trans and cis Splicing in Trypanosomatids: Mechanism,

Eukaryotic Cell 2, 830-840 DOI: 10.1128/ec.2.5.830-840.2003

Citation Report

#	Article	IF	CITATIONS
1	Silencing of Sm Proteins in Trypanosoma brucei by RNA Interference Captured a Novel Cytoplasmic Intermediate in Spliced Leader RNA Biogenesis. Journal of Biological Chemistry, 2003, 278, 51469-51478.	1.6	74
2	Identification and Functional Characterization of Lsm Proteins in Trypanosoma brucei. Journal of Biological Chemistry, 2004, 279, 18210-18219.	1.6	34
3	The 3′ termini of small RNAs inTrypanosoma brucei. FEMS Microbiology Letters, 2004, 236, 73-78.	0.7	10
4	The 3? termini of small RNAs in Trypanosoma brucei. FEMS Microbiology Letters, 2004, 236, 73-78.	0.7	11
5	Acidocalcisomes ? conserved from bacteria to man. Nature Reviews Microbiology, 2005, 3, 251-261.	13.6	396
6	The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. International Journal for Parasitology, 2005, 35, 359-366.	1.3	20
7	Protozoan genomes: gene identification and annotation. International Journal for Parasitology, 2005, 35, 495-512.	1.3	13
8	Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Molecular and Biochemical Parasitology, 2005, 140, 23-41.	0.5	86
9	Analysis of the highly efficient pre-mRNA processing region HX1 of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2005, 140, 97-105.	0.5	9
10	mRNA splicing in Trypanosoma brucei: Branch-point mapping reveals differences from the canonical U2 snRNA-mediated recognition. Molecular and Biochemical Parasitology, 2005, 142, 248-251.	0.5	13
11	Messenger RNA processing sites in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2005, 143, 125-134.	0.5	73
12	Diverse Mechanisms of RNA Recombination. Molecular Biology, 2005, 39, 529-542.	0.4	10
13	Unique Mitochondrial Genome Structure in Diplonemids, the Sister Group of Kinetoplastids. Eukaryotic Cell, 2005, 4, 1137-1146.	3.4	94
14	Dcp2 Decaps m2,2,7GpppN-Capped RNAs, and Its Activity Is Sequence and Context Dependent. Molecular and Cellular Biology, 2005, 25, 8779-8791.	1.1	39
15	Characterization of a Multisubunit Transcription Factor Complex Essential for Spliced-Leader RNA Gene Transcription in Trypanosoma brucei. Molecular and Cellular Biology, 2005, 25, 7303-7313.	1.1	94
16	RNA-Binding Domain Proteins in Kinetoplastids: a Comparative Analysis. Eukaryotic Cell, 2005, 4, 2106-2114.	3.4	117
17	Novel and Essential Subunits in the 300-Kilodalton Nuclear Cap Binding Complex of Trypanosoma brucei. Molecular and Cellular Biology, 2005, 25, 2216-2226.	1.1	31
18	A genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. Rna. 2005. 11. 619-645.	1.6	71

ARTICLE IF CITATIONS # Systematic Study of Sequence Motifs for RNA trans Splicing in Trypanosoma brucei. Molecular and 19 1.1 76 Cellular Biology, 2005, 25, 9586-9594. Down-Regulating Gene Expression by RNA Interference in <1>Trypanosoma brucei</1>., 2005, 309, 38 039-060. High frequency trans-splicing in a cell line producing spliced and polyadenylated RNA polymerase I 21 6.5 7 transcripts from an rDNA-myc chimeric gene. Nucleic Acids Research, 2005, 33, 2332-2342. U1 small nuclear RNP from Trypanosoma brucei: a minimal U1 snRNA with unusual protein components. Nucleic Acids Research, 2005, 33, 2493-2503. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs 23 6.5 24 throughout the domain Eucarya. Nucleic Acids Research, 2005, 33, 2781-2791. The Genome of the Kinetoplastid Parasite, Leishmania major. Science, 2005, 309, 436-442. 6.0 1,237 Highly Efficient Tandem Affinity Purification of Trypanosome Protein Complexes Based on a Novel 25 3.4 199 Epitope Combination. Eukaryotic Cell, 2005, 4, 1942-1950. A computational investigation of kinetoplastid trans-splicing. Genome Biology, 2005, 6, R95. 26 DNA metabolism and genetic diversity in Trypanosomes. Mutation Research - Reviews in Mutation 27 2.4 37 Research, 2006, 612, 40-57. The untranslated regions of genes from Trypanosoma cruzi: perspectives for functional characterization of strains and isolates. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 775-777. Genomics of Pathogenic Parasites., 2006, , 417-444. 29 2 Sm core variation in spliceosomal small nuclear ribonucleoproteins from Trypanosoma brucei. EMBO Journal, 2006, 25, 4513-4523. The ornithine decarboxylase gene of Trypanosoma brucei: Evidence for horizontal gene transfer from $\mathbf{31}$ 1.0 21 a vertebrate source. Infection, Genetics and Evolution, 2006, 6, 205-219. Analysis of spliceosomal complexes in Trypanosoma brucei and silencing of two splicing factors Prp31 and Prp43. Molecular and Biochemical Parasitology, 2006, 145, 29-39. Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the 33 0.5 31 active elements. Molecular and Biochemical Parasitology, 2006, 145, 158-170. 2â€²-O-Methylation of position 2 of the trypanosome spliced leader cap 4 is mediated by a 48kDa protein related to vaćcinia virus VP39. Molecular and Biochemical Parasitology, 2006, 147, 137-139. RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma 35 0.5 34 brucei. Molecular and Biochemical Parasitology, 2006, 150, 132-143. Functional characterization of a 48 kDa Trypanosoma brucei cap 2 RNA methyltransferase. Nucleic 6.5 Acids Research, 2006, 34, 5594-5602.

