Glucagon-like Peptide-1 Receptor Signaling Modulates

Journal of Biological Chemistry 278, 471-478 DOI: 10.1074/jbc.m209423200

Citation Report

#	Article	IF	CITATIONS
1	Haeme-oxygenase 1 expression in rat pancreatic beta cells is stimulated by supraphysiological glucose concentrations and by cyclic AMP. Diabetologia, 2003, 46, 1234-1244.	2.9	51
2	GLP-1 derivative liraglutide in rats with β -cell deficiencies: influence of metabolic state on β -cell mass dynamics. British Journal of Pharmacology, 2003, 140, 123-132.	2.7	179
3	Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene1 1The authors thank Emmy De Blay and Luc Bouwens for generous assistance with islet immunohistochemistry Gastroenterology, 2003, 125, 1164-1174.	0.6	29
4	The glucagon-like peptides: a double-edged therapeutic sword?. Trends in Pharmacological Sciences, 2003, 24, 377-383.	4.0	102
5	Enhancing Incretin Action for the Treatment of Type 2 Diabetes. Diabetes Care, 2003, 26, 2929-2940.	4.3	510
6	Neonatal Exendin-4 Prevents the Development of Diabetes in the Intrauterine Growth Retarded Rat. Diabetes, 2003, 52, 734-740.	0.3	255
7	Glucagon-Like Peptide 1 Inhibits Cell Apoptosis and Improves Glucose Responsiveness of Freshly Isolated Human Islets. Endocrinology, 2003, 144, 5149-5158.	1.4	593
8	International Union of Pharmacology. XXXV. The Glucagon Receptor Family. Pharmacological Reviews, 2003, 55, 167-194.	7.1	460
9	Glucagon-Like Peptide-1 and the Islet \hat{l}^2 -Cell: Augmentation of Cell Proliferation and Inhibition of Apoptosis. Endocrinology, 2003, 144, 5145-5148.	1.4	258
10	Glucagon-Like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in the Treatment of Diabetes Mellitus. Current Medicinal Chemistry, 2003, 10, 2471-2483.	1.2	125
11	Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 461-468.	1.3	22
12	Title is missing!. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 461-468.	1.3	5
13	Insulin-Producing Cells Derived from Embryonic Stem Cells: A Potential Treatment for Diabetes. , 2004, , 723-729.		2
14	New Insights Concerning the Clucose-dependent Insulin Secretagogue Action of Glucagon-like Peptide-1 in Pancreatic I ² -Cells. Hormone and Metabolic Research, 2004, 36, 787-794.	0.7	60
15	Gene-Altered Islets for Transplant: Giant Leap or Small Step?. Endocrinology, 2004, 145, 463-466.	1.4	11
16	Impaired Glucose-Stimulated Insulin Secretion, Enhanced Intraperitoneal Insulin Tolerance, and Increased β-Cell Mass in Mice Lacking the p110γ Isoform of Phosphoinositide 3-Kinase. Endocrinology, 2004, 145, 4078-4083.	1.4	47
17	Glucagon-like peptide 1 agonists and the development and growth of pancreatic Î ² -cells. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E875-E881.	1.8	85
18	Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E199-E206	1.8	518

ARTICLE IF CITATIONS # Minireview: Glucagon-Like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas, Gut, and 19 1.4 486 Central Nervous System. Endocrinology, 2004, 145, 2653-2659. Cure of Overt Diabetes in NOD Mice by Transient Treatment With Anti-Lymphocyte Serum and Exendin-4. 146 Diabetes, 2004, 53, 1700-1705. 21 Therapeutic Strategies Based on Glucagon-Like Peptide 1. Diabetes, 2004, 53, 2181-2189. 0.3 281 Phosphorylation of Mouse Glutamine-Fructose-6-phosphate Amidotransferase 2 (GFAT2) by cAMP-dependent Protein Kinase Increases the Enzyme Activity. Journal of Biological Chemistry, 2004, 279, 29988-29993. A Recombinant Human Glucagon-Like Peptide (GLP)-1-Albumin Protein (Albugon) Mimics Peptidergic Activation of GLP-1 Receptor-Dependent Pathways Coupled With Satiety, Gastrointestinal Motility, and 23 0.3 318 Glucose Homeostasis. Diabetes, 2004, 53, 2492-2500. Chronic Exposure to GLP-1R Agonists Promotes Homologous GLP-1 Receptor Desensitization In Vitro but Does Not Attenuate GLP-1R-Dependent Glucose Homeostasis In Vivo. Diabetes, 2004, 53, S205-S214. 0.3 Pancreatic \hat{l}^2 -cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the 25 1.8 149 Akt?. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E192-E198. Plasticity of the \hat{l}^2 cell insulin secretory competence: preparing the pancreatic \hat{l}^2 cell for the next meal. 1.3 26 Journal of Physiology, 2004, 558, 369-380. The major glucagon-like peptide-1 metabolite, GLP-1-(9–36)-amide, does not affect glucose or insulin 27 1.7 34 levels in mice. European Journal of Pharmacology, 2004, 494, 283-288. Prior in vitro exposure to GLP-1 with or without GIP can influence the subsequent beta cell responsiveness. Biochemical Pharmacology, 2004, 68, 33-39. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in 29 2.9 184 pancreatic INS-1 beta cells. Diabetologia, 2004, 47, 478-487. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. 366 Diabetologia, 2004, 47, 581-589. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia, 2004, 47, 806-815. $\mathbf{31}$ 2.9 300 What Impact Would Pancreatic Beta-cell Preservation Have on Life Expectancy, Quality-adjusted Life Expectancy and Costs of Complications in Patients with Type 2 Diabetes? A Projection Using the CORE Diabetes Model. Current Medical Research and Opinion, 2004, 20, S59-S66. 14 Double Incretin Receptor Knockout (DIRKO) Mice Reveal an Essential Role for the Enteroinsular Axis in 33 0.3 283 Transducing the Glucoregulatory Actions of DPP-IV Inhibitors. Diabetes, 2004, 53, 1326-1335. In Vivo and In Vitro Characterization of Insulin-Producing Cells Obtained From Murine Bone Marrow. 366 Diabetes, 2004, 53, 1721-1732. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy 35 320 0.6 expenditure. Gastroenterology, 2004, 127, 546-558. Clucagon-like peptide-1 and glucagon-like peptide-2. Best Practice and Research in Clinical 2.2 Endocrinology and Metabolism, 2004, 18, 531-554.

#	Article	IF	CITATIONS
37	Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes?. Expert Opinion on Investigational Drugs, 2004, 13, 1091-1102.	1.9	176
38	Treatment of Type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors. Expert Opinion on Emerging Drugs, 2004, 9, 155-166.	1.0	78
39	GLP-1 inhibition of pancreatic islet cell apoptosis. Trends in Endocrinology and Metabolism, 2004, 15, 27-33.	3.1	62
40	Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regulatory Peptides, 2004, 117, 77-88.	1.9	399
41	Can we make surrogate β-cells better than the original?. Seminars in Cell and Developmental Biology, 2004, 15, 347-357.	2.3	22
42	A Pentadecapeptide Fragment of Islet Neogenesis-Associated Protein Increases Beta-Cell Mass and Reverses Diabetes in C57BL/6J Mice. Annals of Surgery, 2004, 240, 875-884.	2.1	140
43	Relationships Between the Autonomic Nervous System and the Pancreas Including Regulation of Regeneration and Apoptosis. Pancreas, 2004, 29, e51-e58.	0.5	101
44	Glucagon-like peptide 1: evolution of an incretin into a treatment for diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E882-E890.	1.8	65
45	Proglucagon-Derived Peptides: Mechanisms of Action and Therapeutic Potential. Physiology, 2005, 20, 357-365.	1.6	72
46	Early Manifestations in Multiple-low-dose Streptozotocin-induced Diabetes in Mice. Pancreas, 2005, 30, 318-324.	0.5	25
47	Glucagon-like peptide 1 receptor agonists and dipeptidyl peptidase IV inhibitors: new therapeutic agents for the treatment of type 2 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2005, 12, 146-151.	0.6	38
48	Insulin Sensitizing and Insulinotropic Action of Berberine from Cortidis Rhizoma. Biological and Pharmaceutical Bulletin, 2005, 28, 1431-1437.	0.6	170
49	Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection. NeuroMolecular Medicine, 2005, 7, 003-036.	1.8	80
50	Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes/Metabolism Research and Reviews, 2005, 21, 91-117.	1.7	250
51	Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia, 2005, 48, 720-731.	2.9	68
52	Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia, 2005, 48, 1339-1349.	2.9	186
53	Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia, 2005, 48, 2074-2079.	2.9	78
54	Glucagon-like peptide 1 (GLP-1) and incretin mimetics for the treatment of diabetes. Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide, 2005, 22, 171-179.	0.2	8

#	Article	IF	CITATIONS
55	Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue. Journal of Endocrinology, 2005, 184, 505-513.	1.2	10
56	Pancreatic β-cells expressing GLP-1 are resistant to the toxic effects of immunosuppressive drugs. Journal of Molecular Endocrinology, 2005, 34, 377-390.	1.1	39
57	Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nature Clinical Practice Endocrinology and Metabolism, 2005, 1, 22-31.	2.9	200
58	Glucagon-like Peptide 1 Can Directly Protect the Heart Against Ischemia/Reperfusion Injury. Diabetes, 2005, 54, 146-151.	0.3	551
59	Â-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes, 2005, 54, 482-491.	0.3	213
60	Diabetes Outfoxed by GLP-1?. Science Signaling, 2005, 2005, pe2-pe2.	1.6	31
61	Investigational agents that protect pancreatic islet β-cells from failure. Expert Opinion on Investigational Drugs, 2005, 14, 1241-1250.	1.9	7
62	The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management. Expert Opinion on Investigational Drugs, 2005, 14, 705-727.	1.9	14
63	Regulation of Pancreatic Beta-Cell Mass. Physiological Reviews, 2005, 85, 1255-1270.	13.1	352
64	Mechanisms of Â-Cell Death in Type 2 Diabetes. Diabetes, 2005, 54, S108-S113.	0.3	397
65	The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits β-cell apoptosis in vitro. Biochemical and Biophysical Research Communications, 2005, 330, 577-584.	1.0	161
66	A randomized, open-label, crossover study examiningthe effect of injection site on bioavailability of exenatide (synthetic exendin-4). Clinical Therapeutics, 2005, 27, 210-215.	1.1	96
67	GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Regulatory Peptides, 2005, 128, 125-134.	1.9	161
68	Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regulatory Peptides, 2005, 125, 103-117.	1.9	51
69	Novel Pharmacologic Agents for Type 2 Diabetes. Endocrinology and Metabolism Clinics of North America, 2005, 34, 155-197.	1.2	43
70	Biology and therapeutic potential of GLP-1 in the treatment of diabetes. Drug Discovery Today Disease Mechanisms, 2005, 2, 295-301.	0.8	10
71	Therapeutic Approaches to Preserve Islet Mass in Type 2 Diabetes. Annual Review of Medicine, 2006, 57, 265-281.	5.0	135
72	Gastrointestinal Peptide Hormones Regulating Energy and Glucose Homeostasis. , 2006, , 161-181.		1

