraceutical value: <i>Suillus bellinii</i> (Inzenga) Kuntze. Natural Product Research, 2017, 31, 1910-1919.	1.0	22
742	Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC - Trends in Analytical Chemistry, 2017, 87, 58-70.	5.8	37

#	Article	IF	CITATIONS
743	Highway to thermosensation: a traced review, from the proteins to the brain. Reviews in the Neurosciences, 2017, 28, 45-57.	1.4	10
744	Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacological Research, 2017, 116, 105-118.	3.1	50
745	Modulation of taste processing by temperature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R305-R321.	0.9	36
746	Whole transcriptome profiling of taste bud cells. Scientific Reports, 2017, 7, 7595.	1.6	69
747	Development of Frequency Based Taste Receptors Using Bioinspired Glucose Nanobiosensor. Scientific Reports, 2017, 7, 1623.	1.6	8
748	Participation of the peripheral taste system in aging-dependent changes in taste sensitivity. Neuroscience, 2017, 358, 249-260.	1.1	29
749	Psychophysical Evaluation of Sweetness Functions Across Multiple Sweeteners. Chemical Senses, 2017, 42, 111-120.	1.1	42
750	Rewiring the taste system. Nature, 2017, 548, 330-333.	13.7	99
751	Taste receptors in the gut – A new target for health promoting properties in diet. Food Research International, 2017, 100, 1-8.	2.9	29
752	Do Food Preferences Change After Bariatric Surgery?. Current Atherosclerosis Reports, 2017, 19, 38.	2.0	35
753	Taste buds: cells, signals and synapses. Nature Reviews Neuroscience, 2017, 18, 485-497.	4.9	371
754	The Physiology of Taste in Fish: Potential Implications for Feeding Stimulation and Gut Chemical Sensing. Reviews in Fisheries Science and Aquaculture, 2017, 25, 133-149.	5.1	85
755	A whole animal-based biosensor for fast detection of bitter compounds using extracellular potentials in rat gustatory cortex. Sensors and Actuators B: Chemical, 2017, 239, 746-753.	4.0	16
756	Functional effects of cold stimulation on taste perception in humans. Odontology / the Society of the Nippon Dental University, 2017, 105, 275-282.	0.9	11
757	Nitric Oxide Production is Stimulated by Bitter Taste Receptors Ubiquitously Expressed in the Sinonasal Cavity. American Journal of Rhinology and Allergy, 2017, 31, 85-92.	1.0	46
758	The Insula and Taste Learning. Frontiers in Molecular Neuroscience, 2017, 10, 335.	1.4	51
759	Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-30.	0.5	20
760	Cellular mechanisms of cyclophosphamide-induced taste loss in mice. PLoS ONE, 2017, 12, e0185473.	1.1	24

#	Article	IF	CITATIONS
761	Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans. PLoS ONE, 2017, 12, e0188784.	1.1	20
762	Aggravated gut inflammation in mice lacking the taste signaling protein α-gustducin. Brain, Behavior, and Immunity, 2018, 71, 23-27.	2.0	23
763	Sensory Stimulation Treatments for Oropharyngeal Dysphagia. Medical Radiology, 2018, , 763-779.	0.0	4
764	New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 1496-1505.	2.9	29
765	Berberine activates bitter taste responses of enteroendocrine STC-1 cells. Molecular and Cellular Biochemistry, 2018, 447, 21-32.	1.4	30
766	Brazzein: A Natural Sweetener. Reference Series in Phytochemistry, 2018, , 17-33.	0.2	1
767	Animal Perception Including Differences With Humans. , 2018, , 1-11.		3
768	Comparative study on the composition of free amino acids and derivatives in the two botanical origins of an edible Chinese herb "Xiebai― i.e., Allium chinense G. Don and Allium macrostemon Bunge species. Food Research International, 2018, 106, 446-457.	2.9	28
769	Symmetry and its role in the crossmodal correspondence between shape and taste. Attention, Perception, and Psychophysics, 2018, 80, 738-751.	0.7	43
770	Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells. Biochemical and Biophysical Research Communications, 2018, 495, 2579-2583.	1.0	3
771	Effects of daily exposure to saccharin sodium and rebaudioside A on the ovarian cycle and steroidogenesis in rats. Reproductive Toxicology, 2018, 76, 35-45.	1.3	19
772	TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E772-E781.	3.3	100
773	Identifying the interactions between natural, non-caloric sweeteners and the human sweet receptor by molecular docking. Food Chemistry, 2018, 264, 164-171.	4.2	31
774	Development of Full Sweet, Umami, and Bitter Taste Responsiveness Requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2018, 43, 367-378.	1.1	7
775	Short-term perception of and conditioned taste aversion to umami taste, and oral expression patterns of umami taste receptors in chickens. Physiology and Behavior, 2018, 191, 29-36.	1.0	15
776	Short-Term Evaluation of Gustatory Changes After Surgical Removal of Mandibular Third Molar—A Prospective Randomized Control Trial. Journal of Oral and Maxillofacial Surgery, 2018, 76, 258-266.	0.5	5
777	Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials, 2018, 151, 24-37.	5.7	49
778	Chemoreceptors in the Gut. Annual Review of Physiology, 2018, 80, 117-141.	5.6	50