ARTICLE IF CITATIONS # A Novel Class of Developmentally Regulated Noncoding RNAs in Leishmania. Eukaryotic Cell, 2006, 5, 37 3.4 47 2033-2046. The two elF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Research, 2006, 6.5 58 34, 2495-2507. The Flatworm Spliced Leader 3â€2-Terminal AUG as a Translation Initiator Methionine*. Journal of 39 1.6 27 Biological Chemistry, 2006, 281, 733-743. A protein related to the vaccinia virus cap-specific methyltransferase VP39 is involved in cap 4 modification in Trypanosoma brucei. Rna, 2006, 12, 53-62. Binding Specificities and Potential Roles of Isoforms of Eukaryotic Initiation Factor 4E in Leishmania. 41 3.4 77 Eukaryotic Cell, 2006, 5, 1969-1979. Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and U4 snRNAs in Trypanosoma brucei. Rna, 2006, 13, 30-43. 1.6 Characterization of a Trypanosoma brucei RNA cap (guanine N-7) methyltransferase. Rna, 2006, 12, 43 1.6 13 488-497. Roles of a Trypanosoma brucei 5'->3' exoribonuclease homolog in mRNA degradation. Rna, 2006, 12, 44 1.6 76 2171-2186. mRNA maturation by two-step trans-splicing/polyadenylation processing in trypanosomes. Proceedings 45 3.3 44 of the National Academy of Sciences of the United States of America, 2007, 104, 2035-2042. Trypanosoma brucei Encodes a Bifunctional Capping Enzyme Essential for Cap 4 Formation on the 1.6 Spliced Leader RNA. Journal of Biological Chemistry, 2007, 282, 15995-16005. Spliced Leader RNA Gene Transcription in Trypanosoma brucei Requires Transcription Factor TFIIH. 47 3.4 42 Eukaryotic Cell, 2007, 6, 641-649. Regulatory Signals in Genomic Sequences., 2007, , 189-216. 48 Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in 49 2.1 87 Leishmania. PLoS Pathogens, 2007, 3, e136. Evolutionarily Divergent Type II Protein Arginine Methyltransferase in Trypanosoma brucei. Eukaryotic Cell, 2007, 6, 1665-1681. 3.4 Active RNA Polymerase I of <i>Trypanosoma brucei</i> Harbors a Novel Subunit Essential for 51 1.1 36 Transcription. Molecular and Cellular Biology, 2007, 27, 6254-6263. Genome-Wide Analysis of C/D and H/ACA-Like Small Nucleolar RNAs in Leishmania major Indicates Conservation among Trypanosomatids in the Repertoire and in Their rRNA Targets. Eukaryotic Cell, 28 2007, 6, 361-377. 53 Trypanosome MTR4 is involved in rRNA processing. Nucleic Acids Research, 2007, 35, 7023-7030. 6.5 37 Small Trypanosome RNA-Binding Proteins <i>Tb</i> UBP1 and <i>Tb</i> UBP2 Influence Expression of 54 3.4 F-Box Protein mRNAs in Bloodstream Trypanosomes. Eukaryotic Cell, 2007, 6, 1964-1978.

