How Well is Enzyme Function Conserved as a Function

Journal of Molecular Biology 333, 863-882 DOI: 10.1016/j.jmb.2003.08.057

Citation Report

#	Article	IF	CITATIONS
1	Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics, 2004, 20, 1087-1096.	1.8	51
2	The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 5539-5545.	6.5	988
3	EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Research, 2004, 32, 6226-6239.	6.5	107
4	SCOPEC: a database of protein catalytic domains. Bioinformatics, 2004, 20, i130-i136.	1.8	29
5	Finding Functional Sites in Structural Genomics Proteins. Structure, 2004, 12, 1405-1412.	1.6	44
6	Metabolic networks: enzyme function and metabolite structure. Current Opinion in Structural Biology, 2004, 14, 300-306.	2.6	81
7	Enzyme classification by ligand binding. Proteins: Structure, Function and Bioinformatics, 2004, 57, 711-724.	1.5	27
8	Clustering of Protein Domains in the Human Genome. Journal of Molecular Biology, 2004, 340, 991-1004.	2.0	12
9	The Path to Enlightenment: Making Sense of Genomic and Proteomic Information. Genomics, Proteomics and Bioinformatics, 2004, 2, 123-131.	3.0	7
10	Protein surface analysis for function annotation in high-throughput structural genomics pipeline. Protein Science, 2005, 14, 2972-2981.	3.1	70
11	Inference of Protein Function from Protein Structure. Structure, 2005, 13, 121-130.	1.6	175
12	Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models. PLoS Computational Biology, 2005, 1, e31.	1.5	63
13	Determining functional specificity from protein sequences. Bioinformatics, 2005, 21, 2629-2635.	1.8	17
14	Crystal Structure of the Cysteine-rich Secretory Protein Stecrisp Reveals That the Cysteine-rich Domain Has a K+ Channel Inhibitor-like Fold. Journal of Biological Chemistry, 2005, 280, 12405-12412.	1.6	132
15	Detecting remotely related proteins by their interactions and sequence similarity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7151-7156.	3.3	26
16	Effective function annotation through catalytic residue conservation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12299-12304.	3.3	55
17	Predicting specificity-determining residues in two large eukaryotic transcription factor families. Nucleic Acids Research, 2005, 33, 4455-4465.	6.5	31
18	Motif extraction and protein classification. , 2005, , 80-5.		20

#	Article	IF	CITATIONS
19	Active Site Identification through Geometry-based and Sequence Profile-based Calculations: Burial of Catalytic Clefts. Journal of Molecular Biology, 2005, 349, 547-557.	2.0	24
20	Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biology, 2006, 7, R17.	13.9	78
21	A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biology, 2006, 7, R8.	13.9	62
22	Automated protein function predictionthe genomic challenge. Briefings in Bioinformatics, 2006, 7, 225-242.	3.2	307
23	Evolution of Structure and Function in the o-Succinylbenzoate Synthase/N-Acylamino Acid Racemase Family of the Enolase Superfamily. Journal of Molecular Biology, 2006, 360, 228-250.	2.0	65
24	Strategies for high-throughput comparative modeling: Applications to leverage analysis in structural genomics and protein family organization. Proteins: Structure, Function and Bioinformatics, 2006, 66, 766-777.	1.5	32
25	Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Molecular Microbiology, 2006, 61, 655-674.	1.2	143
26	Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics, 2006, 7, 312.	1.2	105
27	High precision multi-genome scale reannotation of enzyme function by EFICAz. BMC Genomics, 2006, 7, 315.	1.2	26
28	Genome-Scale Classification of Metabolic Reactions: A Chemoinformatics Approach. Angewandte Chemie - International Edition, 2006, 45, 2066-2069.	7.2	35
30	JAFA: a protein function annotation meta-server. Nucleic Acids Research, 2006, 34, W379-W381.	6.5	31
31	Large-Scale Prediction of Protein Structure and Function from Sequence. Current Pharmaceutical Design, 2006, 12, 2067-2086.	0.9	12
32	Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome. PLoS Computational Biology, 2006, 2, e13.	1.5	178
33	Prediction of Function Divergence in Protein Families Using the Substitution Rate Variation Parameter Alpha. Molecular Biology and Evolution, 2006, 23, 1406-1413.	3.5	12
34	Identification of function-associated loop motifs and application to protein function prediction. Bioinformatics, 2006, 22, 2237-2243.	1.8	41
35	Estimation of Amino Acid Residue Substitution Rates at Local Spatial Regions and Application in Protein Function Inference: A Bayesian Monte Carlo Approach. Molecular Biology and Evolution, 2006, 23, 421-436.	3.5	70
36	Universal Screening Methods and Applications of ThermoFluor®. Journal of Biomolecular Screening, 2006, 11, 854-863.	2.6	167
37	Prediction of Protein Functional Specificity without an Alignment. OMICS A Journal of Integrative Biology, 2006, 10, 56-65.	1.0	9