#	Article	IF	CITATIONS
73	Increased Pancreatic β-Cell Proliferation Mediated by CREB Binding Protein Gene Activation. Molecular and Cellular Biology, 2006, 26, 7747-7759.	1.1	79
74	The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, The, 2006, 368, 1696-1705.	6.3	3,287
75	Exendin-4 Uses Irs2 Signaling to Mediate Pancreatic β Cell Growth and Function. Journal of Biological Chemistry, 2006, 281, 1159-1168.	1.6	189
76	The biology of incretin hormones. Cell Metabolism, 2006, 3, 153-165.	7.2	1,824
77	GLP-1 receptor activation improves \hat{I}^2 cell function and survival following induction of endoplasmic reticulum stress. Cell Metabolism, 2006, 4, 391-406.	7.2	375
78	Exenatide inhibits β-cell apoptosis by decreasing thioredoxin-interacting protein. Biochemical and Biophysical Research Communications, 2006, 346, 1067-1074.	1.0	91
79	Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. International Journal of Biochemistry and Cell Biology, 2006, 38, 845-859.	1.2	85
80	GLP-1/exendin-4 facilitates β-cell neogenesis in rat and human pancreatic ducts. Diabetes Research and Clinical Practice, 2006, 73, 107-110.	1.1	102
81	Short administration of polyclonal anti-T cell antibody (ALS) in NOD mice with extensive insulitis prevents subsequent development of autoimmune diabetes. Journal of Autoimmunity, 2006, 26, 225-231.	3.0	27
82	Identification of transcriptional targets during pancreatic growth after partial pancreatectomy and exendin-4 treatment. Physiological Genomics, 2006, 24, 133-143.	1.0	46
83	Nutrient regulation of pancreatic β-cell function in diabetes: problems and potential solutions. Biochemical Society Transactions, 2006, 34, 774-778.	1.6	11
85	The Glucagon-Like Peptides: Pleiotropic Regulators of Nutrient Homeostasis. Annals of the New York Academy of Sciences, 2006, 1070, 10-26.	1.8	85
86	Exendin-4 treatment improves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes. Diabetologia, 2006, 49, 1247-1253.	2.9	37
87	GLP-1 based therapy for type 2 diabetes. European Journal of Pharmaceutical Sciences, 2006, 28, 96-108.	1.9	90
88	Drug Insight: new immunomodulatory therapies in type 1 diabetes. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 89-98.	2.9	9
89	Exenatide: a GLP-1 receptor agonist as novel therapy for Type 2 diabetes mellitus. Expert Opinion on Pharmacotherapy, 2006, 7, 1055-1064.	0.9	51
90	Glucagon and Glucagon-Like Peptide Receptors as Drug Targets. Current Pharmaceutical Design, 2006, 12, 1731-1750.	0.9	82
91	Emerging Therapies Mimicking the Effects of Amylin and Glucagon-Like Peptide 1. Diabetes Care, 2006, 29, 435-449.	4.3	103

#	Article	IF	CITATIONS
92	Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1 (GLP-1). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13468-13473.	3.3	92
93	Dexamethasone Induces Cell Death in Insulin-Secreting Cells, an Effect Reversed by Exendin-4. Diabetes, 2006, 55, 1380-1390.	0.3	163
94	Formulary Forum: Exenatide: A New Option for the Treatment of Type 2 Diabetes. Annals of Pharmacotherapy, 2006, 40, 1777-1784.	0.9	32
95	Activation of Glucagon-Like Peptide-1 Receptor Signaling Does Not Modify the Growth or Apoptosis of Human Pancreatic Cancer Cells. Diabetes, 2006, 55, 1369-1379.	0.3	52
96	Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic Â-Cell Fate. Diabetes, 2006, 55, 290-296.	0.3	112
97	Transcription Factor FoxO1 Mediates Glucagon-Like Peptide-1 Effects on Pancreatic Â-Cell Mass. Diabetes, 2006, 55, 1190-1196.	0.3	160
98	A Switch From Prohormone Convertase (PC)-2 to PC1/3 Expression in Transplanted α-Cells Is Accompanied by Differential Processing of Proglucagon and Improved Glucose Homeostasis in Mice. Diabetes, 2007, 56, 2744-2752.	0.3	63
99	Lower Insulin Secretory Response to Glucose Induced by Artificial Nutrition in Children: Prolonged and Total Parenteral Nutrition. Pediatric Research, 2007, 62, 624-629.	1.1	10
100	Dipeptidyl Peptidase-IV Inhibitors: An Evolving Treatment for Type 2 Diabetes from the Incretin Concept. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2007, 1, 15-24.	0.7	26
101	Exendin-4 Improves Reversal of Diabetes in NOD Mice Treated with Anti-CD3 Monoclonal Antibody by Enhancing Recovery of β-Cells. Endocrinology, 2007, 148, 5136-5144.	1.4	161
102	β-Cell Failure in Diabetes and Preservation by Clinical Treatment. Endocrine Reviews, 2007, 28, 187-218.	8.9	624
103	Glucagon-Like Peptide 1 and Type 1 Diabetes: NOD Ready for Prime Time?. Endocrinology, 2007, 148, 5133-5135.	1.4	8
104	Neonatal Pig Liver–Derived Progenitors for Insulin-Producing Cells: An <i>In Vitro</i> Study. Tissue Engineering, 2007, 13, 2923-2931.	4.9	6
105	Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4Â. Genes and Development, 2007, 21, 756-769.	2.7	145
107	Incretins and their role in the management of diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2007, 14, 269-276.	1.2	22
108	Transient Beneficial Effects of Exendin-4 Treatment on the Function of Microencapsulated Mouse Pancreatic Islets. Cell Transplantation, 2007, 16, 15-22.	1.2	15
109	Growth and Regeneration of Adult \hat{I}^2 Cells Does Not Involve Specialized Progenitors. Developmental Cell, 2007, 12, 817-826.	3.1	526
110	β-Cell preservation with thiazolidinediones. Diabetes Research and Clinical Practice, 2007, 76, 163-176.	1.1	53

#	Article	IF	CITATIONS
111	Exploiting the pleiotropic actions of GLP-1 for the management of type 2 diabetes mellitus and its complications. Diabetes Research and Clinical Practice, 2007, 78, S59-S67.	1.1	8
112	Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sciences, 2007, 81, 272-279.	2.0	68
113	Dendritic cell–expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. Journal of Experimental Medicine, 2007, 204, 191-201.	4.2	305
114	The Physiology of Glucagon-like Peptide 1. Physiological Reviews, 2007, 87, 1409-1439.	13.1	2,504
117	Biology of Incretins: GLP-1 and GIP. Gastroenterology, 2007, 132, 2131-2157.	0.6	2,918
118	Models for pharmacological activation of beta-cell regeneration in diabetes. Drug Discovery Today: Disease Models, 2007, 4, 31-38.	1.2	3
119	The lean patient with type 2 diabetes: characteristics and therapy challenge. International Journal of Clinical Practice, 2007, 61, 3-9.	0.8	26
120	The importance of Î ² -cell management in type 2 diabetes. International Journal of Clinical Practice, 2007, 61, 10-19.	0.8	29
121	Mechanisms of action of glucagon-like peptide 1 in the pancreas. , 2007, 113, 546-593.		561
122	Continuous stimulation of human glucagon-like peptide-1 (7–36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia, 2007, 50, 1900-1909.	2.9	71
123	Glucagon-like Peptide-1 (GLP-1) Diminishes Neuronal Degeneration and Death Caused by NGF Deprivation by Suppressing Bim Induction. Neurochemical Research, 2008, 33, 1845-1851.	1.6	53
124	Preparation and characterization of a novel exendinâ€4 human serum albumin fusion protein expressed in <i>Pichia pastoris</i> . Journal of Peptide Science, 2008, 14, 588-595.	0.8	33
125	GLPâ€1 <i>C</i> â€ŧerminal structures affect its blood glucose loweringâ€function. Journal of Peptide Science, 2008, 14, 777-785.	0.8	5
126	Peptide hormone exendinâ€4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson's disease. Journal of Neuroscience Research, 2008, 86, 326-338.	1.3	282
127	Regenerative Medicine and Stem Cell Based Drug Discovery. Angewandte Chemie - International Edition, 2008, 47, 5718-5738.	7.2	36
129	Islet Inflammation in Type 2 Diabetes. Diabetes Care, 2008, 31, S161-S164.	4.3	286
130	(<i>R</i>)-8-(3-Amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2 (BI 1356), a Novel Xanthine-Based Dipeptidyl Peptidase 4 Inhibitor, Has a Superior Potency and Longer Duration of Action Compared with Other Dipeptidyl Peptidase-4 Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 175-182	2,6-dione 1.3	260
131	Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells. British Journal of Pharmacology, 2008, 155, 1056-1065.	2.7	94