	CITATION	CITATION REPORT	
#	Article	IF	Citations
779	TRPM5 in the battle against diabetes and obesity. Acta Physiologica, 2018, 222, e12949.	1.8	38
780	Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews, 2018, 47, 1592-1637.	18.7	28
781	Expression levels of tasteâ€related genes in palate and tongue tip, and involvement of transient receptor potential subfamily M member 5 (<scp>TRPM</scp> 5) in taste sense in chickens. Animal Science Journal, 2018, 89, 441-447.	0.6	12
782	Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae. Neuroscience, 2018, 369, 29-39.	1.1	15
783	Role of Taste Receptors as Sentinels of Innate Immunity in the Upper Airway. Journal of Pathogens, 2018, 2018, 1-8.	0.9	24
784	Analysis of aging-dependent changes in taste sensitivities of the senescence-accelerated mouse SAMP1. Experimental Gerontology, 2018, 113, 64-73.	1.2	10
785	Interactions between Bitter Taste, Diet and Dysbiosis: Consequences for Appetite and Obesity. Nutrients, 2018, 10, 1336.	1.7	27
786	A Crosstalk between Melatonin and Taste-Receptors' Signaling Tunes Quinine-Induced Gut Hormone Secretion in Mice. Journal of Nutrition & Food Sciences, 2018, 08, .	1.0	0
787	Organellar TRP channels. Nature Structural and Molecular Biology, 2018, 25, 1009-1018.	3.6	41
788	Artesunate attenuates airway resistance <i>in vivo</i> and relaxes airway smooth muscle cells <i>in vitro</i> via bitter taste receptorâ€dependent calcium signalling. Experimental Physiology, 2019, 104, 231-243.	0.9	22
789	The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2018, 4, 200-208.	0.7	31
790	The coding of valence and identity in the mammalian taste system. Nature, 2018, 558, 127-131.	13.7	158
791	Understanding the Role of Biofilms and Superantigens in Chronic Rhinosinusitis. Current Otorhinolaryngology Reports, 2018, 6, 253-262.	0.2	29
793	Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. NeuroMolecular Medicine, 2018, 20, 281-300.	1.8	23
794	Taste Receptor Polymorphisms and Immune Response: A Review of Receptor Genotypic-Phenotypic Variations and Their Relevance to Chronic Rhinosinusitis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 64.	1.8	15
795	The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis. Frontiers in Immunology, 2018, 9, 624.	2.2	35
796	Ca2+ Regulation of TRP Ion Channels. International Journal of Molecular Sciences, 2018, 19, 1256.	1.8	63
797	The Role of Taste Receptors in Airway Innate Immune Defense. Sinusitis, 2018, 3, 6.	0.2	1

#	Article	IF	Citations
798	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	13.7	221
799	Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5552-5557.	3.3	203
800	Influence of a prepared diet and a macroalga (Ulva sp.) on the growth, nutritional and sensory qualities of gonads of the sea urchin Paracentrotus lividus. Aquaculture, 2018, 493, 240-250.	1.7	41
801	Alarm pheromone and kairomone detection via bitter taste receptors in the mouse Grueneberg ganglion. BMC Biology, 2018, 16, 12.	1.7	24
803	Neural Coding of Appetitive Food Experiences in the Amygdala. Neurobiology of Learning and Memory, 2018, 155, 261-275.	1.0	14
804	The role of the transient receptor potential melastatin5 (TRPM5) channels in the pancreatic β-cell electrical activity: A computational modeling study. Computational Biology and Chemistry, 2018, 76, 101-108.	1.1	4
805	Noncaloric Sweeteners Induce Peripheral Serotonin Secretion via the T1R3-Dependent Pathway in Human Gastric Parietal Tumor Cells (HGT-1). Journal of Agricultural and Food Chemistry, 2018, 66, 7044-7053.	2.4	7
806	Brain Glucose-Sensing Mechanism and Energy Homeostasis. Molecular Neurobiology, 2019, 56, 769-796.	1.9	74
807	Reliable Target Prediction of Bioactive Molecules Based on Chemical Similarity Without Employing Statistical Methods. Frontiers in Pharmacology, 2019, 10, 835.	1.6	13
808	Impairment of Bitter Taste Sensor Transient Receptor Potential Channel M5-Mediated Aversion Aggravates High-Salt Intake and Hypertension. Hypertension, 2019, 74, 1021-1032.	1.3	14
809	Insights on modulators in perception of taste modalities: a review. Nutrition Research Reviews, 2019, 32, 231-246.	2.1	19
810	Sweet taste receptor agonists alter ovarian functions and ovarian cycles in aged mice. Reproductive Biology, 2019, 19, 230-236.	0.9	5
811	The microbiome of the upper respiratory tract in health and disease. BMC Biology, 2019, 17, 87.	1.7	243
812	Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring. Physiology and Behavior, 2019, 212, 112709.	1.0	6
813	A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosensors and Bioelectronics, 2019, 145, 111673.	5.3	53
814	Sour Sensing from the Tongue to the Brain. Cell, 2019, 179, 392-402.e15.	13.5	158
815	Koku in Food Science and Physiology. , 2019, , .		19
816	Expression of Renin-Angiotensin System Components in the Taste Organ of Mice. Nutrients, 2019, 11, 2251.	1.7	50

#	Article	IF	CITATIONS
817	Obesity is associated with altered gene expression in human tastebuds. International Journal of Obesity, 2019, 43, 1475-1484.	1.6	35
818	Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2019, 111, 103178.	1.2	18
819	Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Scientific Reports, 2019, 9, 8834.	1.6	8
820	Dietary salt and flavour: mechanisms of taste perception and physiological controls. , 2019, , 45-70.		3
821	Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death and Disease, 2019, 10, 497.	2.7	37
822	Structure of the Human TRPML2 Ion Channel Extracytosolic/Lumenal Domain. Structure, 2019, 27, 1246-1257.e5.	1.6	16
823	Single Nucleotide Polymorphisms in Chemosensory Pathway Genes GNB3, TAS2R19, and TAS2R38 Are Associated with Chronic Rhinosinusitis. International Archives of Allergy and Immunology, 2019, 180, 72-78.	0.9	25
824	Metal Ions Activate the Human Taste Receptor TAS2R7. Chemical Senses, 2019, 44, 339-347.	1.1	43
825	Mechanism for Regulation of Melanoma Cell Death via Activation of Thermo-TRPV4 and TRPV2. Journal of Oncology, 2019, 2019, 1-14.	0.6	28
826	Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019, 11, 644.	1.7	52
827	Effect of Bitter Compounds on the Expression of Bitter Taste Receptor T2R7 Downstream Signaling Effectors in <i>cT2R7</i> /pDisplay-G <i>α</i> 16/gust44/pcDNA3.1 (+) Cells. BioMed Research International, 2019, 2019, 1-12.	0.9	2
828	Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Scientific Reports, 2019, 9, 17934.	1.6	18
829	A Pharmacological Perspective on the Study of Taste. Pharmacological Reviews, 2019, 71, 20-48.	7.1	12
830	The Functional and Neurobiological Properties of Bad Taste. Physiological Reviews, 2019, 99, 605-663.	13.1	58
831	Study on Bombykol Receptor Self-Assembly and Universality of G Protein Cellular Signal Amplification System. ACS Sensors, 2019, 4, 257-264.	4.0	11
832	Cells and circuits for thermosensation in mammals. Neuroscience Letters, 2019, 690, 167-170.	1.0	18
833	Spilanthol Enhances Sensitivity to Sodium in Mouse Taste Bud Cells. Chemical Senses, 2019, 44, 91-103.	1.1	9
834	Tuft Cells—Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annual Review of Immunology, 2019, 37, 47-72.	9.5	109