.,		15	C
#	ARTICLE	IF	CITATIONS
38	Gene 3D: comprehensive structural and functional annotation of genomes. Nucleic Acids Research, 2007, 36, D414-D418.	6.5	68
39	Computational Prediction and Experimental Verification of the Gene Encoding the NAD ⁺ /NADP ⁺ -Dependent Succinate Semialdehyde Dehydrogenase in <i>Escherichia coli</i> . Journal of Bacteriology, 2007, 189, 8073-8078.	1.0	57
40	The (In)dependence of Alternative Splicing and Gene Duplication. PLoS Computational Biology, 2007, 3, e33.	1.5	66
42	Functional Representation of Enzymes by Specific Peptides. PLoS Computational Biology, 2007, 3, e167.	1.5	20
43	Genome-Wide Analysis of Enzyme Structure-Function Combination Across Three Domains of Life. Protein and Peptide Letters, 2007, 14, 291-297.	0.4	4
44	Inferring Protein Function from Genomic Context. , 0, , 1179-1210.		1
45	YhbO Protects Cells against Multiple Stresses. Journal of Bacteriology, 2007, 189, 9140-9144.	1.0	42
46	A High-Throughput Approach To Protein Structure Analysis. , 2007, 28, 105-128.		9
47	Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genetics and Biology, 2007, 44, 886-895.	0.9	51
48	Protein Annotation at Genomic Scale:  The Current Status. Chemical Reviews, 2007, 107, 3448-3466.	23.0	66
49	KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 2007, 35, W182-W185.	6.5	3,517
50	Identification of Genes Encoding tRNA Modification Enzymes by Comparative Genomics. Methods in Enzymology, 2007, 425, 153-183.	0.4	22
51	Inferring Protein Function from Sequence. , 0, , 1087-1119.		2
52	Plant progesterone 5β-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5βR from Digitalis purpurea. Phytochemistry, 2007, 68, 853-864.	1.4	43
53	Locating the active sites of enzymes using mechanical properties. Proteins: Structure, Function and Bioinformatics, 2007, 67, 350-359.	1.5	96
54	Predicting protein function from sequence and structure. Nature Reviews Molecular Cell Biology, 2007, 8, 995-1005.	16.1	485
55	Dissecting the TOR?S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiologia Plantarum, 2007, 130, 1-10.	2.6	29
56	Aerobic uranium (VI) bioprecipitation by metalâ€resistant bacteria isolated from radionuclide―and metalâ€contaminated subsurface soils. Environmental Microbiology, 2007, 9, 3122-3133.	1.8	156

	Сітат	tion Report	
#	Article	IF	CITATIONS
57	A procedure for identifying homologous alternative splicing events. BMC Bioinformatics, 2007, 8, 260.	1.2	5
58	Towards a comprehensive structural coverage of completed genomes: a structural genomics viewpoint. BMC Bioinformatics, 2007, 8, 86.	1.2	45
59	Functional Differentiation of Proteins: Implications for Structural Genomics. Structure, 2007, 15, 405-415.	1.6	9
60	Distribution of orphan metabolic activities. Trends in Biotechnology, 2007, 25, 343-348.	4.9	40
61	Prediction of Protein Function Improving Sequence Remote Alignment Search by a Fuzzy Logic Algorithm. Protein Journal, 2008, 27, 130-139.	0.7	9
62	Syntactic structures in languages and biology. Cognitive Processing, 2008, 9, 153-158.	0.7	1
63	Preservation of protein clefts in comparative models. BMC Structural Biology, 2008, 8, 2.	2.3	11
64	Prediction of enzyme function based on 3D templates of evolutionarily important amino acids. BMC Bioinformatics, 2008, 9, 17.	1.2	70
65	Prediction of enzyme function by combining sequence similarity and protein interactions. BMC Bioinformatics, 2008, 9, 249.	1.2	27
66	Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics, 2008, 9, 551.	1.2	57
67	Limited functional conservation of a global regulator among related bacterial genera: Lrp in Escherichia, Proteus and Vibrio. BMC Microbiology, 2008, 8, 60.	1.3	32
68	Exploring the structure and function paradigm. Current Opinion in Structural Biology, 2008, 18, 394-402.	2.6	114
69	Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening. Structure, 2008, 16, 1668-1677.	1.6	52
71	Automated Prediction of Protein Function from Sequence. , 2008, , 63-85.		4
72	Inferring modules of functionally interacting proteins using the Bond Energy Algorithm. BMC Bioinformatics, 2008, 9, 285.	1.2	13
73	Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biology, 2008, 9, S7.	13.9	78
74	An en masse phenotype and function prediction system for Mus musculus. Genome Biology, 2008, 9, S8	. 13.9	20
75	Improved Energy Selection of Nativelike Protein Loops from Loop Decoys. Journal of Chemical Theory and Computation, 2008, 4, 515-521.	2.3	11