#	Article	IF	CITATIONS
132	New potential treatments for protection of pancreatic B ell function in TypeÂ1 diabetes. Diabetic Medicine, 2008, 25, 1259-1267.	1.2	21
133	Commonalities of genetic resistance to spontaneous autoimmune and free radical-mediated diabetes. Free Radical Biology and Medicine, 2008, 45, 1263-1270.	1.3	18
134	Improving Insulin Sensitivity: A Review of New Therapies. Clinical Cornerstone, 2008, 9, S28-S38.	1.0	0
135	Avances en el tratamiento de la diabetes mellitus tipo 2 y la enfermedad cardiovascular. Revista Espanola De Cardiologia Suplementos, 2008, 8, 62C-72C.	0.2	1
136	Islet Transplantation for Brittle Type 1 Diabetes: The UIC Protocol. American Journal of Transplantation, 2008, 8, 1250-1261.	2.6	160
137	Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease. Journal of Neuroinflammation, 2008, 5, 19.	3.1	230
138	An Albumin-Exendin-4 Conjugate Engages Central and Peripheral Circuits Regulating Murine Energy and Glucose Homeostasis. Gastroenterology, 2008, 134, 1137-1147.	0.6	119
139	Glucagon Receptor Signaling Is Essential for Control of Murine Hepatocyte Survival. Gastroenterology, 2008, 135, 2096-2106.	0.6	51
140	Exendin-4 Does Not Promote Beta-Cell Proliferation or Survival During the Early Post-Islet Transplant Period in Mice. Transplantation Proceedings, 2008, 40, 1650-1657.	0.3	11
141	Preservation of Î ² -cell function by targeting Î ² -cell mass. Trends in Pharmacological Sciences, 2008, 29, 218-227.	4.0	64
142	GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis. Biochemical and Biophysical Research Communications, 2008, 367, 793-798.	1.0	35
143	The incretins: From the concept to their use in the treatment of typeÂ2 diabetes. Part A: Incretins: Concept and physiological functions. Diabetes and Metabolism, 2008, 34, 550-559.	1.4	65
144	Beta-cell replacement and regeneration: Strategies of cell-based therapy for type 1 diabetes mellitus. Diabetes Research and Clinical Practice, 2008, 79, 389-399.	1.1	44
145	β-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes and Metabolism, 2008, 34, S56-S64.	1.4	72
146	GLP-1 receptor signaling: effects on pancreatic \hat{I}^2 -cell proliferation and survival. Diabetes and Metabolism, 2008, 34, S73-S77.	1.4	118
147	Preventing Type 2 Diabetes. Primary Care - Clinics in Office Practice, 2008, 35, 645-662.	0.7	5
148	Analisi di costo-efficacia di exenatide versus insulina glargine nel trattamento dei pazienti diabetici di tipo 2 in fallimento secondario al doppio ipoglicemizzante orale. Giornale Italiano Di Health Technology Assessment, 2008, 1, 21-30.	0.1	2
149	The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacological Reviews, 2008, 60, 470-512.	7.1	681

#	Article	IF	CITATIONS
150	Exendin-4 Protects β-Cells From Interleukin-1β–Induced Apoptosis by Interfering With the c-Jun NH2-Terminal Kinase Pathway. Diabetes, 2008, 57, 1205-1215.	0.3	134
151	Suppressive effects of glucagon-like peptide-1 on interferon-γ-induced nitric oxide production in insulinproducing cells is mediated by inhibition of tumor necrosis factor-α production. Journal of Endocrinological Investigation, 2008, 31, 334-340.	1.8	4
152	In the Italian population sexual dimorphism affects pre-natal thyroid migration but not biochemical severity of gland ectopia and pre-natal bone maturation. Journal of Endocrinological Investigation, 2008, 31, 341-345.	1.8	3
153	Unmet needs among patients with Type 2 diabetes and secondary failure to oral anti-diabetic agents. Journal of Endocrinological Investigation, 2008, 31, 371-379.	1.8	15
154	Chronic Glucagon-Like Peptide-1 Infusion Sustains Left Ventricular Systolic Function and Prolongs Survival in the Spontaneously Hypertensive, Heart Failure–Prone Rat. Circulation: Heart Failure, 2008, 1, 153-160.	1.6	156
155	Sitagliptin: A novel agent for the management of type 2 diabetes mellitus. American Journal of Health-System Pharmacy, 2008, 65, 521-531.	0.5	18
156	Insulin Action in the Double Incretin Receptor Knockout Mouse. Diabetes, 2008, 57, 288-297.	0.3	31
157	Protein Engineering Strategies for Sustained Glucagon-Like Peptide-1 Receptor-Dependent Control of Glucose Homeostasis. Diabetes, 2008, 57, 1926-1934.	0.3	56
158	Incretin-Based Therapies in Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3703-3716.	1.8	175
159	Targeting β-Cell Mass in Type 2 Diabetes: Promise and Limitations of New Drugs Based on Incretins. Endocrine Reviews, 2008, 29, 367-379.	8.9	89
160	Preserving insulin secretion in Type 2 diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2008, 3, 147-159.	1.2	5
161	Pax6 and Pdx1 are required for production of glucose-dependent insulinotropic polypeptide in proglucagon-expressing L cells. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E648-E657.	1.8	44
162	Glucagon-like Peptide-1 Activation of TCF7L2-dependent Wnt Signaling Enhances Pancreatic Beta Cell Proliferation. Journal of Biological Chemistry, 2008, 283, 8723-8735.	1.6	272
163	Combination Therapy With Glucagon-Like Peptide-1 and Gastrin Restores Normoglycemia in Diabetic NOD Mice. Diabetes, 2008, 57, 3281-3288.	0.3	169
164	Mechanisms of Beta-Cell Death in Diabetes. , 2008, , 75-89.		1
165	Cytokines and β-Cell Biology: from Concept to Clinical Translation. Endocrine Reviews, 2008, 29, 334-350.	8.9	201
166	Durable islet effects on insulin secretion and protein kinase A expression following exendin-4 treatment of high-fat diet-fed mice. Journal of Molecular Endocrinology, 2008, 40, 93-100.	1.1	7
167	Cardioprotective and Vasodilatory Actions of Glucagon-Like Peptide 1 Receptor Are Mediated Through Both Glucagon-Like Peptide 1 Receptor–Dependent and –Independent Pathways. Circulation, 2008, 117, 2340-2350.	1.6	885

#	Article	IF	CITATIONS
168	Enhanced Protection against Cytokine- and Fatty Acid-induced Apoptosis in Pancreatic Beta Cells by Combined Treatment with Glucagon-like Peptide-1 Receptor Agonists and Insulin Analogues. Hormone and Metabolic Research, 2008, 40, 172-180.	0.7	39
169	Exendin-4 Modulates Diabetes Onset in Nonobese Diabetic Mice. Endocrinology, 2008, 149, 1338-1349.	1.4	99
170	The Glucagon-Like Peptide-1 Receptor Agonist Oxyntomodulin Enhances β-Cell Function but Does Not Inhibit Gastric Emptying in Mice. Endocrinology, 2008, 149, 5670-5678.	1.4	89
171	The Use of Exenatide in Islet Transplant Recipients with Chronic Allograft Dysfunction: Safety, Efficacy, and Metabolic Effects. Transplantation, 2008, 86, 36-45.	0.5	81
172	Exendin-4 Treatment Expands Graft β-Cell Mass in Diabetic Mice Transplanted with a Marginal Number of Fresh Islets. Cell Transplantation, 2008, 17, 641-647.	1.2	19
173	New Agents in the Management of Type 2 Diabetes: Do They Provide an Opportunity for a Shift in the Treatment Paradigm?. Journal of Managed Care Pharmacy, 2008, 14, 650-654.	2.2	1
174	Therapeutic approaches based on beta-cell mass preservation and/or regeneration. Frontiers in Bioscience - Landmark, 2009, Volume, 1835.	3.0	17
175	Age-Dependent Decline in β-Cell Proliferation Restricts the Capacity of β-Cell Regeneration in Mice. Diabetes, 2009, 58, 1312-1320.	0.3	301
176	Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E415-E421.	1.8	112
177	GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1285-1290.	3.3	483
178	Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease. Journal of Endocrinology, 2009, 202, 431-439.	1.2	223
179	Impact of Sitagliptin on Markers of β-cell Function: A Meta-Analysis. American Journal of the Medical Sciences, 2009, 337, 321-328.	0.4	36
180	New Therapeutic Agents for Diabetes Mellitus: Implications for Anesthetic Management. Anesthesia and Analgesia, 2009, 108, 1803-1810.	1.1	12
181	Antidiabetic effects of dipeptidyl peptidase–IV inhibitors and sulfonylureas in streptozotocin-nicotinamide–induced mildly diabetic mice. Metabolism: Clinical and Experimental, 2009, 58, 379-386.	1.5	15
182	Novel therapeutics for type 2 diabetes: Incretin hormone mimetics (glucagon-like peptide-1 receptor) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Ti 169
183	Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes/Metabolism Research and Reviews, 2009, 25, 163-184.	1.7	24
184	Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. Journal of Pharmaceutical Sciences, 2009, 98, 1556-1567.	1.6	32

185	GLP-1 agonist-based therapies: An emerging new class of antidiabetic drug with potential cardioprotective effects. Current Atherosclerosis Reports, 2009, 11, 93-99.	2.0	24
-----	--	-----	----

