U/Th systematics and ages of authigenic carbonates fro recorders of fluid flow variations

Geochimica Et Cosmochimica Acta 67, 3845-3857 DOI: 10.1016/s0016-7037(03)00128-5

Citation Report

#	Article	IF	CITATIONS
1	Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia margin. Marine Geology, 2003, 202, 79-120.	0.9	87
2	Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps. Chemical Geology, 2004, 213, 359-383.	1.4	41
3	Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 2004, 226, 225-241.	1.8	264
4	Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities. Earth and Planetary Science Letters, 2004, 221, 337-353.	1.8	178
5	Clathrites: Archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology, 2005, 33, 213.	2.0	69
6	Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chemical Geology, 2005, 216, 157-174.	1.4	62
7	A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. Chemical Geology, 2005, 220, 329-345.	1.4	100
8	Chemoherms on Hydrate Ridge — Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 67-85.	1.0	154
9	Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	75
10	Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	40
11	Stable carbon isotope records of carbonates tracing fossil seep activity off Indonesia. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	18
12	Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth and Planetary Science Letters, 2006, 241, 211-226.	1.8	188
13	1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 2006, 244, 1-15.	1.8	221
14	The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 337-363.	1.6	234
15	Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232, 362-407.	1.0	470
16	Methane hydrate stability and anthropogenic climate change. Biogeosciences, 2007, 4, 521-544.	1.3	236
17	An experimental setup for fluid venting in unconsolidated sediments: New insights to fluid mechanics and structures. Sedimentary Geology, 2007, 196, 251-267.	1.0	44
18	U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth and Planetary Science Letters, 2008, 272, 89-96.	1.8	75

#	Article	IF	CITATIONS
19	Lifetime and cyclicity of fluid venting at forearc mound structures determined by tephrostratigraphy and radiometric dating of authigenic carbonates. Geology, 2008, 36, 707.	2.0	44
20	Global hydrocarbon seepâ€carbonate precipitation correlates with deepâ€water temperatures and eustatic seaâ€level fluctuations since the Late Jurassic. Terra Nova, 2009, 21, 279-284.	0.9	37
21	Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan. Marine Geology, 2009, 261, 92-104.	0.9	88
22	U–Th stratigraphy of a cold seep carbonate crust. Chemical Geology, 2009, 260, 47-56.	1.4	135
23	Biogeochemical controls on authigenic carbonate formation at the Chapopote "asphalt volcanoâ€, Bay of Campeche. Chemical Geology, 2009, 266, 390-402.	1.4	52
24	Evidence of paleo–cold seep activity from the Bay of Bengal, offshore India. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	61
25	Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Marine Geology, 2010, 272, 49-58.	0.9	70
26	Cold seep carbonates and associated cold-water corals at the Hikurangi Margin, New Zealand: New insights into fluid pathways, growth structures and geochronology. Marine Geology, 2010, 272, 307-318.	0.9	72
27	Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: Result of fluid flow interaction with sedimentary processes. Marine Geology, 2010, 275, 53-65.	0.9	20
28	The enigmatic ichnofossil <i>Tisoa siphonalis</i> and widespread authigenic seep carbonate formation during the Late Pliensbachian in southern France. Biogeosciences, 2010, 7, 3123-3138.	1.3	28
29	U/Th dating of cold-seep carbonates: An initial comparison. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 2055-2060.	0.6	61
30	Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285, 131-142.	1.0	34
31	Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Marine and Petroleum Geology, 2011, 28, 1829-1837.	1.5	75
32	Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	37
33	Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan. Marine Geology, 2011, 287, 1-13.	0.9	119
34	Sidescan sonar imagery of widespread fossil and active cold seeps along the central Chilean continental margin. Geo-Marine Letters, 2012, 32, 489-499.	0.5	30
35	Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 2012, 32, 501-513.	0.5	58
36	Authigenic carbonates from the Darwin Mud Volcano, Gulf of Cadiz: A record of palaeo-seepage of hydrocarbon bearing fluids. Chemical Geology, 2012, 300-301, 24-39.	1.4	25

