Monte Carlo Sampling Methods

Handbooks in Operations Research and Management Science 10, 353-425

DOI: 10.1016/s0927-0507(03)10006-0

Citation Report

#	Article	IF	CITATIONS
2	Predictive Variable Selection in Generalized Linear Models. Journal of the American Statistical Association, 2002, 97, 859-871.	3.1	30
3	Empirical Bayes and Item-Clustering Effects in a Latent Variable Hierarchical Model. Journal of the American Statistical Association, 2002, 97, 409-419.	3.1	38
4	An Examination of the Monophyly of Morning Glory Taxa Using Bayesian Phylogenetic Inference. Systematic Biology, 2002, 51, 740-753.	5.6	73
5	Title is missing!. Statistics and Computing, 2002, 12, 175-183.	1.5	24
6	Stability of Stochastic Programming Problems. Handbooks in Operations Research and Management Science, 2003, 10, 483-554.	0.6	105
7	Responsiveness of Physician Prescription Behavior to Salesforce Effort: An Individual Level Analysis. Marketing Letters, 2004, 15, 129-145.	2.9	102
8	A Method for Staffing Large Call Centers Based on Stochastic Fluid Models. Manufacturing and Service Operations Management, 2005, 7, 20-36.	3.7	129
9	Sampling-based Approximation Algorithms for Multi-stage Stochastic. , 0, , .		29
10	On Complexity of Stochastic Programming Problems. , 2005, , 111-146.		165
12	Scenario Approximations of Chance Constraints. , 2006, , 3-47.		95
13	Quas-Monte Carlo Strategies for Stochastic Optimization. , 2006, , .		14
14	A Bayesian Approach for Clustered Longitudinal Ordinal Outcome With Nonignorable Missing Data. Journal of the American Statistical Association, 2006, 101, 435-446.	3.1	23
15	Likelihood Subgradient Densities. Journal of the American Statistical Association, 2006, 101, 1144-1156.	3.1	0
16	Nonparametric Estimation of Market Distribution Functions in Electricity Pool Markets. Mathematics of Operations Research, 2006, 31, 621-636.	1.3	3
17	Approximation algorithms for 2-stage stochastic optimization problems. ACM SIGACT News, 2006, 37, 33-46.	0.1	52
18	Simulation-based approach to estimation of latent variable models. Computational Statistics and Data Analysis, 2006, 51, 1243-1259.	1.2	6
19	On complexity of multistage stochastic programs. Operations Research Letters, 2006, 34, 1-8.	0.7	100
20	Stochastic Programming with Equilibrium Constraints. Journal of Optimization Theory and Applications, 2006, 128, 221-243.	1.5	40

#	Article	IF	Citations
21	Convergence theory for nonconvex stochastic programming with an application to mixed logit. Mathematical Programming, 2006, 108, 207-234.	2.4	57
22	Solving multistage asset investment problems by the sample average approximation method. Mathematical Programming, 2006, 108, 571-595.	2.4	28
23	An adaptive Monte Carlo algorithm for computing mixed logit estimators. Computational Management Science, 2006, 3, 55-79.	1.3	41
24	On unbiased sampling for unstructured peer-to-peer networks. , 2006, , .		45
25	Gradient-Based Simulation Optimization. , 2006, , .		21
26	Jackknife Estimators for Reducing Bias in Asset Allocation. , 2006, , .		9
27	Sequential sampling for solving stochastic programs. , 2007, , .		2
28	Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models. Mathematics of Operations Research, 2007, 32, 821-839.	1.3	178
29	Convergence Analysis of Sample Average Approximation Methods for a Class of Stochastic Mathematical Programs with Equality Constraints. Mathematics of Operations Research, 2007, 32, 648-668.	1.3	35
30	Adaptive Control Variates for Finite-Horizon Simulation. Mathematics of Operations Research, 2007, 32, 508-527.	1.3	15
31	<title>Evaluation of a posteriori probabilities of multi-frame data association hypotheses</title> . Proceedings of SPIE, 2007, , .	0.8	4
33	Optimal Reconstruction Periods for Stochastically Deteriorating Infrastructures. Computer-Aided Civil and Infrastructure Engineering, 2007, 22, 389-399.	9.8	18
34	Stochastic programming approach to optimization under uncertainty. Mathematical Programming, 2007, 112, 183-220.	2.4	141
35	Solving two-stage stochastic programming problems with level decomposition. Computational Management Science, 2007, 4, 313-353.	1.3	50
36	A Stochastic Non-linear Programming Model for a Multi-period Water Resource Allocation with Multiple Objectives. Water Resources Management, 2008, 22, 1445-1460.	3.9	38
37	Approximating stationary points of stochastic optimization problems in Banach space. Journal of Mathematical Analysis and Applications, 2008, 347, 333-343.	1.0	4
38	Model Selection Criteria for Missing-Data Problems Using the EM Algorithm. Journal of the American Statistical Association, 2008, 103, 1648-1658.	3.1	93
39	Stochastic Approximation Approaches to the Stochastic Variational Inequality Problem. IEEE Transactions on Automatic Control, 2008, 53, 1462-1475.	5.7	137