#	Article	IF	CITATIONS
186	Do Incretins Play a Role in the Remission of Type 2 Diabetes after Gastric Bypass Surgery: What are the Evidence?. Obesity Surgery, 2009, 19, 217-229.	1.1	116
187	lleal Interposition Improves Glucose Tolerance in Low Dose Streptozotocin-treated Diabetic and Euglycemic Rats. Obesity Surgery, 2009, 19, 96-104.	1.1	83
188	Longâ€ŧerm exendinâ€4 treatment delays natural deterioration of glycaemic control in diabetic Goto–Kakizaki rats. Diabetes, Obesity and Metabolism, 2009, 11, 884-890.	2.2	8
189	The effects of glucagonâ€like peptideâ€1 on the beta cell. Diabetes, Obesity and Metabolism, 2009, 11, 11-18.	2.2	98
190	Pharmacokinetic and pharmacodynamic properties of taspoglutide, a onceâ€weekly, human GLPâ€1 analogue, after singleâ€dose administration in patients with Type 2 diabetes. Diabetic Medicine, 2009, 26, 1156-1164.	1.2	31
191	Adaptive Î ² -Cell Proliferation Is Severely Restricted With Advanced Age. Diabetes, 2009, 58, 1365-1372.	0.3	291
192	GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice. Diabetes, 2009, 58, 975-983.	0.3	491
193	Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochemical and Biophysical Research Communications, 2009, 390, 809-814.	1.0	52
194	Chapter 15 Glucoseâ€Đependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitamins and Hormones, 2009, 80, 409-471.	0.7	144
195	Differential Importance of Glucose-Dependent Insulinotropic Polypeptide vs Glucagon-Like Peptide 1 Receptor Signaling for Beta Cell Survival in Mice. Gastroenterology, 2009, 137, 2146-2157.	0.6	74
196	The Incretins and β-Cell Health: Contrasting Glucose-Dependent Insulinotropic Polypeptide and Glucagon-Like Peptide-1 as a Path to Understand Islet Function in Diabetes. Gastroenterology, 2009, 137, 1891-1894.	0.6	5
197	Exendin-4 exerts its effects through the NCF/p75 ^{NTR} system in diabetic mouse pancreas. Biochemistry and Cell Biology, 2009, 87, 641-651.	0.9	20
198	Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin—based therapies. Journal of the American Society of Hypertension, 2009, 3, 245-259.	2.3	63
199	Appropriate, timely, and rational treatment of type 2 diabetes mellitus: Meeting the challenges of primary care. Insulin, 2009, 4, 144-157.	0.2	4
200	Does glucagon-like peptide-1 receptor agonist therapy add value in the treatment of type 2 diabetes? Focus on exenatide. Diabetes Research and Clinical Practice, 2009, 86, S26-S34.	1.1	22
201	Exendin-4 Potentiates Insulinotropic Action Partly via Increasing β-Cell Proliferation and Neogenesis and Decreasing Apoptosis in Association With the Attenuation of Endoplasmic Reticulum Stress in Islets of Diabetic Rats. Journal of Pharmacological Sciences, 2009, 111, 361-371.	1.1	45
202	Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases. Behavioural Pharmacology, 2010, 21, 394-408.	0.8	51
204	Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E634-E643.	1.8	102

C	D
(ITATION	REDUBT
	ILLI OKT

#	Article	IF	CITATIONS
205	Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia, 2010, 53, 730-740.	2.9	111
206	Exendin-4 treatment of nonobese diabetic mice increases beta-cell proliferation and fractional insulin reactive area. Journal of Diabetes and Its Complications, 2010, 24, 163-167.	1.2	20
207	Diabetes as a disease of endoplasmic reticulum stress. Diabetes/Metabolism Research and Reviews, 2010, 26, 611-621.	1.7	55
208	Glucagon-like peptide analogues for type 2 diabetes mellitus: systematic review and meta-analysis. BMC Endocrine Disorders, 2010, 10, 20.	0.9	77
209	Glucagonâ€like peptide 1 receptor stimulation as a means of neuroprotection. British Journal of Pharmacology, 2010, 159, 495-501.	2.7	107
210	Enhancing the GLPâ€1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. Journal of Neurochemistry, 2010, 113, 1621-1631.	2.1	111
211	Doseâ€dependent effects of the onceâ€daily GLPâ€1 receptor agonist lixisenatide in patients with Type 2 diabetes inadequately controlled with metformin: a randomized, doubleâ€blind, placeboâ€controlled trial. Diabetic Medicine, 2010, 27, 1024-1032.	1.2	138
212	Treatment of diabetes with glucagon-like peptide-1 gene therapy. Expert Opinion on Biological Therapy, 2010, 10, 1681-1692.	1.4	11
213	GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 1205-1219.	1.2	273
214	Gastrointestinal hormones and the regulation of βâ€cell mass. Annals of the New York Academy of Sciences, 2010, 1212, 41-58.	1.8	56
215	Liganded Thyroid Hormone Receptor-α Enhances Proliferation of Pancreatic β-Cells. Journal of Biological Chemistry, 2010, 285, 24477-24486.	1.6	55
216	Cholecystokinin Is Up-Regulated in Obese Mouse Islets and Expands β-Cell Mass by Increasing β-Cell Survival. Endocrinology, 2010, 151, 3577-3588.	1.4	58
217	Dreams for Type 1 Diabetes: Shutting Off Autoimmunity and Stimulating β-Cell Regeneration. Endocrinology, 2010, 151, 2971-2973.	1.4	11
218	Reversible Hyperinsulinemic Hypoglycemia after Gastric Bypass: A Consequence of Altered Nutrient Delivery. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1851-1855.	1.8	170
219	Exendin-4 Prevents c-Jun N-Terminal Protein Kinase Activation by Tumor Necrosis Factor-α (TNFα) and Inhibits TNFα-Induced Apoptosis in Insulin-Secreting Cells. Endocrinology, 2010, 151, 2019-2029.	1.4	56
220	Type 2 Diabetes: An Expanded View of Pathophysiology and Therapy. Postgraduate Medicine, 2010, 122, 145-157.	0.9	35
221	Pleiotropic Actions of the Incretin Hormones. Vitamins and Hormones, 2010, 84, 21-79.	0.7	40
222	Clinical Approaches to Preserve β-Cell Function in Diabetes. Advances in Experimental Medicine and Biology, 2010, 654, 515-535.	0.8	34

#	Article	IF	CITATIONS
223	Glucagon-Like Peptide-2 Receptor Modulates Islet Adaptation to Metabolic Stress in the ob/ob Mouse. Gastroenterology, 2010, 139, 857-868.	0.6	38
224	Chronic treatment of exendin-4 affects cell proliferation and neuroblast differentiation in the adult mouse hippocampal dentate gyrus. Neuroscience Letters, 2010, 486, 38-42.	1.0	29
225	AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochemical and Biophysical Research Communications, 2010, 400, 745-751.	1.0	51
226	Liraglutide, but not vildagliptin, restores normoglycaemia and insulin content in the animal model of type 2 diabetes, Psammomys obesus. Regulatory Peptides, 2010, 160, 106-114.	1.9	12
227	Combination treatment of <i>db/db</i> mice with exendinâ€4 and gastrin preserves βâ€cell mass by stimulating βâ€cell growth and differentiation. Journal of Diabetes Investigation, 2010, 1, 172-183.	1.1	17
228	Neuroprotective properties of GLP-1: theoretical and practical applications. Current Medical Research and Opinion, 2011, 27, 547-558.	0.9	125
229	Glucagon-like peptide analogues for type 2 diabetes mellitus. The Cochrane Library, 2011, , CD006423.	1.5	135
230	A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. Diabetes Research and Clinical Practice, 2011, 91, 72-79.	1.1	46
231	Single Dose GLP-1-Tf Ameliorates Myocardial Ischemia/Reperfusion Injury. Journal of Surgical Research, 2011, 165, 38-45.	0.8	46
232	GLP-1 receptor agonist attenuates endoplasmic reticulum stress-mediated β-cell damage in Akita mice. Journal of Diabetes Investigation, 2011, 2, 104-110.	1.1	16
233	Improved glycemic control and reduced bodyweight with exenatide: A double-blind, randomized, phase 3 study in Japanese patients with suboptimally controlled type 2 diabetes over 24 weeks. Journal of Diabetes Investigation, 2011, 2, 210-217.	1.1	44
234	Glucagon-like peptide-1 analog liraglutide in combination with sulfonylurea safely improves blood glucose measures vs sulfonylurea monotherapy in Japanese patients with type 2 diabetes: Results of a 52-week, randomized, multicenter trial. Journal of Diabetes Investigation, 2011, 2, 280-286.	1.1	27
235	GLP-1 signaling and the regulation of pancreatic β-cells mass/function. Avances En DiabetologÃa, 2011, 27, 3-8.	0.1	3
236	Incretin effect: CLP-1, CIP, DPP4. Diabetes Research and Clinical Practice, 2011, 93, S32-S36.	1.1	72
237	Glucolipotoxicity and beta cells in type 2 diabetes mellitus: Target for durable therapy?. Diabetes Research and Clinical Practice, 2011, 93, S37-S46.	1.1	63
238	GLP-1, the Gut-Brain, and Brain-Periphery Axes. Review of Diabetic Studies, 2011, 8, 418-431.	0.5	66
239	Understanding the Cardiovascular Effects of Incretin. Diabetes and Metabolism Journal, 2011, 35, 437.	1.8	18
240	Aging and Insulin Secretion. , 2011, , 373-384.		4

#	Article	IF	CITATIONS
241	Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clinical Science, 2011, 120, 73-80.	1.8	58
242	Taspoglutide, a novel human once-weekly GLP-1 analogue, protects pancreatic Î ² -cells in vitro and preserves islet structure and function in the Zucker diabetic fatty rat in vivo. Diabetes, Obesity and Metabolism, 2011, 13, 326-336.	2.2	7
243	Reprogramming gut and pancreas endocrine cells to treat diabetes. Diabetes, Obesity and Metabolism, 2011, 13, 53-59.	2.2	6
244	Neuroprotective effect of the glucagon-like peptide-1 receptor agonist, synthetic exendin-4, in streptozotocin-induced diabetic rats. British Journal of Pharmacology, 2011, 164, 1410-1420.	2.7	63
245	Making progress: preserving beta cells in type 1 diabetes. Annals of the New York Academy of Sciences, 2011, 1243, 119-134.	1.8	24
246	Glucagon-like peptide–1 and candesartan additively improve glucolipotoxicity in pancreatic β-cells. Metabolism: Clinical and Experimental, 2011, 60, 1081-1089.	1.5	38
247	Role of endogenous ROS production in impaired metabolism-secretion coupling of diabetic pancreatic β cells. Progress in Biophysics and Molecular Biology, 2011, 107, 304-310.	1.4	20
248	The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in neonatal rats. European Journal of Pharmacology, 2011, 650, 703-707.	1.7	59
249	Towards PET Imaging of Intact Pancreatic Beta Cell Mass: A Transgenic Strategy. Molecular Imaging and Biology, 2011, 13, 962-972.	1.3	20
250	The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54, 1098-1108.	2.9	134
251	Exendin-4 increases islet amyloid deposition but offsets the resultant beta cell toxicity in human islet amyloid polypeptide transgenic mouse islets. Diabetologia, 2011, 54, 1756-1765.	2.9	53
252	Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia, 2011, 54, 2067-2076.	2.9	82
253	Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiology, 2011, 11, 12.	3.6	133
254	Beneficial Effects of Exendin-4 on Experimental Polyneuropathy in Diabetic Mice. Diabetes, 2011, 60, 2397-2406.	0.3	89
255	Exendin-4 Suppresses Src Activation and Reactive Oxygen Species Production in Diabetic Goto-Kakizaki Rat Islets in an Epac-Dependent Manner. Diabetes, 2011, 60, 218-226.	0.3	82
256	Ranolazine Increases β-Cell Survival and Improves Glucose Homeostasis in Low-Dose Streptozotocin-Induced Diabetes in Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 50-58.	1.3	54
257	Bimodal Effect on Pancreatic β-Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle. Diabetes, 2011, 60, 1111-1121.	0.3	115
258	Activation of the GLP-1 Receptor Signalling Pathway: A Relevant Strategy to Repair a Deficient Beta-Cell Mass. Experimental Diabetes Research, 2011, 2011, 1-11.	3.8	50