#	Article	IF	CITATIONS
37	Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 2012, 24, 255-272.	0.9	90
38	U/Th-dating and post-depositional alteration of a cold seep carbonate chimney from the Campos Basin offshore Brazil. Marine Geology, 2012, 329-331, 24-33.	0.9	30
39	Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nature Geoscience, 2013, 6, 755-760.	5.4	105
40	Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Marine Letters, 2013, 33, 369-379.	0.5	77
41	Investigation on the geochemical dynamics of a hydrate-bearing pockmark in the Niger Delta. Marine and Petroleum Geology, 2013, 43, 297-309.	1.5	21
42	Influence of recent depositional and tectonic controls on marine gas hydrates in Trujillo Basin, Peru Margin. Marine Geology, 2013, 340, 30-48.	0.9	9
43	Tracing the evolution of seep fluids from authigenic carbonates: Green Canyon, northern Gulf of Mexico. Marine and Petroleum Geology, 2013, 44, 71-81.	1.5	27
44	Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology. Marine and Petroleum Geology, 2013, 43, 260-271.	1.5	143
45	Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna–Godavari basin, Bay of Bengal. Marine Geology, 2013, 340, 57-70.	0.9	48
46	Tracing Phanerozoic hydrocarbon seepage from local basins to the global Earth system. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 1-3.	1.0	5
47	Paleo-environmental controls on cold seep carbonate authigenesis in the Sea of Marmara. Earth and Planetary Science Letters, 2013, 376, 200-211.	1.8	56
48	Sr isotopic compositions of cold seep carbonates from the South China Sea and the Panoche Hills (California, USA) and their significance in palaeooceanography. Journal of Asian Earth Sciences, 2013, 65, 34-41.	1.0	18
49	Glendonites from an Early Jurassic methane seep — Climate or methane indicators?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 81-93.	1.0	56
50	Outcrop analogues of pockmarks and associated methane-seep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 94-115.	1.0	59
51	Evidence of climatic control on hydrocarbon seepage in the Miocene of the northern Apennines: The case study of the Vicchio Marls. Marine and Petroleum Geology, 2013, 48, 90-99.	1.5	10
52	Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA. Geology, 2013, 41, 551-554.	2.0	35
53	A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at Hydrate Ridge, Cascadia margin, Oregon. Journal of Geophysical Research: Solid Earth, 2013, 118, 4669-4681.	1.4	17
54	The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage. Biogeosciences, 2013, 10, 4653-4671.	1.3	35

#	Article	IF	CITATIONS
56	Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chemical Geology, 2014, 385, 129-139.	1.4	56
57	Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings. International Journal of Earth Sciences, 2014, 103, 1845-1872.	0.9	27
58	Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China Sea. Environmental Earth Sciences, 2014, 71, 2087-2094.	1.3	20
59	Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 2014, 103, 1889-1916.	0.9	253
60	Last glacial emplacement of methane-derived authigenic carbonates in the Sea of Japan constrained by diatom assemblage, carbon-14, and carbonate content. Marine and Petroleum Geology, 2014, 56, 51-62.	1.5	12
61	Composition and origin of authigenic carbonates in the Krishna–Godavari and Mahanadi Basins, eastern continental margin of India. Marine and Petroleum Geology, 2014, 58, 438-460.	1.5	37
62	Sidescan backscatter variations of cold seeps on the Hikurangi Margin (New Zealand): indications for different stages in seep development. Geo-Marine Letters, 2014, 34, 169-184.	0.5	13
63	Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints by seep carbonates. International Journal of Earth Sciences, 2014, 103, 1873-1887.	0.9	92
64	New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps. Chemical Geology, 2014, 381, 55-66.	1.4	114
65	Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochemistry, Geophysics, Geosystems, 2015, 16, 3825-3839.	1.0	49
66	Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology, 2015, 68, 731-742.	1.5	8
67	For the deep biosphere, the present is not always the key to the past: what we can learn from the geological record. Terra Nova, 2015, 27, 400-408.	0.9	17
68	Ikaite Abundance Controlled by Porewater Phosphorus Level: Potential Links to Dust and Productivity. Journal of Geology, 2015, 123, 269-281.	0.7	40
69	U-Th isotope constraints on gas hydrate and pockmark dynamics at the Niger delta margin. Marine Geology, 2015, 370, 87-98.	0.9	56
70	Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 122, 74-83.	0.6	170
71	Cold seep status archived in authigenic carbonates: Mineralogical and isotopic evidence from Northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 122, 95-105.	0.6	31
72	14C in Plant Macrofossils. Encyclopedia of Earth Sciences Series, 2015, , 127-132.	0.1	0
73	Seafloor geomorphic manifestations of gas venting and shallow subbottom gas hydrate occurrences. , 2015, 11, 491-513.		28