#	Article	IF	CITATIONS
40	Computer Model Calibration Using High-Dimensional Output. Journal of the American Statistical Association, 2008, 103, 570-583.	3.1	644
41	The mathematics of continuous-variable simulation optimization. , 2008, , .		5
42	Domain-Level Covariance Analysis for Multilevel Survey Data With Structured Nonresponse. Journal of the American Statistical Association, 2008, 103, 1405-1418.	3.1	63
43	Optimizing Call Center Staffing Using Simulation and Analytic Center Cutting-Plane Methods. Management Science, 2008, 54, 295-309.	4.1	125
44	Case study of the mesospheric and lower thermospheric effects of solar X-ray flares: coupled ion-neutral modelling and comparison with EISCAT and riometer measurements. Annales Geophysicae, 2008, 26, 2311-2321.	1.6	8
45	A Component GARCH Model with Time Varying Weights. Studies in Nonlinear Dynamics and Econometrics, 2009, 13, .	0.3	15
46	A Stochastic Model for Supply Chain Risk Management Using Conditional Value at Risk. , 2009, , 141-157.		4
47	Variable-Number Sample-Path Optimization. Mathematical Programming, 2009, 117, 81-109.	2.4	52
48	Adjoint-based Monte Carlo calibration of financial market models. Finance and Stochastics, 2009, 13, 351-379.	1.1	30
49	Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications. Journal of Optimization Theory and Applications, 2009, 142, 399-416.	1.5	378
50	Finite dimensional approximation and Newton-based algorithm for stochastic approximation in Hilbert space. Automatica, 2009, 45, 2815-2822.	5.0	2
51	Reparameterized and Marginalized Posterior and Predictive Sampling for Complex Bayesian Geostatistical Models. Journal of Computational and Graphical Statistics, 2009, 18, 262-282.	1.7	10
52	A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application. Operations Research, 2009, 57, 1220-1235.	1.9	140
53	Planning under uncertainty, ensembles of disturbance trees and kernelized discrete action spaces. , 2009, , .		2
54	Assessing Solution Quality in Stochastic Programs via Sampling. , 2009, , 102-122.		22
55	The Strategic Design of Forest Industry Supply Chains. Infor, 2009, 47, 185-202.	0.6	11
56	Stochastic Root Finding and Efficient Estimation of Convex Risk Measures. Operations Research, 2010, 58, 1505-1521.	1.9	21
57	On the Robustness of Global Optima and Stationary Solutions to Stochastic Mathematical Programs withÂEquilibrium Constraints, Part 1: Theory. Journal of Optimization Theory and Applications, 2010, 144, 461-478.	1.5	6

#	Article	IF	CITATIONS
58	Baseâ€stock policies in capacitated assembly systems: Convexity properties. Naval Research Logistics, 2010, 57, 109-118.	2.2	13
59	SAMPLE AVERAGE APPROXIMATION METHODS FOR A CLASS OF STOCHASTIC VARIATIONAL INEQUALITY PROBLEMS. Asia-Pacific Journal of Operational Research, 2010, 27, 103-119.	1.3	85
60	On the characterization of solution sets of smooth and nonsmooth stochastic Nash games. , 2010, , .		6
61	Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2010, 4, 1-103.	0.8	404
62	Numerical evaluation of approximation methods in stochastic programming. Optimization, 2010, 59, 401-415.	1.7	4
63	The Stochastic Multiperiod Location Transportation Problem. Transportation Science, 2010, 44, 221-237.	4.4	55
64	Convergence properties of direct search methods for stochastic optimization. , 2010, , .		9
65	Galerkin methods in dynamic stochastic programming. Optimization, 2010, 59, 339-354.	1.7	12
66	The sample average approximation method for multi-objective stochastic optimization. , 2011, , .		10
67	The stochastic root-finding problem. ACM Transactions on Modeling and Computer Simulation, 2011, 21, 1-23.	0.8	42
68	Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains. Transportation Research Part B: Methodological, 2011, 45, 1177-1189.	5.9	257
69	A Trust-Region Algorithm for Bi-Objective Stochastic Optimization. Procedia Computer Science, 2011, 4, 1422-1430.	2.0	12
72	A Sampling-and-Discarding Approach toÂChance-Constrained Optimization: FeasibilityÂandÂOptimality. Journal of Optimization Theory and Applications, 2011, 148, 257-280.	1.5	279
73	Stochastic Multiobjective Optimization: Sample Average Approximation and Applications. Journal of Optimization Theory and Applications, 2011, 151, 135-162.	1.5	19
74	Network capacity management under competition. Computational Optimization and Applications, 2011, 50, 287-326.	1.6	12
75	A Sequential Sampling Procedure for Stochastic Programming. Operations Research, 2011, 59, 898-913.	1.9	72
76	Convergence of Stationary Points of Sample Average Two-Stage Stochastic Programs: A Generalized Equation Approach. Mathematics of Operations Research, 2011, 36, 568-592.	1.3	29
77	Overlapping batches for the assessment of solution quality in stochastic programs. , $2011, \ldots$		0

#	Article	IF	CITATIONS
78	Recent Publications in JSS. Journal of Computational and Graphical Statistics, 2012, 21, 558-560.	1.7	0
79	Sharpening comparisons via gaussian copulas and semidefinite programming. ACM Transactions on Modeling and Computer Simulation, 2012, 22, 1-21.	0.8	0
80	A probabilistic approach to optimal estimation - Part II: algorithms and applications. , 2012, , .		3
81	Exploring Contracts with Options in Loyalty Reward Programs Supply Chain. , 2012, , .		0
82	A Reengineering Methodology for Supply Chain Networks Operating Under Disruptions., 2012,, 241-273.		2
83	Iterative estimation maximization for stochastic linear programs with conditional value-at-risk constraints. Computational Management Science, 2012, 9, 441-458.	1.3	5
84	Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations. Operations Research, 2012, 60, 936-953.	1.9	51
85	Dynamic Portfolio Choice with Linear Rebalancing Rules. SSRN Electronic Journal, 0, , .	0.4	15
86	Introduction to convex optimization in financial markets. Mathematical Programming, 2012, 134, 157-186.	2.4	16
87	Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization. European Journal of Operational Research, 2012, 216, 376-385.	5.7	21
88	Approximation and contamination bounds forÂprobabilistic programs. Annals of Operations Research, 2012, 193, 3-19.	4.1	19
89	Robust flight schedules through slack re-allocation. EURO Journal on Transportation and Logistics, 2013, 2, 277-306.	2.2	24
90	On relations between chance constrained and penalty function problems under discrete distributions. Mathematical Methods of Operations Research, 2013, 77, 265-277.	1.0	6
91	The design of robust value-creating supply chain networks. OR Spectrum, 2013, 35, 867-903.	3.4	35
92	An Optimal Approximate Dynamic Programming Algorithm for Concave, Scalar Storage Problems With Vector-Valued Controls. IEEE Transactions on Automatic Control, 2013, 58, 2995-3010.	5.7	73
93	Using optimization models to demonstrate the need for structural changes in training programs for surgical medical residents. Health Care Management Science, 2013, 16, 217-227.	2.6	12
94	Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual Dynamic Programming. Operations Research, 2013, 61, 810-823.	1.9	99
95	A regularized smoothing stochastic approximation (RSSA) algorithm for stochastic variational inequality problems. , 2013, , .		18