#	Article	IF	CITATIONS
259	Glucagon-Like Peptide-1 Receptor Activation Inhibits Growth and Augments Apoptosis in Murine CT26 Colon Cancer Cells. Endocrinology, 2011, 152, 3362-3372.	1.4	92
260	Therapy in the Early Stage: Incretins. Diabetes Care, 2011, 34, S264-S271.	4.3	89
261	Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1361-H1372.	1.5	70
262	The role of the Wnt signaling pathway in incretin hormone production and function. Frontiers in Physiology, 2012, 3, 273.	1.3	38
263	A Simple Matter of Life and Death—The Trials of Postnatal Beta-Cell Mass Regulation. International Journal of Endocrinology, 2012, 2012, 1-20.	0.6	29
264	Glucagon-Like Peptide-1 and Diabetes 2012. Experimental Diabetes Research, 2012, 2012, 1-1.	3.8	4
265	Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor. Experimental Diabetes Research, 2012, 2012, 1-12.	3.8	56
266	Essay for the 2011 CIHR/ <i>CMAJ</i> award: glucagon-like peptides for metabolic and gastrointestinal disorders. Cmaj, 2012, 184, E153-E154.	0.9	0
267	Dipeptidyl Peptidase IV Inhibitor Attenuates Kidney Injury in Streptozotocin-Induced Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 248-255.	1.3	199
268	Encapsulated Glucagon-Like Peptide-1-Producing Mesenchymal Stem Cells Have a Beneficial Effect on Failing Pig Hearts. Stem Cells Translational Medicine, 2012, 1, 759-769.	1.6	29
269	Glucoseâ€dependent insulinotropic polypeptide signaling in pancreatic β ells and adipocytes. Journal of Diabetes Investigation, 2012, 3, 96-106.	1.1	42
270	Molecularly Engineered Islet Cell Clusters for Diabetes Mellitus Treatment. Cell Transplantation, 2012, 21, 1775-1789.	1.2	11
271	The molecular mechanisms of pancreatic β-cell glucotoxicity: Recent findings and future research directions. Molecular and Cellular Endocrinology, 2012, 364, 1-27.	1.6	229
272	Glucagon-like peptide-1(1–37) can enhance blood glucose homeostasis in mice. Regulatory Peptides, 2012, 178, 1-5.	1.9	6
273	Elevated glucagon-like peptide-1 plasma levels, as a possible adaptive response, in diabetic NOD mice. Biochemical and Biophysical Research Communications, 2012, 423, 583-587.	1.0	9
274	Glucagon-like peptides 1 and 2 and vasoactive intestinal peptide are neuroprotective on cultured and mast cell co-cultured rat myenteric neurons. BMC Gastroenterology, 2012, 12, 30.	0.8	24
275	DPP4 inhibitor vildagliptin preserves \hat{l}^2 -cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. Journal of Molecular Endocrinology, 2012, 49, 125-135.	1.1	51
276	Selective Ablation of Peptide YY Cells in Adult Mice Reveals Their Role in Beta Cell Survival. Gastroenterology, 2012, 143, 459-468.	0.6	65

#	ARTICLE	IF	CITATIONS
277	role of Exp46 in I2-cell lipoapoptosis through endoplasmic reticulum stress pathway as well as the protective effect of exendin-4. Biochemical and Biophysical Research Communications, 2012, 426, 324-329.	1.0	12
279	Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits cell apoptosis induced by lipotoxicity in pancreatic β-cell line. Peptides, 2012, 37, 18-24.	1.2	28
280	β-Arrestin1-mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic β INS832/13 cells. Molecular and Cellular Endocrinology, 2012, 364, 65-70.	1.6	35
281	Phosphoproteins in Stress-Induced Disease. Progress in Molecular Biology and Translational Science, 2012, 106, 189-221.	0.9	41
282	COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways. PLoS ONE, 2012, 7, e30847.	1.1	25
283	Exendin-4 Protected against Cognitive Dysfunction in Hyperglycemic Mice Receiving an Intrahippocampal Lipopolysaccharide Injection. PLoS ONE, 2012, 7, e39656.	1.1	57
284	Re-Expression of IGF-II Is Important for Beta Cell Regeneration in Adult Mice. PLoS ONE, 2012, 7, e43623.	1.1	4
285	Deletion of GαZ Protein Protects against Diet-induced Glucose Intolerance via Expansion of β-Cell Mass. Journal of Biological Chemistry, 2012, 287, 20344-20355.	1.6	39
286	Effect of glucagon-like peptide-1 gene expression on graft function in mouse islet transplantation. Transplant International, 2012, 25, 242-249.	0.8	8
287	Repeated administration of exendin-4 reduces focal cerebral ischemia-induced infarction in rats. Brain Research, 2012, 1427, 23-34.	1.1	59
288	Self-inducible secretion of glucagon-like peptide-1 (GLP-1) that allows MIN6 cells to maintain insulin secretion and insure cell survival. Molecular and Cellular Endocrinology, 2012, 349, 281-288.	1.6	9
289	Delivery of two-step transcription amplification exendin-4 plasmid system with arginine-grafted bioreducible polymer in type 2 diabetes animal model. Journal of Controlled Release, 2012, 162, 9-18.	4.8	24
290	Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia, 2012, 55, 404-412.	2.9	109
291	Dipeptidyl peptidase IV inhibitor attenuates kidney injury in rat remnant kidney. BMC Nephrology, 2013, 14, 98.	0.8	63
292	Pharmacological reduction of NEFA restores the efficacy of incretin-based therapies through GLP-1 receptor signalling in the beta cell in mouse models of diabetes. Diabetologia, 2013, 56, 423-433.	2.9	51
293	Interventions to Preserve Beta-Cell Function in the Management and Prevention of Type 2 Diabetes. Current Diabetes Reports, 2013, 13, 252-260.	1.7	42
294	The required beta cell research for improving treatment of type 2 diabetes. Journal of Internal Medicine, 2013, 274, 203-214.	2.7	21
295	Exendin-4 protects pancreatic beta cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia, 2013, 56, 2456-2466.	2.9	59

#	Article	IF	CITATIONS
296	GLP-1 agonists in type 1 diabetes. Clinical Immunology, 2013, 149, 317-323.	1.4	39
297	Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced β-cell damage and pancreatic <i>Glp-1</i> gene therapy. DMM Disease Models and Mechanisms, 2013, 6, 1236-45.	1.2	44
298	Vildagliptin preserves the mass and function of pancreatic βÂcells via the developmental regulation and suppression ofÂoxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes, Obesity and Metabolism, 2013, 15, 153-163.	2.2	50
299	Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. Journal of Surgical Research, 2013, 185, 825-832.	0.8	26
300	Long-term treatment with EXf, a peptide analog of Exendin-4, improves β-cell function and survival in diabetic KKAy mice. Peptides, 2013, 40, 123-132.	1.2	13
301	Enhanced Gene Transfer to Pancreatic Islets Using Glucagon-Like Peptide-1. Transplantation Proceedings, 2013, 45, 591-596.	0.3	4
302	Effects of Glucagon-Like Peptide 1 Analogue on the Early Phase of Revascularization of Transplanted Pancreatic Islets in a Subcutaneous Site. Transplantation Proceedings, 2013, 45, 1892-1894.	0.3	8
303	The ductal origin of structural and functional heterogeneity between pancreatic islets. Progress in Histochemistry and Cytochemistry, 2013, 48, 103-140.	5.1	21
304	New Incretin Hormonal Therapies in Humans Relevant to Diabetic Cats. Veterinary Clinics of North America - Small Animal Practice, 2013, 43, 417-433.	0.5	5
305	The Place of GLP-1–Based Therapy in Diabetes Management: Differences Between DPP-4 Inhibitors and GLP-1 Receptor Agonists. Current Diabetes Reports, 2013, 13, 307-318.	1.7	21
306	Glucagon-like peptides 1 and 2 in health and disease: A review. Peptides, 2013, 44, 75-86.	1.2	76
307	Hypoxia as a target for tissue specific gene therapy. Journal of Controlled Release, 2013, 172, 484-494.	4.8	59
308	Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-Ay mice. International Journal of Pharmaceutics, 2013, 450, 63-69.	2.6	17
309	Exendin-4 Protects Hypoxic Islets From Oxidative Stress and Improves Islet Transplantation Outcome. Endocrinology, 2013, 154, 1424-1433.	1.4	41
310	Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery. Molecular Endocrinology, 2013, 27, 1234-1244.	3.7	30
311	Protection of Glucagon-Like Peptide-1 in Cisplatin-Induced Renal Injury Elucidates Gut-Kidney Connection. Journal of the American Society of Nephrology: JASN, 2013, 24, 2034-2043.	3.0	70
312	Exchange protein activated by cAMP 1 <i>(Epac1)</i> â€deficient mice develop βâ€cell dysfunction and metabolic syndrome. FASEB Journal, 2013, 27, 4122-4135.	0.2	51
313	Incretin-Based Therapy for Type 2 Diabetes Mellitus. American Journal of Therapeutics, 2013, 20, 384-393.	0.5	7