#	Article	IF	CITATIONS
55	Wobble Splicing Reveals the Role of the Branch Point Sequence-to-NAGNAG Region in 3′ Tandem Splice Site Selection. Molecular and Cellular Biology, 2007, 27, 5835-5848.	1.1	24
56	Mapping of the protein-binding interface between splicing factors SF3b155 and p14 of Trypanosoma cruzi. Biochemical and Biophysical Research Communications, 2007, 364, 26-32.	1.0	12
57	Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Current Opinion in Microbiology, 2007, 10, 569-577.	2.3	183
58	Leishmania, Stress Response in1. , 2007, , 579-584.		0
59	Regulated expression of glycosomal phosphoglycerate kinase in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2007, 151, 193-204.	0.5	50
60	In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Molecular and Biochemical Parasitology, 2007, 153, 95-106.	0.5	17
61	Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular and Biochemical Parasitology, 2007, 156, 93-101.	0.5	368
62	Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Molecular Biology, 2008, 9, 107.	3.0	46
63	Role of transposable elements in trypanosomatids. Microbes and Infection, 2008, 10, 575-581.	1.0	34
64	Improving the prediction of mRNA extremities in the parasitic protozoan Leishmania. BMC Bioinformatics, 2008, 9, 158.	1.2	19
65	Psiscan: a computational approach to identify H/ACA-like and AGA-like non-coding RNA in trypanosomatid genomes. BMC Bioinformatics, 2008, 9, 471.	1.2	17
66	Leishmania major: Identification of developmentally regulated proteins in procyclic and metacyclic promastigotes. Experimental Parasitology, 2008, 119, 422-429.	0.5	41
67	Sequences involved in mRNA processing in Trypanosoma cruzi. International Journal for Parasitology, 2008, 38, 1383-1389.	1.3	26
68	Evolutionary Analysis of Synteny and Gene Fusion for Pyrimidine Biosynthetic Enzymes in Euglenozoa: An Extraordinary Gap between Kinetoplastids and Diplonemids. Protist, 2008, 159, 459-470.	0.6	5
69	Regulation of an amino acid transporter mRNA in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2008, 157, 102-106.	0.5	9
70	Regulation of a transmembrane protein gene family by the small RNA-binding proteins TbUBP1 and TbUBP2. Molecular and Biochemical Parasitology, 2008, 157, 112-115.	0.5	11
71	Coordinate regulation of a family of promastigote-enriched mRNAs by the 3′UTR PRE element in Leishmania mexicana. Molecular and Biochemical Parasitology, 2008, 157, 54-64.	0.5	20
72	Different trans RNA splicing events in bloodstream and procyclic Trypanosoma brucei. Molecular and Biochemical Parasitology, 2008, 159, 134-137	0.5	11

#	Article	IF	CITATIONS
73	Molecular characterization and expression of a novel kinesin which localizes with the kinetoplast in the human pathogen, <i>Leishmania donovani</i> . Cytoskeleton, 2008, 65, 269-280.	4.4	1
74	The RNA-binding protein Tb DRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Research, 2008, 36, 4573-4586.	6.5	78
75	RNA Polymerase Transcription Machinery in Trypanosomes. Eukaryotic Cell, 2008, 7, 429-434.	3.4	32
76	Control and Regulation of Gene Expression. Journal of Biological Chemistry, 2008, 283, 2495-2507.	1.6	76
77	A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Research, 2008, 36, 3374-3388.	6.5	108
78	Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome. PLoS Genetics, 2008, 4, e1000148.	1.5	65
79	Deadenylation-independent stage-specific mRNA degradation in Leishmania. Nucleic Acids Research, 2008, 36, 1634-1644.	6.5	27
80	Chapter 18 Trypanosomes as a Model to Investigate mRNA Decay Pathways. Methods in Enzymology, 2008, 448, 359-377.	0.4	12
81	Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF21± phosphorylation at Thr169. Journal of Cell Science, 2008, 121, 3002-3014.	1.2	149
82	Control of mRNA degradation in trypanosomes. Biochemical Society Transactions, 2008, 36, 520-521.	1.6	6
83	Molecular Determinants and Evolutionary Dynamics of Wobble Splicing. Molecular Biology and Evolution, 2009, 26, 1081-1092.	3.5	3
84	Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12694-12699.	3.3	72
85	The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucleic Acids Research, 2009, 37, 5511-5528.	6.5	62
86	Four histone variants mark the boundaries of polycistronic transcription units in <i>Trypanosoma brucei</i> . Genes and Development, 2009, 23, 1063-1076.	2.7	312
87	Structure of the C-terminal domain of transcription factor IIB from <i>Trypanosoma brucei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13242-13247.	3.3	17
88	Spliceosomal Proteomics in <i>Trypanosoma brucei</i> Reveal New RNA Splicing Factors. Eukaryotic Cell, 2009, 8, 990-1000.	3.4	47
89	Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E–eIF4G interactions. Nucleic Acids Research, 2009, 37, 3243-3253.	6.5	65
90	Chromatin-based transcriptional punctuation. Genes and Development, 2009, 23, 1037-1041.	2.7	21

