α‧ynuclein implicated in Parkinson's disease is pres including human plasma

FASEB Journal 17, 1-16 DOI: 10.1096/fj.03-0098fje

Citation Report

#	Article	IF	CITATIONS
1	The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Human Molecular Genetics, 2004, 13, 123R-126.	1.4	86
2	Glial cell inclusions and the pathogenesis of neurodegenerative diseases. Neuron Glia Biology, 2004, 1, 13-21.	2.0	52
3	A strategy for designing inhibitors of α â€synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders. FASEB Journal, 2004, 18, 1315-1317.	0.2	165
4	α‧ynuclein induces apoptosis by altered expression in human peripheral lymphocytes in Parkinson's disease. FASEB Journal, 2004, 18, 1615-1617.	0.2	81
5	Absence of α-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. Journal of Neural Transmission, 2005, 112, 1613-1624.	1.4	166
6	Intravesicular Localization and Exocytosis of Â-Synuclein and its Aggregates. Journal of Neuroscience, 2005, 25, 6016-6024.	1.7	722
7	Proteolytic Cleavage of Extracellular Secreted α-Synuclein via Matrix Metalloproteinases. Journal of Biological Chemistry, 2005, 280, 25216-25224.	1.6	209
8	Skin and platelet α-synuclein as peripheral biomarkers of Parkinson's disease. Neuroscience Letters, 2005, 381, 294-298.	1.0	101
9	Beta-Amlyoid 1–42 and Tau-Protein in Cerebrospinal Fluid of Patients with Parkinson's Disease Dementia. Dementia and Geriatric Cognitive Disorders, 2006, 22, 200-208.	0.7	114
10	Alphaâ€synuclein and its diseaseâ€causing mutants induce ICAMâ€1 and ILâ€6 in human astrocytes and astrocytoma cells. FASEB Journal, 2006, 20, 2000-2008.	0.2	126
11	Detection of oligomeric forms of αâ€ s ynuclein protein in human plasma as a potential biomarker for Parkinson's disease. FASEB Journal, 2006, 20, 419-425.	0.2	646
12	Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochemical and Biophysical Research Communications, 2006, 349, 162-166.	1.0	386
13	Amino acid sequence motifs and mechanistic features of the membrane translocation of alpha-synuclein. Journal of Neurochemistry, 2006, 97, 265-279.	2.1	110
14	The plasma alpha-synuclein levels in patients with Parkinson's disease and multiple system atrophy. Journal of Neural Transmission, 2006, 113, 1435-1439.	1.4	216
16	Inhibitors of α-synuclein oligomerization and toxicity: a future therapeutic strategy for Parkinson's disease and related disorders. Experimental Brain Research, 2006, 173, 223-233.	0.7	59
17	Pathophysiology of synuclein aggregation in Lewy body disease. Mechanisms of Ageing and Development, 2006, 127, 188-202.	2.2	67
18	Endogenous Â-Synuclein Is Induced by Valproic Acid through Histone Deacetylase Inhibition and Participates in Neuroprotection against Glutamate-Induced Excitotoxicity. Journal of Neuroscience, 2006, 26, 7502-7512.	1.7	176
19	Chapter 8 α-Synuclein and Synucleinopathies. Blue Books of Neurology, 2007, 30, 186-215.	0.1	4

#	Article	IF	CITATIONS
20	Dual localization: Proteins in extracellular and intracellular compartments. Acta Histochemica, 2007, 109, 89-110.	0.9	63
21	Cerebrospinal fluid of Alzheimer's disease and dementia with Lewy bodies patients enhances α-synuclein fibril formation in vitro. Experimental Neurology, 2007, 203, 579-583.	2.0	12
22	Plasma α-synuclein is decreased in subjects with Parkinson's disease. Experimental Neurology, 2007, 204, 583-588.	2.0	140
23	Morphological substrates of parkinsonism with and without dementia: a retrospective clinico-pathological study. , 2007, , 91-104.		66
24	Î ³ â€ 6 ynuclein and the progression of cancer. FASEB Journal, 2007, 21, 3419-3430.	0.2	94
25	A Macrophageâ^'Nanozyme Delivery System for Parkinson's Disease. Bioconjugate Chemistry, 2007, 18, 1498-1506.	1.8	177
26	Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease. Movement Disorders, 2007, 22, 1481-1484.	2.2	103
27	An investigation into the lipid-binding properties of α-, β- and γ-synucleins in human brain and cerebrospinal fluid. Brain Research, 2007, 1170, 103-111.	1.1	8
28	Tauopathies and synucleinopathies: Do cerebrospinal fluid β-amyloid peptides reflect disease-specific pathogenesis?. Journal of Neural Transmission, 2007, 114, 919-927.	1.4	33
29	Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathologica, 2007, 114, 231-241.	3.9	358
31	The role of exosomes in the processing of proteins associated with neurodegenerative diseases. European Biophysics Journal, 2008, 37, 323-332.	1.2	220
32	Origins and Effects of Extracellular α-synuclein: Implications in Parkinson's Disease. Journal of Molecular Neuroscience, 2008, 34, 17-22.	1.1	145
33	Microglial phagocytosis is enhanced by monomeric αâ€synuclein, not aggregated αâ€synuclein: Implications for Parkinson's disease. Glia, 2008, 56, 1215-1223.	2.5	123
34	Hydrogen exchange of monomeric αâ€synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in <i>Escherichia coli</i> . Protein Science, 2008, 17, 1434-1445.	3.1	88
35	Analysis of Single, Purified Inclusions as a Novel Approach to Understand Methamphetamine Neurotoxicity. Annals of the New York Academy of Sciences, 2008, 1139, 186-190.	1.8	5
36	Research in motion: the enigma of Parkinson's disease pathology spread. Nature Reviews Neuroscience, 2008, 9, 741-745.	4.9	296
37	Nitrated alphaâ€synucleinâ€activated microglial profiling for Parkinson's disease. Journal of Neurochemistry, 2008, 104, 1504-1525.	2.1	195
38	Controlling the mass action of αâ€synuclein in Parkinson's disease. Journal of Neurochemistry, 2008, 107, 303-316.	2.1	90

#	Article	IF	CITATIONS
39	Immunological features of αâ€synuclein in Parkinson's disease. Journal of Cellular and Molecular Medicine, 2008, 12, 1820-1829.	1.6	84
40	Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons. PLoS ONE, 2008, 3, e1376.	1.1	311
41	Chapter 6 Molecular and Cellular Biology of Synucleins. International Review of Cell and Molecular Biology, 2008, 270, 225-317.	1.6	90
42	Red Blood Cells Are the Major Source of Alpha-Synuclein in Blood. Neurodegenerative Diseases, 2008, 5, 55-59.	0.8	414
43	Genetic variability in the <i>SNCA</i> gene influences αâ€synuclein levels in the blood and brain. FASEB Journal, 2008, 22, 1327-1334.	0.2	235
44	α-Synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiology of Aging, 2008, 29, 739-752.	1.5	202
45	Synuclein activates microglia in a model of Parkinson's disease. Neurobiology of Aging, 2008, 29, 1690-1701.	1.5	397
47	Applications of novel monoclonal antibodies specific for synuclein-Î ³ in evaluating its levels in sera and cancer tissues from colorectal cancer patients. Cancer Letters, 2008, 269, 148-158.	3.2	23
48	Direct quantification of CSF $\hat{l}\pm$ -synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Experimental Neurology, 2008, 213, 315-325.	2.0	334
49	Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochemical and Biophysical Research Communications, 2008, 372, 423-428.	1.0	273
50	Peripheral biomarkers of Parkinson's disease as early reporters of central neurodegeneration. Biomarkers in Medicine, 2008, 2, 465-478.	0.6	19
51	Alpha- and Gamma-Synuclein Proteins Are Present in Cerebrospinal Fluid and Are Increased in Aged Subjects with Neurodegenerative and Vascular Changes. Dementia and Geriatric Cognitive Disorders, 2008, 26, 32-42.	0.7	38
52	Detection of elevated levels of soluble Â-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain, 2008, 132, 1093-1101.	3.7	203
53	Cerebrospinal Fluid α-Synuclein Does Not Discriminate Between Dementia Disorders. Journal of Alzheimer's Disease, 2009, 16, 363-369.	1.2	87
54	Transmissibility of Atypical Scrapie in Ovine Transgenic Mice: Major Effects of Host Prion Protein Expression and Donor Prion Genotype. PLoS ONE, 2009, 4, e7300.	1.1	28
55	Rab11a and HSP90 Regulate Recycling of Extracellular α-Synuclein. Journal of Neuroscience, 2009, 29, 1480-1485.	1.7	128
56	Suppression of Map Kinases Inhibits Microglial Activation and Attenuates Neuronal Cell Death Induced by I±-Synuclein Protofibrils. International Journal of Immunopathology and Pharmacology, 2009, 22, 897-909.	1.0	76
57	Physiological and Pathological Role of Alpha-synuclein in Parkinson's Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. International Journal of Molecular Sciences, 2009, 10, 1226-1260.	1.8	75