		CITATION REPORT		
#	ARTICLE Bitter and sweet tasting molecules: It's complicated. Neuroscience Letters, 2019, 700, 56-6	3.	IF 1.0	Citations
836	Transcriptional profiling of genes in tongue epithelial tissue from immature and adult rats b RNA eq technique. Journal of Cellular Physiology, 2020, 235, 3069-3078.	y the	2.0	1
837	Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract 1 taste receptor double-knockout mice. Journal of Neurophysiology, 2020, 123, 843-859.	: of type	0.9	17
838	Differential Effects of Diet and Weight on Taste Responses in Dietâ€Induced Obese Mice. C 28, 284-292.	besity, 2020,	1.5	20
839	Phospholipase C families: Common themes and versatility in physiology and pathology. Pro Lipid Research, 2020, 80, 101065.	gress in	5.3	48
840	Genetic variants of TAS2R38 bitter taste receptor associate with distinct gut microbiota tra Parkinson's disease: A pilot study. International Journal of Biological Macromolecules, 2020 665-674.	its in , 165,	3.6	23
841	An alternative pathway for sweet sensation: possible mechanisms and physiological relevan Pflugers Archiv European Journal of Physiology, 2020, 472, 1667-1691.	ce.	1.3	6
842	Electrophysiological Responses from the Human Tongue to the Six Taste Qualities and Thei Relationships with PROP Taster Status. Nutrients, 2020, 12, 2017.		1.7	12
843	Ecological Sensing Through Taste and Chemosensation Mediates Inflammation: A Biologica Anthropological Approach. Advances in Nutrition, 2020, 11, 1671-1685.	I	2.9	3
844	Invited review: Astringency in whey protein beverages. Journal of Dairy Science, 2020, 103,	5793-5804.	1.4	24
845	Clinical Role of Extraoral Bitter Taste Receptors. International Journal of Molecular Sciences, 21, 5156.	2020,	1.8	43
846	Analysis of meaty aroma and umami taste in thermally treated yeast extract by means of se screening. European Food Research and Technology, 2020, 246, 2119-2133.	nsory-guided	1.6	11
847	A subset of broadly responsive Type III taste cells contribute to the detection of bitter, swee umami stimuli. PLoS Genetics, 2020, 16, e1008925.	t and	1.5	32
848	Insights into the Function and Evolution of Taste 1 Receptor Gene Family in the Carnivore F Gilthead Seabream (Sparus aurata). International Journal of Molecular Sciences, 2020, 21, 7	sh 732.	1.8	9
849	Microphysiology of Taste Buds. , 2020, , 187-210.			5
850	Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. International Journal Molecular Sciences, 2020, 21, 5929.	of	1.8	35
851	G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Frontiers in Pharmacol 11, 587664.	ogy, 2020,	1.6	90
852	Miracle Berry as a Potential Supplement in the Control of Metabolic Risk Factors in Cancer. Antioxidants, 2020, 9, 1282.		2.2	6

#	Article	IF	CITATIONS
853	Bitter taste receptor activation by hop-derived bitter components induces gastrointestinal hormone production in enteroendocrine cells. Biochemical and Biophysical Research Communications, 2020, 533, 704-709.	1.0	9
854	<scp>l</scp> â€Glutamate stimulates cholecystokinin secretion via the <scp>T1R1</scp> / <scp>T1R3</scp> mediated <scp>PLC</scp> / <scp>TRPM5</scp> transduction pathway. Journal of the Science of Food and Agriculture, 2020, 100, 4818-4825.	1.7	3
855	Fat taste signal transduction and its possible negative modulator components. Progress in Lipid Research, 2020, 79, 101035.	5.3	13
856	A Bitter Taste in Your Heart. Frontiers in Physiology, 2020, 11, 431.	1.3	31
857	Recent advances in development of biosensors for taste-related analyses. TrAC - Trends in Analytical Chemistry, 2020, 129, 115925.	5.8	34
858	Functions of Opsins in Drosophila Taste. Current Biology, 2020, 30, 1367-1379.e6.	1.8	53
859	Extraoral Taste Receptors. , 2020, , 353-381.		1
860	Cortical Response to Fat Taste. Chemical Senses, 2020, 45, 283-291.	1.1	11
861	Influences of nonâ€nutritive sweeteners on ovarian and uterine expression of T1R2 and T1R3 in peripubertal female guinea pigs. Animal Science Journal, 2020, 91, e13348.	0.6	4
862	Understanding Taste Using <i>Drosophila melanogaster</i> ., 0, , .		2
863	Selective Peripheral Taste Dysfunction in APP/PS1 Mutant Transgenic Mice. Journal of Alzheimer's Disease, 2020, 76, 1-9.	1.2	1
864	Taste and Smell in Zebrafish. , 2020, , 466-492.		8
865	Strategies practiced to perk up oral palatability and acceptance of bitter drugs. Journal of Drug Delivery Science and Technology, 2020, 56, 101580.	1.4	3
866	Sweet Thermal Taste: Perceptual Characteristics in Water and Dependence on TAS1R2/TAS1R3. Chemical Senses, 2020, 45, 219-230.	1.1	5
867	Expansion of sweet taste receptor genes in grass carp (Ctenopharyngodon idellus) coincided with vegetarian adaptation. BMC Evolutionary Biology, 2020, 20, 25.	3.2	17
868	A sperm-cell-based biosensor using a fluorescence probe for responsive signal readout toward bitter flavor detection. Talanta, 2020, 211, 120731.	2.9	4
869	Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Science Immunology, 2020, 5, .	5.6	76
870	GTL-1, a Calcium Activated TRPM Channel, Enhances Nociception. Frontiers in Pharmacology, 2019, 10,	1.6	1