#	Article	IF	CITATIONS
91	SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes and Development, 2009, 23, 1650-1664.	2.7	42
92	Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. Rna, 2009, 15, 648-665.	1.6	77
93	Special Sm Core Complex Functions in Assembly of the U2 Small Nuclear Ribonucleoprotein of <i>Trypanosoma brucei</i> . Eukaryotic Cell, 2009, 8, 1228-1234.	3.4	14
94	Identification and characterization of nuclear non-canonical poly(A) polymerases from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2009, 164, 66-73.	0.5	26
95	Functional characterization and protein–protein interactions of trypanosome splicing factors U2AF35, U2AF65 and SF1. Molecular and Biochemical Parasitology, 2009, 164, 137-146.	0.5	23
96	DRBD1 is the Trypanosoma brucei homologue of the Spliceosome-Associated Protein 49. Molecular and Biochemical Parasitology, 2009, 166, 186-189.	0.5	7
97	Identification of core components of the exon junction complex in trypanosomes. Molecular and Biochemical Parasitology, 2009, 166, 190-193.	0.5	18
98	Organization and evolution of two SIDER retroposon subfamilies and their impact on the Leishmania genome. BMC Genomics, 2009, 10, 240.	1.2	40
99	Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics, 2009, 10, 495.	1.2	127
100	<i>Trans</i> â€splicing of organelle introns – a detour to continuous RNAs. BioEssays, 2009, 31, 921-934.	1.2	66
101	Expression of Nucleusâ€Encoded Genes for Chloroplast Proteins in the Flagellate <i>Euglena gracilis</i>		
		0.8	23
102	Alanine aminotransferase of <i>Trypanosoma brucei</i> – a key role in proline metabolism in procyclic life forms. FEBS Journal, 2009, 276, 7187-7199.	0.8	32
102 103	Alanine aminotransferase of <i>Trypanosoma brucei</i> – a key role in proline metabolism in procyclic life forms. FEBS Journal, 2009, 276, 7187-7199. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855.	0.8 2.2 1.0	32 8
102 103 104	Alanine aminotransferase of <i>Trypanosoma brucei</i> – a key role in proline metabolism in procyclic life forms. FEBS Journal, 2009, 276, 7187-7199. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855. Heat Shock Proteins in Protozoan Parasites – Leishmania spp Heat Shock Proteins, 2009, 135-151. Alanine aminotransferase of <i>The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with</i> CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855.	0.8 2.2 1.0 0.2	23 32 8 5
102 103 104 105	Alanine aminotransferase of <i>Trypanosoma brucei</i> – a key role in proline metabolism in procyclic Ife forms. FEBS Journal, 2009, 276, 7187-7199. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855. Heat Shock Proteins in Protozoan Parasites – Leishmania spp Heat Shock Proteins, 2009, , 135-151. An RNA Recognition Motif Mediates the Nucleocytoplasmic Transport of a Trypanosome RNA-binding Protein. Journal of Biological Chemistry, 2009, 284, 35015-35028.	0.8 2.2 1.0 0.2 1.6	23 32 8 5 47
102 103 104 105 106	Alanine aminotransferase of <i>Trypanosoma brucei</i> >i>– a key role in proline metabolism in procyclic Ife forms. FEBS Journal, 2009, 276, 7187-7199. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855. Heat Shock Proteins in Protozoan Parasites – Leishmania spp Heat Shock Proteins, 2009, , 135-151. An RNA Recognition Motif Mediates the Nucleocytoplasmic Transport of a Trypanosome RNA-binding Protein. Journal of Biological Chemistry, 2009, 284, 35015-35028. Families of H/ACA ncRNA molecules in Trypanosomatids. RNA Biology, 2009, 6, 370-374.	0.8 2.2 1.0 0.2 1.6 1.5	23 32 8 5 47
102 103 104 105 106	Alanine aminotransferase of <i>Trypanosoma brucei</i> Alae et al. Alanine aminotransferase of <i>Trypanosoma brucei</i> Alae et al. Iffe forms. FEBS Journal, 2009, 276, 7187-7199. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochemical and Biophysical Research Communications, 2009, 380, 850-855. Heat Shock Proteins in Protozoan Parasites – Leishmania spp Heat Shock Proteins, 2009, , 135-151. An RNA Recognition Motif Mediates the Nucleocytoplasmic Transport of a Trypanosome RNA-binding Protein. Journal of Biological Chemistry, 2009, 284, 35015-35028. Families of H/ACA ncRNA molecules in Trypanosomatids. RNA Biology, 2009, 6, 370-374. Posttranscriptional control and the role of RNAâ€binding proteins in gene regulation in trypanosomatid protozoan parasites. Wiley Interdisciplinary Reviews RNA, 2010, 1, 34-46.	0.8 2.2 1.0 0.2 1.6 1.5 3.2	23 32 8 5 47 10 71