#	ARTICLE	IF	CITATIONS
96	Scenario Approximation of Robust and Chance-Constrained Programs. Journal of Optimization Theory and Applications, 2013, 158, 590-614.	1.5	5
97	Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty. Journal of Process Control, 2013, 23, 1306-1319.	3.3	283
98	Extreme learning machine based genetic algorithm and its application in power system economic dispatch. Neurocomputing, 2013, 102, 154-162.	5.9	62
99	Regularized Iterative Stochastic Approximation Methods for Stochastic Variational Inequality Problems. IEEE Transactions on Automatic Control, 2013, 58, 594-609.	5.7	102
100	Stochastic Nash equilibrium problems: sample average approximation and applications. Computational Optimization and Applications, 2013, 55, 597-645.	1.6	40
101	A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming. Mathematical Programming, 2013, 142, 107-131.	2.4	10
102	Stochastic Variational Inequality Problems: Applications, Analysis, and Algorithms. , 2013, , 71-107.		22
103	Simulation Optimization: A Concise Overview and Implementation Guide. , 2013, , 122-150.		38
104	On the Convergence of Simulation-based Iterative Methods for Solving Singular Linear Systems. Stochastic Systems, 2013, 3, 38-95.	1.1	2
105	The Newsvendor Under Demand Ambiguity: Combining Data with Moment and Tail Information. SSRN Electronic Journal, 0, , .	0.4	2
106	Optimization of an Uncertain Aeroelastic System Using Stochastic Gradient Approaches. Journal of Aircraft, 2014, 51, 1061-1066.	2.4	6
107	Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse. Decision Analysis, 2014, 11, 250-264.	2.1	13
108	Asymptotic Analysis of Sample Average Approximation for Stochastic Optimization Problems with Joint Chance Constraints via Conditional Value at Risk and Difference of Convex Functions. Journal of Optimization Theory and Applications, 2014, 161, 257-284.	1.5	27
109	Regularization of stochastic variational inequalities and a comparison of an and a sample-path approach. Nonlinear Analysis: Theory, Methods & Applications, 2014, 94, 65-83.	1.1	22
110	Sample approximation technique for mixed-integer stochastic programming problems with expected value constraints. Optimization Letters, 2014, 8, 861-875.	1.6	10
111	The stochastic guaranteed service model with recourse for multi-echelon warehouse management. Mathematical Methods of Operations Research, 2014, 79, 293-326.	1.0	6
112	A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products. International Journal of Production Economics, 2014, 150, 140-154.	8.9	91
113	Clearing the Jungle of Stochastic Optimization. , 2014, , 109-137.		45

#	Article	IF	CITATIONS
114	Probabilistic Optimal Estimation With Uniformly Distributed Noise. IEEE Transactions on Automatic Control, 2014, 59, 2113-2127.	5.7	10
115	Design under uncertainty using parallel multiperiod dynamic optimization. AICHE Journal, 2014, 60, 3151-3168.	3.6	24
116	A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times. Transportation Science, 2014, 48, 373-390.	4.4	48
117	Solving Systems of Linear Equations by Distributed Convex Optimization in the Presence of Stochastic Uncertainty. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1210-1215.	0.4	15
118	Optimal importance sampling for simulation of Lévy processes. , 2015, , .		1
119	Finite purchasing power and computations of Bertrand–Nash equilibrium prices. Computational Optimization and Applications, 2015, 62, 477-515.	1.6	1
120	Deciphering and handling uncertainty in shale gas supply chain design and optimization: Novel modeling framework and computationally efficient solution algorithm. AICHE Journal, 2015, 61, 3739-3755.	3.6	64
121	Operating a biomedical samples laboratories network under stochastic demand. , 2015, , .		0
122	Rewards-supply planning under option contracts in managing coalition loyalty programmes. International Journal of Production Research, 2015, 53, 6772-6786.	7.5	6
123	Process for Advanced Management and Technologies of Aircraft EOL. Procedia CIRP, 2015, 26, 299-304.	1.9	17
124	Benders Decomposition for Production Routing Under Demand Uncertainty. Operations Research, 2015, 63, 851-867.	1.9	139
125	Optimal bunkering contract in a buyer–seller supply chain under price and consumption uncertainty. Transportation Research, Part E: Logistics and Transportation Review, 2015, 77, 77-94.	7.4	18
126	Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data. Asia-Pacific Journal of Operational Research, 2015, 32, 1550019.	1.3	148
127	Multi-period forecasting and scenario generation with limited data. Computational Management Science, 2015, 12, 267-295.	1.3	28
128	Stochastic optimal power flow based on conditional value at risk and distributional robustness. International Journal of Electrical Power and Energy Systems, 2015, 72, 116-125.	5.5	94
129	Incremental constraint projection methods for variational inequalities. Mathematical Programming, 2015, 150, 321-363.	2.4	33
130	Convergence analysis on variable sample distributed methods for stochastic Nash equilibrium. , 2016, , .		0
131	Risk Management of Shale Gas Supply Chain under Estimated Ultimate Recovery Uncertainty. Computer Aided Chemical Engineering, 2016, , 529-534.	0.5	2