		REFORT	
#	Article	IF	CITATIONS
76	ConFunc—functional annotation in the twilight zone. Bioinformatics, 2008, 24, 798-806.	1.8	95
77	Predicting and Characterizing Protein Functions Through Matching Geometric and Evolutionary Patterns of Binding Surfaces. Advances in Protein Chemistry and Structural Biology, 2008, 75, 107-141.	1.0	4
78	Local Function Conservation in Sequence and Structure Space. PLoS Computational Biology, 2008, 4, e1000105.	1.5	20
79	FFPred: an integrated feature-based function prediction server for vertebrate proteomes. Nucleic Acids Research, 2008, 36, W297-W302.	6.5	47
80	An improved prediction of catalytic residues in enzyme structures. Protein Engineering, Design and Selection, 2008, 21, 295-302.	1.0	38
81	Peptide programs. , 2008, , .		2
82	Protein Structure Modeling. , 2008, , 3-35.		10
83	The Contribution of Structural Proteomics to Understanding the Function of Hypothetical Proteins. , 2008, , 135-151.		0
85	The Rough Guide to In Silico Function Prediction, or How To Use Sequence and Structure Information To Predict Protein Function. PLoS Computational Biology, 2008, 4, e1000160.	1.5	83
86	De-Orphaning the Structural Proteome through Reciprocal Comparison of Evolutionarily Important Structural Features. PLoS ONE, 2008, 3, e2136.	1.1	21
87	Finding of residues crucial for supersecondary structure formation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18996-19000.	3.3	10
88	Metabolite Profiling Reveals YihU as a Novel Hydroxybutyrate Dehydrogenase for Alternative Succinic Semialdehyde Metabolism in Escherichia coli. Journal of Biological Chemistry, 2009, 284, 16442-16451.	1.6	58
89	Molecular and Structural Basis of Drift in the Functions of Closely-Related Homologous Enzyme Domains: Implications for Function Annotation Based on Homology Searches and Structural Genomics. In Silico Biology, 2009, 9, S41-S55.	0.4	6
90	The use of gene ontology evidence codes in preventing classifier assessment bias. Bioinformatics, 2009, 25, 1173-1177.	1.8	44
91	An Overview of the De Novo Prediction of Enzyme Catalytic Residues (Supplementry file). Current Bioinformatics, 2009, 4, 197-206.	0.7	4
92	FLORA: A Novel Method to Predict Protein Function from Structure in Diverse Superfamilies. PLoS Computational Biology, 2009, 5, e1000485.	1.5	43
93	A Threading-Based Method for the Prediction of DNA-Binding Proteins with Application to the Human Genome. PLoS Computational Biology, 2009, 5, e1000567.	1.5	74
94	A Combinatorial Approach to Detect Coevolved Amino Acid Networks in Protein Families of Variable Divergence. PLoS Computational Biology, 2009, 5, e1000488.	1.5	23

#	Article	IF	CITATIONS
95	Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies. PLoS Computational Biology, 2009, 5, e1000605.	1.5	587
96	Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates. Bioinformatics, 2009, 25, 1426-1427.	1.8	28
97	Alternative Splicing of Transcription Factors' Genes: Beyond the Increase of Proteome Diversity. Comparative and Functional Genomics, 2009, 2009, 1-6.	2.0	14
98	Protein Structure Modeling and Docking at the Swiss Institute of Bioinformatics. , 2009, , 219-246.		0
99	FINDSITE: a combined evolution/structure-based approach to protein function prediction. Briefings in Bioinformatics, 2009, 10, 378-391.	3.2	92
100	ESC: extended similarity group method for automated protein function prediction. Bioinformatics, 2009, 25, 1739-1745.	1.8	87
101	Protein function prediction $\hat{a} \in $ the power of multiplicity. Trends in Biotechnology, 2009, 27, 210-219.	4.9	106
102	EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics, 2009, 10, 107.	1.2	58
103	Enzyme classification with peptide programs: a comparative study. BMC Bioinformatics, 2009, 10, 231.	1.2	5
104	Data mining of enzymes using specific peptides. BMC Bioinformatics, 2009, 10, 446.	1.2	13
105	Homology modeling in drug discovery: current trends and applications. Drug Discovery Today, 2009, 14, 676-683.	3.2	400
106	The life and death of gene families. BioEssays, 2009, 31, 29-39.	1.2	242
107	Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development. Journal of Computer-Aided Molecular Design, 2009, 23, 773-784.	1.3	15
108	PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data. Proteins: Structure, Function and Bioinformatics, 2009, 74, 566-582.	1.5	105
109	Identification of protein functional surfaces by the concept of a split pocket. Proteins: Structure, Function and Bioinformatics, 2009, 76, 959-976.	1.5	21
110	Evolutionary constraints on structural similarity in orthologs and paralogs. Protein Science, 2009, 18, 1306-1315.	3.1	58
111	The Bologna Annotation Resource: a Non Hierarchical Method for the Functional and Structural Annotation of Protein Sequences Relying on a Comparative Large-Scale Genome Analysis. Journal of Proteome Research, 2009, 8, 4362-4371.	1.8	9
112	Detecting sequence and structure homology via an integrative kernel: A case-study in recognizing enzymes. , 2009, , .		0