#	Article	IF	CITATIONS
314	Automated recognition and quantification of pancreatic islets in Zucker diabetic fatty rats treated with exendin-4. Journal of Endocrinology, 2013, 216, 13-20.	1.2	17
315	Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opinion on Drug Discovery, 2013, 8, 219-244.	2.5	74
316	Improved transplantation outcome through delivery of DNA encoding secretion signal peptide-linked glucagon-like peptide-1 into mouse islets. Transplant International, 2013, 26, 443-452.	0.8	4
317	Glucagonâ€like peptideâ€1: modulator of <i>β</i> â€cell dysfunction and death. Diabetes, Obesity and Metabolism, 2013, 15, 185-192.	2.2	22
318	Exendin-4 Improves β-Cell Function in Autophagy-Deficient β-Cells. Endocrinology, 2013, 154, 4512-4524.	1.4	61
319	Treatment outcomes after initiation of exenatide twice daily or insulin in clinical practice: 12-month results from CHOICE in six European countries. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 171.	1.1	6
320	Gender difference in response predictors after 1-year exenatide therapy twice daily in type 2 diabetic patients: a real world experience. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2013, 6, 123.	1.1	32
321	Exendin-4 Protects Mitochondria from Reactive Oxygen Species Induced Apoptosis in Pancreatic Beta Cells. PLoS ONE, 2013, 8, e76172.	1.1	23
322	Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D ₃ Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra. Journal of Neurodegenerative Diseases, 2013, 2013, 1-9.	1.1	11
323	Vildagliptin Improves Glucose Tolerance and Decreases Plasma Triglycerides in Sprague-Dawley Rats. The Showa University Journal of Medical Sciences, 2013, 25, 213-221.	0.1	0
324	Gluco-Incretins Regulate Beta-Cell Glucose Competence by Epigenetic Silencing of Fxyd3 Expression. PLoS ONE, 2014, 9, e103277.	1.1	12
325	GLP-1(28-36)amide, the Glucagon-like peptide-1 metabolite: friend, foe, or pharmacological folly?. Drug Design, Development and Therapy, 2014, 8, 677.	2.0	4
326	Thyrotropin-Releasing Hormone (TRH) a Small Molecule in Pancreas Promotes Insulin Producing Cell Proliferation. , 2014, , .		0
327	Glucagon-like peptide-1 stimulates type 3 iodothyronine deiodinase expression in a mouse insulinoma cell line. Life Sciences, 2014, 115, 22-28.	2.0	3
328	A randomized dose-finding study demonstrating the efficacy and tolerability of albiglutide in Japanese patients with type 2 diabetes mellitus. Current Medical Research and Opinion, 2014, 30, 1095-1106.	0.9	27
329	Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience, 2014, 281, 269-281.	1.1	86
330	Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties. Diabetology and Metabolic Syndrome, 2014, 6, 42.	1.2	23
331	R-spondin1 Deficiency Enhances β-Cell Neogenesis in a Murine Model of Diabetes. Pancreas, 2014, 43, 93-102.	0.5	4

#	Article	IF	CITATIONS
332	Ileal Interposition and Viability of Pancreatic Islets Transplanted into Intramuscular Site of Diabetic Rats. Journal of Investigative Surgery, 2014, 27, 191-196.	0.6	0
333	Pharmacokinetic Properties and Effects of PT302 After Repeated Oral Glucose Loading Tests in a Dose-Escalating Study. Clinical Therapeutics, 2014, 36, 101-114.	1.1	6
334	Double-strand adeno-associated virus-mediated exendin-4 expression in salivary glands is efficient in a diabetic rat model. Diabetes Research and Clinical Practice, 2014, 103, 466-473.	1.1	6
335	GLP-1-related proteins attenuate the effects of mitochondrial membrane damage in pancreatic β cells. Biochemical and Biophysical Research Communications, 2014, 447, 133-138.	1.0	15
336	Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. , 2014, 10, S62-S75.		64
337	Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology, 2014, 84, 31-45.	2.0	61
338	Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. Journal of Gastroenterology, 2014, 49, 481-491.	2.3	107
339	Islet cell plasticity and regeneration. Molecular Metabolism, 2014, 3, 268-274.	3.0	48
340	Therapeutic gene delivery using bioreducible polymers. Archives of Pharmacal Research, 2014, 37, 31-42.	2.7	15
341	CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Molecular Metabolism, 2014, 3, 803-812.	3.0	48
342	Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone, 2014, 69, 68-79.	1.4	88
343	Incretin-based therapies: can we achieve glycemic control and cardioprotection?. Journal of Endocrinology, 2014, 221, T17-T30.	1.2	23
344	Biological activity studies of the novel glucagon-like peptide-1 derivative HJ07. Chinese Journal of Natural Medicines, 2014, 12, 613-618.	0.7	2
345	Incretins: Their physiology and application in the treatment of diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2014, 30, 354-371.	1.7	84
346	MOLECULAR EVOLUTION OF GPCRS: GLP1/GLP1 receptors. Journal of Molecular Endocrinology, 2014, 52, T15-T27.	1.1	18
347	The Intestinal Epithelial Insulin-Like Growth Factor-1 Receptor Links Glucagon-Like Peptide-2 Action to Gut Barrier Function. Endocrinology, 2014, 155, 370-379.	1.4	79
348	Hope and fear for new classes of type 2 diabetes drugs: is there preclinical evidence that incretin-based therapies alter pancreatic morphology?. Journal of Endocrinology, 2014, 221, T43-T61.	1.2	20
349	Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification?. Progress in Neurobiology, 2014, 118, 1-18.	2.8	185

	CITATION REPORT	
Article	IF	Citations
Glucagon-like peptide-1 receptor agonist activation ameliorates venous thrombosis-induced arteriovenous fistula failure in chronic kidneyd isease. Thrombosis and Haemostasis, 2014, 112, 1051-1064.	1.8	27
S-Equol Enantioselectively Activates cAMP-Protein Kinase A Signaling and Reduces Alloxan-Induced Cell Death in INS-1 Pancreatic ^ ^beta;-Cells. Journal of Nutritional Science and Vitaminology, 201 291-296.	4, 60, 0.2	23
Efficacy and safety of sitagliptin for the treatment of diabetes mellitus complicated by chronic liver injury. SpringerPlus, 2015, 4, 346.	ſ <u>1.2</u>	19
PEGylated Exendin-4, a Modified GLP-1 Analog Exhibits More Potent Cardioprotection than Its Unmodified Parent Molecule on a Dose to Dose Basis in a Murine Model of Myocardial Infarction. Theranostics, 2015, 5, 240-250.	4.6	20
The Effects of Exendin-4 Treatment on Graft Failure: An Animal Study Using a Novel Re-Vascularize Minimal Human Islet Transplant Model. PLoS ONE, 2015, 10, e0121204.	d 1.1	10
Clinical results of islet transplantation. Pharmacological Research, 2015, 98, 86-91.	3.1	27
Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in Î ² -Cells to Protect From Apoptos Molecular Endocrinology, 2015, 29, 978-987.	is. 3.7	46
Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells. Journal of Biological Chemistry, 2015, 290, 18757-18769.	1.6	58
Incretin Therapy and Beta Cell Function. Metabolism: Clinical and Experimental, 2015, 64, 157-159). 1.5	1
Anti-inflammatory role of DPP-4 inhibitors in a nondiabetic model of glomerular injury. American Journal of Physiology - Renal Physiology, 2015, 308, F878-F887.	1.3	56
Deciphering Metabolic Messages From the Gut Drives Therapeutic Innovation: The 2014 Banting Lecture. Diabetes, 2015, 64, 317-326.	0.3	65
Glucocorticoids decrease the production of glucagon-like peptide-1 at the transcriptional level in intestinal L-cells. Molecular and Cellular Endocrinology, 2015, 406, 60-67.	1.6	5
Protective effect of sitagliptin against renal ischemia reperfusion injury in rats. Renal Failure, 2015, 687-693.	, 37, 0.8	19
Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Molecular and Cellular Endocrinology, 2015, 418, 42-54.	1.6	69
Exendin-4 protects rat islets against loss of viability and function induced by brain death. Molecula and Cellular Endocrinology, 2015, 412, 239-250.	r 1.6	19
Effects of the glucagon-like peptide-1 (GLP-1) analogues exenatide, exenatide extended-release, ar the dipeptidylpeptidase-4 (DPP-4) inhibitor sitagliptin on glucose metabolism in healthy cats. Reserve in Veterinary Science, 2015, 99, 23-29.	id of arch 0.9	15
Protection of pancreatic Î ² -cells against glucotoxicity by short-term treatment with GLP-1. Biochen and Biophysical Research Communications, 2015, 459, 561-567.	nical 1.0	12

Nucleosome positioning, nucleotide excision repair and photoreactivation in Saccharomyces cerevisiae. DNA Repair, 2015, 36, 98-104.

#

350

352

354

356

358

360

362

364

366

#	Article	IF	CITATIONS
368	Anti-incretin, Anti-proliferative Action of Dopamine on β-Cells. Molecular Endocrinology, 2015, 29, 542-557.	3.7	38
369	Beneficial effects of growth hormone-releasing hormone agonists on rat INS-1 cells and on streptozotocin-induced NOD/SCID mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13651-13656.	3.3	33
370	Cholecystokinin expression in the β-cell leads to increased β-cell area in aged mice and protects from streptozotocin-induced diabetes and apoptosis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E819-E828.	1.8	30
371	Favorable effects of vildagliptin on metabolic and cognitive dysfunctions in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 2015, 769, 297-305.	1.7	22
372	Exendin-4 shows no effects on the prostatic index in high-fat-diet-fed rat with benign prostatic hyperplasia by improving insulin resistance. Andrologia, 2015, 47, 236-242.	1.0	3
373	DPP IV inhibitor suppresses STZ-induced islets injury dependent on activation of the IGFR/Akt/mTOR signaling pathways by GLP-1 in monkeys. Biochemical and Biophysical Research Communications, 2015, 456, 139-144.	1.0	10
374	Design and synthesis of sulfonamide derivatives of pyrrolidine and piperidine as anti-diabetic agents. European Journal of Medicinal Chemistry, 2015, 90, 342-350.	2.6	37
375	Translational implications of the β-cell epigenome in diabetes mellitus. Translational Research, 2015, 165, 91-101.	2.2	10
376	Saxagliptin: A novel antiparkinsonian approach. Neuropharmacology, 2015, 89, 308-317.	2.0	89
377	Absence of Glucagon and Insulin Action Reveals a Role for the GLP-1 Receptor in Endogenous Glucose Production. Diabetes, 2015, 64, 819-827.	0.3	49
378	Activation of GPR119 Stimulates Human <i>β</i> -Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets. Journal of Diabetes Research, 2016, 2016, 1-12.	1.0	13
379	Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. American Journal of Physiology - Cell Physiology, 2016, 310, C270-C283.	2.1	36
380	Accumulation of intestinal tissue 3-deoxyglucosone attenuated GLP-1 secretion and its insulinotropic effect in rats. Diabetology and Metabolic Syndrome, 2016, 8, 78.	1.2	15
381	Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation. Scientific Reports, 2016, 6, 23403.	1.6	25
382	Effects of exendin-4 and selenium on the expression of GLP-1R, IRS-1, and preproinsulin in the pancreas of diabetic rats. Journal of Physiology and Biochemistry, 2016, 73, 387-394.	1.3	8
383	Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutrition and Metabolism, 2016, 13, 92.	1.3	76
384	Endogenous GIP ameliorates impairment of insulin secretion in proglucagon-deficient mice under moderate beta cell damage induced by streptozotocin. Diabetologia, 2016, 59, 1533-1541.	2.9	15
385	Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets. Trends in Endocrinology and Metabolism, 2016, 27, 304-318.	3.1	47

