Effects of Grease Composition and Structure on Film Th

Tribology Transactions 46, 31-36 DOI: 10.1080/10402000308982596

Citation Report

#	Article	IF	CITATIONS
1	Influence of Soap Concentration and Oil Viscosity on the Rheology and Microstructure of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 1902-1910.	1.8	112
2	Thermorheological behaviour of a lithium lubricating grease. Tribology Letters, 2006, 23, 47-54.	1.2	92
3	Development of new lubricating grease formulations using recycled LDPE as rheology modifier additive. European Polymer Journal, 2007, 43, 139-149.	2.6	55
4	Recycled and virgin LDPE as rheology modifiers of lithium lubricating greases: A comparative study. Polymer Engineering and Science, 2008, 48, 1112-1119.	1.5	15
5	Effect of rheological behaviour of lithium greases on the friction process. Industrial Lubrication and Tribology, 2008, 60, 37-45.	0.6	36
6	Transient Shear Flow of Model Lithium Lubricating Greases. AlP Conference Proceedings, 2008, , .	0.3	0
7	Influence of soap/polymer concentration ratio on the rheological properties of lithium lubricating greases modified with virgin LDPE. Journal of Industrial and Engineering Chemistry, 2009, 15, 687-693.	2.9	36
8	Transient shear flow of model lithium lubricating greases. Mechanics of Time-Dependent Materials, 2009, 13, 63-80.	2.3	19
9	Influence of grease composition on rolling contact wear: Experimental study. Tribology International, 2009, 42, 569-574.	3.0	21
10	Experimental measuring procedure for the friction torque in rolling bearings. Lubrication Science, 2010, 22, 133-147.	0.9	36
11	Influence of grease formulation on thrust bearings power loss. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 935-946.	1.0	13
12	Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations. Materials Chemistry and Physics, 2011, 128, 530-538.	2.0	32
13	Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases. Tribology Letters, 2011, 41, 463-470.	1.2	78
14	Friction torque in grease lubricated thrust ball bearings. Tribology International, 2011, 44, 523-531.	3.0	53
15	Evaluation of Thermal and Rheological Properties of Lubricating Greases Modified with Recycled LDPE. Tribology Transactions, 2012, 55, 518-528.	1.1	20
16	Film thickness in a ball-on-disc contact lubricated with greases, bleed oils and base oils. Tribology International, 2012, 53, 53-60.	3.0	56
17	Recycled and Virgin HDPEs as Bleed Inhibitors and Their Rheological Influences on Lubricating Greases Thickened with PP and mPP. Lubricants, 2014, 2, 237-248.	1.2	6
18	Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Applied Clay Science, 2014, 87, 265-271.	2.6	15

CITATION REPORT

#	Article	IF	CITATIONS
19	Starvation and Reflow of Point Contact Lubricated with Greases of Different Chemical Formulation. Tribology Letters, 2014, 55, 483-492.	1.2	20
20	TRIBOLOGICAL PROPERTIES OF A NEW KIND OF FRICTION-PROMOTING GREASE IN SLIDING POINT CONTACTS. Transactions of the Canadian Society for Mechanical Engineering, 2015, 39, 221-237.	0.3	0
21	Grease Aging Effects on Film Formation under Fully-Flooded and Starved Lubrication. Lubricants, 2015, 3, 197-221.	1.2	23
22	On the film thickness behaviour of polymer greases at low and high speeds. Tribology International, 2015, 90, 435-444.	3.0	44
23	Formulation, rheology and thermal aging of polymer greases—Part II: Influence of the co-thickener content. Tribology International, 2015, 87, 171-177.	3.0	21
24	AFM and SEM Assessment of Lubricating Grease Microstructures: Influence of Sample Preparation Protocol, Frictional Working Conditions and Composition. Tribology Letters, 2016, 63, 1.	1.2	38
25	Friction coefficient and wear resistance of a modified polypropylene impregnated with different oils. Iranian Polymer Journal (English Edition), 2016, 25, 263-275.	1.3	4
26	Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds. Tribology Letters, 2016, 61, 1.	1.2	64
27	Film thickness decay and replenishment in point contact lubricated with different greases: A study into oil bleeding and the evolution of lubricant reservoir. Tribology International, 2016, 93, 620-627.	3.0	40
28	On the friction behaviour of polymer greases. Tribology International, 2016, 93, 399-410.	3.0	23
29	Film formation and friction in grease lubricated rolling-sliding non-conformal contacts. Tribology International, 2017, 109, 505-518.	3.0	52
30	Studies of the Influence of Temperature and the Energy State of the Surface Layer of Adsorbents on Wall Effects in Soap-Based Greases. Tribology Letters, 2017, 65, 1.	1.2	4
31	Novel polymer grease microstructure and its proposed lubrication mechanism in rolling/sliding contacts. Tribology International, 2017, 110, 278-290.	3.0	29
32	The Influence of Base Oil Properties on the Friction Behaviour of Lithium Greases in Rolling/Sliding Concentrated Contacts. Tribology Letters, 2017, 65, 1.	1.2	32
33	Film Thickness and Friction Relationship in Grease Lubricated Rough Contacts. Lubricants, 2017, 5, 34.	1.2	26
34	Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates. International Journal of Polymer Science, 2017, 2017, 1-19.	1.2	3
35	Insights into the rheological behaviors and tribological performances of lubricating grease: entangled structure of a fiber thickener and functional groups of a base oil. New Journal of Chemistry, 2018, 42, 1484-1491.	1.4	25
36	Tribological and Vibration Studies on Newly Developed Nanocomposite Greases Under Boundary Lubrication Regime. Journal of Tribology, 2018, 140, .	1.0	22