#	Article	IF	CITATIONS
74	Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA. Microbial Ecology, 2015, 70, 766-784.	1.4	40
75	Formation of methane-related authigenic carbonates in a highly dynamic biogeochemical system in the Krishna–Godavari Basin, Bay of Bengal. Marine and Petroleum Geology, 2015, 64, 324-333.	1.5	12
76	Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chemical Geology, 2015, 415, 102-117.	1.4	84
77	A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 95, 37-53.	0.6	51
78	Timeâ€series measurements of bubble plume variability and water column methane distribution above <scp>S</scp> outhern <scp>H</scp> ydrate <scp>R</scp> idge, <scp>O</scp> regon. Geochemistry, Geophysics, Geosystems, 2016, 17, 1182-1196.	1.0	28
79	Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communications, 2016, 7, 11509.	5.8	125
80	Increase in methane flux and dissociation of iron and manganese oxides recorded in a methane-derived carbonate nodule in the eastern margin of the Sea of Japan. GeoResJ, 2016, 9-12, 104-116.	1.4	6
81	Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea. Journal of Asian Earth Sciences, 2016, 123, 213-223.	1.0	54
82	Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: A case study on Cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China. Chemical Geology, 2016, 444, 71-82.	1.4	26
83	Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 2016, 443, 173-181.	1.4	86
84	How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology, 2016, 440, 26-41.	1.4	146
85	Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth and Planetary Science Letters, 2016, 449, 332-344.	1.8	57
86	Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea. Chemical Geology, 2016, 432, 16-33.	1.4	64
87	Diagenetic Mg-calcite overgrowths on foraminiferal tests in the vicinity of methane seeps. Earth and Planetary Science Letters, 2017, 458, 203-212.	1.8	37
88	Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea. Journal of Asian Earth Sciences, 2017, 138, 51-61.	1.0	44
89	Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. Depositional Record, 2017, 3, 4-37.	0.8	32
90	Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 124, 31-41.	0.6	184
91	Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews, 2017, 169, 148-172.	1.4	253

#	Article	IF	CITATIONS
92	Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica Et Cosmochimica Acta, 2017, 211, 153-173.	1.6	68
0.0	Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of) Tj ETQq1 1 0.7		3T /Overlo <mark>ck</mark> 20
93	discharge during formation. Continental Shelf Research, 2017, 133, 13-25.	0.9	
94	The interaction of climate change and methane hydrates. Reviews of Geophysics, 2017, 55, 126-168.	9.0	560
95	U-Th chronology and formation controls of methane-derived authigenic carbonates from the Hola trough seep area, northern Norway. Chemical Geology, 2017, 470, 164-179.	1.4	23

 $_{96}$ Correlating shelf carbonate evolutive phases with fluid expulsion episodes in the foredeep (Miocene,) Tj ETQq0 0 0 $_{12}$ BT /Overlock 10 Tf

97	9. Assessing metabolic activity at methane seeps: a testing ground for slow growing environmental systems. , 2017, , 223-260.		0
98	Giant depressions on the Chatham Rise offshore New Zealand – Morphology, structure and possible relation to fluid expulsion and bottom currents. Marine Geology, 2018, 399, 158-169.	0.9	13
99	Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea. Journal of Asian Earth Sciences, 2018, 168, 112-124.	1.0	14
100	Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 137, 76-96.	0.6	31
101	Formation of methane-derived carbonates during the last glacial period on the northern slope of the South China Sea. Journal of Asian Earth Sciences, 2018, 168, 173-185.	1.0	25
102	Characterization of benthic biogeochemistry and ecology at three methane seep sites on the Northern U.S. Atlantic margin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 150, 41-56.	0.6	17
103	Paleo-cold seep activity in the southern South China Sea: Evidence from the geochemical and geophysical records of sediments. Journal of Asian Earth Sciences, 2018, 168, 106-111.	1.0	33
104	Sulfate-dependent anaerobic oxidation of methane at a highly dynamic bubbling site in the Eastern Sea of Marmara (Çinarcik Basin). Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 153, 79-91.	0.6	11
105	Geo-Biological Coupling of Authigenic Carbonate Formation and Autotrophic Faunal Colonization at Deep-Sea Methane Seeps II. Geo-Biological Landscapes. , 2018, , .		0
106	Using chemical compositions of sediments to constrain methane seepage dynamics: A case study from Haima cold seeps of the South China Sea. Journal of Asian Earth Sciences, 2018, 168, 137-144.	1.0	45
107	Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences, 2018, 168, 3-16.	1.0	184
108	Structural controls on seepage of thermogenic and microbial methane since the last glacial maximum in the Harstad Basin, southwest Barents Sea. Marine and Petroleum Geology, 2018, 98, 569-581.	1.5	16
109	Marine Cold Seeps: Background and Recent Advances. , 2018, , 1-21.		16