	CITATION RE	PORT	
#	Article	IF	CITATIONS
386	Exenatide treatment increases serum irisin levels in patients with obesity and newly diagnosed type 2 diabetes. Journal of Diabetes and Its Complications, 2016, 30, 1555-1559.	1.2	34
387	Glucagonâ€like peptideâ€1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity. Journal of Diabetes Investigation, 2016, 7, 44-49.	1.1	10
388	Liraglutide is effective and well tolerated in combination with an oral antidiabetic drug in Japanese patients with type 2 diabetes: A randomized, 52â€week, openâ€label, parallelâ€group trial. Journal of Diabetes Investigation, 2016, 7, 76-84.	1.1	23
389	Synergy Between Gαz Deficiency and GLP-1 Analog Treatment in Preserving Functional β-Cell Mass in Experimental Diabetes. Molecular Endocrinology, 2016, 30, 543-556.	3.7	26
390	Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Scientific Reports, 2016, 6, 29921.	1.6	42
391	Neuroprotective Effects of rhGLPâ€l in Diabetic Rats with Cerebral Ischemia/Reperfusion Injury. Drug Development Research, 2016, 77, 124-133.	1.4	12
392	Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it?. Clinical Diabetes and Endocrinology, 2016, 2, 11.	1.3	9
393	TCF1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine, 2016, 22, 84-90.	15.2	108
394	Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 2016, 48, e219-e219.	3.2	541
395	Combination therapy of SGLT2 inhibitors with incretin-based therapies for the treatment of type 2 diabetes mellitus: Effects and mechanisms of action. Expert Review of Endocrinology and Metabolism, 2016, 11, 281-296.	1.2	0
396	Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets viaÂInterleukin 6, Produced by α Cells. Gastroenterology, 2016, 151, 165-179.	0.6	59
397	Liraglutide for treating type 1 diabetes. Expert Opinion on Biological Therapy, 2016, 16, 579-590.	1.4	15
398	Exenatide reverses dysregulated microRNAs in high-fat diet-induced obese mice. Obesity Research and Clinical Practice, 2016, 10, 315-326.	0.8	11
399	Beta Cell Transplantation and Regeneration. , 2016, , 883-897.e5.		1
400	Glucagon and the Glucagon-Like Peptides. , 2016, , 586-597.e5.		1
401	Liraglutide attenuates partial warm ischemia-reperfusion injury in rat livers. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 311-319.	1.4	14
402	β-Cell Inactivation of <i>Gpr119</i> Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation. Diabetes, 2017, 66, 1626-1635.	0.3	25
403	Bariatric surgery may reduce the risk of Alzheimer's diseases through GLP-1 mediated neuroprotective effects. Medical Hypotheses, 2017, 104, 4-9.	0.8	14

#	Article	IF	CITATIONS
404	The Role of PYY in Pancreatic Islet Physiology and Surgical Control of Diabetes. Trends in Endocrinology and Metabolism, 2017, 28, 626-636.	3.1	34
405	Exendin-4 does not modify growth or apoptosis of human colon cancer cells. Endocrine Research, 2017, 42, 1-10.	0.6	6
406	Fish oil prevents rodent anxious states comorbid with diabetes: A putative involvement of nitric oxide modulation. Behavioural Brain Research, 2017, 326, 173-186.	1.2	12
407	EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage. Toxicology and Applied Pharmacology, 2017, 315, 60-69.	1.3	47
408	S-Equol Activates cAMP Signaling at the Plasma Membrane of INS-1 Pancreatic β-Cells and Protects against Streptozotocin-Induced Hyperglycemia by Increasing β-Cell Function in Male Mice. Journal of Nutrition, 2017, 147, 1631-1639.	1.3	26
409	Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1145-1153.	1.4	19
410	Exenatide substantially improves proinsulin conversion and cell survival that augment Ins2 +/Akita beta cell function. Molecular and Cellular Endocrinology, 2017, 439, 297-307.	1.6	1
411	Insulin receptor signaling and glucagon-like peptide 1 effects on pancreatic beta cells. PLoS ONE, 2017, 12, e0181190.	1.1	8
412	Glucagon-like peptide-1 receptor agonist stimulates mitochondrial bioenergetics in human adipocytes. Acta Biochimica Polonica, 2017, 64, 423-429.	0.3	17
413	The glucagonâ€like peptideâ€1 receptor agonist Exendinâ€4, ameliorates contrastâ€induced nephropathy through suppression of oxidative stress, vascular dysfunction and apoptosis independent of glycaemia. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 808-818.	0.9	18
414	Liraglutide, a human glucagonâ€like peptideâ€1 analogue, stimulates AKTâ€dependent survival signalling and inhibits pancreatic βâ€cell apoptosis. Journal of Cellular and Molecular Medicine, 2018, 22, 2970-2980.	1.6	46
415	Gut: A key player in the pathogenesis of type 2 diabetes?. Critical Reviews in Food Science and Nutrition, 2018, 58, 1294-1309.	5.4	26
416	miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function. Diabetes, 2018, 67, 256-264.	0.3	60
417	Neuroprotection of rhGLPâ€I in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Development Research, 2018, 79, 249-259.	1.4	17
418	Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/independent pathways. European Journal of Pharmacology, 2018, 833, 145-154.	1.7	13
419	Battle of GLP-1 delivery technologies. Advanced Drug Delivery Reviews, 2018, 130, 113-130.	6.6	84
420	Molecular Mechanisms Underlying the Cardiovascular Benefits of SGLT2i and GLP-1RA. Current Diabetes Reports, 2018, 18, 45.	1.7	37
421	Costarting sitagliptin with metformin is associated with a lower likelihood of disease progression in newly treated people with type 2 diabetes: a cohort study. Diabetic Medicine, 2019, 37, 1715-1722.	1.2	3

ARTICLE IF CITATIONS Anti-oxidant, anti-apoptotic, anti-hypoxic and anti-inflammatory conditions induced by PTY-2 against 422 1.1 8 STZ-induced stress in islets. BioScience Trends, 2019, 13, 382-393. 423 Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications 424 2.0 17 for lowering tissue damage. Life Sciences, 2019, 231, 116538. Leveraging heterogeneous data from CHS toxicity annotations, molecular and protein target descriptors and Tox21 assay readouts to predict and rationalise acute toxicity. Journal of Cheminformatics, 2019, 11, 36. \hat{l}^2 -Cell Fate in Human Insulin Resistance and Type 2 Diabetes: A Perspective on Islet Plasticity. Diabetes, 426 0.3 87 2019, 68, 1121-1129. Therapeutic Effects of Liraglutide, Oxytocin and Granulocyte Colony-Stimulating Factor in Doxorubicin-Induced Cardiomyopathy Model: An Experimental Animal Study. Cardiovascular Toxicology, 2019, 19, 510-517. 1.1 The chronic administration of two novel longâ€acting <i>Xenopus</i> glucagonâ€like peptideâ€l analogs xGLP159 and XGLP296 potently improved systemic metabolism and glycemic control in rodent models. FASEB Journal, 2019, 33, 7113-7125. 428 0.2 9 Gastrin analogue administration adds no significant glycaemic benefit to a glucagonâ€like peptideâ€1 receptor agonist acutely or after washout of both analogues. Diabetes, Obesity and Metabolism, 2019, 429 21, 1606-1614. Establishment of Mouse Models of Psoriasis with Blood Stasis Syndrome Complicated with Glucose 430 and Lipid Metabolism Disorders. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 0.5 5 1-10. Noninvasive Evaluation of GPR119 Agonist Effects on Î²-Cell Mass in Diabetic Male Mice Using 1.4 111In-Exendin-4 SPECT/CT. Endocrinology, 2019, 160, 2959-2968. Investigation of the preservation effect of canagliflozin on pancreatic beta cell mass using SPECT/CT 432 1.6 6 imaging with 1111n-labeled exendin-4. Scientific Reports, 2019, 9, 18338. Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta \widehat{e} eell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2020, 36, e3212. Electronic Bypass for Diabetes: Optimization of Stimulation Parameters and Mechanisms of 434 0.4 5 Glucagon-Like Peptide-1. Neuromodulation, 2022, 25, 1097-1105. Proglucagon-Derived Peptides as Therapeutics. Frontiers in Endocrinology, 2021, 12, 689678. 1.5 34 Metabolic responses and benefits of glucagonâ€like peptideâ€1 (GLPâ€1) receptor ligands. British Journal of 438 2.7 16 Pharmacology, 2022, 179, 526-541. Combined Treatment with Bone Marrow-Derived Mesenchymal Stem Cells and Exendin-4 Promotes Islet 1.1 Regeneration in Streptozotocin-Induced Diabetic Rats. Stem Cells and Development, 2021, 30, 502-514. Mechanisms of Beta-Cell Apoptosis in Type 2 Diabetes-Prone Situations and Potential Protection by 440 1.8 25 GLP-1-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 5303. Intravital imaging of islet Ca2+ dynamics reveals enhanced \hat{I}^2 cell connectivity after bariatric surgery in 441 5.8 mice. Nature Communications, 2021, 12, 5165.