	CITATION REF	PORT	
#	Article	IF	CITATIONS
58	Unique copperâ€induced oligomers mediate alphaâ€synuclein toxicity. FASEB Journal, 2009, 23, 2384-2393.	0.2	129
59	Neurochemical biomarkers in the differential diagnosis of movement disorders. Movement Disorders, 2009, 24, 1411-1426.	2.2	37
60	Copper Coordination by Familial Mutants of Parkinson's Disease-Associated α-Synuclein. Applied Magnetic Resonance, 2009, 36, 223-229.	0.6	10
61	Mutant α-Synuclein Overexpression Mediates Early Proinflammatory Activity. Neurotoxicity Research, 2009, 16, 238-254.	1.3	130
62	α‧ynuclein induces migration of BVâ€2 microglial cells by upâ€regulation of CD44 and MT1â€MMP. Journal of Neurochemistry, 2009, 109, 1483-1496.	2.1	52
63	On the mechanism of internalization of αâ€synuclein into microglia: roles of ganglioside GM1 and lipid raft. Journal of Neurochemistry, 2009, 110, 400-411.	2.1	116
64	Proteomics in human Parkinson's disease research. Journal of Proteomics, 2009, 73, 10-29.	1.2	98
65	Identification of the amino acid sequence motif of α-synuclein responsible for macrophage activation. Biochemical and Biophysical Research Communications, 2009, 381, 39-43.	1.0	50
66	Effects of intrahippocampal NAC61–95 injections on memory in the rat and attenuation with vitamin E. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 945-951.	2.5	9
67	Cerebrospinal fluid α-synuclein in neurodegenerative disorders—A marker of synapse loss?. Neuroscience Letters, 2009, 450, 332-335.	1.0	194
68	Genomic and proteomic biomarkers for Parkinson disease. Neurology, 2009, 72, S27-31.	1.5	45
69	Functional Protein Delivery into Neurons Using Polymeric Nanoparticles. Journal of Biological Chemistry, 2009, 284, 6972-6981.	1.6	112
70	Neurochemical Approaches in the Laboratory Diagnosis of Parkinson and Parkinson Dementia Syndromes: A Review. CNS Neuroscience and Therapeutics, 2009, 15, 157-182.	1.9	33
73	Are synucleinopathies prion-like disorders?. Lancet Neurology, The, 2010, 9, 1128-1138.	4.9	226
74	Curcumin reduces α-synuclein induced cytotoxicity in Parkinson's disease cell model. BMC Neuroscience, 2010, 11, 57.	0.8	167
75	Oligomeric alphaâ€synuclein and its role in neuronal death. IUBMB Life, 2010, 62, 334-339.	1.5	44
76	Sensitive and specific detection of αâ€synuclein in human plasma. Journal of Neuroscience Research, 2010, 88, 2693-2700.	1.3	25
77	Plasma αâ€synuclein in patients with Parkinson's disease with and without treatment. Movement Disorders, 2010, 25, 489-493.	2.2	93

#	Article	IF	CITATIONS
78	Identification of ciliary neurotrophic factor receptor α as a mediator of neurotoxicity induced by αâ€synuclein. Proteomics, 2010, 10, 2138-2150.	1.3	12
79	The sour side of neurodegenerative disorders: the effects of protein glycation. Journal of Pathology, 2010, 221, 13-25.	2.1	138
80	Non classical exocytosis of αâ€synuclein is sensitive to folding states and promoted under stress conditions. Journal of Neurochemistry, 2010, 113, 1263-1274.	2.1	241
81	Upregulation of α-synuclein expression in the rat cerebellum in experimental hepatic encephalopathy. Neuropathology and Applied Neurobiology, 2010, 36, 422-435.	1.8	1
82	Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clinical and Experimental Immunology, 2010, 161, 527-535.	1.1	21
83	Biomarkers: casting the net wide. Nature, 2010, 466, S11-S12.	13.7	26
84	Biomarkers for Cognitive Impairment in Parkinson Disease. Brain Pathology, 2010, 20, 660-671.	2.1	33
85	α-synuclein antibodies recognize a protein present at lower levels in the CSF of patients with dementia with Lewy bodies. International Psychogeriatrics, 2010, 22, 321-327.	0.6	20
86	Regulation of Weibel-Palade Body Exocytosis by α-Synuclein in Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 21416-21425.	1.6	34
87	CSF Â-synuclein as a diagnostic biomarker for Parkinson disease and related dementias. Neurology, 2010, 75, 1760-1761.	1.5	10
88	α-Synuclein Levels Are Elevated in Cerebrospinal Fluid following Traumatic Brain Injury in Infants and Children: The Effect of Therapeutic Hypothermia. Developmental Neuroscience, 2010, 32, 385-395.	1.0	45
89	Direct Transfer of α-Synuclein from Neuron to Astroglia Causes Inflammatory Responses in Synucleinopathies. Journal of Biological Chemistry, 2010, 285, 9262-9272.	1.6	704
90	Progress towards a molecular biomarker for Parkinson disease. Nature Reviews Neurology, 2010, 6, 359-361.	4.9	18
91	Using â€~omics' to define pathogenesis and biomarkers of Parkinson's disease. Expert Review of Neurotherapeutics, 2010, 10, 925-942.	1.4	71
92	Problems associated with fluid biomarkers for Parkinson's disease. Biomarkers in Medicine, 2010, 4, 671-681.	0.6	14
93	Cell-Produced α-Synuclein Is Secreted in a Calcium-Dependent Manner by Exosomes and Impacts Neuronal Survival. Journal of Neuroscience, 2010, 30, 6838-6851.	1.7	913
94	Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology, 2010, 75, 1766-1770.	1.5	449
95	Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: review of the literature and considerations for future studies. Biomarkers in Medicine, 2010, 4, 683-699.	0.6	113

<u><u> </u></u>			DED	
	IAL	ION	REPO	ואכ

#	Article	IF	CITATIONS
96	Proteomic analysis of expression and protein interactions in a 6-hydroxydopamine-induced rat brain lesion model. Neurochemistry International, 2010, 57, 16-32.	1.9	24
97	Perivascular nerve fiber α-synuclein regulates contractility of mouse aorta: A link to autonomic dysfunction in Parkinson's disease. Neurochemistry International, 2010, 56, 991-998.	1.9	13
98	Alpha-synuclein nitration and autophagy response are induced in peripheral blood cells from patients with Parkinson disease. Neuroscience Letters, 2010, 477, 6-10.	1.0	61
99	Bilateral intrahippocampal NAC61–95 effects on behavior and moderation with l-NAME treatment. Neuroscience Research, 2010, 66, 213-218.	1.0	2
100	Extracellular neurosin degrades α-synuclein in cultured cells. Neuroscience Research, 2010, 67, 341-346.	1.0	70
101	Altered Ion Channel Formation by the Parkinson's-Disease-Linked E46K Mutant of α-Synuclein Is Corrected by GM3 but Not by GM1 Gangliosides. Journal of Molecular Biology, 2010, 397, 202-218.	2.0	61
102	Behavioural deterioration induced by intrahippocampal NAC61–95 injections and attenuation with ibuprofen. Behavioural Brain Research, 2010, 208, 274-277.	1.2	4
103	Biomarkers: Parkinson disease with dementia and dementia with Lewy bodies. Parkinsonism and Related Disorders, 2010, 16, 307-315.	1.1	31
104	CSF α-Synuclein Does Not Discriminate Dementia with Lewy Bodies from Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 87-95.	1.2	87
105	Metalloproteins and neuronal death. Metallomics, 2010, 2, 186-194.	1.0	30
105 106	Metalloproteins and neuronal death. Metallomics, 2010, 2, 186-194. Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102.	1.0 1.6	30 25
	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases.		
106	 Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102. A novel mechanism of non-A² component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 	1.6	25
106 107	 Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102. A novel mechanism of non-AÎ² component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 206-214. Parkinson's disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional 	1.6 1.9	25 20
106 107 108	 Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102. A novel mechanism of non-AÎ² component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 206-214. Parkinson's disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochemistry International, 2011, 59, 251-258. Cerebrospinal fluid from patients with multiple system atrophy promotes in vitro α-synuclein fibril 	1.6 1.9 1.9	25 20 8
106 107 108 109	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102. A novel mechanism of non-AÎ ² component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 206-214. Parkinson's disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochemistry International, 2011, 59, 251-258. Cerebrospinal fluid from patients with multiple system atrophy promotes in vitro α-synuclein fibril formation. Neuroscience Letters, 2011, 491, 48-52. Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives. Neuroscience	1.6 1.9 1.9 1.0	25 20 8 15
106 107 108 109 110	Blood-Based Protein Biomarkers for Diagnosis and Classification of Neurodegenerative Diseases. Molecular Diagnosis and Therapy, 2011, 15, 83-102. A novel mechanism of non-Al² component of Alzheimer's disease amyloid (NAC) neurotoxicity. Interplay between p53 protein and cyclin-dependent kinase 5 (Cdk5). Neurochemistry International, 2011, 58, 206-214. Parkinson's disease-associated mutations in 1±-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochemistry International, 2011, 59, 251-258. Cerebrospinal fluid from patients with multiple system atrophy promotes in vitro 1±-synuclein fibril formation. Neuroscience Letters, 2011, 491, 48-52. Protein aggregate spreading in neurodegenerative diseases: Problems and perspectives. Neuroscience Research, 2011, 70, 339-348. Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission.	1.6 1.9 1.9 1.0	25 20 8 15 154

