COMPOSITION AND SPECIES RICHNESS OF MOLLUSC VEGETATION AND WATER CHEMISTRY IN THE WEST POORâ€"RICH GRADIENT

Journal of Molluscan Studies 69, 349-357

DOI: 10.1093/mollus/69.4.349

Citation Report

#	Article	IF	CITATIONS
1	International journal of the environment. Ceramurgia International, 1977, 3, 171-172.	0.3	2
2	Plant communities can predict the distribution of solitarious desert locust Schistocerca gregaria. Journal of Applied Ecology, 2005, 42, 989-997.	1.9	38
3	Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics, 2006, 8, 97-114.	1.1	211
4	Habitat requirements of the Czech <i>Pisidium</i> species (Mollusca: Bivalvia) and possible application to bioindication. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2006, 29, 1767-1769.	0.1	Ο
5	Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography, 2006, 33, 98-107.	1.4	88
6	Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development?. Journal of Molluscan Studies, 2007, 73, 53-60.	0.4	52
7	The composition and richness of Danubian floodplain forest land snail faunas in relation to forest type and flood frequency. Journal of Molluscan Studies, 2007, 74, 37-45.	0.4	38
8	Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica, 2007, 32, 161-171.	0.5	49
9	Description of plant communities on the Red Sea coastal plain of Sudan. Journal of Arid Environments, 2007, 68, 113-131.	1.2	17
10	Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. Journal of Biogeography, 2008, 35, 1215-1225.	1.4	49
11	Land snail distribution patterns within a site: The role of different calcium sources. European Journal of Soil Biology, 2008, 44, 172-179.	1.4	55
12	Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquatic Insects, 2009, 31, 359-367.	0.6	6
13	A nearâ€annual palaeohydrological study based on testate amoebae from a subâ€alpine mire: surface wetness and the role of climate during the instrumental period. Journal of Quaternary Science, 2010, 25, 190-202.	1.1	41
14	Acidophilic terrestrial gastropod communities of North America. Journal of Molluscan Studies, 2010, 76, 144-156.	0.4	27
15	Snail faunas in the Southern Ural forests and their relations to vegetation: an analogue of the Early Holocene assemblages of Central Europe?. Journal of Molluscan Studies, 2010, 76, 1-10.	0.4	30
16	Use and Apparent Partitioning of Habitat by an Imperiled Springsnail (Hydrobiidae) and a Cosmopolitan Pond Snail (Physidae). Southwestern Naturalist, 2011, 56, 216-223.	0.1	3
17	Freshwater mollusc biodiversity and conservation in two stressed Mediterranean basins. Limnologica, 2011, 41, 201-212.	0.7	18
18	Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. Journal of Limnology, 2011, 70, 54.	0.3	39

ATION REDO

#	Article	IF	CITATIONS
19	Mollusc assemblages in palaeoecological reconstructions: an investigation of their predictive power using transfer function models. Boreas, 2011, 40, 459-467.	1.2	7
20	The occurrence of Pisidium species (Bivalvia: Sphaeriidae) in oligotrophic springs of the Blanice River catchment (Czech Republic) in relation to ecological conditions. Biologia (Poland), 2011, 66, 299-307.	0.8	7
21	Land snail faunas along an environmental gradient in the Altai Mountains (Russia). Journal of Molluscan Studies, 2011, 77, 76-86.	0.4	24
22	Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 2011, 667, 159-171.	1.0	23
23	Mollusc communities in Bulgarian fens: predictive power of the environment, vegetation, and spatial structure in an isolated habitat. Die Naturwissenschaften, 2011, 98, 671-681.	0.6	8
24	Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. Journal of Molluscan Studies, 2011, 77, 248-254.	0.4	9
25	Variation of Snail Assemblages in Hay Meadows: Disentangling the Predictive Power of Abiotic Environment and Vegetation. Malacologia, 2012, 55, 151-162.	0.2	19
26	HYDROLOGICAL GRADIENT AND SPECIES TRAITS EXPLAIN GASTROPOD DIVERSITY IN FLOODPLAIN GRASSLANDS. River Research and Applications, 2012, 28, 1620-1629.	0.7	9
27	Differences in benthic macroinvertebrate structure of headwater streams with extreme hydrochemistry. Biologia (Poland), 2013, 68, 303-313.	0.8	10
28	Microhabitat Requirements of Five Rare Vertiginid Species (Gastropoda, Pulmonata: Vertiginidae) in Wetlands of Western Poland. Malacologia, 2013, 56, 95-106.	0.2	15
29	Refugial Populations ofVertigo lilljeborgiandV. genesii(Vertiginidae): New Isolated Occurrences in Central Europe, Ecology and Distribution. American Malacological Bulletin, 2013, 31, 323-329.	0.2	12
30	Invasion of Impatiens glandulifera affects terrestrial gastropods by altering microclimate. Acta Oecologica, 2013, 47, 16-23.	0.5	36
31	Dipteran assemblages of spring fens closely follow the gradient of groundwater mineral richness. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 689-700.	0.7	23
32	Diversity and assemblage patterns of microorganisms structured by the groundwater chemistry gradient in spring fens. Annales De Limnologie, 2013, 49, 207-223.	0.6	12
33	Nutrient composition and physicochemical characteristics in the destination sites of migratory water birds: a case study at the selected locations of seashores and lakes in southern India. Journal of Chitwan Medical College, 2014, 3, 68-77.	0.1	3
34	Land snail richness and abundance along a sharp ecological gradient at two sampling scales: disentangling relationships. Journal of Molluscan Studies, 2014, 80, 256-264.	0.4	7
35	Land snail diversity and composition in relation to ecological variations in Central European floodplain forests and their history. Community Ecology, 2014, 15, 44-53.	0.5	11
36	The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica, 2014, 47, 52-61.	0.7	19