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
37	Cavitation Growth Phenomena in Pure-Sliding Grease EHD Contacts. Lubricants, 2018,	6, 75.	1.2	1
38	Effect of Base Oil Type in Grease Composition on the Lubricating Film Formation in EH Lubricants, 2018, 6, 32.	D Contacts.	1.2	20
39	Thermo-rheological and tribological properties of novel bio-lubricating greases thicken epoxidized lignocellulosic materials. Journal of Industrial and Engineering Chemistry, 20 626-632.	≥d with 019, 80,	2.9	27
40	Film thickness in a grease lubricated ball bearing. Tribology International, 2019, 134, 2	6-35.	3.0	75
41	Third-body formation by selective transfer in a NiCr/AgPd electrical contact. Consequer and remediation by a barrel tumble finishin. Wear, 2019, 426-427, 1056-1064.	nces on wear	1.5	5
42	Assessing workability of greased bearings after long-term storage. Friction, 2019, 7, 48	89-496.	3.4	12
43	Effect of Over Rolling Frequency on the Film Formation in Grease Lubricated EHD Cont Starved Conditions. Lubricants, 2019, 7, 19.	acts under	1.2	12
44	Tribo-Dynamics of Nanocomposite Grease Lubricated Point Contact Under Elastohydro Lubrication Regime. Journal of Tribology, 2019, 141, .	odynamics	1.0	1
45	Rheological and Film Forming Behavior of the Developed Nanocomposite Greases Und Elastohydrodynamics Lubrication Regime. Journal of Tribology, 2019, 141, .	er	1.0	6
46	Channeling behavior of lubricating greases in rolling bearings: Identification and charac Tribology International, 2020, 143, 106061.	cterization.	3.0	11
47	An experimental investigation of grease lubricated EHD contact subjected to normal si variable loading. Tribology International, 2020, 147, 106272.	nusoidally	3.0	6
48	Effect of Graphene-Based Nanoadditives on the Tribological and Rheological Performar Grease. Journal of Materials Engineering and Performance, 2020, 29, 2235-2247.	nce of Paraffin	1.2	15
49	Correlations between rail grease formulation and friction, wear and RCF of a wheel/rail pair. Tribology International, 2021, 153, 106566.	tribological	3.0	15
50	Grease flow based on a two-component mixture model. Tribology International, 2021,	153, 106638.	3.0	7
51	Tribo-behaviours of textured point contacts lubricated with low and high consistency l greases under reciprocating motion. Surface Topography: Metrology and Properties, 2		0.9	6
52	Observation of Grease Film Behavior in Sliding-Rolling Concentrated Contacts. Journal 2022, 144, .	of Tribology,	1.0	5
53	A Study on Microstructure, Friction and Rheology of Four Lithium Greases Formulated Different Base Oils. Tribology Letters, 2021, 69, 1.	with Four	1.2	15
54	Development of eco-friendly nano-greases based on vegetable oil: An exploration of th structure. Industrial Crops and Products, 2021, 172, 114033.	e character via	2.5	15

#	Article	IF	CITATIONS
55	Title is missing!. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2004, 83, 577-580.	0.2	0
57	Chapter 22 Lubricating Greases. , 2019, , 935-958.		0
59	Greases for electric vehicle motors: thickener effect and energy saving potential. Tribology International, 2022, 167, 107400.	3.0	11
60	Grease Lubrication: Formulation Effects on Tribological Performance. , 0, , .		2
61	Influence of Rheological Properties of Lithium Greases on Operating Behavior in Oscillating Rolling Bearings at a Small Swivel Angle. Lubricants, 2022, 10, 163.	1.2	3
62	Tribological Properties and Seasonal Freezing Damage Evolution of Rotating Spherical Hinge Self-Lubricating Coating. Applied Sciences (Switzerland), 2022, 12, 8329.	1.3	1
63	Review on lubrication and sealing technology of high-speed motorized spindle. Recent Patents on Engineering, 2022, 17, .	0.3	0
64	Molecular self-assembling structure and formation mechanism of lubricating grease: A computational simulation approach. Tribology International, 2023, 179, 108150.	3.0	3
65	Oil-bleeding dynamic model to predict permeability characteristics of lubricating grease. Tribology International, 2023, 183, 108418.	3.0	2
66	Effect of Base Oil on Rheological Behaviors and Tribological Properties of Nano-silica Greases. Journal of Bio- and Tribo-Corrosion, 2023, 9, .	1.2	2
67	Effect of Temperature on Rheological Behaviors and Tribological Properties of Nano-silica Greases Prepared from Base Oils with Different Viscosities. Tribology Letters, 2023, 71, .	1.2	2

CITATION REPORT