	CITATION R	EPORT	
#	ARTICLE Alpha-Synuclein and the Immune Response in Parkinson's Disease. , 0, , .	IF	CITATIONS
114	Alpha-Synuclein and the initialite Response in Parkinsonae "s Disease., 0, , .		I
115	α-Synuclein Alters Toll-Like Receptor Expression. Frontiers in Neuroscience, 2011, 5, 80.	1.4	151
116	α-Synuclein Expression Selectively Affects Tumorigenesis in Mice Modeling Parkinson's Disease. PLoS ONE, 2011, 6, e19622.	1.1	30
117	Assessment of α-Synuclein Secretion in Mouse and Human Brain Parenchyma. PLoS ONE, 2011, 6, e22225.	1.1	145
118	.ALPHASynuclein Aggregation and Transmission Are Enhanced by Leucine-Rich Repeat Kinase 2 in Human Neuroblastoma SH-SY5Y Cells. Biological and Pharmaceutical Bulletin, 2011, 34, 1078-1083.	0.6	43
119	A deadly spread: cellular mechanisms of α-synuclein transfer. Cell Death and Differentiation, 2011, 18, 1425-1433.	5.0	131
120	Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Disease, 2011, 42, 360-367.	2.1	612
121	Biochemical diagnosis of neurodegenerative diseases gets closer. Lancet Neurology, The, 2011, 10, 203-205.	4.9	3
122	Pathological roles of α-synuclein in neurological disorders. Lancet Neurology, The, 2011, 10, 1015-1025.	4.9	328
123	α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. Journal of Clinical Investigation, 2011, 121, 715-725.	3.9	722
124	Clial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathologica, 2011, 121, 675-693.	3.9	164
125	Dopamine and Paraquat Enhance α-Synuclein-Induced Alterations in Membrane Conductance. Neurotoxicity Research, 2011, 20, 387-401.	1.3	16
126	Cerebrospinal fluid Tau/αâ€synuclein ratio in Parkinson's disease and degenerative dementias. Movement Disorders, 2011, 26, 1428-1435.	2.2	161
127	Enzyme-linked immunosorbent assays for alpha-synuclein with species and multimeric state specificities. Journal of Neuroscience Methods, 2011, 199, 249-257.	1.3	24
128	Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. Journal of Proteomics, 2011, 74, 371-388.	1.2	129
129	HMGB1 Acts on Microglia Mac1 to Mediate Chronic Neuroinflammation That Drives Progressive Neurodegeneration. Journal of Neuroscience, 2011, 31, 1081-1092.	1.7	305
130	A novel molecular mechanism for nitrated α-synuclein-induced cell death. Journal of Molecular Cell Biology, 2011, 3, 239-249.	1.5	76
131	Phosphorylated αâ€synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson's disease. FASEB Journal, 2011, 25, 4127-4137.	0.2	186

#	Article	IF	CITATIONS
132	An extracellular mechanism that can explain the neurotoxic effects of α-synuclein aggregates in the brain. Frontiers in Physiology, 2012, 3, 297.	1.3	38
133	Emerging Role for Copper-Bound α-Synuclein in Parkinson's Disease Etiology. , 2012, , 307-338.		1
134	Antibody-Aided Clearance of Extracellular α-Synuclein Prevents Cell-to-Cell Aggregate Transmission. Journal of Neuroscience, 2012, 32, 13454-13469.	1.7	290
135	Targeting intracellular and extracellular alpha-synuclein as a therapeutic strategy in Parkinson's disease and other synucleinopathies. Expert Opinion on Therapeutic Targets, 2012, 16, 421-432.	1.5	58
136	Does a prion-like mechanism play a major role in the apparent spread of α-synuclein pathology?. Alzheimer's Research and Therapy, 2012, 4, 48.	3.0	5
137	γ-Synuclein: Seeding of α-Synuclein Aggregation and Transmission between Cells. Biochemistry, 2012, 51, 4743-4754.	1.2	79
138	Can Parkinson's disease pathology be propagated from one neuron to another?. Progress in Neurobiology, 2012, 97, 205-219.	2.8	97
139	Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation. Journal of Neuroscience, 2012, 32, 11750-11762.	1.7	228
140	Crossâ€seeding effects of amyloid βâ€protein and αâ€synuclein. Journal of Neurochemistry, 2012, 122, 883-890	. 2.1	168
141	Beyond α-synuclein transfer: pathology propagation in Parkinson's disease. Trends in Molecular Medicine, 2012, 18, 248-255.	3.5	69
142	Role of Ser129 phosphorylation of α-synuclein in melanoma cells. Journal of Cell Science, 2013, 126, 696-704.	1.2	32
143	Effects of intravenous immunoglobulin on alpha synuclein aggregation and neurotoxicity. International Immunopharmacology, 2012, 14, 550-557.	1.7	12
144	From Î \pm -synuclein to synaptic dysfunctions: New insights into the pathophysiology of Parkinson's disease. Brain Research, 2012, 1476, 183-202.	1.1	89
145	Alpha-synuclein: from secretion to dysfunction and death. Cell Death and Disease, 2012, 3, e350-e350.	2.7	239
146	Phosphorylated α-synuclein as a potential biomarker for Parkinson's disease and related disorders. Expert Review of Molecular Diagnostics, 2012, 12, 115-117.	1.5	15
147	The robust electrochemical detection of a Parkinson's disease marker in whole blood sera. Chemical Science, 2012, 3, 3468.	3.7	72
148	Neuroprevention: A new challenge?. Revue Neurologique, 2012, 168, 796-801.	0.6	6
149	Â-Synuclein in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009399-a009399.	2.9	958

	Сітатіс	on Report	
#	Article	IF	CITATIONS
150	Increased Neuronal α-Synuclein Pathology Associates with Its Accumulation in Oligodendrocytes in Mice Modeling α-Synucleinopathies. PLoS ONE, 2012, 7, e46817.	1.1	86
151	Characterization of Oligomers of Heterogeneous Size as Precursors of Amyloid Fibril Nucleation of an SH3 Domain: An Experimental Kinetics Study. PLoS ONE, 2012, 7, e49690.	1.1	30
152	α-Synuclein and Anti-α-Synuclein Antibodies in Parkinson's Disease, Atypical Parkinson Syndromes, REI Sleep Behavior Disorder, and Healthy Controls. PLoS ONE, 2012, 7, e52285.	M 1.1	59
153	α-Synuclein Levels in Blood Plasma from LRRK2 Mutation Carriers. PLoS ONE, 2012, 7, e52312.	1.1	45
154	Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders. International Journal of Alzheimer's Disease, 2012, 2012, 1-9.	1.1	31
155	-Synuclein as CSF and Blood Biomarker of Dementia with Lewy Bodies. International Journal of Alzheimer's Disease, 2012, 2012, 1-9.	1.1	34
156	Pathology of Neurodegenerative Diseases. , 0, , .		3
157	Biochemical premotor biomarkers for Parkinson's disease. Movement Disorders, 2012, 27, 644-650.	2.2	37
158	The Analytical Aspects and Regulatory Challenges of Biomarker Discovery: Examples from the Field of Neurodegeneration. Current Translational Geriatrics and Experimental Gerontology Reports, 2012, 1, 94-103.	0.7	0
159	Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coordination Chemistry Reviews, 2012, 256, 352-368.	9.5	100
160	Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson's disease and Dementia with Lewy bodies. Neurobiology of Disease, 2012, 45, 188-195.	2.1	84
161	The role of \hat{I}_{\pm} -synuclein in neurodegeneration $\hat{a} \in \hat{I}$ An update. Translational Neuroscience, 2012, 3, .	0.7	16
162	Variant in the 3′ region of SNCA associated with Parkinson's disease and serum α-synuclein levels. Journal of Neurology, 2012, 259, 497-504.	1.8	37
163	Prion-Like Propagation of Protein Aggregation and Related Therapeutic Strategies. Neurotherapeutics, 2013, 10, 371-382.	2.1	33
164	Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life. Toxicology, 2013, 308, 96-103.	2.0	16
165	A longitudinal study on α-synuclein in blood plasma as a biomarker for Parkinson's disease. Scientific Reports, 2013, 3, 2540.	1.6	142
166	Alpha-synuclein Post-translational Modifications as Potential Biomarkers for Parkinson Disease and Other Synucleinopathies. Molecular and Cellular Proteomics, 2013, 12, 3543-3558.	2.5	159
167	The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochemical Journal, 2013, 452, 1-17.	1.7	126