#	ARTICLE Diversity of the Western Carpathian flysch grasslands: Do extremely species-rich plant communities	IF 0.8	CITATIONS 2
38	coincide with a high diversity of snails?. Biologia (Poland), 2014, 69, 202-213. Biodiversity surrogate effectiveness in two habitat types of contrasting gradient complexity. Biodiversity and Conservation, 2014, 23, 1133-1156.	1.2	11
39	Small ones and big ones: cross-taxon congruence reflects organism body size in ombrotrophic bogs. Hydrobiologia, 2014, 726, 95-107.	1.0	8
40	Mollusc and plant assemblages controlled by different ecological gradients at Eastern European fens. Acta Oecologica, 2014, 56, 66-73.	0.5	12
41	Reproduction of <i>Pisidium casertanum</i> (Poli, 1791) in Arctic lake. Royal Society Open Science, 2015, 2, 140212.	1.1	10
42	A long-term influence of anthropogenic alkalization on molluscs biodiversity in an area affected by cement industry, Świętokrzyskie Mountains, South-Central Poland. Archives of Environmental Protection, 2015, 41, 49-61.	1.1	5
43	Comparison of plant and snail diversity patterns in the White Carpathian Mts (Czech Republic) across forest and grassland habitats. Biologia (Poland), 2015, 70, 495-503.	0.8	4
44	Mollusc Assemblages of Scandinavian Fens: Species Composition in Relation to Environmental Gradients and Vegetation. Annales Zoologici Fennici, 2015, 52, 1-16.	0.2	6
45	The harpacticoid assemblages (Copepoda: Harpacticoida) in the Western Carpathian spring fens in relation to environmental variables and habitat age. Limnologica, 2015, 53, 84-94.	0.7	7
46	Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. Hydrobiologia, 2015, 745, 225-239.	1.0	24
47	Freshwater mollusc assemblages and habitat associations in the Danube River drainage, Hungary. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 319-332.	0.9	23
48	The response of Clitellata (Annelida) to environmental gradients in spring fens. Limnologica, 2016, 57, 73-82.	0.7	9
49	Rich fen development in CE Europe, resilience to climate change and human impact over the last ca. 3500 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473, 57-72.	1.0	18
50	Environmental filtering of aquatic insects in spring fens: patterns of species-specific responses related to specialist-generalist categorization. Hydrobiologia, 2017, 797, 159-170.	1.0	10
51	Insights into the reproductive activity of <i>Omphiscola (Lymnaea) glabra</i> (Gastropoda: Lymnaeidae) in relation to soil geology in Central France. Annales De Limnologie, 2017, 53, 11-17.	0.6	2
52	Principal factors controlling the species richness of European fens differ between habitat specialists and matrixâ€derived species. Diversity and Distributions, 2018, 24, 742-754.	1.9	44
53	A multi-proxy view of exceptionally early postglacial development of riparian woodlands with Ulmus in the Dniester River valley, western Ukraine. Review of Palaeobotany and Palynology, 2018, 250, 27-43.	0.8	16
54	Shell decomposition rates in relation to shell size and habitat conditions in contrasting types of Central European forests. Journal of Molluscan Studies, 2018, 84, 54-61.	0.4	21