#	Article	IF	CITATIONS
109	Did Trypanosomatid Parasites Contain a Eukaryotic Alga–Derived Plastid in Their Evolutionary Past?. Journal of Parasitology, 2010, 96, 465-475.	0.3	11
110	Characterization of 2159 Unmapped Full-length cDNA Sequences of Oryza sativa L. ssp. japonica â€~Nipponbare'. Plant Molecular Biology Reporter, 2010, 28, 357-362.	1.0	0
111	Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2010, 172, 141-144.	0.5	77
112	Processing of a phosphoglycerate kinase reporter mRNA in Trypanosoma brucei is not coupled to transcription by RNA polymerase II. Molecular and Biochemical Parasitology, 2010, 172, 99-106.	0.5	11
113	Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics, 2010, 11, 124.	1.2	50
114	A comparative genome-wide study of ncRNAs in trypanosomatids. BMC Genomics, 2010, 11, 615.	1.2	7
115	Trypanosoma cruzi: Modulation of HSP70 mRNA stability by untranslated regions during heat shock. Experimental Parasitology, 2010, 126, 245-253.	0.5	26
116	Analysis of a nuclear localization signal in the p14 splicing factor in Trypanosoma cruzi. International Journal for Parasitology, 2010, 40, 1029-1035.	1.3	11
117	Proteomics of trypanosomatids of human medical importance. Journal of Proteomics, 2010, 73, 845-867.	1.2	44
118	Sequence features involved in the mechanism of 3' splice junction wobbling. BMC Molecular Biology, 2010, 11, 34.	3.0	16
119	Functional Characterization of Three Leishmania Poly(A) Binding Protein Homologues with Distinct Binding Properties to RNA and Protein Partners. Eukaryotic Cell, 2010, 9, 1484-1494.	3.4	47
120	tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Research, 2010, 38, 5833-5843.	6.5	20
121	Active <i>VSG</i> Expression Sites in <i>Trypanosoma brucei</i> Are Depleted of Nucleosomes. Eukaryotic Cell, 2010, 9, 136-147.	3.4	87
122	Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation. Nucleic Acids Research, 2010, 38, 5867-5883.	6.5	27
123	Analysis of Spliceosomal Proteins in Trypanosomatids Reveals Novel Functions in mRNA Processing*. Journal of Biological Chemistry, 2010, 285, 27982-27999.	1.6	45
124	Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA. Nucleic Acids Research, 2010, 38, e114-e114.	6.5	10
125	The Exosomes of Trypanosomes and Other Protists. Advances in Experimental Medicine and Biology, 2010, 702, 39-49.	0.8	15
126	The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified?. Eukaryotic Cell, 2010, 9, 1159-1170.	3.4	108

#	Article	IF	CITATIONS
127	RNA recognition motifs involved in nuclear import of RNA-binding proteins. RNA Biology, 2010, 7, 339-344.	1.5	28
128	The Nematode Eukaryotic Translation Initiation Factor 4E/G Complex Works with a <i>trans</i> -Spliced Leader Stem-Loop To Enable Efficient Translation of Trimethylguanosine-Capped RNAs. Molecular and Cellular Biology, 2010, 30, 1958-1970.	1.1	30
129	Gene Expression in Trypanosomatid Parasites. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-15.	3.0	119
130	The Transcriptome of the Human Pathogen Trypanosoma brucei at Single-Nucleotide Resolution. PLoS Pathogens, 2010, 6, e1001090.	2.1	243
131	Essential Role of a Trypanosome U4-Specific Sm Core Protein in Small Nuclear Ribonucleoprotein Assembly and Splicing. Eukaryotic Cell, 2010, 9, 379-386.	3.4	16
132	Persistent ER Stress Induces the Spliced Leader RNA Silencing Pathway (SLS), Leading to Programmed Cell Death in Trypanosoma brucei. PLoS Pathogens, 2010, 6, e1000731.	2.1	84
133	Two thymidine hydroxylases differentially regulate the formation of glucosylated DNA at regions flanking polymerase II polycistronic transcription units throughout the genome of Trypanosoma brucei. Nucleic Acids Research, 2010, 38, 3923-3935.	6.5	84
134	The evolution of spliced leader <i>trans</i> -splicing in nematodes. Biochemical Society Transactions, 2010, 38, 1125-1130.	1.6	14
135	The silicon trypanosome. Parasitology, 2010, 137, 1333-1341.	0.7	25
136	Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease. Heat Shock Proteins, 2010, , .	0.2	7
137	Development of a dual reporter system to identify regulatory cis-acting elements in untranslated regions of Trypanosoma cruzi mRNAs. Parasitology International, 2011, 60, 161-169.	0.6	16
138	The Genome and Its Implications. Advances in Parasitology, 2011, 75, 209-230.	1.4	4
139	Induction of ER Stress Response Leading to Programmed Cell Death in Trypanosoma brucei. Methods in Enzymology, 2011, 489, 189-205.	0.4	3
140	African trypanosomes: the genome and adaptations for immune evasion. Essays in Biochemistry, 2011, 51, 47-62.	2.1	53
141	Molecular parasitology in the 21st Century. Essays in Biochemistry, 2011, 51, 1-13.	2.1	21
142	New insights into trypanosomatid U5 small nuclear ribonucleoproteins. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 130-138.	0.8	7
143	Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 257-266.	0.8	45
144	Lights and shadows on gene organization and regulation of gene expression in Leishmania. Frontiers in Bioscience - Landmark, 2011, 16, 2069.	3.0	49