#	Article	IF	CITATIONS
169	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	2.1	116
170	Commentary: Progressive inflammation as a contributing factor to early development of Parkinson's disease. Experimental Neurology, 2013, 241, 148-155.	2.0	34
171	Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology, 2013, 80, 169-175.	1.5	108
172	Gender differences in Parkinson's disease: focus on plasma alpha-synuclein. Journal of Neural Transmission, 2013, 120, 1209-1215.	1.4	42
173	Proteolytic clearance of extracellular α-synuclein as a new therapeutic approach against Parkinson disease. Prion, 2013, 7, 121-126.	0.9	20
174	Toxicity of extracellular secreted alpha-synuclein: Its role in nitrosative stress and neurodegeneration. Neurochemistry International, 2013, 62, 776-783.	1.9	29
175	The secreted oligomeric form of αâ€synuclein affects multiple steps of membrane trafficking. FEBS Letters, 2013, 587, 452-459.	1.3	25
176	αâ€ S ynuclein: The Long Distance Runner. Brain Pathology, 2013, 23, 350-357.	2.1	107
177	alpha-Synuclein and intracellular trafficking: impact on the spreading of Parkinson's disease pathology. Journal of Molecular Medicine, 2013, 91, 693-703.	1.7	55
178	Activityâ€dependent secretion of alphaâ€synuclein by enteric neurons. Journal of Neurochemistry, 2013, 125, 512-517.	2.1	77
179	The Driving Force of Alpha-Synuclein Insertion and Amyloid Channel Formation in the Plasma Membrane of Neural Cells: Key Role of Ganglioside- and Cholesterol-Binding Domains. Advances in Experimental Medicine and Biology, 2013, 991, 15-26.	0.8	63
180	An Update on CSF Biomarkers of Parkinson's Disease. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 161-184.	0.6	5
181	Limelight on Alpha-Synuclein: Pathological and Mechanistic Implications in Neurodegeneration. Journal of Parkinson's Disease, 2013, 3, 415-459.	1.5	68
182	May the Evaluation of Nitrosative Stress Through Selective Increase of 3-Nitrotyrosine Proteins Other Than Nitroalbumin and Dominant Tyrosine-125/136 Nitrosylation of Serum α-Synuclein Serve for Diagnosis of Sporadic Parkinson's Disease?. Antioxidants and Redox Signaling, 2013, 19, 912-918.	2.5	38
184	Diagnosis and biomarkers: CSF. , 0, , 97-108.		0
186	Role of Oxidative Stress in Parkinson's Disease. Experimental Neurobiology, 2013, 22, 11-17.	0.7	518
187	Evidence for Prion-Like Mechanisms in Several Neurodegenerative Diseases: Potential Implications for Immunotherapy. Clinical and Developmental Immunology, 2013, 2013, 1-20.	3.3	30
188	Alpha-Synuclein Function and Dysfunction on Cellular Membranes. Experimental Neurobiology, 2014, 23, 292-313.	0.7	179

#	Article	IF	CITATIONS
189	Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation. Experimental Neurobiology, 2014, 23, 324-336.	0.7	45
190	Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders. Immunotherapy, 2014, 6, 141-153.	1.0	48
191	When amyloids become prions. Prion, 2014, 8, 233-239.	0.9	13
192	Cerebrospinal fluid α-synuclein in the differential diagnosis of parkinsonian syndromes. Future Neurology, 2014, 9, 525-532.	0.9	8
193	Biomarkers in biological fluids for dementia with Lewy bodies. Alzheimer's Research and Therapy, 2014, 6, 72.	3.0	28
194	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	1.5	168
195	Increase of the plasma αâ€ s ynuclein levels in patients with multiple system atrophy. Movement Disorders, 2014, 29, 375-379.	2.2	20
196	Biomarkers of Parkinson's disease. , 2014, , 817-831.		0
197	Proteomics as a new paradigm to tackle Parkinson's disease research challenges. Translational Proteomics, 2014, 4-5, 1-17.	1.2	11
198	Elevated levels of cerebrospinal fluid α-synuclein oligomers in healthy asymptomatic LRRK2 mutation carriers. Frontiers in Aging Neuroscience, 2014, 6, 248.	1.7	59
199	Mechanisms of action of brain insulin against neurodegenerative diseases. Journal of Neural Transmission, 2014, 121, 611-626.	1.4	20
200	Blood-based biomarkers for Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S99-S103.	1.1	117
201	Oxidative Stress Promotes Uptake, Accumulation, and Oligomerization of Extracellular α-Synuclein in Oligodendrocytes. Journal of Molecular Neuroscience, 2014, 52, 339-352.	1.1	40
202	A porous silicon immunoassay platform for fluorometric determination of α-synuclein in human cerebrospinal fluid. Mikrochimica Acta, 2014, 181, 1143-1149.	2.5	7
203	The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of Â-synuclein, and enhances its secretion and nuclear localization in cells. Human Molecular Genetics, 2014, 23, 4491-4509.	1.4	194
204	Increased α-synuclein levels in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Journal of Neurology, 2014, 261, 1203-1209.	1.8	34
205	Cerebrospinal fluid αâ€synuclein levels in Parkinson's disease – changed or unchanged?. European Journal of Neurology, 2014, 21, 365-367.	1.7	14
206	The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiology of Disease, 2014, 63, 1-11.	2.1	97

#	Article	IF	CITATIONS
207	Systems Approach to Neurodegenerative Disease Biomarker Discovery. Annual Review of Pharmacology and Toxicology, 2014, 54, 457-481.	4.2	45
208	Extracellular α-synuclein—a novel and crucial factor in Lewy body diseases. Nature Reviews Neurology, 2014, 10, 92-98.	4.9	255
209	ATP13A2/PARK9 Regulates Secretion of Exosomes and α-Synuclein. Journal of Neuroscience, 2014, 34, 15281-15287.	1.7	148
210	Alpha synuclein is transported into and out of the brain by the blood–brain barrier. Peptides, 2014, 62, 197-202.	1.2	138
211	The small GTPase Rab11 co-localizes with Â-synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	1.4	73
212	Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathologica, 2014, 128, 639-650.	3.9	504
213	Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson's Disease. Drugs and Aging, 2014, 31, 239-261.	1.3	25
214	Exogenous Â-Synuclein Decreases Raft Partitioning of Cav2.2 Channels Inducing Dopamine Release. Journal of Neuroscience, 2014, 34, 10603-10615.	1.7	53
215	Structural Characterization of Heparin-induced Glyceraldehyde-3-phosphate Dehydrogenase Protofibrils Preventing α-Synuclein Oligomeric Species Toxicity. Journal of Biological Chemistry, 2014, 289, 13838-13850.	1.6	31
216	What can biomarkers tell us about cognition in Parkinson's disease?. Movement Disorders, 2014, 29, 622-633.	2.2	61
217	Alpha-synuclein spreading in Parkinsonââ,¬â"¢s disease. Frontiers in Neuroanatomy, 2014, 8, 159.	0.9	148
218	Protein phosphorylation in neurodegeneration: friend or foe?. Frontiers in Molecular Neuroscience, 2014, 7, 42.	1.4	203
219	Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha-synuclein. Scientific Reports, 2015, 5, 16524.	1.6	36
220	Decreased levels of alphaâ€synuclein in cerebrospinal fluid of patients with clinically isolated syndrome and multiple sclerosis. Journal of Neurochemistry, 2015, 134, 748-755.	2.1	12
221	Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic 1±-synuclein mutant mouse model. Journal of Neuroinflammation, 2015, 12, 103.	3.1	25
222	Immunotherapy in Parkinson's Disease: Micromanaging Alpha-Synuclein Aggregation. Journal of Parkinson's Disease, 2015, 5, 413-424.	1.5	69
223	Disease-modifying therapeutic directions for Lewy-Body dementias. Frontiers in Neuroscience, 2015, 9, 293.	1.4	23
224	Alpha-Synuclein Levels in Blood Plasma Decline with Healthy Aging. PLoS ONE, 2015, 10, e0123444.	1.1	42

#	Article	IF	CITATIONS
225	The Diagnostic and Differential Diagnosis Utility of Cerebrospinal Fluidα-Synuclein Levels in Parkinson's Disease: A Meta-Analysis. Parkinson's Disease, 2015, 2015, 1-11.	0.6	45
226	Could <i>α</i> -Synuclein Amyloid-Like Aggregates Trigger a Prionic Neuronal Invasion?. BioMed Research International, 2015, 2015, 1-7.	0.9	10
227	The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules, 2015, 5, 435-471.	1.8	79
228	The Nâ€Terminus of α‧ynuclein Forms Cu ^{II} â€Bridged Oligomers. Chemistry - A European Journal 2015, 21, 7111-7118.	' 1.7	21
229	Mechanisms of Alpha-Synuclein Action on Neurotransmission: Cell-Autonomous and Non-Cell Autonomous Role. Biomolecules, 2015, 5, 865-892.	1.8	37
230	Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson's disease. Neuroscience Letters, 2015, 599, 115-119.	1.0	121
231	Extracellular αâ€ s ynuclein alters synaptic transmission in brain neurons by perforating the neuronal plasma membrane. Journal of Neurochemistry, 2015, 132, 731-741.	2.1	71
232	Molecular Determinants of α-Synuclein Mutants' Oligomerization and Membrane Interactions. ACS Chemical Neuroscience, 2015, 6, 403-416.	1.7	38
233	Potential of Cellular and Animal Models Based on a Prion-Like Propagation of α-Synuclein for Assessing Antiparkinson Agents. Molecular Neurobiology, 2015, 52, 226-235.	1.9	6
234	TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Experimental Neurology, 2015, 273, 24-35.	2.0	174
235	Animal models for prion-like diseases. Virus Research, 2015, 207, 5-24.	1.1	10
236	α-Synuclein and β-Amyloid form a Bridged Copper Complex. Applied Magnetic Resonance, 2015, 46, 1041-1052.	0.6	7
238	Parkinson disease with REM sleep behavior disorder. Neurology, 2015, 84, 888-894.	1.5	77
239	Prion 2015 Poster Abstracts. Prion, 2015, 9, S11-S99.	0.9	4
240	Bent out of shape: α‧ynuclein misfolding and the convergence of pathogenic pathways in Parkinson's disease. FEBS Letters, 2015, 589, 3749-3759.	1.3	50
241	Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine and Pharmacotherapy, 2015, 74, 101-110.	2.5	683
242	A cell culture model for monitoring α-synuclein cell-to-cell transfer. Neurobiology of Disease, 2015, 77, 266-275.	2.1	72
243	A Novel Microfluidic Cell Co-culture Platform for the Study of the Molecular Mechanisms of Parkinson's Disease and Other Synucleinopathies. Frontiers in Neuroscience, 2016, 10, 511.	1.4	43