CITATION REPORT

#	Article	IF	CITATIONS
55	Effect of sample size and resolution on palaeomalacological interpretation: a case study from Holocene calcareousâ€fen deposits. Journal of Quaternary Science, 2018, 33, 68-78.	1.1	8
56	Macroinvertebrate assemblages of the post-mining calcareous stream habitats: Are they similar to those inhabiting the natural calcareous springs?. Ecological Engineering, 2019, 136, 38-45.	1.6	5
57	Influence of monsoonal water-energy dynamics on terrestrial mollusk species-diversity gradients in northern China. Science of the Total Environment, 2019, 676, 206-214.	3.9	14
58	Environmental drivers of mollusc assemblage diversity in a system of lowland lentic habitats. Hydrobiologia, 2019, 836, 49-64.	1.0	8
59	Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Science of the Total Environment, 2020, 719, 134693.	3.9	22
60	Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quaternary Science Reviews, 2020, 248, 106579.	1.4	15
61	Cascading response of flora and terrestrial mollusks to last deglacial warming. Global Ecology and Conservation, 2020, 24, e01360.	1.0	3
62	Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 2020, 116, 106527.	2.6	11
63	Biodiversity and distributions of freshwater mollusks in relation to chemical and physical factors in the thermokarst lakes of the Gydan Peninsula, Russia. Hydrobiologia, 2021, 848, 3031-3044.	1.0	8
64	Littoral vegetation predicts mollusc distribution in a network of unconnected small karstic lakes in the Mediterranean zone of Albania. International Review of Hydrobiology, 2021, 106, 121-130.	0.5	1
65	Impact of recreational transformation of soil physical properties on micromolluscs in an urban park. Biosystems Diversity, 2021, 29, 78-87.	0.2	12
66	A multi-proxy long-term ecological investigation into the development of a late Holocene calcareous spring-fed fen ecosystem (Raganu Mire) and boreal forest at the SE Baltic coast (Latvia). Ecological Indicators, 2021, 126, 107673.	2.6	7
67	Land snail community patterns related to regional habitat conservation status of European spring fens. Science of the Total Environment, 2021, 783, 146910.	3.9	3
68	River Floodplains as Habitat and Bio-Corridors for Distribution of Land Snails: Their Past and Present. Journal of Landscape Ecology(Czech Republic), 2015, 8, 23-39.	0.2	5
69	Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 2019, 27, 62-68.	0.2	8
70	Sistema reproductivo, comportamiento de apareamiento y ecologÃa básica de un caracol tropical extremadamente raro: Drymaeus tripictus (Stylommatophora: Bulimulidae). Revista De Biologia Tropical, 2016, 64, 55.	0.1	3
71	The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness Fottea, 2009, 9, 355-368.	0.4	48
72	Fenomén prameniÅ¡tnÃch slatiniÅ;Å¥ a malakologické konsekvence [The uniqueness of spring fens and malacological consequences]. Malacologica Bohemoslovaca, 0, 3, 89-99.	3.0	0

CITATION REPORT

#	Article	IF	Citations
73	Fenomén prameniÅ¡tnÃch slatinišť a malakologické konsekvence [The uniqueness of spring fens and malacological consequences]. Malacologica Bohemoslovaca, 0, 3, 89-99.	3.0	2
74	The response of chironomid assemblages to mineral richness gradient in the Western Carpathian helocrenes. Fauna Norvegica, 0, 31, 117.	0.3	0
75	Spatial and temporal variation of benthic macroinvertebrates in the Nam Gnom Basin receiving discharged waters from the Nam Theun 2 Reservoir (Lao PDR). Hydroecologie Appliquee, 2016, 19, 217-243.	1.3	1
76	Malacofauna of the Holocene tufa in the valley of the Ociemny Stream (Pieniny Mts., southern) Tj ETQq1 1 0.784	314 rgBT 1.0	Overlock 10
77	Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas. Acta Oecologica, 2017, 82, 16-22.	0.5	1
78	The long history of rich fens supports persistence of plant and snail habitat specialists. Biodiversity and Conservation, 2022, 31, 39-57.	1.2	6
79	The fingernail clams (Bivalvia: Veneroida: Sphaeriidae) of Morocco: Diversity, distribution and conservation status. Biodiversity Data Journal, 2021, 9, e73346.	0.4	3
80	MÄ›kkù⁄2Å¡i pÅ™ÃŧodnÃ-rezervace U Nového hradu a pÅ™ilehlé zÅ™Ãceniny (ÄŒeská republika) [Mollusc Nového hradu Nature Reserve and the nearby castle ruins (Czech Republic)]. Malacologica Bohemoslovaca, 0, 15, 14-20.	s of the U 3.0	0
81	Spatial distribution of micromollusks under the impact of recreation. IOP Conference Series: Earth and Environmental Science, 2022, 1049, 012063.	0.2	0
83	Natural controls on phosphorus concentrations in small Lakes in Central Alberta, Canada. Canadian Water Resources Journal, 2023, 48, 1-17.	0.5	1
84	Species Diversity, Settlement Routes, and Ecology of Freshwater Mollusks of Kolguev Island (Barents) Tj ETQq0 0	0 rgBT /0	veglock 10 T

CITATION REPORT

85	Compositional variation of endangered spring fen biota reflects within-site variation in soil temperature. Plant and Soil, 2023, 485, 439-455.	1.8	1	
----	--	-----	---	--