#	ARTICLE	IF	Citations
132	Stochastic quasi-Newton methods for non-strongly convex problems: Convergence and rate analysis, , 2016, , .		5
133	Bi-level stochastic approximation for joint optimization of hydroelectric dispatch and spot-market operations. , $2016, \ldots$		0
134	Study of M-stationarity and strong stationarity for a class of SMPCC problems via SAA Method. Operations Research Letters, 2016, 44, 425-429.	0.7	0
135	An Empirical Interpolation and Model-Variance Reduction Method for Computing Statistical Outputs of Parametrized Stochastic Partial Differential Equations. SIAM-ASA Journal on Uncertainty Quantification, 2016, 4, 244-265.	2.0	5
136	Estimating PDFs in heterogeneous radar clutter. , 2016, , .		1
137	On sample average approximation algorithms for determining the optimal importance sampling parameters in pricing financial derivatives on Lévy processes. Operations Research Letters, 2016, 44, 44-49.	0.7	13
138	Stochastic Long-term Hydrothermal Scheduling with Parameter Uncertainty in Autoregressive Streamflow Models. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	6
139	A Stochastic Successive Minimization Method for Nonsmooth Nonconvex Optimization with Applications to Transceiver Design in Wireless Communication Networks. Mathematical Programming, 2016, 157, 515-545.	2.4	54
140	The Newsvendor under Demand Ambiguity: Combining Data with Moment and Tail Information. Operations Research, 2016, 64, 167-185.	1.9	41
141	Nodal decomposition–coordination for stochastic programs with private information restrictions. IIE Transactions, 2016, 48, 283-297.	2.1	2
142	Stochastic Forward–Backward Splitting for Monotone Inclusions. Journal of Optimization Theory and Applications, 2016, 169, 388-406.	1.5	32
143	Modeling Demand Uncertainty in Two-Tier City Logistics Tactical Planning. Transportation Science, 2016, 50, 559-578.	4.4	35
144	Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems. Mathematics of Operations Research, 2016, 41, 377-401.	1.3	70
145	Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables. IEEE Transactions on Power Systems, 2017, 32, 3427-3438.	6.5	121
147	Non-linear optimal multivariate spatial design using spatial vine copulas. Stochastic Environmental Research and Risk Assessment, 2017, 31, 551-570.	4.0	12
148	Multi-objective retrospective optimization using stochastic zigzag search. European Journal of Operational Research, 2017, 263, 946-960.	5.7	4
149	Accelerated schemes for a class of variational inequalities. Mathematical Programming, 2017, 165, 113-149.	2.4	47
150	Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource. Renewable Energy, 2017, 102, 445-456.	8.9	32

#	Article	IF	Citations
151	On the existence of solutions to stochastic quasi-variational inequality and complementarity problems. Mathematical Programming, 2017, 165, 291-330.	2.4	18
152	Hybrid Method with a Probabilistic Approach to Estimate Reserves in Mature Fields. , 2017, , .		0
153	An Optimal Path Model for the Risk-Averse Traveler. Transportation Science, 2017, 51, 518-535.	4.4	9
154	Random approximations in multiobjective optimization. Mathematical Programming, 2017, 164, 29-53.	2.4	3
155	Sample average approximations for the continuous type principal-agent problem: An example. , 2017, , .		3
156	History of seeking better solutions, AKA simulation optimization. , 2017, , .		11
157	A Data-Driven Newsvendor Problem: From Data to Decision. SSRN Electronic Journal, 0, , .	0.4	0
158	Convergence Conditions for the Observed Mean Method in Stochastic Programming. Cybernetics and Systems Analysis, 2018, 54, 45-59.	0.7	0
159	Approximation Algorithms for Stochastic and Risk-Averse Optimization. SIAM Journal on Discrete Mathematics, 2018, 32, 44-63.	0.8	4
160	Design and control of manufacturing systems: a discrete event optimisation methodology. International Journal of Production Research, 2018, 56, 543-564.	7.5	21
161	An improved averaged two-replication procedure with Latin hypercube sampling. Operations Research Letters, 2018, 46, 173-178.	0.7	6
162	Variable sample size method for equality constrained optimization problems. Optimization Letters, 2018, 12, 485-497.	1.6	1
163	Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods. Mathematical Programming, 2018, 169, 489-529.	2.4	51
164	Multivariate predictions of local reducedâ€orderâ€model errors and dimensions. International Journal for Numerical Methods in Engineering, 2018, 113, 512-533.	2.8	19
165	Data-driven Scenario Selection for Multistage Robust Model Predictive Control. IFAC-PapersOnLine, 2018, 51, 462-468.	0.9	6
166	Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with chemometrics. Biotechnology for Biofuels, 2018, 11, 263.	6.2	93
167	Risk Averse Shortest Paths: A Computational Study. INFORMS Journal on Computing, 2018, 30, 539-553.	1.7	4
168	Optimization of PDEs with Uncertain Inputs. The IMA Volumes in Mathematics and Its Applications, 2018, , 41-81.	0.5	8

#	Article	IF	CITATIONS
169	Discrete Approximation and Quantification in Distributionally Robust Optimization. Mathematics of Operations Research, 0 , , .	1.3	9
170	Approximation Algorithms for a Class of Stochastic Selection Problems with Reward and Cost Considerations. Operations Research, 2018, 66, 834-848.	1.9	0
171	Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls. Operations Research, 2018, 66, 849-869.	1.9	114
173	Fault trees analysis using expert opinion based on fuzzyâ€bathtub failure rates. Quality and Reliability Engineering International, 2018, 34, 1142-1157.	2.3	16
174	An Exact Solution Method for the Hydrothermal Unit Commitment Under Wind Power Uncertainty With Joint Probability Constraints. IEEE Transactions on Power Systems, 2018, 33, 6487-6500.	6.5	25
175	Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability. Engineering Optimization, 2019, 51, 733-752.	2.6	2
176	Stability analysis of a clutch system with uncertain parameters using sparse polynomial chaos expansions. Mechanics and Industry, 2019, 20, 104.	1.3	1
177	Research on the Influence of Sampling Methods for the Accuracy of Web Services QoS Prediction. IEEE Access, 2019, 7, 39990-39999.	4.2	4
178	A Learning-Based Personalized Driver Model Using Bounded Generalized Gaussian Mixture Models. IEEE Transactions on Vehicular Technology, 2019, 68, 11679-11690.	6.3	22
179	Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning. , 2019, , 130-166.		102
180	Robust Quadratic Programming with Mixed-Integer Uncertainty. INFORMS Journal on Computing, 0, , .	1.7	4
181	An Introduction to Multiobjective Simulation Optimization. ACM Transactions on Modeling and Computer Simulation, 2019, 29, 1-36.	0.8	36
182	Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference. Applied Energy, 2019, 238, 34-44.	10.1	39
183	Estimation of the Necessary Sample Size for Approximation of Stochastic Optimization Problems with Probabilistic Criteria. Lecture Notes in Computer Science, 2019, , 552-564.	1.3	1
184	A data-driven newsvendor problem: From data to decision. European Journal of Operational Research, 2019, 278, 904-915.	5.7	85
185	Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization. Management Science, 2019, 65, 4242-4260.	4.1	31
186	Distributionally robust project crashing with partial or no correlation information. Networks, 2019, 74, 79-106.	2.7	2
187	Approximation of Probabilistic Constraints in Stochastic Programming Problems with a Probability Measure Kernel. Automation and Remote Control, 2019, 80, 2005-2016.	0.8	5