#	Article	IF	CITATIONS
244	Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion. Frontiers in Molecular Neuroscience, 2016, 9, 29.	1.4	19
245	Focus on Extracellular Vesicles: Exosomes and Their Role in Protein Trafficking and Biomarker Potential in Alzheimer's and Parkinson's Disease. International Journal of Molecular Sciences, 2016, 17, 173.	1.8	196
246	Alpha-Synuclein Proteins Promote Pro-Inflammatory Cascades in Microglia: Stronger Effects of the A53T Mutant. PLoS ONE, 2016, 11, e0162717.	1.1	117
247	α‣ynuclein in Neurodegeneration—A Good Protein that may go Bad. Brain Pathology, 2016, 26, 387-388.	2.1	0
248	Alphaâ€synuclein propagation: New insights from animal models. Movement Disorders, 2016, 31, 161-168.	2.2	100
249	Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Scientific Reports, 2016, 6, 37990.	1.6	35
250	How strong is the evidence that Parkinson's disease is a prion disorder?. Current Opinion in Neurology, 2016, 29, 459-466.	1.8	59
251	Alpha-Synuclein as a Diagnostic Biomarker for Parkinson's Disease. Methods in Pharmacology and Toxicology, 2016, , 215-234.	0.1	1
252	Alpha-synuclein-based models of Parkinson's disease. Revue Neurologique, 2016, 172, 371-378.	0.6	38
253	Alpha-, Beta-, and Gamma-synuclein Quantification in Cerebrospinal Fluid by Multiple Reaction Monitoring Reveals Increased Concentrations in Alzheimer′s and Creutzfeldt-Jakob Disease but No Alteration in Synucleinopathies. Molecular and Cellular Proteomics, 2016, 15, 3126-3138.	2.5	92
254	Cerebrospinal Fluid Biomarkers for Target Engagement and Efficacy in Clinical Trials for Alzheimer's and Parkinson's Diseases. Frontiers of Neurology and Neuroscience, 2016, 39, 117-123.	3.0	8
255	Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Movement Disorders, 2016, 31, 848-860.	2.2	52
256	Sorting out release, uptake and processing of alphaâ€synuclein during prionâ€like spread of pathology. Journal of Neurochemistry, 2016, 139, 275-289.	2.1	77
257	Review: Sporadic Parkinson's disease: development and distribution of <i>α</i> â€synuclein pathology. Neuropathology and Applied Neurobiology, 2016, 42, 33-50.	1.8	309
258	Impairment of PDGF-induced chemotaxis by extracellular α-synuclein through selective inhibition of Rac1 activation. Scientific Reports, 2016, 6, 37810.	1.6	9
259	Mechanisms for cell-to-cell propagation no longer lag behind. Movement Disorders, 2016, 31, 1798-1799.	2.2	2
260	Total α-synuclein levels in human blood cells, CSF, and saliva determined by a lipid-ELISA. Analytical and Bioanalytical Chemistry, 2016, 408, 7669-7677.	1.9	22
261	The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4708-15.	3.3	38

ARTICLE IF CITATIONS # Exosomes in the Pathology of Neurodegenerative Diseases. Journal of Biological Chemistry, 2016, 291, 1.6 190 262 26589-26597. Alpha-synuclein measured in cerebrospinal fluid from patients with Alzheimer's disease, mild cognitive 0.8 impairment, or healthy controls: a two year follow-up study. BMC Neurology, 2016, 16, 180. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating 264 Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic 4.2 59 nanoparticles. Journal of Nanobiotechnology, 2016, 14, 41. Animal modeling an oligodendrogliopathy – multiple system atrophy. Acta Neuropathologica 2.4 Communications, 2016, 4, 12. Protein Misfolding and Aggregation: Implications for Mitochondrial Dysfunction and 266 1 Neurodegeneration., 2016, , 241-253. Induction of \hat{l}_{\pm} -synuclein aggregate formation by CSF exosomes from patients with Parkinson $\hat{a} \in \mathbb{M}$ s disease and dementia with Lewy bodies. Brain, 2016, 139, 481-494. 3.7 349 Value of cerebrospinal fluid α-synuclein species as biomarker in Parkinson's diagnosis and prognosis. 268 0.6 51 Biomarkers in Medicine, 2016, 10, 35-49. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Reviews Neuroscience, 2016, 17, 251-260. 4.9 251 Biological confounders for the values of cerebrospinal fluid proteins in Parkinson's disease and 270 2.1 58 related disorders. Journal of Neurochemistry, 2016, 139, 290-317. 271 Glucocerebrosidase and parkinsonism: lessons to learn. Journal of Neurology, 2016, 263, 1033-1044. 1.8 Decreased Toll-Like Receptor 2 and Toll-Like Receptor 7/8-Induced Cytokines in Parkinson's Disease 272 0.9 28 Patients. NeuroImmunoModulation, 2016, 23, 58-66. Effects of different isoforms of apoE on aggregation of the αâ€synuclein protein implicated in 1.0 28 Parkinson's disease. Neuroscience Letters, 2016, 618, 146-151. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's 274 3.7 38 Disease and Other Brain Disorders. Molecular Therapy, 2016, 24, 746-758. The utility of î±-synuclein as biofluid marker in neurodegenerative diseases: a systematic review of the literature. Biomarkers in Medicine, 2016, 10, 19-34. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of 276 2.8 137 amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193. Traffic jams and the complex role of α-Synuclein aggregation in Parkinson disease. Small GTPases, 2017, 8, 78-84. Alpha-Synuclein in Cerebrospinal Fluid., 2017, , 171-192. 278 0

Lewy body dementia., 2017, , 175-198.

279

16

2

ARTICLE IF CITATIONS In vitro \hat{I}_{\pm} -synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body 280 2.1 96 extracts from Parkinson disease brains. Neurobiology of Disease, 2017, 103, 101-112. Plasma \hat{I} ±-synuclein predicts cognitive decline in Parkinson \hat{a} \in ^{Ms} disease. Journal of Neurology, 128 Neurosurgery and Psychiatry, 2017, 88, 818-824. AlphaLISA detection of alpha-synuclein in the cerebrospinal fluid and its potential application in 282 4.8 9 Parkinson's disease diagnosis. Protein and Cell, 2017, 8, 696-700. Microglia P2Y6 receptor is related to Parkinson's disease through neuroinflammatory process. 3.1 Journal of Neuroinflammation, 2017, 14, 38. Extracellular α-synuclein induces sphingosine 1-phosphate receptor subtype 1 uncoupled from 284 1.6 13 inhibitory G-protein leaving Î²-arrestin signal intact. Scientific Reports, 2017, 7, 44248. The Transcellular Propagation and Intracellular Trafficking of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024380. 287 α‧ynuclein Oligomers: A Study in Diversity. Israel Journal of Chemistry, 2017, 57, 699-723. 1.0 16 Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. 288 1.4 47 Brain Research Bulletin, 2017, 133, 60-70. Structural Characteristics of α-Synuclein Oligomers. International Review of Cell and Molecular 289 95 1.6 Biology, 2017, 329, 79-143. Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for 1.6 79 Parkinson's disease. Scientific Reports, 2017, 7, 13713. The Oligomer Hypothesis in \hat{I} +-Synucleinopathy. Neurochemical Research, 2017, 42, 3362-3371. 291 1.6 53 Î \pm -Synuclein Interacts with Lipoproteins in Plasma. Journal of Molecular Neuroscience, 2017, 63, 165-172. 1.1 Comparison of α-Synuclein Fibril Inhibition by Four Different Amyloid Inhibitors. ACS Chemical 293 1.7 52 Neuroscience, 2017, 8, 2722-2733. Differential diagnosis of Alzheimer's disease using spectrochemical analysis of blood. Proceedings of 294 3.3 the National Academy of Sciences of the United States of America, 2017, 114, E7929-E7938. A user's guide for $\hat{I}\pm \hat{a}\in s$ ynuclein biomarker studies in biological fluids: Perianalytical considerations. 295 2.2 54 Movement Disorders, 2017, 32, 1117-1130. Experimental animal models of Parkinson's disease: A transition from assessing symptomatology to \hat{l}_{\pm} -synuclein targeted disease modification. Experimental Neurology, 2017, 298, 172-179. Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview. Advances in Neurobiology, 2017, 297 1.3 2 15, 55-92. Post translational changes to \hat{t} -synuclein control iron and dopamine trafficking; a concept for 298 4.4 neuron vulnerability in Parkinson's disease. Molecular Neurodegeneration, 2017, 12, 45.