#	Article	IF	CITATIONS
145	RNA Granules Living a Post-Transcriptional Life: the Trypanosomes' Case. Current Chemical Biology, 2011, 5, .	0.2	0
146	Phenylalanine hydroxylase (PAH) from the lower eukaryote Leishmania major. Molecular and Biochemical Parasitology, 2011, 175, 58-67.	0.5	15
147	The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Molecular and Biochemical Parasitology, 2011, 176, 25-36.	0.5	68
148	TSIDER1, a short and non-autonomous Salivarian trypanosome-specific retroposon related to the ingi6 subclade. Molecular and Biochemical Parasitology, 2011, 179, 30-36.	0.5	7
149	Gene expression in Trypanosoma brucei: lessons from high-throughput RNA sequencing. Trends in Parasitology, 2011, 27, 434-441.	1.5	71
150	<i>Trans</i> -splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiology, 2011, 6, 459-474.	1.0	169
151	Gene expression regulation in trypanosomatids. Essays in Biochemistry, 2011, 51, 31-46.	2.1	91
152	Epigenetic Regulation of Polymerase II Transcription Initiation in Trypanosoma cruzi: Modulation of Nucleosome Abundance, Histone Modification, and Polymerase Occupancy by O-Linked Thymine DNA Glucosylation. Eukaryotic Cell, 2011, 10, 1465-1472.	3.4	51
153	<i>Trans</i> â€splicing. Wiley Interdisciplinary Reviews RNA, 2011, 2, 417-434.	3.2	119
154	3â€ ² processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255.	3.2	32
154 155	$3\hat{a}\in^2$ processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989.	3.2 4.8	32 20
154 155 156	3′ processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369.	3.2 4.8 2.5	32 20 40
154 155 156 157	3′ processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biology, 2011, 8, 90-100.	3.2 4.8 2.5 1.5	32 20 40 13
154 155 156 157 158	3′ processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biology, 2011, 8, 90-100. A Zinc Finger Protein, TbZC3H20, Stabilizes Two Developmentally Regulated mRNAs in Trypanosomes. Journal of Biological Chemistry, 2011, 286, 20152-20162.	 3.2 4.8 2.5 1.5 1.6 	 32 20 40 13 43
154 155 156 157 158 159	3′ processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biology, 2011, 8, 90-100. A Zinc Finger Protein, TbZC3H20, Stabilizes Two Developmentally Regulated mRNAs in Trypanosomes. Journal of Biological Chemistry, 2011, 286, 20152-20162. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Research, 2011, 39, 8404-8415.	 3.2 4.8 2.5 1.5 1.6 6.5 	 32 20 40 13 43 69
154 155 156 157 158 159	38C² processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biology, 2011, 8, 90-100. AZinc Finger Protein, TbZC3H20, Stabilizes Two Developmentally Regulated mRNAs in Trypanosomes. Journal of Biological Chemistry, 2011, 286, 20152-20162. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Research, 2011, 39, 8404-8415. Evolutionary Conservation and Diversification of the Translation Initiation Apparatus in Trypanosomatids. Comparative and Functional Cenomics, 2012, 2012, 1-10.	 3.2 4.8 2.5 1.5 1.6 6.5 2.0 	 32 20 40 13 43 69 31
154 155 156 157 158 159 160	3à€² processing in protists. Wiley Interdisciplinary Reviews RNA, 2011, 2, 247-255. Gene therapy: light is finally in the tunnel. Protein and Cell, 2011, 2, 973-989. SUMOylation Pathway in Trypanosoma cruzi: Functional Characterization and Proteomic Analysis of Target Proteins. Molecular and Cellular Proteomics, 2011, 10, M110.007369. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biology, 2011, 8, 90-100. A Zinc Finger Protein, TbZC3H20, Stabilizes Two Developmentally Regulated mRNAs in Trypanosomes. Journal of Biological Chemistry, 2011, 286, 20152-20162. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Research, 2011, 39, 8404-8415. Evolutionary Conservation and Diversification of the Translation Initiation Apparatus in Trypanosomatids. Comparative and Functional Genomics, 2012, 2012, 1-10. RNA-seq analysis of small RNPs in Trypanosoma brucei reveals a rich repertoire of non-coding RNAs. Nucleic Acids Research, 2012, 40, 1282-1298.	 3.2 4.8 2.5 1.5 1.6 6.5 2.0 6.5 	 32 20 40 13 43 69 31 32