#	Article	IF	CITATIONS
442	Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Review of Anti-Infective Therapy, 2022, 20, 373-381.	2.0	12
443	The Role of Incretins in Insulin Secretion. , 2010, , 57-74.		1
444	Paracrine signaling in islet function and survival. Journal of Molecular Medicine, 2020, 98, 451-467.	1.7	24
445	<i>Lamiophlomis rotata</i> , an Orally Available Tibetan Herbal Painkiller, Specifically Reduces Pain Hypersensitivity States through the Activation of Spinal Glucagon-like Peptide-1 Receptors. Anesthesiology, 2014, 121, 835-851.	1.3	46
446	Related expressional change of HIF- $1\hat{l}\pm$ to the neuroprotective activity of exendin-4 in transient global ischemia. NeuroReport, 2014, 25, 65-70.	0.6	18
448	CNS-targeting pharmacological interventions for the metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4058-4071.	3.9	24
449	Upregulation of insulin receptor substrate-2 in pancreatic Î ² cells prevents diabetes. Journal of Clinical Investigation, 2003, 112, 1521-1532.	3.9	232
450	Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. Journal of Clinical Investigation, 2004, 113, 635-645.	3.9	201
451	Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. Journal of Clinical Investigation, 2004, 113, 635-645.	3.9	104
452	The role of gut hormones in glucose homeostasis. Journal of Clinical Investigation, 2007, 117, 24-32.	3.9	510
453	Lipotoxicity disrupts incretin-regulated human \hat{l}^2 cell connectivity. Journal of Clinical Investigation, 2013, 123, 4182-4194.	3.9	203
454	Discovery, characterization, and clinical development of the glucagon-like peptides. Journal of Clinical Investigation, 2017, 127, 4217-4227.	3.9	253
455	Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist. PLoS ONE, 2010, 5, e12734.	1.1	39
456	Combining MK626, a Novel DPP-4 Inhibitor, and Low-Dose Monoclonal CD3 Antibody for Stable Remission of New-Onset Diabetes in Mice. PLoS ONE, 2014, 9, e107935.	1.1	17
457	Examination of a Viral Infection Mimetic Model in Human iPS Cell-Derived Insulin-Producing Cells and the Anti-Apoptotic Effect of GLP-1 Analogue. PLoS ONE, 2015, 10, e0144606.	1.1	4
458	Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors. Expert Opinion on Emerging Drugs, 2004, 9, 155-66.	1.0	35
459	Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget, 2017, 8, 101545-101559.	0.8	50
460	Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect – a narrative review. Archives of Endocrinology and Metabolism, 2020, 65, 24-31.	0.3	13

#	Article	IF	CITATIONS
461	Dipeptidyl Peptidase IV Inhibitors: A New Paradigm in Type 2 Diabetes Treatment. Current Drug Targets, 2014, 15, 600-621.	1.0	27
462	Is there U-turn from Insulin Back to Pills in Diabetes?. Current Vascular Pharmacology, 2014, 12, 617-626.	0.8	5
463	GLP-1(28-36)amide, a Long Ignored Peptide Revisited. The Open Biochemistry Journal, 2014, 8, 107-111.	0.3	7
464	Role of the Glucagon-like Peptide-1 Receptor Agonist in Maintaining Pluripotency in Human Embryonic Stem Cells. Open Stem Cell Journal, 2011, 3, 11-22.	2.0	4
465	Dihydromyricetin Attenuates Streptozotocinâ€induced Liver Injury and Inflammation in Rats via Regulation of NFâ€ <i>l²</i> B and AMPK Signaling Pathway. EFood, 2020, 1, 188-195.	1.7	18
466	Neuroprotective Effects and Treatment Potential of Incretin Mimetics in a Murine Model of Mild Traumatic Brain Injury. Frontiers in Cell and Developmental Biology, 2019, 7, 356.	1.8	29
467	PeroxiredoxinÂl deficiency increases pancreatic β‑cell apoptosis after streptozotocin stimulation via the AKT/GSK3β signaling pathway. Molecular Medicine Reports, 2020, 22, 1831-1838.	1.1	6
468	New therapies for type 2 diabetes based on glucagon-like peptide 1 Cleveland Clinic Journal of Medicine, 2006, 73, 382-389.	0.6	16
469	Metabolic Actions of Glucagon-Like Peptides. Oxidative Stress and Disease, 2005, , .	0.3	0
470	Pancreatic B -Cell, a Unique Fuel Sensor. Oxidative Stress and Disease, 2005, , .	0.3	0
471	Gastrointestinale Hormonsysteme und ihre Regulation. , 2006, , 261-290.		0
472	The Incretin Modulators – Incretin Mimetics (GLP-1 Receptor Agonists) and Incretin Enhancers (DPP-4) Tj ETQq	1 1 0.7843	314 rgBT /0\ 1
473	The Relationship Between the Insulin Receptor Substrates and Metabolic Disease. , 2008, , 255-278.		0
474	Treatment Patterns in Youth with Diabetes. , 2008, , 303-322.		0
475	The role of glucagon‑like peptide 1 in glucose homeostasis and in other aspects of human physiology. Polish Archives of Internal Medicine, 2009, 119, 743-751.	0.3	3
476	Glucagon and the Glucagon-Like Peptides. , 2010, , 660-672.		0
477	Pancreatic and Islet Transplantation. , 2010, , 943-958.		0
478	Growth Factor Mediated Regulation of Beta Cell Survival. The Open Endocrinology Journal, 2010, 4, 78-93.	0.1	1

ARTICLE IF CITATIONS Exenatide and Pioglitazone Regulate Fatty Acid-Induced Gene Expression in Normal and Diabetic Human 479 0.1 2 Islets. Metabolomics: Open Access, 2011, 01, . GLP-1 Receptor Agonists for the Treatment of Type 2 Diabetes., 2014, , 385-394. 480 Age-Associated Alterations of Pleiotropic Stem Cell and the Therapeutic Implication of Stem Cell 481 1 Therapy in Aging. , 2014, , 25-35. Clinical Approaches to Preserving \hat{l}^2 -Cell Function in Diabetes. , 2014, , 1-24. Molecular Basis of cAMP Signaling in Pancreatic Beta Cells., 2014, , 1-36. 483 0 484 Molecular Basis of cAMP Signaling in Pancreatic Beta Cells., 2014, , 1-35. ADDITION OF SITAGLIPTIN TO REPAGLINIDE IMPROVES PANCREATIC ISLET PROLIFERATION AND INSULIN 485 PRODUCTION IN EXPERIMENTALLY-INDUCED TYPE 2 DIABETES IN RATS. Al-Azhar Journal of Pharmaceutical 0.1 0 Sciences, 2014, 49, 44-59. Molecular Basis of cAMP Signaling in Pancreatic Î² Cells. , 2015, , 565-603. 486 Clinical Approaches to Preserving \hat{l}^2 -Cell Function in Diabetes. , 2015, , 895-921. 487 0 The Role of Incretins in Insulin Secretion., 2016, , 1-13. Metabolic Syndrome and the Liver., 2016, , 149-177. 489 0 490 GI Peptides, Energy Balance, and Cancer. Energy Balance and Cancer, 2017, , 253-288. 0.2 491 The Role of Incretins in Insulin Secretion., 2017, , 57-69. 0 The Protective Effects of Cultured Mesenchymal Stem Cells onto the Surface of Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria Chamomilla L. Oil in Streptozotocin-Induced Diabetic Rabbits. Iranian Red Crescent Medical Journal, 2019, In Press, . Peptides come to the rescue of pancreatic \hat{l}^2 cells. Journal of Biological Chemistry, 2019, 294, 494 1.6 0 12622-12623. Pancreatic Î²-Cell Mass as a Pharmacologic Target in Diabetes. McGill Journal of Medicine, 2009, 12, . 0.1 Phytochemicals modulate pancreatic islet l² cell function through glucagon-like peptide-1-related 496 2.0 4 mechanisms. Biochemical Pharmacology, 2022, 197, 114817. GLP-1RA and SGLT2i: Cardiovascular Impact on Diabetic Patients. Current Hypertension Reviews, 2021, 17, 497 149-158.

#	Article	IF	CITATIONS
498	Molecular Biology of Gluco-Incretin Function. , 2008, , 315-334.		0
500	Pancreatic β-Cell Mass as a Pharmacologic Target in Diabetes. McGill Journal of Medicine, 2009, 12, 51.	0.1	2
501	Validation studies on blood collection from the jugular vein of conscious mice. Journal of the American Association for Laboratory Animal Science, 2012, 51, 345-51.	0.6	13
502	In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. American Journal of Stem Cells, 2012, 1, 114-127.	0.4	36
503	Novel Approaches to Restore Pancreatic Beta-Cell Mass and Function. Handbook of Experimental Pharmacology, 2021, , 439-465.	0.9	1
504	Multi-Organ Crosstalk with Endocrine Pancreas: A Focus on How Gut Microbiota Shapes Pancreatic Beta-Cells. Biomolecules, 2022, 12, 104.	1.8	13
506	Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Frontiers in Endocrinology, 2022, 13, 838410.	1.5	42
507	GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Research and Clinical Practice, 2022, 41, 136-149.	0.9	12
508	Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Veterinary and Animal Science, 2022, 16, 100245.	0.6	4
509	Glucagon-like Peptide-1 Secretion Is Inhibited by Lysophosphatidic Acid. International Journal of Molecular Sciences, 2022, 23, 4163.	1.8	4
512	The transcription factor E2F1 controls the GLP-1 receptor pathway in pancreatic \hat{I}^2 cells. Cell Reports, 2022, 40, 111170.	2.9	7
513	Emerging roles of Glucagon like peptide-1 in the management of autoimmune diseases and diabetes-associated comorbidities. , 2022, 239, 108270.		9
514	Glucagon Like Peptide-1: More than Glucose Control and Weight Reduction. SSRN Electronic Journal, 0, , .	0.4	0
515	Endothelial dysfunction in patients with COVID-19 is a key mechanism for the development of complications. Systemic Hypertension, 2023, 19, 37-44.	0.1	1
516	The role of preproglucagon peptides in regulating β-cell morphology and responses to streptozotocin-induced diabetes. American Journal of Physiology - Endocrinology and Metabolism, 0, ,	1.8	0
517	Impact of Sex and Gender on Clinical Management of Patients with Advanced Chronic Liver Disease and Type 2 Diabetes. Journal of Personalized Medicine, 2023, 13, 558.	1.1	1