#	Article	IF	CITATIONS
871	An Airway Protection Program Revealed by Sweeping Genetic Control of Vagal Afferents. Cell, 2020, 181, 574-589.e14.	13.5	114
872	Postingestive Modulation of Food Seeking Depends on Vagus-Mediated Dopamine Neuron Activity. Neuron, 2020, 106, 778-788.e6.	3.8	84
873	Discovery and Development of S6821 and S7958 as Potent TAS2R8 Antagonists. Journal of Medicinal Chemistry, 2020, 63, 4957-4977.	2.9	11
874	The gut–brain axis mediates sugar preference. Nature, 2020, 580, 511-516.	13.7	172
875	Sodium Imbalance in Mice Results Primarily in Compensatory Gene Regulatory Responses in Kidney and Colon, but Not in Taste Tissue. Nutrients, 2020, 12, 995.	1.7	7
876	TRIM4 interacts with TRPM8 and regulates its channel function through K423â€mediated ubiquitination. Journal of Cellular Physiology, 2021, 236, 2934-2949.	2.0	8
877	Thermosensation involving thermo-TRPs. Molecular and Cellular Endocrinology, 2021, 520, 111089.	1.6	18
878	Expression of Eya1 in mouse taste buds. Cell and Tissue Research, 2021, 383, 979-986.	1.5	8
879	N adherin localization in taste buds of mouse circumvallate papillae. Journal of Comparative Neurology, 2021, 529, 2227-2242.	0.9	2
880	Bitter-blockers as a taste masking strategy: A systematic review towards their utility in pharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 35-51.	2.0	20
881	Taste transduction and channel synapses in taste buds. Pflugers Archiv European Journal of Physiology, 2021, 473, 3-13.	1.3	70
882	<i>Drosophila</i> sensory receptors—a set of molecular Swiss Army Knives. Genetics, 2021, 217, 1-34.	1.2	48
883	Taste Receptor Signaling. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	5
884	Antifeedant Activity of Caesalpinia coriaria Essential Oil Against Incisitermes marginipennis (Latreille). Phyton, 2021, 90, 907-920.	0.4	1
885	Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell, 2021, 184, 257-271.e16.	13.5	37
886	Immune Regulatory Roles of Cells Expressing Taste Signaling Elements in Nongustatory Tissues. Handbook of Experimental Pharmacology, 2021, , 271-293.	0.9	9
887	The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition, 2020, 7, 598340.	1.6	62
888	Receptors Taste Receptors. , 2021, , 314-322.		0

#	Article	IF	CITATIONS
889	Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicology and Environmental Safety, 2021, 209, 111817.	2.9	19
890	A Mathematical Model of ATP Secretion by Type II Taste Cells. Neuroscience and Behavioral Physiology, 2021, 51, 238-244.	0.2	2
891	Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomedicine and Pharmacotherapy, 2021, 134, 111129.	2.5	22
892	Whole-Mount Staining, Visualization, and Analysis of Fungiform, Circumvallate, and Palate Taste Buds. Journal of Visualized Experiments, 2021, , .	0.2	3
893	A mechanistic overview of taste bud maintenance and impairment in cancer therapies. Chemical Senses, 2021, 46, .	1.1	6
894	First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Scientific Reports, 2021, 11, 4933.	1.6	16
895	Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics, 2021, 22, 224.	1.2	15
896	Critically evaluating sweet taste receptor expression and signaling through a molecular pharmacology lens. FEBS Journal, 2021, 288, 2660-2672.	2.2	10
897	Treatment Protocol for COVID-19 Based on T2R Phenotype. Viruses, 2021, 13, 503.	1.5	7
899	From receptors to the brain: psychophysical clues to taste physiology. Current Opinion in Physiology, 2021, 20, 154-158.	0.9	2
900	Molecular and Genetic Factors Involved in Olfactory and Gustatory Deficits and Associations with Microbiota in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4286.	1.8	14
901	Bitter, sweet, and umami signaling in taste cells: it's not as simple as we thought. Current Opinion in Physiology, 2021, 20, 159-164.	0.9	7
902	Allyl Isothiocyanate: A TAS2R38 Receptor-Dependent Immune Modulator at the Interface Between Personalized Medicine and Nutrition. Frontiers in Immunology, 2021, 12, 669005.	2.2	12
903	Oral Mucosa, Saliva, and COVID-19 Infection in Oral Health Care. Frontiers in Medicine, 2021, 8, 656926.	1.2	29
904	Chronic administration of caffeine alters acesulfame-K intake and features of fungiform taste buds in mice. International Journal of Food Sciences and Nutrition, 2021, 72, 1046-1056.	1.3	0
905	From High-Throughput Screening to Target Validation: Benzo[<i>d</i>]isothiazoles as Potent and Selective Agonists of Human Transient Receptor Potential Cation Channel Subfamily M Member 5 Possessing In Vivo Gastrointestinal Prokinetic Activity in Rodents. Journal of Medicinal Chemistry, 2021 64 5931-5955	2.9	5
906	Association Between Bitter Taste Receptor Phenotype and Clinical Outcomes Among Patients With COVID-19. JAMA Network Open, 2021, 4, e2111410.	2.8	17
907	Bitter taste in silico: A review on virtual ligand screening and characterization methods for TAS2R-bitterant interactions. International Journal of Pharmaceutics, 2021, 600, 120486.	2.6	7