	CITATION RE	PORI	
#	Article	IF	CITATIONS
163	<i>In silico</i> analysis of trypanosomatids' helicases. FEMS Microbiology Letters, 2012, 335, 123-129.	0.7	15
164	Spliced leader RNA silencing (SLS) - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress. Parasites and Vectors, 2012, 5, 107.	1.0	23
165	Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences. Journal of Molecular Evolution, 2012, 75, 119-129.	0.8	18
166	Identification of SL addition trans-splicing acceptor sites in the internal transcribed spacer I region of pre-rRNA in Leishmania (Leishmania) amazonensis. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 1070-1072.	0.8	2
167	Telomere as an Important Player in Regulation of Microbial Pathogen Virulence. , 0, , .		0
168	Trypanosomatid comparative genomics: contributions to the study of parasite biology and different parasitic diseases. Genetics and Molecular Biology, 2012, 35, 1-17.	0.6	40
169	Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 522-531.	0.8	4
170	Translation in Trypanosomatids. Nucleic Acids and Molecular Biology, 2012, , 187-214.	0.2	0
171	SL RNA Biogenesis in Kinetoplastids: A Long and Winding Road. Nucleic Acids and Molecular Biology, 2012, , 29-47.	0.2	4
172	Ribosome biogenesis requires a highly diverged XRN family 5′→3′ exoribonuclease for rRNA processing in <i>Trypanosoma brucei</i> . Rna, 2013, 19, 1419-1431.	1.6	18
173	Functional insights into the core-TFIIH from a comparative survey. Genomics, 2013, 101, 178-186.	1.3	18
174	Basal Splicing Factors Regulate the Stability of Mature mRNAs in Trypanosomes. Journal of Biological Chemistry, 2013, 288, 4991-5006.	1.6	33
175	Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature Reviews Molecular Cell Biology, 2013, 14, 153-165.	16.1	719
176	The <i>Trypanosoma brucei</i> telomerase RNA (TER) homologue binds core proteins of the C/D snoRNA family. FEBS Letters, 2013, 587, 1399-1404.	1.3	28
177	Molecular and Functional Characterization of a Trypanosoma cruzi Nuclear Adenylate Kinase Isoform. PLoS Neglected Tropical Diseases, 2013, 7, e2044.	1.3	16
178	The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability. Nucleic Acids Research, 2013, 41, 6577-6594.	6.5	44
179	Genomic Analysis of Sequence-Dependent DNA Curvature in Leishmania. PLoS ONE, 2013, 8, e63068.	1.1	11
180	Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi. PLoS ONE, 2013, 8, e80217.	1.1	13

ARTICLE IF CITATIONS # The spliced leader trans-splicing mechanism in different organisms: molecular details and possible 181 1.1 29 biological roles. Frontiers in Genetics, 2013, 4, 199. Genetic Structure and Expression of the Surface Glycoprotein GP82, the Main Adhesin of Trypanosoma cruziMetacyclic Trypomastigotes. Scientific World Journal, The, 2013, 2013, 1-11. 0.8 183 Proteins Associated with SF3a60 in T. brucei. PLoS ONE, 2014, 9, e91956. 1.1 3 Depletion of the RNA-Binding Protein RBP33 Results in Increased Expression of Silenced RNA 184 1.1 Polymerase II Transcripts in Trypanosoma brucei. PLoS ONE, 2014, 9, e107608. Identification of a Novel Nucleocytoplasmic Shuttling RNA Helicase of Trypanosomes. PLoS ONE, 2014, 185 1.1 15 9, e109521. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics, 2014, 15, 911. 1.2 Two splicing factors carrying serine-arginine motifs, TSR1 and TSR1IP, regulate splicing, mRNA stability, 187 1.5 36 and rRNA processing inTrypanosoma brucei. RNA Biology, 2014, 11, 715-731. The worm has turned. BioEssays, 2014, 36, 157-162. 1.2 188 Molecular cloning and characterization of SL3: A stem cell-specific SL RNA from the planarian 189 1.0 17 Schmidtea mediterranea. Gene, 2014, 533, 156-167. Brahma regulates a specific trans-splicing event at the <i>mod(mdg4) </i>locus of <i>Drosophila 1.5 melanogaster</i>. RNA Biology, 2014, 11, 134-145. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated 191 1.6 48 in post-transcriptional regulation in <i>Trypanosoma brucei</i>. Rna, 2014, 20, 1272-1286. Splicing in the Human Brain. International Review of Neurobiology, 2014, 116, 95-125. Trypanosoma brucei Translation Initiation Factor Homolog EIF4E6 Forms a Tripartite Cytosolic 193 3.4 41 Complex with EIF4G5 and a Capping Enzyme Homolog. Eukaryotic Cell, 2014, 13, 896-908. The epigenome of Trypanosoma brucei: A regulatory interface to an unconventional transcriptional machine. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 743-750. 194 29 Methods to Investigate the Regulatory Role of Small RNAs and Ribosomal Occupancy of 195 0.2 0 Plasmodium falciparum/em>. Journal of Visualized Experiments, 2015, , e53214. pTcGW plasmid vectors 1.1 version: a versatile tool for Trypanosoma cruzi gene characterisation. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 687-690. Depletion of the SR-Related Protein TbRRM1 Leads to Cell Cycle Arrest and Apoptosis-Like Death in 197 1.1 18 Trypanosoma brucei. PLoS ONE, 2015, 10, e0136070. The messenger RNA decapping and recapping pathway in <i>Trypanosoma</i>. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6967-6972. 198 3.3