#	Article	IF	Citations
188	Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure. Mathematical Programming, 2022, 191, 141-182.	2.4	10
189	A Deep Learning Spatiotemporal Prediction Framework for Mobile Crowdsourced Services. Mobile Networks and Applications, 2019, 24, 1120-1133.	3.3	8
190	Carbon-efficient deployment of electric rubber-tyred gantry cranes in container terminals with workload uncertainty. European Journal of Operational Research, 2019, 275, 552-569.	5.7	17
191	Simultaneous-shot inversion for PDE-constrained optimization problems with missing data. Inverse Problems, 2019, 35, 025003.	2.0	2
192	Dataâ€driven distributionally robust optimization of shale gas supply chains under uncertainty. AICHE Journal, 2019, 65, 947-963.	3.6	37
193	A stochastic program to evaluate disruption mitigation investments in the supply chain. European Journal of Operational Research, 2019, 274, 516-530.	5.7	39
194	Penalty variable sample size method for solving optimization problems with equality constraints in a form of mathematical expectation. Numerical Algorithms, 2020, 83, 701-718.	1.9	2
195	Stochastic global optimization using tangent minorants for Lipschitz functions. Journal of Computational and Applied Mathematics, 2020, 373, 112462.	2.0	0
196	Distribution planning for multi-echelon networks considering multiple sourcing and lateral transshipments. International Journal of Production Research, 2020, 58, 1968-1986.	7.5	12
197	Designing a two-echelon distribution network under demand uncertainty. European Journal of Operational Research, 2020, 280, 102-123.	5.7	30
198	Simulation optimization approach for patient scheduling at destination medical centers. Expert Systems With Applications, 2020, 140, 112881.	7.6	22
199	Optimal supply chain resilience with consideration of failure propagation and repair logistics. Transportation Research, Part E: Logistics and Transportation Review, 2020, 133, 101830.	7.4	54
200	An ADMM algorithm for two-stage stochastic programming problems. Annals of Operations Research, 2020, 286, 559-582.	4.1	5
201	A two-stage stochastic model for pig production planning in vertically integrated production systems. Computers and Electronics in Agriculture, 2020, 176, 105615.	7.7	5
202	Design Framework for a Modular Floating Container Terminal. Frontiers in Marine Science, 2020, 7, .	2.5	9
203	Bilevel Optimization. Springer Optimization and Its Applications, 2020, , .	0.9	47
204	Online Robust Reduced-Rank Regression. , 2020, , .		0
205	Quantitative stability of two-stage stochastic linear variational inequality problems with fixed recourse. Applicable Analysis, 2022, 101, 3122-3138.	1.3	2

#	Article	IF	CITATIONS
206	Asymptotic behavior of solutions: An application to stochastic NLP. Mathematical Programming, 2022, 191, 281-306.	2.4	1
207	On the Scenario-Tree Optimal-Value Error for Stochastic Programming Problems. Mathematics of Operations Research, 2020, 45, 1572-1595.	1.3	2
208	Provably Near-Optimal Approximation Schemes for Implicit Stochastic and Sample-Based Dynamic Programs. INFORMS Journal on Computing, 0, , .	1.7	1
209	On a multistage discrete stochastic optimization problem with stochastic constraints and nested sampling. Mathematical Programming, 2021, 190, 1-37.	2.4	6
210	Optimal surveillance against foot-and-mouth disease: A sample average approximation approach. PLoS ONE, 2020, 15, e0235969.	2.5	2
211	Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields. IEEE Access, 2020, 8, 29299-29310.	4.2	31
212	Multifidelity Modeling by Polynomial Chaos-Based Cokriging to Enable Efficient Model-Based Reliability Analysis of NDT Systems. Journal of Nondestructive Evaluation, 2020, 39, 1.	2.4	5
213	Intraday shelf replenishment decision support for perishable goods. International Journal of Production Economics, 2021, 231, 107828.	8.9	13
214	Maximizing performance with an eye on the finances: a chance-constrained model for football transfer market decisions. Top, 2021, 29, 583-611.	1.6	6
215	Three-dimensional Voronoi analysis of realistic grain packing: An XCT assisted set Voronoi tessellation framework. Powder Technology, 2021, 379, 251-264.	4.2	17
216	Confidence regions of twoâ€stage stochastic linear complementarity problems. International Transactions in Operational Research, 2022, 29, 48-62.	2.7	0
217	The Nonstationary Newsvendor: Data-Driven Nonparametric Learning. SSRN Electronic Journal, 0, , .	0.4	4
218	Data-Driven Feature-Based Newsvendor: A Distributionally Robust Approach. SSRN Electronic Journal, 0, , .	0.4	1
219	A Post-Hoc Interpretable Ensemble Model to Feature Effect Analysis in Warfarin Dose Prediction for Chinese Patients. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 840-851.	6.3	3
220	Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Physical Review A, 2021, 103, .	2.5	26
221	Experimental Study of Methods of Scenario Lattice Construction for Stochastic Dual Dynamic Programming. Open Journal of Optimization, 2021, 10, 47-60.	0.1	0
222	Pharmaceutical portfolio optimization under cost uncertainty via chance constrained-type method. Journal of Mathematics in Industry, 2021, 11 , .	1.2	4
223	Logarithmic sample bounds for Sample Average Approximation with capacity- or budget-constraints. Operations Research Letters, 2021, 49, 231-238.	0.7	3