#	Article	IF	CITATIONS
908	Mechanisms of umami taste perception: From molecular level to brain imaging. Critical Reviews in Food Science and Nutrition, 2022, 62, 7015-7024.	5.4	16
909	Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. ELife, 2021, 10, .	2.8	22
910	Postoperative Assessment of Gustatory Activity Following Surgical Removal of Mandibular Third Molars. Journal of Evolution of Medical and Dental Sciences, 2021, 10, 1489-1495.	0.1	0
911	Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nature Structural and Molecular Biology, 2021, 28, 604-613.	3.6	27
913	Gene expression profiling of α-gustducin-expressing taste cells in mouse fungiform and circumvallate papillae. Biochemical and Biophysical Research Communications, 2021, 557, 206-212.	1.0	6
914	Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinology and Metabolism, 2021, 36, 469-477.	1.3	5
915	Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Frontiers in Human Neuroscience, 2021, 15, 667709.	1.0	22
916	Functional expression of TMEM16A in taste bud cells. Journal of Physiology, 2021, 599, 3697-3714.	1.3	8
917	Bioinspired Solidâ€6tate Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. Small, 2021, 17, e2100495.	5.2	17
918	Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sensors, 2021, 6, 2593-2604.	4.0	7
919	TAS1R2 rs35874116 and TRPM5 rs886277 polymorphisms are not related with risk of obesity. International Journal of Clinical Practice, 2021, 75, e14562.	0.8	2
921	Novel, Fully Characterised Bovine Taste Bud Cells of Fungiform Papillae. Cells, 2021, 10, 2285.	1.8	2
922	Perception des acides gras et potentiels évoqués gustatifsÂ: application dans l'obésité. Cahiers De Nutrition Et De Dietetique, 2021, 56, 280-291.	0.2	0
923	Subchronic and mild social defeat stress downregulates peripheral expression of sweet and umami taste receptors in male mice. Biochemical and Biophysical Research Communications, 2021, 579, 116-121.	1.0	3
924	Pharmacology of the Umami Taste Receptor. Handbook of Experimental Pharmacology, 2021, , 109-136.	0.9	3
925	Pharmacology of TAS1R2/TAS1R3 Receptors and Sweet Taste. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	2
929	Trp Channels In Disease. , 2007, 45, 253-271.		48
930	Oral and Extraoral Bitter Taste Receptors. Results and Problems in Cell Differentiation, 2011, 52, 87-99.	0.2	82

	CHATION K	EPORT	
#	Article	IF	CITATIONS
931	TRPs: Truly Remarkable Proteins. Handbook of Experimental Pharmacology, 2014, 222, 1-12.	0.9	43
932	Gustatory and reward brain circuits in the control of food intake. Advances and Technical Standards in Neurosurgery, 2011, 36, 31-59.	0.2	27
933	Ultrastructure of Taste Buds. , 2008, , 135-155.		5
934	Amiloride-Sensitive Ion Channels. , 2008, , 281-288.		6
935	Transient receptor potential (TRP). British Journal of Pharmacology, 2006, , S120-S125.	2.7	3
936	TRPV2 interacts with actin and reorganizes submembranous actin cytoskeleton. Bioscience Reports, 2020, 40, .	1.1	5
940	The Pharmacology and Signaling of Bitter, Sweet, and Umami Taste Sensing. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 87-98.	3.4	63
941	T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. Journal of Clinical Investigation, 2012, 122, 4145-4159.	3.9	474
942	The Ca2+-Activated TRP Channels. Frontiers in Neuroscience, 2006, , 203-211.	0.0	8
943	Preference for High-Fat Food in Animals. Frontiers in Neuroscience, 2009, , 243-264.	0.0	4
944	Multiple Olfactory Subsystems Convey Various Sensory Signals. Frontiers in Neuroscience, 2009, , 225-240.	0.0	7
945	Sensory Attributes and the Way We Perceive Them. , 2006, , 7-24.		2
946	Recent advances in taste transduction and signaling. F1000Research, 2019, 8, 2117.	0.8	56
947	β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genetics, 2017, 13, e1006990.	1.5	32
948	A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genetics, 2017, 13, e1007059.	1.5	83
949	Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue. PLoS ONE, 2009, 4, e7347.	1.1	79
950	Expression of Genes Encoding Multi-Transmembrane Proteins in Specific Primate Taste Cell Populations. PLoS ONE, 2009, 4, e7682.	1.1	35
951	Sarco/Endoplasmic Reticulum Ca2+-ATPases (SERCA) Contribute to GPCR-Mediated Taste Perception. PLoS ONE, 2011, 6, e23165.	1.1	13

#	Article	IF	CITATIONS
952	Tachykinins Stimulate a Subset of Mouse Taste Cells. PLoS ONE, 2012, 7, e31697.	1.1	18
953	Expression of Tas1 Taste Receptors in Mammalian Spermatozoa: Functional Role of Tas1r1 in Regulating Basal Ca2+ and cAMP Concentrations in Spermatozoa. PLoS ONE, 2012, 7, e32354.	1.1	65
954	Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells. PLoS ONE, 2012, 7, e34489.	1.1	139
955	Defects in the Peripheral Taste Structure and Function in the MRL/lpr Mouse Model of Autoimmune Disease. PLoS ONE, 2012, 7, e35588.	1.1	34
956	Expression of TRPC6 in Renal Cortex and Hippocampus of Mouse during Postnatal Development. PLoS ONE, 2012, 7, e38503.	1.1	20
957	Expression and Secretion of TNF-α in Mouse Taste Buds: A Novel Function of a Specific Subset of Type II Taste Cells. PLoS ONE, 2012, 7, e43140.	1.1	45
958	Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, Macaca mulatta. PLoS ONE, 2012, 7, e45426.	1.1	13
959	Potential Role of Transient Receptor Potential Channel M5 in Sensing Putative Pheromones in Mouse Olfactory Sensory Neurons. PLoS ONE, 2013, 8, e61990.	1.1	12
960	Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production. PLoS ONE, 2013, 8, e80148.	1.1	32
961	Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine. PLoS ONE, 2015, 10, e0127936.	1.1	9
962	Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds. PLoS ONE, 2016, 11, e0148315.	1.1	11
963	Nicotinic acetylcholine receptors (nAChRs) are expressed in Trpm5 positive taste receptor cells (TRCs). PLoS ONE, 2018, 13, e0190465.	1.1	10
964	Pharmacological analysis of the feeding response of codling moth (Cydia pomonella; Lepidoptera:) Tj ETQq0 0 0	rgBT /Ove 1 . 2	rloçk 10 Tf 50؛
965	Neural Isolation of the Olfactory Bulbs Severely Impairs Taste-Guided Behavior to Normally Preferred, But Not Avoided, Stimuli. ENeuro, 2020, 7, ENEURO.0026-20.2020.	0.9	4
966	Sodium–Taste Cells Require <i>Skn-1a</i> for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. ENeuro, 2020, 7, ENEURO.0385-20.2020.	0.9	22
967	Signaling Mechanisms Controlling Taste Cell Function. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 125-137.	0.4	11
968	Genetics of Taste Receptors. Current Pharmaceutical Design, 2014, 20, 2669-2683.	0.9	153
969	Structure/Function Relationships of Phospholipases C Beta. Current Protein and Peptide Science, 2013, 14, 650-657.	0.7	11