#	Article	IF	CITATIONS
110	Methane seepage at Vestnesa Ridge (NW Svalbard) since the Last Glacial Maximum. Quaternary Science Reviews, 2018, 193, 98-117.	1.4	32
111	Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydrate-bearing sedimentary environment. Marine Geology, 2018, 403, 271-284.	0.9	35
112	Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea. Journal of Asian Earth Sciences, 2018, 168, 96-105.	1.0	34
113	Interplay of Subduction Tectonics, Sedimentation, and Carbon Cycling. Geochemistry, Geophysics, Geosystems, 2019, 20, 4939-4955.	1.0	7
114	A 160,000-year-old history of tectonically controlled methane seepage in the Arctic. Science Advances, 2019, 5, eaaw1450.	4.7	60
115	Methane-derived authigenic carbonates on accretionary ridges: Miocene case studies in the northern Apennines (Italy) compared with modern submarine counterparts. Marine and Petroleum Geology, 2019, 102, 860-872.	1.5	22
116	Stable isotopes and rare earth element compositions of ancient cold seep carbonates from Enza River, northern Apennines (Italy): Implications for fluids sources and carbonate chimney growth. Marine and Petroleum Geology, 2019, 109, 434-448.	1.5	12
117	Cold-Water Corals in Gas Hydrate Drilling Cores from the South China Sea: Occurrences, Geochemical Characteristics and Their Relationship to Methane Seepages. Minerals (Basel,) Tj ETQq1 1 0.7843	l4 rgBa⊺/Ov	verlock 10 Tf
118	Gas Hydrate Dissociation During Sea‣evel Highstand Inferred From U/Th Dating of Seep Carbonate From the South China Sea. Geophysical Research Letters, 2019, 46, 13928-13938.	1.5	39
119	New insights into geology and geochemistry of the Kerch seep area in the Black Sea. Marine and Petroleum Geology, 2020, 113, 104162.	1.5	13
120	Focused fluid flow and methane venting along the Queen Charlotte fault, offshore Alaska (USA) and British Columbia (Canada). , 2020, 16, 1336-1357.		8
121	Hybrid Carbonates: in situ abiotic, microbial and skeletal co-precipitates. Earth-Science Reviews, 2020, 208, 103300.	4.0	36
122	Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea. Ore Geology Reviews, 2020, 125, 103701.	1.1	18
123	Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia). Water (Switzerland), 2020, 12, 2064.	1.2	6
124	The Formation of Authigenic Carbonates at a Methane Seep Site in the Northern Part of the Laptev Sea. Minerals (Basel, Switzerland), 2020, 10, 948.	0.8	10
125	The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record. Annual Review of Earth and Planetary Sciences, 2020, 48, 549-583.	4.6	67
126	Unique Authigenic Mineral Assemblages and Planktonic Foraminifera Reveal Dynamic Cold Seepage in the Southern South China Sea. Minerals (Basel, Switzerland), 2020, 10, 275.	0.8	8
127	A record of seafloor methane seepage across the last 150 million years. Scientific Reports, 2020, 10, 2562.	1.6	27

#	Article	IF	CITATIONS
128	Sr and Nd isotopes of cold seep carbonates from the northern South China sea as proxies for fluid sources. Marine and Petroleum Geology, 2020, 115, 104284.	1.5	8
129	Porewater flow patterns in surficial cold seep sediments inferred from conservative tracer profiles and early diagenetic modeling. Chemical Geology, 2020, 536, 119468.	1.4	7

130 Methane transport and sources in an Arctic deep-water cold seep offshore NW Svalbard (Vestnesa) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

131	Miocene Seep-Carbonates of the Northern Apennines (Emilia to Umbria, Italy): An Overview. Geosciences (Switzerland), 2021, 11, 53.	1.0	6
132	Persistent oxygen depletion of bottom waters caused by methane seepage: Evidence from the South China Sea. Ore Geology Reviews, 2021, 129, 103949.	1.1	12
133	Expanding the repertoire of electron acceptors for the anaerobic oxidation of methane in carbonates in the Atlantic and Pacific Ocean. ISME Journal, 2021, 15, 2523-2536.	4.4	6
134	Distribution of Methane Plumes on Cascadia Margin and Implications for the Landward Limit of Methane Hydrate Stability. Frontiers in Earth Science, 2021, 9, .	0.8	12
135	Possible Links Between Methane Seepages and Glacialâ€Interglacial Transitions in the South China Sea. Geophysical Research Letters, 2021, 48, e2020GL091429.	1.5	17
136	From seep carbonates down to petroleum systems: An outcrop study from the southeastern France Basin. AAPG Bulletin, 2021, 105, 1033-1064.	0.7	3
137	The uranium isotopic record of shales and carbonates through geologic time. Geochimica Et Cosmochimica Acta, 2021, 300, 164-191.	1.6	28