#	ARTICLE	IF	Citations
224	The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning. Annals of Operations Research, 0 , , 1 .	4.1	17
226	Two-Stage Stochastic Program for Supply Chain Network Design under Facility Disruptions. Sustainability, 2021, 13, 2596.	3.2	10
227	A simple multiple linear regression model in near infrared spectroscopy for soluble solids content of pomegranate arils based on stability competitive adaptive re-weighted sampling. Journal of Near Infrared Spectroscopy, 2021, 29, 140-147.	1.5	2
228	Quantitative Stability and Empirical Approximation of Risk-Averse Models Induced by Two-Stage Stochastic Programs with Full Random Recourse. Asia-Pacific Journal of Operational Research, 2021, 38, 2050056.	1.3	0
229	A bi-objective robust optimization model for disaster response planning under uncertainties. Computers and Industrial Engineering, 2021, 155, 107213.	6.3	45
230	Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches. Computational Optimization and Applications, 2021, 80, 153-184.	1.6	3
231	Multicolor image classification using the multimodal information bottleneck network (MMIB-Net) for detecting diabetic retinopathy. Optics Express, 2021, 29, 22732.	3.4	5
232	Impact of Usage Profiles on Remaining Useful Life and Post-Prognostic Maintenance Decisions. , 2021, , .		0
233	Novel Feature-Extraction Methods for the Estimation of Above-Ground Biomass in Rice Crops. Sensors, 2021, 21, 4369.	3.8	5
234	Data-Driven Sensor Scheduling for Remote Estimation in Wireless Networks. IEEE Transactions on Control of Network Systems, 2021, 8, 725-737.	3.7	4
235	Intelligent Matching Assembly: System Design Based on Reuse of Ultra-Difference Parts. International Journal of Precision Engineering and Manufacturing, 2021, 22, 1205-1220.	2.2	0
236	Monte Carlo Sampling Method for a Class of Box-Constrained Stochastic Variational Inequality Problems. Mathematical Problems in Engineering, 2021, 2021, 1-9.	1.1	0
237	Measuring fuel consumption in vehicle routing: new estimation models using supervised learning. International Journal of Production Research, 0, , 1-17.	7. 5	8
238	Simulation methods for robust risk assessment and the distorted mix approach. European Journal of Operational Research, 2022, 298, 380-398.	5.7	2
239	Meshless physicsâ€informed deep learning method for threeâ€dimensional solid mechanics. International Journal for Numerical Methods in Engineering, 2021, 122, 7182-7201.	2.8	51
240	Optimal surveillance against bioinvasions: a sample average approximation method applied to an agentâ€based spread model. Ecological Applications, 2021, 31, e02449.	3.8	2
241	Accelerate Monte Carlo Simulation for Probability Measures by an Interrupt Mechanism. IEEE Communications Letters, 2021, 25, 2854-2858.	4.1	0
242	Math Programming based Reinforcement Learningfor Multi-Echelon Inventory Management. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
243	Stochastic Generalized Nash Equilibrium-Seeking in Merely Monotone Games. IEEE Transactions on Automatic Control, 2022, 67, 3905-3919.	5.7	9
244	Expert System for Stable Power Generation Prediction in Microbial Fuel Cell. Intelligent Automation and Soft Computing, 2021, 29, 17-30.	2.1	5
245	Sampling Bounds for Stochastic Optimization. Lecture Notes in Computer Science, 2005, , 257-269.	1.3	49
246	Approximation Algorithms for 2-Stage Stochastic Optimization Problems. Lecture Notes in Computer Science, 2006, , 5-19.	1.3	7
247	Modeling the Objective Function. Springer Series in Operations Research, 2012, , 61-76.	1.4	1
248	Scenario-Tree Generation: With Michal Kaut. Springer Series in Operations Research, 2012, , 77-102.	1.4	3
249	Service Network Design: With Arnt-Gunnar Lium and Teodor Gabriel Crainic. Springer Series in Operations Research, 2012, , 103-122.	1.4	1
250	A Multidimensional Newsboy Problem with Substitution: With Hajnalka Vaagen. Springer Series in Operations Research, 2012, , 123-138.	1.4	1
251	Scenario Tree Generation for Multi-stage Stochastic Programs. Profiles in Operations Research, 2011, , 313-341.	0.4	13
252	A Guide to Sample Average Approximation. Profiles in Operations Research, 2015, , 207-243.	0.4	127
253	Stochastic Constraints and Variance Reduction Techniques. Profiles in Operations Research, 2015, , 245-276.	0.4	6
255	An Empirical Study of Optimization for Maximizing Diffusion in Networks. Lecture Notes in Computer Science, 2010, , 514-521.	1.3	11
256	A distributionally robust optimization approach for two-stage facility location problems. EURO Journal on Computational Optimization, 2020, 8, 141-172.	2.4	9
257	Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk. Applied Energy, 2017, 189, 725-738.	10.1	48
258	Land-use planning adaptation in response to SLR based on a vulnerability analysis. Ocean and Coastal Management, 2020, 196, 105297.	4.4	12
259	Nonlinear Stochastic Programming Involving <italic>CVaR</italic> in the Objective and Constraints. Informatica, 2015, 26, 569-591.	2.7	5
260	Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes (MDPs). Journal of Artificial Intelligence Research, 0, 59, 229-264.	7.0	13
261	boa : An <i>R</i> Package for MCMC Output Convergence Assessment and Posterior Inference. Journal of Statistical Software, 2007, 21, .	3.7	470

#	ARTICLE	IF	CITATIONS
262	SMCTC : Sequential Monte Carlo in <i>C++</i> . Journal of Statistical Software, 2009, 30, .	3.7	31
263	Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp < /b > Version 2, an <i> R < /i > Package for Treed Gaussian Process Models. Journal of Statistical Software, 2010, 33, .</i>	3.7	79
264	$\mbox{\sc b>B2Z: AnR\end{\sc Package}}$ Fackage for Bayesian Two-Zone Models. Journal of Statistical Software, 2011, 43, .	3.7	3
265	lgcp : An <i>R</i> Package for Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes. Journal of Statistical Software, 2013, 52, .	3.7	33
266	Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in $\langle i \rangle R \langle i \rangle$. Journal of Statistical Software, 2015, 63, .	3.7	25
267	Bayesian State-Space Modelling on High-Performance Hardware UsingLibBi. Journal of Statistical Software, 2015, 67, .	3.7	21
268		3.7	4,335
270	A Small Open Economy DSGE Model for Pakistan. Pakistan Development Review, 2008, 47, 963-1008.	0.3	8
271	Taking market forces into account in the design of production-distribution networks: A positioning by anticipation approach. Journal of Industrial and Management Optimization, 2007, 3, 29-50.	1.3	22
272	Multistage Stochastic Programming. , 2012, , 97-143.		28
273	Maximum Likelihood and Bayesian Estimation for Nonlinear Structural Equation Models., 0,, 540-567.		8
274	Bayesian Estimation for GEV-B-Spline Model. Open Journal of Statistics, 2013, 03, 118-128.	0.7	14
276	Estimating Liquidity Using Information on the Multivariate Trading Process. SSRN Electronic Journal, 0, , .	0.4	1
277	Stochastic Discount Factors. Springer Series in Operations Research, 2012, , 139-152.	1.4	0
278	Uncertainty in Optimization. Springer Series in Operations Research, 2012, , 1-31.	1.4	0
279	Long Lead Time Production: With Aliza Heching. Springer Series in Operations Research, 2012, , 153-164.	1.4	1
280	Modeling Feasibility and Dynamics. Springer Series in Operations Research, 2012, , 33-60.	1.4	0
281	Robustness Analysis of Stochastic Programs with Joint Probabilistic Constraints. International Federation for Information Processing, 2013, , 155-164.	0.4	0