#	Article	IF	CITATIONS
113	Domain-Based and Family-Specific Sequence Identity Thresholds Increase the Levels of Reliable Protein Function Transfer. Journal of Molecular Biology, 2009, 387, 416-430.	2.0	98
114	Predicting Protein Function and Binding Profile via Matching of Local Evolutionary and Geometric Surface Patterns. Journal of Molecular Biology, 2009, 387, 451-464.	2.0	65
115	Large-Scale Structural Biology of the Human Proteome. Annual Review of Biochemistry, 2009, 78, 541-568.	5.0	49
117	From Protein Structure to Function with Bioinformatics. , 2009, , .		29
118	Challenges in the computational design of proteins. Journal of the Royal Society Interface, 2009, 6, S477-91.	1.5	45
119	CO-EVOLUTION OF METABOLISM AND PROTEIN SEQUENCES. , 2010, , .		4
120	Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) Gene Family: The Emergence of Real Lignin is Associated with the Origin of Bona Fide CAD. Journal of Molecular Evolution, 2010, 71, 202-218.	0.8	61
121	Cytochrome P450 networks in chemical space. Archives of Pharmacal Research, 2010, 33, 1361-1374.	2.7	3
122	Missing genes in the annotation of prokaryotic genomes. BMC Bioinformatics, 2010, 11, 131.	1.2	94
123	FACT: Functional annotation transfer between proteins with similar feature architectures. BMC Bioinformatics, 2010, 11, 417.	1.2	26
124	Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evolutionary Biology, 2010, 10, 59.	3.2	87
126	Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation. Protein Science, 2010, 19, 1296-1311.	3.1	23
127	Comparison of structureâ€based and threadingâ€based approaches to protein functional annotation. Proteins: Structure, Function and Bioinformatics, 2010, 78, 18-134.	1.5	27
128	Relationships between functional subclasses and information contained in activeâ€site and ligandâ€binding residues in diverse superfamilies. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2369-2384.	1.5	6
129	Automatic policing of biochemical annotations using genomic correlations. Nature Chemical Biology, 2010, 6, 34-40.	3.9	28
133	GeMMA: functional subfamily classification within superfamilies of predicted protein structural domains. Nucleic Acids Research, 2010, 38, 720-737.	6.5	65
134	ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes. Bioinformatics, 2010, 26, 705-707.	1.8	2
135	PSiFR: an integrated resource for prediction of protein structure and function. Bioinformatics, 2010, 26, 687-688.	1.8	13

		UKI	
#	Article	IF	Citations
136	Combining Structure and Sequence Information Allows Automated Prediction of Substrate Specificities within Enzyme Families. PLoS Computational Biology, 2010, 6, e1000636.	1.5	36
137	Detecting subtle functional differences in ketopantoate reductase and related enzymes using a rule-based approach with sequence-structure homology recognition scores. Protein Engineering, Design and Selection, 2010, 23, 859-869.	1.0	1
138	CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 2010, 20, 1574-1584.	1.3	335
139	â€~Unknown' proteins and â€~orphan' enzymes: the missing half of the engineering parts list – and how find it. Biochemical Journal, 2010, 425, 1-11.	to 1.7	183
140	Evolutionary Trace Annotation of Protein Function in the Structural Proteome. Journal of Molecular Biology, 2010, 396, 1451-1473.	2.0	38
141	Computational protein design, from single domain soluble proteins to membrane proteins. Chemical Society Reviews, 2010, 39, 2071.	18.7	29
142	Stoichiometry of Amino acids Drives Protein Folding?. Journal of Biomolecular Structure and Dynamics, 2011, 28, 635-636.	2.0	5
143	SEGA: Semiglobal Graph Alignment for Structure-Based Protein Comparison. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1330-1343.	1.9	11
144	Constructing de Novo Biosynthetic Pathways for Chemical Synthesis inside Living Cells. Biochemistry, 2011, 50, 5404-5418.	1.2	35
145	Structural Signatures of Enzyme Binding Pockets from Order-Independent Surface Alignment: A Study of Metalloendopeptidase and NAD Binding Proteins. Journal of Molecular Biology, 2011, 406, 713-729.	2.0	49
146	Biochemical Characterization of a New Maize (Zea mays L.) Peptide Growth Factor. Protein and Peptide Letters, 2011, 18, 84-91.	0.4	14
147	Protein function prediction: towards integration of similarity metrics. Current Opinion in Structural Biology, 2011, 21, 180-188.	2.6	42
148	Accuracy of functional surfaces on comparatively modeled protein structures. Journal of Structural and Functional Genomics, 2011, 12, 97-107.	1.2	10
149	Support vector machine prediction of enzyme function with conjoint triad feature and hierarchical context. BMC Systems Biology, 2011, 5, S6.	3.0	40
150	FINDSITEâ€metal: Integrating evolutionary information and machine learning for structureâ€based metalâ€binding site prediction at the proteome level. Proteins: Structure, Function and Bioinformatics, 2011, 79, 735-751.	1.5	80
151	Analysis of protein function and its prediction from amino acid sequence. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2086-2096.	1.5	124
152	PINALOC: a novel approach to align protein interaction networks—implications for complex detection and function prediction. Bioinformatics, 2012, 28, 1239-1245.	1.8	88
153	Assessing the relationship between conservation of function and conservation of sequence using photosynthetic proteins. Bioinformatics, 2012, 28, 3203-3210.	1.8	14