#	Article	IF	Citations
299	Pathological α-synuclein exacerbates the progression of Parkinson's disease through microglial activation. Toxicology Letters, 2017, 265, 30-37.	0.4	119
300	Disease-Toxicant Interactions in Parkinson's Disease Neuropathology. Neurochemical Research, 2017, 42, 1772-1786.	1.6	15
301	Antibodies against the C-terminus of α-synuclein modulate its fibrillation. Biophysical Chemistry, 2017, 220, 34-41.	1.5	29
302	Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biological Chemistry, 2017, 398, 77-100.	1.2	50
303	Neurodegenerative Disorders. , 2017, , 1-16.		18
304	Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2017, 11, 81.	1.8	59
305	Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach. Frontiers in Neuroscience, 2017, 11, 3.	1.4	44
306	Apolipoprotein Eε4: A Biomarker for Executive Dysfunction among Parkinson's Disease Patients with Mild Cognitive Impairment. Frontiers in Neuroscience, 2017, 11, 712.	1.4	16
307	Extracellular Vesicles in Brain Tumors and Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 276.	1.4	87
308	The Contribution of <i>α</i> -Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plasticity, 2017, 2017, 1-15.	1.0	70
309	Running wheel exercise reduces α-synuclein aggregation and improves motor and cognitive function in a transgenic mouse model of Parkinson's disease. PLoS ONE, 2017, 12, e0190160.	1.1	65
310	Alpha-synuclein oligomers impair memory through glial cell activation and via Toll-like receptor 2. Brain, Behavior, and Immunity, 2018, 69, 591-602.	2.0	55
311	The concept of alpha-synuclein as a prion-like protein: ten years after. Cell and Tissue Research, 2018, 373, 161-173.	1.5	138
312	Biomarkers for cognitive impairment in Lewy body disorders: Status and relevance for clinical trials. Movement Disorders, 2018, 33, 528-536.	2.2	17
314	Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. Journal of Biological Chemistry, 2018, 293, 8208-8216.	1.6	42
315	Release and uptake of pathologic alpha-synuclein. Cell and Tissue Research, 2018, 373, 175-182.	1.5	57
316	The relation between plasma α-synuclein level and clinical symptoms or signs of Parkinson's disease. Neurologia I Neurochirurgia Polska, 2018, 52, 243-251.	0.6	33
317	The Potential Role of Toll-Like Receptor 4 in Mediating Dopaminergic Cell Loss and Alpha-Synuclein Expression in the Acute MPTP Mouse Model of Parkinson's Disease. Journal of Molecular Neuroscience, 2018, 64, 611-618.	1.1	26

#	Article	IF	CITATIONS
318	Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024091.	2.9	353
319	Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiology of Disease, 2018, 109, 219-225.	2.1	80
320	Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Experimental Neurology, 2018, 299, 172-196.	2.0	33
321	Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World Journal of Biological Psychiatry, 2018, 19, 244-328.	1.3	215
322	Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiology of Disease, 2018, 111, 26-35.	2.1	108
323	Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy, 2018, 14, 98-119.	4.3	193
324	Alpha-synuclein dimerization in erythrocytes of patients with genetic and non-genetic forms of Parkinson's Disease. Neuroscience Letters, 2018, 672, 145-149.	1.0	35
325	The PMR1 pump in alpha-synuclein toxicity and neurodegeneration. Neuroscience Letters, 2018, 663, 66-71.	1.0	5
326	α‧ynuclein species as potential cerebrospinal fluid biomarkers for dementia with lewy bodies. Movement Disorders, 2018, 33, 1724-1733.	2.2	79
327	α -Synuclein Trafficking in Parkinson's Disease: Insights From Fly and Mouse Models. ASN Neuro, 2018, 10, 175909141881258.	1.5	12
328	Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder. BioMed Research International, 2018, 2018, 1-7.	0.9	20
329	α‧ynuclein concentration increases over time in plasma supernatant of single donor platelets. European Journal of Haematology, 2018, 101, 630-634.	1.1	6
330	Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. International Journal of Molecular Sciences, 2018, 19, 336.	1.8	51
331	A new model to study cell-to-cell transfer of αSynuclein inÂvivo. Biochemical and Biophysical Research Communications, 2018, 503, 1385-1393.	1.0	7
332	Prion-like propagation of pathology in Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 321-335.	1.0	58
333	Metallomics Applied to theÂStudy of Neurodegenerative and Mental Diseases. Advances in Experimental Medicine and Biology, 2018, 1055, 21-37.	0.8	11
334	A Genome-Wide Association Study of α-Synuclein Levels in Cerebrospinal Fluid. Neurotoxicity Research, 2019, 35, 41-48.	1.3	7
335	What Have We Learned from Cerebrospinal Fluid Studies about Biomarkers for Detecting LRRK2 Parkinson's Disease Patients and Healthy Subjects with Parkinson's-Associated LRRK2 Mutations?. Journal of Parkinson's Disease, 2019, 9, 467-488.	1.5	10

#	Article	IF	CITATIONS
336	Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Frontiers in Neuroscience, 2019, 13, 654.	1.4	167
337	Initiation and Transmission of α-Synuclein Pathology in Parkinson's Disease. Neurochemical Research, 2019, 44, 2685-2694.	1.6	6
338	Alpha synuclein in hematopoiesis and immunity. Heliyon, 2019, 5, e02590.	1.4	40
339	Phospho-S129 Alpha-Synuclein Is Present in Human Plasma but Not in Cerebrospinal Fluid as Determined by an Ultrasensitive Immunoassay. Frontiers in Neuroscience, 2019, 13, 889.	1.4	25
340	Immunotherapy in Parkinson's disease: Current status and future directions. Neurobiology of Disease, 2019, 132, 104587.	2.1	41
341	Integrins—A missing link in synuclein's pathogenic mechanism. Journal of Neuroscience Research, 2019, 97, 539-542.	1.3	4
342	Detection of Parkinson's Disease through the Peptoid Recognizing α-Synuclein in Serum. ACS Chemical Neuroscience, 2019, 10, 1204-1208.	1.7	14
343	α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neuroscience Letters, 2019, 709, 134316.	1.0	177
344	Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Frontiers in Molecular Neuroscience, 2019, 12, 107.	1.4	79
345	Antibodies against alphaâ€synuclein: tools and therapies. Journal of Neurochemistry, 2019, 150, 612-625.	2.1	53
346	Interferon-Î ³ Potentiates α-Synuclein-induced Neurotoxicity Linked to Toll-like Receptors 2 and 3 and Tumor Necrosis Factor-α in Murine Astrocytes. Molecular Neurobiology, 2019, 56, 7664-7679.	1.9	15
347	<i>In vitro</i> models of synucleinopathies: informing on molecular mechanisms and protective strategies. Journal of Neurochemistry, 2019, 150, 535-565.	2.1	33
348	Neurodegeneration meets immunology – A chemical biology perspective. Bioorganic and Medicinal Chemistry, 2019, 27, 1911-1924.	1.4	0
349	Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Science Signaling, 2019, 12, .	1.6	129
350	CSF and blood biomarkers for Parkinson's disease. Lancet Neurology, The, 2019, 18, 573-586.	4.9	393
351	Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain, 2019, 142, 1365-1385.	3.7	82
352	Biomarkers of Parkinson's Disease. , 2019, , 895-909.		0
353	Physiological, molecular and genetic aspects of alpha-synuclein and its correlation with high alcohol consumption. Revista Facultad De Medicina, 2019, 67, 315-322.	0.0	0

#	Article	IF	CITATIONS
354	Cholesterol Metabolism in the Brain and Its Association with Parkinson's Disease. Experimental Neurobiology, 2019, 28, 554-567.	0.7	95
355	Simultaneous quantification of tau and α-synuclein in cerebrospinal fluid by high-resolution mass spectrometry for differentiation of Lewy Body Dementia from Alzheimer's Disease and controls. Analyst, The, 2019, 144, 6342-6351.	1.7	13
356	Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. Journal of Neuroinflammation, 2019, 16, 250.	3.1	85
357	Exosomal Transport and Progression of Neurodegeneration in Amyotrophic Lateral Sclerosis. Neurochemical Journal, 2019, 13, 229-239.	0.2	2
358	Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Frontiers in Medicine, 2019, 6, 268.	1.2	11
359	Cerebrospinal fluid biomarker for Parkinson's disease: An overview. Molecular and Cellular Neurosciences, 2019, 97, 60-66.	1.0	32
360	Increased Serum Levels of α-Synuclein in Patients With Major Depressive Disorder. American Journal of Geriatric Psychiatry, 2019, 27, 280-286.	0.6	18
361	Alpha Synuclein and Parkinson's Disease. , 2019, , 1-14.		3
362	Correlation between Cellular Uptake and Cytotoxicity of Fragmented α-Synuclein Amyloid Fibrils Suggests Intracellular Basis for Toxicity. ACS Chemical Neuroscience, 2020, 11, 233-241.	1.7	26
363	NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1762-1771.	3.3	77
364	Characterization of novel conformation-selective α-synuclein antibodies as potential immunotherapeutic agents for Parkinson's disease. Neurobiology of Disease, 2020, 136, 104712.	2.1	31
365	From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Frontiers in Synaptic Neuroscience, 2020, 12, 584536.	1.3	20
366	Metal ions shape α-synuclein. Scientific Reports, 2020, 10, 16293.	1.6	55
367	Expresión de alfa sinucleÃna en sangre y su relación con el estreñimiento crónico en población residente en Bogotá, D.C., con problemas de consumo de alcohol. Biomedica, 2020, 40, 309-321.	0.3	1
368	Extracellular Vesicles in Alzheimer's and Parkinson's Disease: Small Entities with Large Consequences. Cells, 2020, 9, 2485.	1.8	36
369	Cerebrospinal fluid α-synuclein predicts neurodegeneration and clinical progression in non-demented elders. Translational Neurodegeneration, 2020, 9, 41.	3.6	7
370	Plasma Total α-Synuclein and Neurofilament Light Chain: Clinical Validation for Discriminating Parkinson's Disease from Normal Control. Dementia and Geriatric Cognitive Disorders, 2020, 49, 401-409.	0.7	11
371	Parkinson's: A Disease of Aberrant Vesicle Trafficking. Annual Review of Cell and Developmental Biology, 2020, 36, 237-264.	4.0	54