#	Article	IF	CITATIONS
282	Continuity and stability of two-stage stochastic programs with quadratic continuous recourse. Numerical Algebra, Control and Optimization, 2015, 5, 197-209.	1.6	0
283	Scheduling Conservation Designs for Maximum Flexibility via Network Cascade Optimization. Journal of Artificial Intelligence Research, 0, 52, 331-360.	7.0	1
284	Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2015, 12, 1-15.	1.3	0
286	Multivariate-From-Univariate MCMC Sampler: The $\mbox{\ensuremath{\text{c}}}\mbox{\ensuremath{\text{R}}}\mbox{\ensuremath{\text{c}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{B}}}\mbox{\ensuremath{\text{C}}}\mbox$	3.7	1
287	Deterministic Approximation of Stochastic Programming Problems with Probabilistic Constraints. Communications in Computer and Information Science, 2019, , 497-507.	0.5	0
288	Bridging the information and dynamics attributes of neural activities. Physical Review Research, 2021, 3, .	3.6	7
289	Moving target trajectory prediction based on Dropout-LSTM and Bayesian inference for long-time multi-satellite observation. International Journal of Remote Sensing, 2021, 42, 8572-8596.	2.9	3
290	Construction of Confidence Absorbing Sets Using Statistical Methods. Automation and Remote Control, 2020, 81, 2206-2219.	0.8	0
291	Accelerated Evaluation of Autonomous Drivers using Neural Network Quantile Generators., 2020,,.		0
292	Biased Gradient Estimators in Simulation Optimization. , 2020, , .		4
293	Decision-Driven Regularization: Harmonizing the Predictive and Prescriptive. SSRN Electronic Journal, 0, , .	0.4	1
294	Scalable Optimal Classifiers forÂAdversarial Settings Under Uncertainty. Lecture Notes in Computer Science, 2021, , 80-97.	1.3	2
295	An Extended Predictive Maintenance Model under Covariate Distribution Parameters with Uncertainty. , 2020, , .		1
296	Asymptotic Properties of Stationary Solutions of Coupled Nonconvex Nonsmooth Empirical Risk Minimization. Mathematics of Operations Research, 2022, 47, 2034-2064.	1.3	3
297	Multi-Resolution POMDP Planning for Multi-Object Search in 3D., 2021,,.		7
298	Finiteâ€horizon approximate linear programs for capacity allocation over a rolling horizon. Production and Operations Management, 2022, 31, 2127-2142.	3.8	2
299	Regularized Methods for a Two-Stage Robust Production Planning Problem and its Sample Average Approximation. Journal of the Operations Research Society of China, $0, 1$.	1.4	0
300	ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics, 2022, 38, 1514-1524.	4.1	54

#	Article	IF	CITATIONS
301	Convergence of sequences: A survey. Annual Reviews in Control, 2022, 53, 161-186.	7.9	4
302	Numerical investigation of the logarithmic Schr $\tilde{A}\P$ dinger model of quantum decoherence. Physical Review A, 2022, 105, .	2.5	1
303	Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Engineering With Computers, 2022, 38, 5423-5444.	6.1	31
305	Reflections On Simulation Optimization. , 2021, , .		O
306	On Solving Distributionally Robust Optimization Formulations Efficiently., 2021,,.		0
307	Planning a maritime supply chain for liquefied natural gas under uncertainty. Maritime Transport Research, 2022, 3, 100061.	3.2	3
311	Multimodal Information Bottleneck: Learning Minimal Sufficient Unimodal and Multimodal Representations. IEEE Transactions on Multimedia, 2023, 25, 4121-4134.	7.2	10
312	A Smoothing SAA Method for Solving a Nonconvex Multisource Supply Chain Stochastic Optimization Model. Mathematical Problems in Engineering, 2022, 2022, 1-7.	1.1	1
313	Nonconvex and Nonsmooth Approaches for Affine Chance-Constrained Stochastic Programs. Set-Valued and Variational Analysis, 2022, 30, 1149-1211.	1.1	2
314	Sample average approximations of strongly convex stochastic programs in Hilbert spaces. Optimization Letters, 2023, 17, 471-492.	1.6	4
315	Inversion of hydrogeological parameters based on an adaptive dynamic surrogate model. Hydrogeology Journal, 0, , .	2.1	1
316	Drone logistics for uncertain demand of disaster-impacted populations. Transportation Research Part C: Emerging Technologies, 2022, 141, 103735.	7.6	22
317	A stochastic optimization approach for the supply vessel planning problem under uncertain demand. Transportation Research Part B: Methodological, 2022, 162, 209-228.	5.9	3
318	A more efficient microgrid operation through the integration of probabilistic solar forecasts. Sustainable Energy, Grids and Networks, 2022, 31, 100783.	3.9	3
319	The two-echelon stochastic multi-period capacitated location-routing problem. European Journal of Operational Research, 2023, 306, 645-667.	5.7	4
320	White Box: On the Prediction of Collaborative Filtering Recommendation Systems' Performance. ACM Transactions on Internet Technology, 2023, 23, 1-29.	4.4	3
321	Solving Optimal Stopping Problems via Randomization and Empirical Dual Optimization. Mathematics of Operations Research, 0, , .	1.3	1
322	Multi-rater label fusion based on an information bottleneck for fundus image segmentation. Biomedical Signal Processing and Control, 2023, 79, 104108.	5.7	1