A Long-Lived Center of Gasâ \in "Fluid Emanations on the Western Slope of the Kuril Basin (Sea of) Tj ETQq0 0 0 rgBT $_{0.3}^{/0}$ verlock 10 Tf 50 3

139	Molybdenum isotope composition of seep carbonates – Constraints on sediment biogeochemistry in seepage environments. Geochimica Et Cosmochimica Acta, 2021, 307, 56-71.	1.6	16
140	Carbon-sulfur signals of methane versus crude oil diagenetic decomposition and U-Th age relationships for authigenic carbonates from asphalt seeps, southern Gulf of Mexico. Chemical Geology, 2021, 581, 120395.	1.4	1
141	A new method for the U–Th dating of a carbonate chimney deposited during the last glaciation in the northern Okinawa Trough, East China Sea. Quaternary Geochronology, 2021, 66, 101199.	0.6	6
142	Uranium isotopes as a possible tracer of terrestrial authigenic carbonate. Science of the Total Environment, 2021, 797, 149103.	3.9	6
144	North-South Variability in the History of Deformation and Fluid Venting across Hydrate Ridge, Cascadia Margin. , 0, , .		4
145	Cold-seep fossil macrofaunal assemblages from Vestnesa Ridge, eastern Fram Strait, during the past 45 000 years. Polar Research, 2019, 38, .	1.6	10
149	Carbonates, Marine Carbonates (U-Series). Encyclopedia of Earth Sciences Series, 2015, , 136-141.	0.1	2

#	Article	IF	CITATIONS
150	Hydrocarbon seepage in the mid-Cretaceous greenhouse world: A new perspective from southern Tibet. Global and Planetary Change, 2022, 208, 103683.	1.6	7
151	Marine Cold Seeps: Background and Recent Advances. , 2020, , 747-767.		13
152	A new approach to processing and imaging multibeam water column echosounder data: Application to a complex methane seep on the southern Cascadia margin. Interpretation, 2022, 10, SB93-SB106.	0.5	3
154	Rising bottom-water temperatures induced methane release during the middle Holocene in the Okinawa Trough, East China Sea. Chemical Geology, 2022, 590, 120707.	1.4	13
155	Uranium-thorium isotope systematics of cold-seep carbonate and their constraints on geological methane leakage activities. Geochimica Et Cosmochimica Acta, 2022, 320, 105-121.	1.6	9
156	A relict oasis of living deep-sea mussels Bathymodiolus and microbial-mediated seep carbonates at newly-discovered active cold seeps in the Gulf of Cádiz, NE Atlantic Ocean. Palaontologische Zeitschrift, 2021, 95, 793-807.	0.8	2
157	Ancient Seep Carbonates: From Outcrop Appearance to Microscopic Petrography. Topics in Geobiology, 2022, , 79-110.	0.6	2
158	Geochemical characteristics of gases associated with natural gas hydrate. Frontiers in Marine Science, 0, 9, .	1.2	0
159	Episodic Venting of a Submarine Gas Seep on Geological Time Scales: Formosa Ridge, Northern South China Sea. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
160	Biogeochemistry and timing of methane-derived carbonate formation at Leirdjupet fault complex, SW Barents sea. Frontiers in Earth Science, 0, 10, .	0.8	5
161	Geochemical record of methane seepage in carbon cycling and possible correlation with climate events in the Qiongdongnan basin, South China Sea. Marine and Petroleum Geology, 2023, 149, 106061.	1.5	1
162	Geology and fossil cold-seep assemblages in the Kazusa Group on the northern Miura Peninsula, central Japan. Journal of the Geological Society of Japan, 2022, 128, 313-333.	0.2	0
163	A 209,000-year-old history of methane seepage activity controlled by multiple factors in the South China Sea. Marine and Petroleum Geology, 2023, 151, 106200.	1.5	1
164	Seismic characterization of a fluid escape structure in the North Sea: the Scanner Pockmark complex area. Geophysical Journal International, 2023, 234, 597-619.	1.0	0
165	The effects of organic matter and anaerobic oxidation of methane on the microbial sulfate reduction in cold seeps. Frontiers in Marine Science, 0, 10, .	1.2	0
166	Age-dating and assumptions testing of 226Ra and 228Ra decay series applied to barite chimneys and mud volcanoes in deepwater Gulf of Mexico. Chemical Geology, 2023, 630, 121485.	1.4	0
167	Timing of Seep Activities and Potential Driving Forces. , 2023, , 211-223.		0

10