#	Article	IF	CITATIONS
372	α-Synuclein in Parkinson's Disease: Does a Prion-Like Mechanism of Propagation from Periphery to the Brain Play a Role?. Neuroscientist, 2021, 27, 107385842094318.	2.6	5
373	Ubiquitin, Autophagy and Neurodegenerative Diseases. Cells, 2020, 9, 2022.	1.8	44
374	In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Frontiers in Cell and Developmental Biology, 2020, 8, 559791.	1.8	14
375	α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice. Scientific Reports, 2020, 10, 20438.	1.6	25
376	Molecular events underlying the cellâ€ŧo ell transmission of αâ€synuclein. FEBS Journal, 2021, 288, 6593-6602.	2.2	27
377	Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomedicine and Pharmacotherapy, 2020, 127, 110145.	2.5	18
378	Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Brain, 2020, 143, 1462-1475.	3.7	135
379	Interfaces Determine the Fate of Seeded αâ€5ynuclein Aggregation. Advanced Materials Interfaces, 2020, 7, 2000446.	1.9	7
380	Plasma Levels of α-Synuclein, Aβ-40 and T-tau as Biomarkers to Predict Cognitive Impairment in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 112.	1.7	30
381	The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson's Disease. Biomolecules, 2020, 10, 912.	1.8	18
382	Initiation and propagation of α-synuclein aggregation in the nervous system. Molecular Neurodegeneration, 2020, 15, 19.	4.4	156
383	A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. Journal of Electroanalytical Chemistry, 2020, 862, 113994.	1.9	42
384	Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells. Journal of Advanced Research, 2020, 23, 37-45.	4.4	32
385	Modeling Parkinson's Disease With the Alpha-Synuclein Protein. Frontiers in Pharmacology, 2020, 11, 356.	1.6	195
386	Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 720-729.	0.9	148
387	Pathophysiology of Parkinson's disease: Mitochondria, alpha-synuclein and much more…. Revue Neurologique, 2021, 177, 260-271.	0.6	14
388	Low serum Α-SYNUCLEIN and oligomer Α-SYNUCLEIN levels in multiple sclerosis patients. Journal of Neuroimmunology, 2021, 350, 577432.	1.1	4
389	Inflammation and Parkinson's disease pathogenesis: Mechanisms and therapeutic insight. Progress in Molecular Biology and Translational Science, 2021, 177, 175-202.	0.9	21

#	Article	IF	CITATIONS
390	Treating Parkinson's Disease with Antibodies: Previous Studies and Future Directions. Journal of Parkinson's Disease, 2021, 11, 71-92.	1.5	21
391	Retina as a Model to Study In Vivo Transmission of α-Synuclein in the A53T Mouse Model of Parkinson's Disease. Methods in Molecular Biology, 2021, 2224, 75-85.	0.4	4
392	Parkinson's Disease: Can Targeting Inflammation Be an Effective Neuroprotective Strategy?. Frontiers in Neuroscience, 2020, 14, 580311.	1.4	15
393	Alpha-Synuclein: Mechanisms of Release and Pathology Progression in Synucleinopathies. Cells, 2021, 10, 375.	1.8	54
394	Biomarkers and the Role of α-Synuclein in Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 645996.	1.7	13
395	Prionopathies and Prionlike Protein Aberrations in Neurodegenerative Diseases. Neurographics, 2021, 11, 127-148.	0.0	0
396	Inflammatory Responses to Monomeric and Aggregated α-Synuclein in Peripheral Blood of Parkinson Disease Patients. Frontiers in Neuroscience, 2021, 15, 639646.	1.4	23
399	Decreased Exosomal Acetylcholinesterase Activity in the Plasma of Patients With Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 665400.	1.7	12
400	Neurons and Glia Interplay in α-Synucleinopathies. International Journal of Molecular Sciences, 2021, 22, 4994.	1.8	28
402	Genetic Defects and Pro-inflammatory Cytokines in Parkinson's Disease. Frontiers in Neurology, 2021, 12, 636139.	1.1	26
403	Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6517.	1.8	38
404	Comparison of Different Platform Immunoassays for the Measurement of Plasma Alpha-Synuclein in Parkinson's Disease Patients. Journal of Parkinson's Disease, 2021, 11, 1761-1772.	1.5	15
405	Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. Npj Parkinson's Disease, 2021, 7, 65.	2.5	74
406	Neuroprotective Effects of Trehalose and Sodium Butyrate on Preformed Fibrillar Form of α-Synuclein-Induced Rat Model of Parkinson's Disease. ACS Chemical Neuroscience, 2021, 12, 2643-2660.	1.7	20
407	Extracellular Vesicles, Stem Cells and the Role of miRNAs in Neurodegeneration. Current Neuropharmacology, 2022, 20, 1450-1478.	1.4	5
408	Plasma total tau predicts executive dysfunction in Parkinson's disease. Acta Neurologica Scandinavica, 2022, 145, 30-37.	1.0	10
409	Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell, 2021, 184, 5089-5106.e21.	13.5	158
410	Is Multiple System Atrophy a Prion-like Disorder?. International Journal of Molecular Sciences, 2021, 22, 10093.	1.8	12

#	Article	IF	CITATIONS
411	Microglial NLRP3 Inflammasome Activation upon TLR2 and TLR5 Ligation by Distinct α-Synuclein Assemblies. Journal of Immunology, 2021, 207, 2143-2154.	0.4	53
412	Transcutaneous vagus nerve stimulation (tVNS) as a potential therapeutic application for neurodegenerative disorders – A focus on dysautonomia in Parkinson's disease. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102858.	1.4	2
414	The Interplay Between Proteostasis Systems and Parkinson's Disease. Advances in Experimental Medicine and Biology, 2020, 1233, 223-236.	0.8	6
415	Single-Molecule Characterization of the Interactions between Extracellular Chaperones and Toxic α-Synuclein Oligomers. Cell Reports, 2018, 23, 3492-3500.	2.9	59
416	Phosphorylated Alpha-Synuclein in Red Blood Cells as a Potential Diagnostic Biomarker for Multiple System Atrophy: A Pilot Study. Parkinson's Disease, 2020, 2020, 1-12.	0.6	9
417	Formation of Toxic Oligomeric α-Synuclein Species in Living Cells. PLoS ONE, 2008, 3, e1867.	1.1	354
418	Glial Innate Immunity Generated by Non-Aggregated Alpha-Synuclein in Mouse: Differences between Wild-type and Parkinson's Disease-Linked Mutants. PLoS ONE, 2010, 5, e13481.	1.1	89
419	Inhibiting α-Synuclein Oligomerization by Stable Cell-Penetrating β-Synuclein Fragments Recovers Phenotype of Parkinson's Disease Model Flies. PLoS ONE, 2010, 5, e13863.	1.1	92
420	α-Synuclein Reactive Antibodies as Diagnostic Biomarkers in Blood Sera of Parkinson's Disease Patients. PLoS ONE, 2011, 6, e18513.	1.1	146
421	PrPSc-Specific Antibodies with the Ability to Immunodetect Prion Oligomers. PLoS ONE, 2011, 6, e19998.	1.1	21
422	The AAA-ATPase VPS4 Regulates Extracellular Secretion and Lysosomal Targeting of α-Synuclein. PLoS ONE, 2011, 6, e29460.	1.1	120
423	Trianavian of Inflormation by Annual divide "Consulation on Inflormation, Decrements in		
	Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE, 2013, 8, e55375.	1.1	465
424	Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation. PLoS ONE, 2013, 8, e79160.	1.1	465 92
424 425	Synucleinopathies. PLoS ONE, 2013, 8, e55375. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like		
	Synucleinopathies. PLoS ONE, 2013, 8, e55375. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation. PLoS ONE, 2013, 8, e79160. Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells.	1.1	92
425	Synucleinopathies. PLoS ONE, 2013, 8, e55375. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation. PLoS ONE, 2013, 8, e79160. Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells. PLoS ONE, 2016, 11, e0153020.	1.1	92 34
425 426	 Synucleinopathies. PLoS ONE, 2013, 8, e55375. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation. PLoS ONE, 2013, 8, e79160. Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells. PLoS ONE, 2016, 11, e0153020. Emerging candidate biomarkers for Parkinson's disease: a review. , 2014, 5, 27-34. Evidence for gender differences in cognition, emotion and quality of life in Parkinson's disease?. , 	1.1	92 34 26