	CITATION RE	Citation Report	
#	Article	IF	Citations
154	Phylogenetics and evolution of Trx SET genes in fully sequenced land plants. Genome, 2012, 55, 269-280.	0.9	4
155	Automatic Prediction of Enzyme Functions from Domain Compositions Using Enzyme Reaction Prediction Scheme. , 2012, , .		0
156	TrAnsFuSE refines the search for protein function: oxidoreductases. Integrative Biology (United) Tj ETQq0 0 0 rgE	3T /Overloo 0.6	ck 10 Tf 50 6
157	Computational Selection, Identification and Structural Analysis of ω-Aminotransferases with Various Substrate Specificities from the Genome Sequence of <i>Mesorhizobium loti</i> MAFF303099. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1308-1314.	0.6	7
158	Functional Prediction of Binding Pockets. Journal of Chemical Information and Modeling, 2012, 52, 824-833.	2.5	3
159	Global probabilistic annotation of metabolic networks enables enzyme discovery. Nature Chemical Biology, 2012, 8, 848-854.	3.9	53
160	Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics, 2012, 13, S14.	1.2	137
161	Characterization of Transport Proteins for Aromatic Compounds Derived from Lignin: Benzoate Derivative Binding Proteins. Journal of Molecular Biology, 2012, 423, 555-575.	2.0	23
162	Structural Modelling Pipelines in Next Generation Sequencing Projects. Advances in Protein Chemistry and Structural Biology, 2012, 89, 117-167.	1.0	19
163	Learning virulent proteins from integrated query networks. BMC Bioinformatics, 2012, 13, 321.	1.2	2
164	How Many Protein-Protein Interactions Types Exist in Nature?. PLoS ONE, 2012, 7, e38913.	1.1	27
165	Predicting protein-ATP binding sites from primary sequence through fusing bi-profile sampling of multi-view features. BMC Bioinformatics, 2012, 13, 118.	1.2	39
166	Evolution of the 4 oumarate:coenzyme A ligase (<i>4CL</i>) gene family: Conserved evolutionary pattern and two new gene classes in gymnosperms. Journal of Systematics and Evolution, 2012, 50, 195-205.	1.6	6
167	Re-Annotation of Two Hyperthermophilic Archaea Pyrococcus abyssi GE5 and Pyrococcus furiosus DSM 3638. Current Microbiology, 2012, 64, 118-129.	1.0	6
168	Evolution of plant Ash1 SET genes: structural divergence and functional differentiation. Genes and Genomics, 2013, 35, 463-473.	0.5	1
169	How to inherit statistically validated annotation within BAR+ protein clusters. BMC Bioinformatics, 2013, 14, S4.	1.2	8
170	Concomitant prediction of function and fold at the domain level with GO-based profiles. BMC Bioinformatics, 2013, 14, S12.	1.2	4
171	A novel function prediction approach using protein overlap networks. BMC Systems Biology, 2013, 7, 61.	3.0	13

#	Article	IF	CITATIONS
172	Expression, purification and molecular modeling of the NIa protease of <i>Cardamom mosaic virus</i> . Journal of Biomolecular Structure and Dynamics, 2013, 31, 602-611.	2.0	4
173	Divergent Evolution of Ligand Binding in theo-Succinylbenzoate Synthase Family. Biochemistry, 2013, 52, 7512-7521.	1.2	14
174	Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs. BMC Bioinformatics, 2013, 14, 343.	1.2	20
175	Graphâ€based methods for protein structure comparison. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3, 307-320.	4.6	5
176	Prediction and experimental validation of enzyme substrate specificity in protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4195-202.	3.3	37
177	Toward a "Structural BLAST†Using structural relationships to infer function. Protein Science, 2013, 22, 359-366.	3.1	23
178	Functional diversity of the p24Î ³ homologue Erp reveals physiological differences between two filamentous fungi. Fungal Genetics and Biology, 2013, 61, 15-22.	0.9	10
179	Genome-scale reconstruction and in silico analysis of Aspergillus terreus metabolism. Molecular BioSystems, 2013, 9, 1939.	2.9	35
180	Correlation between sequence, structure and function for trisporoid processing proteins in the model zygomycete Mucor mucedo. Journal of Theoretical Biology, 2013, 320, 66-75.	0.8	6
181	Social networks to biological networks: systems biology of Mycobacterium tuberculosis. Molecular BioSystems, 2013, 9, 1584.	2.9	5
182	CEG: a database of essential gene clusters. BMC Genomics, 2013, 14, 769.	1.2	51
183	Prediction of RNA binding proteins comes of age from low resolution to high resolution. Molecular BioSystems, 2013, 9, 2417.	2.9	37
185	Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. , 2013, , .		4
186	Evolving Fisher Kernels for Biological Sequence Classification. Evolutionary Computation, 2013, 21, 83-105.	2.3	3
187	SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat065-bat065.	1.4	4
188	Long tail fibres of the novel broadâ€hostâ€range <scp>T</scp> â€even bacteriophage <scp>S</scp> 16 specifically recognize <i><scp>S</scp>almonella</i> <scp>OmpC</scp> . Molecular Microbiology, 2013, 87, 818-834.	1.2	102
189	Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: <i>p</i> -Coumaric acid and related aromatic acids. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1709-1726.	1.5	21
191	Rapid Catalytic Template Searching as an Enzyme Function Prediction Procedure. PLoS ONE, 2013, 8, e62535.	1.1	28