#	Article	IF	Citations
323	On Monte-Carlo methods in convex stochastic optimization. Annals of Applied Probability, 2022, 32, .	1.3	3
324	Discrete Approximation and Convergence Analysis for a Class of Decision-Dependent Two-Stage Stochastic Linear Programs. Journal of the Operations Research Society of China, 0, , .	1.4	0
325	Social equity-based distribution networks design for the COVID-19 vaccine. International Journal of Production Economics, 2022, 250, 108684.	8.9	11
326	Assessment of the parameter sensitivity for the ORYZA model at the regional scale - A case study in the Yangtze River Basin. Environmental Modelling and Software, 2023, 159, 105575.	4.5	4
327	Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition. Sensors, 2023, 23, 184.	3.8	4
328	Rapid determination of cadmium residues in tomato leaves by Vis-NIR hyperspectral and Synergy interval PLS coupled Monte Carlo method. Food Science and Technology, 0, 43, .	1.7	2
329	Residual attention based uncertainty-guided mean teacher model for semi-supervised breast masses segmentation in 2D ultrasonography. Computerized Medical Imaging and Graphics, 2023, 104, 102173.	5.8	8
330	Measure of Similarity between GMMs Based on Geometry-Aware Dimensionality Reduction. Mathematics, 2023, 11, 175.	2.2	3
331	Reassembling Consistent-Complementary Constraints in Triplet Network for Multi-view Learning of Medical Images. , 2022, , .		0
332	Estimation of Crop Genetic Coefficients to Simulate Growth and Yield Under Changing Climate. , 2022, , 283-309.		0
333	Cardinality-constrained distributionally robust portfolio optimization. European Journal of Operational Research, 2023, 309, 1173-1182.	5.7	3
334	Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials. Computational Mechanics, 2023, 72, 513-524.	4.0	8
335	Determination of corn protein content using near-infrared spectroscopy combined with A-CARS-PLS. Food Chemistry: X, 2023, 18, 100666.	4.3	4
336	Sample Average Approximation Over Function Spaces: Statistical Consistency and Rate of Convergence. , 2022, , .		0
337	Acoustic Camera Pose Refinement Using Differentiable Rendering. , 2023, , .		1
338	SMT Sampling viaÂModel-Guided Approximation. Lecture Notes in Computer Science, 2023, , 74-91.	1.3	3
339	Optimization of Positioning Error and Time for UWB and Virtual-Real Scenes Similarity Measure Based on Error Model. IEEE Access, 2023, , 1-1.	4.2	0
340	Temporal Sentence Grounding in Videos: A Survey and Future Directions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 10443-10465.	13.9	2

#	Article	IF	CITATIONS
341	Sample average approximation with heavier tails II: localization in stochastic convex optimization and persistence results for the Lasso. Mathematical Programming, 2023, 199, 49-86.	2.4	1
342	Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization. Applied Mathematics and Optimization, 2023, 87, .	1.6	1
343	Universal Distributional Decision-Based Black-Box Adversarial Attack withÂReinforcement Learning. Lecture Notes in Computer Science, 2023, , 206-215.	1.3	0
344	A Hybrid Neural Network Approach for Adaptive Scenario-Based Model Predictive Control in the LPV Framework., 2023, 7, 1921-1926.		0
345	A learning- and scenario-based MPC design for nonlinear systems in LPV framework with safety and stability guarantees. International Journal of Control, 0 , 1 -20.	1.9	5
346	An introduction to variational quantum algorithms for combinatorial optimization problems. 4or, 2023, 21, 363-403.	1.6	1
347	An integrated optimization model for planning supply chains' resilience and business continuity under interrelated disruptions: aÂcase study. Kybernetes, 0, , .	2.2	4
348	Robustness in optimal design of Eco-Industrial Parks under the lens of two-stage stochastic optimization. Computers and Chemical Engineering, 2023, 179, 108399.	3.8	1
349	Sample average approximation method for a class of stochastic vector variational inequalities. Applicable Analysis, 0, , 1-20.	1.3	0
350	Multisource Joint Representation Learning Fusion Classification for Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	6.3	3
351	MultilBâ€TransUNet: Transformer with multiple information bottleneck blocks for CT and ultrasound image segmentation. Medical Physics, 2024, 51, 1178-1189.	3.0	2
352	Client Recruitment for Federated Learning in ICU Length of Stay Prediction. , 2023, , .		0
353	Adaptive Safety Evaluation for Connected and Automated Vehicles With Sparse Control Variates. IEEE Transactions on Intelligent Transportation Systems, 2024, 25, 1761-1773.	8.0	0
354	A stochastic bi-objective project scheduling model under failure of activities. Annals of Operations Research, 0, , .	4.1	0
355	Designing a sustainable disruption-oriented supply chain under joint pricing and resiliency considerations: A case study. Computers and Chemical Engineering, 2024, 180, 108481.	3.8	6
356	Scenario-Based Methods for Machine Learning Assurance. , 2023, , .		0
357	UATR: An Uncertainty Aware Two-Stage Refinement Model forÂTargeted Sentiment Analysis. Lecture Notes in Computer Science, 2024, , 411-429.	1.3	0
358	Reinforcement Learning for Traversing Chemical Structure Space: Optimizing Transition States and Minimum Energy Paths of Molecules. Journal of Physical Chemistry Letters, 2024, 15, 349-356.	4.6	0

#	Article	IF	CITATIONS
360	MVIB-DVA: Learning minimum sufficient multi-feature speech emotion embeddings under dual-view aware. Expert Systems With Applications, 2024, 246, 123110.	7.6	0
361	A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex Recourse Functions. SIAM Journal on Optimization, 2024, 34, 306-335.	2.0	0
362	A Pareto Dominance Principle for Data-Driven Optimization. Operations Research, 0, , .	1.9	0
363	Scenario-Based Hybrid Model Predictive Design for Cooperative Adaptive Cruise Control in Mixed-Autonomy Environments., 2023,,.		0
364	Sample Size Estimates for Risk-Neutral Semilinear PDE-Constrained Optimization. SIAM Journal on Optimization, 2024, 34, 844-869.	2.0	0