	CITATION RE		
# 430	ARTICLE Modulating the Amyloidogenesis of ?-Synuclein. Current Neuropharmacology, 2016, 14, 226-237.	IF 1.4	CITATIONS
431	When amyloids become prions. Prion, 2014, 8, .	0.9	2
432	Alpha-synuclein truncation and disease. Health, 2012, 04, 1167-1177.	0.1	6
433	Topographical Propagation of α-synuclein Pathology in Parkinson's Disease: Phenomenology and Hypothetical Mechanism. Experimental Neurobiology, 2009, 18, 19.	0.7	1
434	Towards New Therapies for Parkinson's Disease. , 2011, , .		10
435	Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery. Biomolecules, 2021, 11, 1508.	1.8	59
436	Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life, 2021, 11, 1126.	1.1	4
437	Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacological Reviews, 2021, 73, 1204-1268.	7.1	11
438	Purification and Quantification of Neural \hat{l} ±-synuclein. , 2008, , 559-573.		1
439	CFS Biomarkers in Parkinson's Disease. , 0, , .		0
440	Brain Damage - Bridging Between Basic Research and Clinics. , 2012, , .		9
441	Cardiovascular Proteomic Analysis. , 2013, , 81-98.		Ο
442	Étiopathogénie. , 2015, , 13-19.e2.		0
443	Extracellular α-Synuclein as a Target for Immunotherapy. Methods in Pharmacology and Toxicology, 2016, , 73-83.	0.1	Ο
444	Laboratory Biomarkers of Early Diagnosis of Parkinson's Disease. International Neurological Journal, 2016, .	0.2	2
445	SNARE Proteins Mediate α-Synuclein Secretion via Multiple Vesicular Pathways. Molecular Neurobiology, 2022, 59, 405-419.	1.9	9
446	Nonclinical safety evaluation, pharmacokinetics, and target engagement of Lu AF82422, a monoclonal IgG1 antibody against alpha-synuclein in development for treatment of synucleinopathies. MAbs, 2021, 13, 1994690.	2.6	10
447	Alpha-synuclein and neuroinflammation in Parkinson's disease. , 2020, , 431-446.		1

#	Article	IF	CITATIONS
448	Alpha-Synuclein Induced Immune Cells Activation and Associated Therapy in Parkinson's Disease. Frontiers in Aging Neuroscience, 2021, 13, 769506.	1.7	19
449	Alpha-Synuclein, cyclooxygenase-2 and prostaglandins-EP2 receptors as neuroinflammatory biomarkers of autism spectrum disorders: Use of combined ROC curves to increase their diagnostic values. Lipids in Health and Disease, 2021, 20, 155.	1.2	6
451	Phospholipase D is Dispensable for Epidermal Growth Factor-Induced Chemotaxis. Kobe Journal of Medical Sciences, 2017, 62, E162-E167.	0.2	0
452	Prospective of SNCA in nervous system diseases. , 2017, 3, 10-16.		0
453	Alpha-synuclein spreading mechanisms in Parkinson's disease: The role of membrane receptors. International Review of Movement Disorders, 2021, 2, 1-63.	0.1	0
454	Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Frontiers in Neuroscience, 2021, 15, 806260.	1.4	11
456	Therapeutics in the Pipeline Targeting <i>α</i> -Synuclein for Parkinson's Disease. Pharmacological Reviews, 2022, 74, 207-237.	7.1	39
457	A Mechanistic Overview of the Cellular Pathology and Prion-Like Propagation of α-Synuclein in Parkinson's Disease: A Narrative Review. , 2022, 6, .		0
458	Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Scientific Reports, 2022, 12, 2038.	1.6	16
459	Leukotriene Signaling as a Target in α-Synucleinopathies. Biomolecules, 2022, 12, 346.	1.8	5
460	Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson's Disease. Frontiers in Molecular Neuroscience, 2022, 15, 805087.	1.4	13
461	The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Current Neuropharmacology, 2023, 21, 183-201.	1.4	6
462	Small but Mighty—Exosomes, Novel Intercellular Messengers in Neurodegeneration. Biology, 2022, 11, 413.	1.3	15
463	Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cellular and Molecular Life Sciences, 2022, 79, 174.	2.4	45
464	Emerging Potential of Exosomal Non-coding RNA in Parkinson's Disease: A Review. Frontiers in Aging Neuroscience, 2022, 14, 819836.	1.7	10
465	Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells, 2022, 11, 1279.	1.8	11
466	Rotenone induces regionally distinct α-synuclein protein aggregation and activation of glia prior to loss of dopaminergic neurons in C57Bl/6 mice. Neurobiology of Disease, 2022, 167, 105685.	2.1	17
467	Identification of Novel Biomarkers in Platelets for Diagnosing Parkinson's Disease. European Neurology, 2022, 85, 122-131.	0.6	2

#	Article	IF	CITATIONS
468	Synucleinopathies. , 2014, , 149-175.		0
477	The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Frontiers in Cellular Neuroscience, 2022, 16, 844211.	1.8	7
478	Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathologica, 2022, 143, 613-640.	3.9	22
479	Raman Spectroscopy Study of Skin Biopsies from Patients with Parkinson's Disease: Trends in Alpha-Synuclein Aggregation from the Amide I Region. Applied Spectroscopy, 2022, 76, 1317-1328.	1.2	3
480	α-Synuclein Impacts on Intrinsic Neuronal Network Activity Through Reduced Levels of Cyclic AMP and Diminished Numbers of Active Presynaptic Terminals. Frontiers in Molecular Neuroscience, 2022, 15, .	1.4	2
481	Evaluation of Alpha-Synuclein Cerebrospinal Fluid Levels in Several Neurological Disorders. Journal of Clinical Medicine, 2022, 11, 3139.	1.0	3
482	The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
483	Polarized α-synuclein trafficking and transcytosis across brain endothelial cells via Rab7-decorated carriers. Fluids and Barriers of the CNS, 2022, 19, .	2.4	12
484	The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. International Journal of Molecular Sciences, 2022, 23, 5894.	1.8	15
486	Exogenous human α-Synuclein acts in vitro as a mild platelet antiaggregant inhibiting α-thrombin-induced platelet activation. Scientific Reports, 2022, 12, .	1.6	4
487	α-Synuclein induced cholesterol lowering increases tonic and reduces depolarization-evoked synaptic vesicle recycling and glutamate release. Npj Parkinson's Disease, 2022, 8, .	2.5	3
488	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	1.8	76
489	Gene-Based Therapeutics for Parkinson's Disease. Biomedicines, 2022, 10, 1790.	1.4	3
490	Dysregulation of peripheral monocytes and pro-inflammation of alpha-synuclein in Parkinson's disease. Journal of Neurology, 2022, 269, 6386-6394.	1.8	10
491	Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nature Communications, 2022, 13, .	5.8	28
492	Spreading of alpha-synuclein between different cell types. Behavioural Brain Research, 2023, 436, 114059.	1.2	6
493	Oligomeropathies, inflammation and prion protein binding. Frontiers in Neuroscience, 0, 16, .	1.4	3
494	Neuroinflammation and Parkinson's Disease—From Neurodegeneration to Therapeutic Opportunities. Cells, 2022, 11, 2908.	1.8	28

	Сітаті	ION REPORT	Report		
#	Article	IF	CITATIONS		
495	LRP1 is a neuronal receptor for $\hat{l}\pm$ -synuclein uptake and spread. Molecular Neurodegeneration, 2022, 17, .	4.4	26		
496	Relevance of plasma biomarkers to pathologies in Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Scientific Reports, 2022, 12, .	1.6	3		
497	Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. International Journal of Molecular Sciences, 2022, 23, 14753.	1.8	14		
498	Time-dependent alterations in the rat nigrostriatal system after intrastriatal injection of fibrils formed by α–Syn and tau fragments. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1		
499	Multiple system atrophy: α-Synuclein strains at the neuron-oligodendrocyte crossroad. Molecular Neurodegeneration, 2022, 17, .	4.4	8		
500	Huntingtin and Other Neurodegeneration-Associated Proteins in the Development of Intracellular Pathologies: Potential Target Search for Therapeutic Intervention. International Journal of Molecular Sciences, 2022, 23, 15533.	1.8	2		
501	The Hidden Cell-to-Cell Trail of α-Synuclein Aggregates. Journal of Molecular Biology, 2023, 435, 167930.	2.0	9		
502	Unconventional secretion of \hat{I}_{\pm} -synuclein mediated by palmitoylated DNAJC5 oligomers. ELife, 0, 12, .	2.8	5		
503	Quantitative Seed Amplification Assay: A Proof-of-Principle Study. Journal of Physical Chemistry B, 2023, 127, 1735-1743.	1.2	5		
504	Cognitive heterogeneity in Parkinson's disease: A mechanistic view. Neuron, 2023, 111, 1531-1546.	3.8	10		
505	Potential for Therapeutic-Loaded Exosomes to Ameliorate the Pathogenic Effects of α-Synuclein in Parkinson's Disease. Biomedicines, 2023, 11, 1187.	1.4	5		