#	Article	IF	CITATIONS
193	Prediction of Detailed Enzyme Functions and Identification of Specificity Determining Residues by Random Forests. PLoS ONE, 2014, 9, e84623.	1.1	32
194	Sequence similarity network reveals the imprints of major diversification events in the evolution of microbial life. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	18
195	Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Translational Psychiatry, 2014, 4, e431-e431.	2.4	51
196	Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis. MBio, 2014, 5, e02020.	1.8	64
197	Towards revealing the functions of all genes in plants. Trends in Plant Science, 2014, 19, 212-221.	4.3	221
198	Determining Microbial Products and Identifying Molecular Targets in the Human Microbiome. Cell Metabolism, 2014, 20, 731-741.	7.2	82
199	Sma3s: A Three-Step Modular Annotator for Large Sequence Datasets. DNA Research, 2014, 21, 341-353.	1.5	80
200	Discovery of Function in the Enolase Superfamily: <scp>d</scp> -Mannonate and <scp>d</scp> -Gluconate Dehydratases in the <scp>d</scp> -Mannonate Dehydratase Subgroup. Biochemistry, 2014, 53, 2722-2731.	1.2	28
201	Gene Context Analysis Reveals Functional Divergence between Hypothetically Equivalent Enzymes of the Purine–Ureide Pathway. Biochemistry, 2014, 53, 735-745.	1.2	7
202	Origin, duplication and reshuffling of plasmid genes: Insights from Burkholderia vietnamiensis G4 genome. Genomics, 2014, 103, 229-238.	1.3	6
203	Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism. BMC Genomics, 2015, 16, S16.	1.2	21
204	Genetic susceptibility to arsenic-induced skin lesions and health effects: a review. Genes and Environment, 2015, 37, 23.	0.9	25
205	In Silico Analysis of Heavy Metal Assimilation Behaviors in the Genome of Methanosarcina barkeri str. Fusaro. Current Bioinformatics, 2015, 10, 59-68.	0.7	5
206	Accurate Microbial Genome Annotation Using an Integrated and User-Friendly Environment for Community Expertise of Gene Functions: The MicroScope Platform. Springer Protocols, 2015, , 141-169.	0.1	2
207	Increasing the structural coverage of tuberculosis drug targets. Tuberculosis, 2015, 95, 142-148.	0.8	103
208	Using comparative genomics to drive new discoveries in microbiology. Current Opinion in Microbiology, 2015, 23, 189-196.	2.3	28
209	AlignBucket: a tool to speed up â€~all-against-all' protein sequence alignments optimizing length constraints. Bioinformatics, 2015, 31, 3841-3843.	1.8	3
210	Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1019-1037.	1.1	660

#	ARTICLE	IF	CITATIONS
211	Biochemical functional predictions for protein structures of unknown or uncertain function. Computational and Structural Biotechnology Journal, 2015, 13, 182-191.	1.9	77
212	Identification and characterization of 2-keto-3-deoxy-l-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to l-rhamnose metabolism in archaea. Extremophiles, 2015, 19, 469-478.	0.9	14
213	Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Systems Biology, 2015, 9, 1.	3.0	131
214	Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnology and Bioprocess Engineering, 2015, 20, 714-717.	1.4	2
215	Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics, 2015, 16, 799.	1.2	50
216	A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2015, 81, 7938-7944.	1.4	46
217	Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11547-11552.	3.3	42
219	EnzDP: Improved enzyme annotation for metabolic network reconstruction based on domain composition profiles. Journal of Bioinformatics and Computational Biology, 2015, 13, 1543003.	0.3	11
220	Reconstruction and analysis of the genome-scale metabolic model of Lactobacillus casei LC2W. Gene, 2015, 554, 140-147.	1.0	33
221	Bioinformatics survey of the metal usage by psychrophilic yeast Glaciozyma antarctica PI12. Metallomics, 2015, 7, 156-164.	1.0	1
222	A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics, 2016, 32, 3566-3574.	1.8	25
223	Active Site Characterization of Proteases Sequences from Different Species of Aspergillus. Cell Biochemistry and Biophysics, 2016, 74, 327-335.	0.9	6
224	Homology-Based Annotation of Large Protein Datasets. Methods in Molecular Biology, 2016, 1415, 153-176.	0.4	0
225	Revisiting the phosphatidylethanolamineâ€binding protein (<scp>PEBP)</scp> gene family reveals cryptic <i>FLOWERING LOCUS T</i> gene homologs in gymnosperms and sheds new light on functional evolution. New Phytologist, 2016, 212, 730-744.	3.5	77
226	Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4161-9.	3.3	46
227	An ensemble micro neural network approach for elucidating interactions between zinc finger proteins and their target DNA. BMC Genomics, 2016, 17, 1033.	1.2	9
228	Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochemical Journal, 2016, 473, 157-166.	1.7	22
229	Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Applied Microbiology and Biotechnology, 2016, 100, 4109-4121.	1.7	20