C		~ ~ ~	D -		
	ΑΠ	()N	K -	P()	ו או

#	Article	IF	CITATIONS
970	Transient Receptor Potential channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
972	Genomic Study of Cardiovascular Continuum Comorbidity. Acta Naturae, 2015, 7, 89-99.	1.7	24
973	The Taste Receptor TAS1R3 Regulates Small Intestinal Tuft Cell Homeostasis. ImmunoHorizons, 2020, 4, 23-32.	0.8	48
974	Effect of using tobacco on taste perception. Journal of Family Medicine and Primary Care, 2019, 8, 2699.	0.3	8
975	Rate and timing of cortical responses driven by separate sensory channels. ELife, 2015, 4, e10450.	2.8	69
976	Structural and functional characterization of an otopetrin family proton channel. ELife, 2019, 8, .	2.8	20
977	The stability of tastant detection by mouse lingual chemosensory tissue requires Regulator of G protein Signaling-21 (RGS21). Chemical Senses, 2021, 46, .	1.1	2
978	Electrogustometry: Normative data for stimulus duration, tongue site and age decline. Clinical Otolaryngology, 2021, 46, 767-774.	0.6	6
979	Luminal Chemosensory Cells in the Small Intestine. Nutrients, 2021, 13, 3712.	1.7	9
980	An update on extra-oral bitter taste receptors. Journal of Translational Medicine, 2021, 19, 440.	1.8	38
981	Aging cats prefer warm food. Journal of Veterinary Behavior: Clinical Applications and Research, 2022, 47, 86-92.	0.5	11
982	Lower ΔFosB expression in the dopaminergic system after stevia consumption in rats housed under environmental enrichment conditions. Brain Research Bulletin, 2021, 177, 172-180.	1.4	2
983	TRPV1 in gut function, abdominal pain and functional bowel disorders. , 2005, , 147-165.		0
984	Neural Coding in the rNST. Frontiers in Neuroscience, 2006, , 83-105.	0.0	1
985	Neural Coding in the rNST. , 2006, , 101-124.		1
986	rNST Circuits. Frontiers in Neuroscience, 2006, , 137-151.	0.0	1
988	Geschmack und Geruch. Springer-Lehrbuch, 2007, , 421-436.	0.1	0
990	Neural Ensemble Recordings from Central Gustatory-Reward Pathways in Awake and Behaving Animals. Frontiers in Neuroscience, 2007, , 189-218.	0.0	1

#	Article	IF	CITATIONS
991	13 Speeksel en smaakgewaarwording. , 2008, , 205-224.		0
992	Signal Molecules and Calcium. , 2009, , 489-508.		0
994	Transient Receptor Potential (TRP) Channels. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2010, 53, 65.	0.0	0
995	Regulatory role of phosphatidylinositol 4,5-bisphosphate in transient receptor potential channel. Academic Journal of Second Military Medical University, 2010, 30, 887-891.	0.0	0
996	The Lingual Taste Papillae: A Delicate and Complicated Nature's Design for Taste Modalities Perception. Cellular Origin and Life in Extreme Habitats, 2012, , 343-356.	0.3	0
997	Wnt/ \hat{l}^2 -catenin signaling for dental regeneration. Stem Cells in Oral Medicine, 2012, 1, .	0.0	1
1000	Schmecken. , 2014, , 77-93.		0
1001	Speeksel en smaak. , 2014, , 133-147.		1
1002	TRP Channels in Transduction for Responses to Odorants and Pheromones. , 2015, , 111-125.		1
1003	Biomimetic Gustatory Membrane-Based Taste Sensors. , 2015, , 265-287.		0
1004	Review of Development of Sweetness Sensor. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 51-56.	0.0	0
1005	Molecular cloning and evolutionary analysis of captive forest musk deer bitter taste receptor gene T2R16. Genetics and Molecular Research, 2015, 14, 16185-16195.	0.3	0
1006	TRP Channels as Targets for Modulation of Taste Transduction. , 2015, , 127-140.		2
1007	Gustatory Receptor-Based Taste Sensors. , 2015, , 241-263.		0
1008	Brazzein: A Natural Sweetenerz. Reference Series in Phytochemistry, 2016, , 1-17.	0.2	0
1009	Pharynx – Larynx. , 2016, , 225-252.		0
1010	Optimierung von Struktur-AktivitÃæ-Beziehungen (SAR): Entwicklung von Inhibitoren und Agonisten. , 2017, , 195-216.		0
1011	Brazzein: A Natural Sweetener. Reference Series in Phytochemistry, 2017, , 1-17.	0.2	0