#	Article	IF	CITATIONS
230	Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient l-Aspartic Acid Producing Escherichia coli. Food and Environmental Virology, 2016, 8, 18-26.	1.5	11
231	Making sense of genomes of parasitic worms: Tackling bioinformatic challenges. Biotechnology Advances, 2016, 34, 663-686.	6.0	30
232	GoFDR: A sequence alignment based method for predicting protein functions. Methods, 2016, 93, 3-14.	1.9	57
233	Computational Methods for Annotation Transfers from Sequence. Methods in Molecular Biology, 2017, 1446, 55-67.	0.4	40
234	Fragment Profiling Approach to Inhibitors of the Orphan <i>M. tuberculosis</i> P450 CYP144A1. Biochemistry, 2017, 56, 1559-1572.	1.2	5
236	Unified Alignment of Protein-Protein Interaction Networks. Scientific Reports, 2017, 7, 953.	1.6	40
238	Arbuscular Mycorrhizal Fungi: Evolution and Functions in Alleviating Plant Drought Stress. , 2017, , 285-295.		2
239	Annotation of the Domestic Pig Genome by Quantitative Proteogenomics. Journal of Proteome Research, 2017, 16, 2887-2898.	1.8	25
240	Prediction of synergistic drug combinations. Current Opinion in Systems Biology, 2017, 4, 24-28.	1.3	26
241	Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nature Methods, 2017, 14, 187-194.	9.0	125
242	Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production. Scientific Reports, 2017, 7, 7911.	1.6	27
243	Bioenergetics of Monoterpenoid Essential Oil Biosynthesis in Nonphotosynthetic Glandular Trichomes. Plant Physiology, 2017, 175, 681-695.	2.3	23
244	PaperBLAST: Text Mining Papers for Information about Homologs. MSystems, 2017, 2, .	1.7	107
246	Genomics and Functional Genomics in Chlamydomonas reinhardtii. Microbiology Monographs, 2017, , 1-26.	0.3	4
247	Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study. Frontiers in Plant Science, 2017, 8, 1831.	1.7	7
248	Functional classification of protein structures by local structure matching in graph representation. Protein Science, 2018, 27, 1125-1135.	3.1	8
249	Classifying nitrilases as aliphatic and aromatic using machine learning technique. 3 Biotech, 2018, 8, 68.	1.1	2
250	MgtE Homolog Ficl Acts as a Secondary Ferrous Iron Importer in Shewanella oneidensis Strain MR-1. Applied and Environmental Microbiology, 2018, 84, .	1.4	11

#	Article	IF	CITATIONS
251	PANDA: Protein function prediction using domain architecture and affinity propagation. Scientific Reports, 2018, 8, 3484.	1.6	14
252	Biochemical control systems for small molecule damage in plants. Plant Signaling and Behavior, 2018, 13, e1477906.	1.2	7
253	The Resistome of Low-Impacted Marine Environments Is Composed by Distant Metallo-β-Lactamases Homologs. Frontiers in Microbiology, 2018, 9, 677.	1.5	8
254	Assessing the Performances of Protein Function Prediction Algorithms from the Perspectives of Identification Accuracy and False Discovery Rate. International Journal of Molecular Sciences, 2018, 19, 183.	1.8	35
255	New computational approaches to understanding molecular protein function. PLoS Computational Biology, 2018, 14, e1005756.	1.5	11
256	Effusion: prediction of protein function from sequence similarity networks. Bioinformatics, 2019, 35, 442-451.	1.8	12
257	Alignment-Free Method to Predict Enzyme Classes and Subclasses. International Journal of Molecular Sciences, 2019, 20, 5389.	1.8	19
258	Solving a new R2lox protein structure by microcrystal electron diffraction. Science Advances, 2019, 5, eaax4621.	4.7	65
259	Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nature Methods, 2019, 16, 603-606.	9.0	262
260	Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. Journal of Global Antimicrobial Resistance, 2019, 19, 320-327.	0.9	6
261	PTML Model of Enzyme Subclasses for Mining the Proteome of Biofuel Producing Microorganisms. Journal of Proteome Research, 2019, 18, 2735-2746.	1.8	29
262	Comparative and Functional Algal Genomics. Annual Review of Plant Biology, 2019, 70, 605-638.	8.6	76
263	Curated BLAST for Genomes. MSystems, 2019, 4, .	1.7	13
264	The number and type of oxygen-utilizing enzymes indicates aerobic vs. anaerobic phenotype. Free Radical Biology and Medicine, 2019, 140, 84-92.	1.3	13
265	The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 467-483.	2.3	5
266	Targeting Parasite-Produced Macrophage Migration Inhibitory Factor as an Antivirulence Strategy With Antibiotic–Antibody Combination to Reduce Tissue Damage. Journal of Infectious Diseases, 2020, 221, 1185-1193.	1.9	11
267	The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nature Communications, 2020, 11, 79.	5.8	55
268	GapMind: Automated Annotation of Amino Acid Biosynthesis. MSystems, 2020, 5, .	1.7	40

#	Article	IF	CITATIONS
269	Photosynthetic protein classification using genome neighborhood-based machine learning feature. Scientific Reports, 2020, 10, 7108.	1.6	8
270	A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	5
271	Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie, 2020, 176, 103-109.	1.3	15
272	Modeling Plant Metabolism: From Network Reconstruction to Mechanistic Models. Annual Review of Plant Biology, 2020, 71, 303-326.	8.6	27
273	DeEPn: a deep neural network based tool for enzyme functional annotation. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2733-2743.	2.0	8
274	Advances in Protein Chemistry and Structural Biology. Advances in Protein Chemistry and Structural Biology, 2021, , i.	1.0	4
275	Reconstruction and analysis of a genomeâ€scale metabolic model for <i>Agrobacterium tumefaciens</i> . Molecular Plant Pathology, 2021, 22, 348-360.	2.0	5
276	QAUST: Protein Function Prediction Using Structure Similarity, Protein Interaction, and Functional Motifs. Genomics, Proteomics and Bioinformatics, 2021, 19, 998-1011.	3.0	14
277	Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 2021, 22, 64.	3.8	73
279	Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639573.	1.8	10
280	Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction. Scientific Reports, 2021, 11, 7574.	1.6	19
281	Phylogenetic and Structural Analysis of NIN-Like Proteins With a Type I/II PB1 Domain That Regulates Oligomerization for Nitrate Response. Frontiers in Plant Science, 2021, 12, 672035.	1.7	7
282	Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome, 2021, 9, 119.	4.9	479
285	Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics, 2021, 22, 562.	1.2	13
286	Next-Generation Sequencing Analysis of the Tineola bisselliella Larval Gut Transcriptome Reveals Candidate Enzymes for Keratin Digestion. Genes, 2021, 12, 1113.	1.0	3
287	The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Frontiers in Genetics, 2021, 12, 641817.	1.1	8
288	In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp Brazilian Journal of Microbiology, 2021, 52, 1897-1911.	0.8	8
289	Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathogens, 2021, 17, e1009801.	2.1	16