#	Article	IF	CITATIONS
1014	An Expression Levels Analysis of the Bitter Taste Receptors in the Murine Exocrine Glands. International Journal of Oral Biology: Official Journal of the Korean Academy of Oral Biology and the UCLA Dental Research Institute, 2018, 43, 5-11.	0.1	1
1016	Taste receptors are our mediators in shaping the taste preferences of a child. Meditsinskiy Sovet, 2018, , 50-55.	0.1	0
1017	Schmecken. , 2019, , 83-100.		0
1018	Mechanism of Kokumi Substance Perception: Role of Calcium-Sensing Receptor (CaSR) in Perceiving Kokumi Substances. , 2019, , 135-169.		0
1021	Sweet and Umami Taste. , 2020, , 211-230.		0
1022	Oral Chemesthesis and Taste. , 2020, , 398-422.		0
1023	Behavioral Analysis of Taste Function in Rodent Models. , 2020, , 169-186.		1
1024	Small-to-Medium-Scale Sensory Evaluation of Horticultural Crops—Sensory Attributes. Edis, 2020, 2020, .	0.0	0
1026	Effects of bitter receptor antagonists on behavioral lick responses of mice. Neuroscience Letters, 2020, 730, 135041.	1.0	4
1027	Morphology and chemical characteristics of taste buds associated with P2X3â€immunoreactive afferent nerve endings in the rat incisive papilla. Journal of Anatomy, 2022, 240, 688-699.	0.9	4
1028	Whole-Brain Mapping of the Expression Pattern of T1R2, a Subunit Specific to the Sweet Taste Receptor. Frontiers in Neuroanatomy, 2021, 15, 751839.	0.9	6
1029	Bitter Taste. , 2020, , 231-246.		1
1030	The effect of taste on judgment and decision-making and its mechanism. Advances in Psychological Science, 2020, 28, 1678.	0.2	0
1031	Taste Genetics. , 2020, , 264-279.		1
1032	Genetics of Mechanoreceptor Evolution and Development. , 2020, , 277-301.		2
1033	Chemistry of Gustatory Stimuli. , 2020, , 24-64.		0
1034	Phylogeny of Chemical Sensitivity. , 2020, , 4-23.		0
1035	İlaçların Neden Olduğu Tat ve Koku Alma Bozuklukları. Turkish Journal of Family Medicine & Primary Care, 0, , 153-161.	0.2	0

#	Article	IF	CITATIONS
1038	Heterotrimeric G Proteins and Their Effector Pathways. Contemporary Clinical Neuroscience, 2005, , 109-134.	0.3	0
1040	Prognostic factors of recovery with medication in patients with taste disorders. PLoS ONE, 2020, 15, e0237270.	1.1	1
1043	Taste bud regeneration and the search for taste progenitor cells. Archives Italiennes De Biologie, 2010, 148, 107-18.	0.1	37
1044	Using biosensors to detect the release of serotonin from taste buds during taste stimulation. Archives Italiennes De Biologie, 2005, 143, 87-96.	0.1	14
1045	T1R and T2R receptors: the modulation of incretin hormones and potential targets for the treatment of type 2 diabetes mellitus. Current Opinion in Investigational Drugs, 2010, 11, 447-54.	2.3	24
1046	Genomic Study of Cardiovascular Continuum Comorbidity. Acta Naturae, 2015, 7, 89-99.	1.7	9
1048	Piperine, as a TAS2R14 agonist, stimulates secretion of glucagon-like peptide-1 in human enteroendocrine cell line Caco-2. Food and Function, 2021, , .	2.1	4
1049	The Cellular and Molecular Basis of Sour Taste. Annual Review of Physiology, 2022, 84, 41-58.	5.6	12
1050	Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients, 2021, 13, 4103.	1.7	11
1051	Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sensors, 2021, 6, 4108-4117.	4.0	1
1053	Saccharin Stimulates Insulin Secretion Dependent on Sweet Taste Receptor-Induced Activation of PLC Signaling Axis. Biomedicines, 2022, 10, 120.	1.4	5
1054	Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiology and Behavior, 2022, 246, 113695.	1.0	2
1055	Chicken taste receptors and perception: recent advances in our understanding of poultry nutrient-sensing systems. World's Poultry Science Journal, 2022, 78, 5-20.	1.4	1
1056	Different forms of taste can influence ethical evaluation. Current Psychology, 0, , 1.	1.7	1
1057	Identification of positive modulators of TRPM5 channel from a high-throughput screen using a fluorescent membrane potential assay. SLAS Discovery, 2022, 27, 55-64.	1.4	4
1058	Bitter taste receptors protect against skin aging by inhibiting cellular senescence and enhancing wound healing. Nutrition Research and Practice, 2022, 16, 1.	0.7	4
1059	Sensation of dietary nutrients by gut taste receptors and its mechanisms. Critical Reviews in Food Science and Nutrition, 2023, 63, 5594-5607.	5.4	4
1060	Possible role of type 1 and type 2 taste receptors on obesity-induced inflammation. Nutrition Reviews, 2022, 80, 1919-1926.	2.6	5