#	Article	lF	CITATIONS
290	Genomic and molecular evidence reveals novel pathways associated with cell surface polysaccharides in bacteria. FEMS Microbiology Ecology, 2021, 97, .	1.3	1
291	Cholesterol-to-Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect, and Ignore. Microorganisms, 2021, 9, 1881.	1.6	39
292	The impact of genetic diversity on gene essentiality within the Escherichia coli species. Nature Microbiology, 2021, 6, 301-312.	5.9	76
293	Function Diversity Within Folds and Superfamilies. , 2009, , 143-166.		3
295	Protein Function Prediction Based on Patterns in Biological Networks. , 2008, , 197-213.		19
297	Computational Protein Function Prediction: Framework and Challenges. , 2011, , 1-17.		8
298	Predicting Gene Function Using Omics Data: From Data Preparation to Data Integration. , 2011, , 215-242.		3
300	3D Motifs. , 2017, , 361-392.		7
301	Function Diversity Within Folds and Superfamilies. , 2017, , 295-325.		3
307	Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering. PLoS Computational Biology, 2016, 12, e1005001.	1.5	7
308	Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology. PLoS ONE, 2009, 4, e4619.	1.1	33
309	The Relationship between Gene Isoform Multiplicity, Number of Exons and Protein Divergence. PLoS ONE, 2013, 8, e72742.	1.1	5
310	Identification of Divergent Protein Domains by Combining HMM-HMM Comparisons and Co-Occurrence Detection. PLoS ONE, 2014, 9, e95275.	1.1	6
311	Homology Modeling: an Overview of Fundamentals and Tools. International Review on Modelling and Simulations, 2017, 10, 129.	0.2	11
312	Prediction of Enzyme Subfamily Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad Feature. Protein and Peptide Letters, 2010, 17, 1441-1449.	0.4	62
313	Computational RNA Structure Prediction. Current Bioinformatics, 2008, 3, 32-45.	0.7	37
314	Computational Approaches for Automated Classification of Enzyme Sequences. Journal of Proteomics and Bioinformatics, 2011, 04, 147-152.	0.4	12
315	Molecular function limits divergent protein evolution on planetary timescales. ELife, 2019, 8, .	2.8	25

#	Article	IF	CITATIONS
316	Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends. MBio, 2021, 12, e0215521.	1.8	51
317	Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets and Homology Models. PLoS Computational Biology, 2005, preprint, e31.	1.5	0
318	An Empirical Evaluation of the Effectiveness of Different Types of Predictor Attributes in Protein Function Prediction. Studies in Computational Intelligence, 2009, , 339-357.	0.7	0
319	Statistics and Bioinformatics Ethnicity. Journal of Bacteriology & Parasitology, 2011, 4, .	0.2	0
320	The Gene Flow between Plasmids and Chromosomes: Insights from Bioinformatics Analyses. The Open Applied Informatics Journal, 2011, 5, 62-76.	1.0	1
321	Clobal Sequence Homology Detection Using Word Conservation Probability. Interdisciplinary Bio Central, 2011, 3, 1-9.	0.1	0
325	Gene Regulatory Networks: Current Updates and Applications in Plant Biology. Energy, Environment, and Sustainability, 2019, , 395-417.	0.6	2
327	Conserved Peptides Recognition by Ensemble of Neural Networks for Mining Protein Data – LPMO Case Study. Mathematical Biology and Bioinformatics, 2020, 15, 429-440.	0.1	0
328	Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases. PLoS Computational Biology, 2020, 16, e1007988.	1.5	7
332	The Crystal Structure of Cysteamine Dioxygenase Reveals the Origin of the Large Substrate Scope of This Vital Mammalian Enzyme. Biochemistry, 2021, 60, 3728-3737.	1.2	10
333	Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation. Biochemistry, 2022, , .	1.2	1
334	Identification and functional characterization of multiple inositol polyphosphate phosphatase1 (Minpp1) isoform-2 in exosomes with potential to modulate tumor microenvironment. PLoS ONE, 2022, 17, e0264451.	1.1	4
335	Expression and structure of the <i>Chlamydia trachomatis</i> DksA ortholog. Pathogens and Disease, 2022, 80, .	0.8	2
336	Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics, 2021, 22, 894.	1.2	11
344	Genome analysis and phenotypic characterization of Halomonas hibernica isolated from a traditional food process with novel quorum quenching and catalase activities. Microbiology (United Kingdom), 2022, 168, .	0.7	0
345	Valorization of Biomasses from Energy Crops for the Discovery of Novel Thermophilic Glycoside Hydrolases through Metagenomic Analysis. International Journal of Molecular Sciences, 2022, 23, 10505.	1.8	3
347	<scp>COLLAPSE</scp> : A representation learning framework for identification and characterization of protein structural sites. Protein Science, 2023, 32, .	3.1	4