#	Article	IF	CITATIONS
1061	Distribution and Assembly of TRP Ion Channels. Advances in Experimental Medicine and Biology, 2021, 1349, 111-138.	0.8	6
1062	A Dynamic Mass Redistribution Assay for the Human Sweet Taste Receptor Uncovers G-Protein Dependent Biased Ligands. Frontiers in Pharmacology, 2022, 13, 832529.	1.6	6
1063	A 47-Year-Old Japanese Woman with Symptoms of Increased Salty and Reduced Sweet Taste Perception Preceding a Diagnosis of Thymoma-Associated Myasthenia Gravis. American Journal of Case Reports, 2022, 23, e936000.	0.3	0
1064	Remodeling of the ryanodine receptor isoform 1 channel regulates the sweet and umami taste perception of Rattus norvegicus. Fundamental Research, 2022, , .	1.6	0
1065	Molecular insights into human taste perception and umami tastants: A review. Journal of Food Science, 2022, 87, 1449-1465.	1.5	16
1066	Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnology and Bioengineering, 2022, 119, 2015-2030.	1.7	2
1074	"Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity― Mucosal Immunology, 2022, 15, 1199-1211.	2.7	5
1075	SARS-CoV-2 Infection and Taste Alteration: An Overview. Life, 2022, 12, 690.	1.1	15
1076	Effect of T1R3 Taste Receptor Gene Deletion on Dextran Sulfate Sodium-Induced Colitis in Mice. Journal of Nutritional Science and Vitaminology, 2022, 68, 204-212.	0.2	1
1077	A molecular mechanism for high salt taste in Drosophila. Current Biology, 2022, 32, 3070-3081.e5.	1.8	14
1078	Chemosensory Contributions of E-Cigarette Additives on Nicotine Use. Frontiers in Neuroscience, 0, 16, .	1.4	5
1079	Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. International Journal of Molecular Sciences, 2022, 23, 8225.	1.8	1
1080	Sulfur dioxide-enhanced asthma susceptibility is involved with inhibition of bitter taste transduction in mouse lung. Environmental Toxicology and Pharmacology, 2022, 95, 103938.	2.0	2
1081	Physiology of the Tongue. , 2022, , 25-32.		1
1082	Identification of mouse bitter taste receptors that respond to resveratrol: a bitter-tasting polyphenolic compound. Bioscience, Biotechnology and Biochemistry, 2022, 86, 1431-1437.	0.6	1
1083	High-sucrose diet exposure is associated with selective and reversible alterations in the rat peripheral taste system. Current Biology, 2022, 32, 4103-4113.e4.	1.8	12
1084	Pseudo-Taste Cells Derived from Rat Taste and Non-Taste Tissues: Implications for Cultured Taste Cell-Based Biosensors. Journal of Agricultural and Food Chemistry, 0, , .	2.4	0
1085	Molecular Basis of Sweetness, Recent Concepts, an Ideal Sweetener and Saccharide and Non-saccharide Sweet Principles Qualifying It. , 2022, , 75-111.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1086	Taste Receptors beyond Taste Buds. International Journal of Molecular Sciences, 2022,	23, 9677.	1.8	6
1087	Expression and Functional Role of Olfactory, Taste, and Phototransduction Signal Prote in Islets of Langerhans. Neuroscience and Behavioral Physiology, 0, , .	tins in β Cells	0.2	0
1088	Gut–brain circuits for fat preference. Nature, 2022, 610, 722-730.		13.7	41
1089	Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Scien 1298-1304.	nce, 2022, 377,	6.0	23
1090	Premexotac: Machine learning bitterants predictor for advancing pharmaceutical develo International Journal of Pharmaceutics, 2022, 628, 122263.	opment.	2.6	4
1091	Expression profile of the zinc transporter ZnT3 in taste cells of rat circumvallate papilla in zinc release, a potential mechanism for taste stimulation. European Journal of Histoc 66, .	e and its role hemistry, 2022,	0.6	1
1092	Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerv transection. PeerJ, 0, 10, e14455.	<i>ie</i>	0.9	0
1093	Eating Habits and Body Weight Changes Induced by Variation in Smell and Taste in Pat Previous SARS-CoV-2 Infection. Nutrients, 2022, 14, 5068.	ients with	1.7	6
1094	Physiology of the tongue with emphasis on taste transduction. Physiological Reviews, 2 1193-1246.	2023, 103,	13.1	12
1095	Localization of TRP Channels in Healthy Oral Mucosa from Human Donors. ENeuro, 202 ENEURO.0328-21.2022.	22, 9,	0.9	4
1096	Molecular logic of salt taste reception in special reference to transmembrane channel-li Journal of Physiological Sciences, 2022, 72, .	ke 4 (TMC4).	0.9	6
1098	Neuromorphic Gustatory System with Salt-Taste Perception, Information Processing, ar Excessive-Intake Warning Capabilities. Nano Letters, 2023, 23, 8-16.	nd	4.5	10
1099	Advances in Optical Tools to Study Taste Sensation. Molecules and Cells, 2022, 45, 87	7-882.	1.0	0
1101	Mimicking the Biological Sense of Taste In Vitro Using a Taste Organoidsâ€onâ€aâ€Ch Science, 2023, 10, .	ip System. Advanced	5.6	8
1102	Savory Signaling: T1R Umami Receptor Modulates Endoplasmic Reticulum Calcium Sto Release Dynamics in Airway Epithelial Cells. Nutrients, 2023, 15, 493.	re Content and	1.7	4
1103	Characterization of Taste Receptor Class 2 genes in Mouse [Mus musculus]. Pakistan E Journal, 0, , 22-26.	iomedical	0.0	0
1104	Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Recepto Microbiology and Biotechnology, 2023, 33, 203-210.	r. Journal of	0.9	0
1105	Zebrafish and medaka <scp>T1R</scp> (taste receptor type 1) proteins mediate highly recognition of <scp>I</scp> â€proline. FEBS Open Bio, 0, , .	sensitive	1.0	2

#	Article	IF	CITATIONS
1106	Tuft cells - the immunological interface and role in disease regulation. International Immunopharmacology, 2023, 118, 110018.	1.7	0
1108	Taste arbor structural variability analyzed across taste regions. Journal of Comparative Neurology, 2023, 531, 743-758.	0.9	1
1111	Human T2R38 Bitter Taste Receptor Expression and COVID-19: From Immunity to Prognosis. Avicenna Journal of Medical Biotechnology, 0, , .	0.2	1
1112	Anterior and Posterior Tongue Regions and Taste Papillae: Distinct Roles and Regulatory Mechanisms with an Emphasis on Hedgehog Signaling and Antagonism. International Journal of Molecular Sciences, 2023, 24, 4833.	1.8	2
1113	Intestinal tuft cells: Sentinels, what else?. Seminars in Cell and Developmental Biology, 2023, 150-151, 35-42.	2.3	4
1114	Defining the role of TRPM4 in broadly responsive taste receptor cells. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	3
1115	Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis. Nature Communications, 2023, 14, .	5.8	1
1116	Recent Advances in Bitterness-Sensing Systems. Biosensors, 2023, 13, 414.	2.3	0
1126	Histological and molecular response of oral cavity tissues to Covid-19. Molecular Biology Reports, 0,	1.0	0
1132	TRPM channels in health and disease. Nature Reviews Nephrology, 2024, 20, 175-187.	4.1	2
1143	TRP Channels in Stroke. Neuroscience Bulletin, 0, , .	1.5	0