#	Article	IF	CITATIONS
199	Regulation of Alternative Splicing Through Coupling with Transcription and Chromatin Structure. Annual Review of Biochemistry, 2015, 84, 165-198.	5.0	377
200	Euglenoid flagellates: A multifaceted biotechnology platform. Journal of Biotechnology, 2015, 202, 135-145.	1.9	56
201	Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: A comparative analysis for Leishmaniasis treatment. Journal of Molecular Graphics and Modelling, 2015, 55, 134-147.	1.3	23
202	Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Current Opinion in Microbiology, 2016, 34, 82-89.	2.3	55
203	An Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons. Current Biology, 2016, 26, 2364-2369.	1.8	92
204	Unique and Conserved Features of the Protein Synthesis Apparatus in Parasitic Trypanosomatid (Trypanosoma and Leishmania) Species. , 2016, , 435-475.		4
205	Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biology and Evolution, 2016, 8, 562-577.	1.1	78
206	Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites. Journal of Biosciences, 2017, 42, 189-207.	0.5	5
207	Dissecting biochemical peculiarities of the ATPase activity of TcSub2, a component of the mRNA export pathway in Trypanosoma cruzi. International Journal of Biological Macromolecules, 2017, 98, 793-801.	3.6	2
208	Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method for RNA-seq in Trypanosomatids. Scientific Reports, 2017, 7, 3725.	1.6	24
209	An essential domain of an early-diverged RNA polymerase II functions to accurately decode a primitive chromatin landscape. Nucleic Acids Research, 2017, 45, 7886-7896.	6.5	17
210	The interaction of a Trypanosoma brucei KH-domain protein with a ribonuclease is implicated in ribosome processing. Molecular and Biochemical Parasitology, 2017, 211, 94-103.	0.5	11
211	On the Possibility of an Early Evolutionary Origin for the Spliced Leader Trans-Splicing. Journal of Molecular Evolution, 2017, 85, 37-45.	0.8	21
212	Well-positioned nucleosomes punctuate polycistronic pol II transcription units and flank silent VSG gene arrays in Trypanosoma brucei. Epigenetics and Chromatin, 2017, 10, 14.	1.8	14
213	Humanizing glycosylation pathways in eukaryotic expression systems. World Journal of Microbiology and Biotechnology, 2017, 33, 4.	1.7	22
214	Sleeping Sickness and Nagana Disease Caused by Trypanosoma brucei. , 2017, , 277-297.		6
215	The Role of Cytoplasmic mRNA Cap-Binding Protein Complexes in Trypanosoma brucei and Other Trypanosomatids. Pathogens, 2017, 6, 55.	1.2	52
216	Comprehensive Identification of mRNA-Binding Proteins of Leishmania donovani by Interactome Capture. PLoS ONE, 2017, 12, e0170068.	1.1	26

#	Article	IF	CITATIONS
217	RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS ONE, 2017, 12, e0180678.	1.1	3
218	Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasites and Vectors, 2017, 10, 610.	1.0	5
219	Optimization of a Bioluminescence Resonance Energy Transfer-Based Assay for Screening of Trypanosoma cruzi Protein/Protein Interaction Inhibitors. Molecular Biotechnology, 2018, 60, 369-379.	1.3	4
220	Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form. Molecular and Biochemical Parasitology, 2018, 221, 1-9.	0.5	16
221	Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Scientific Reports, 2018, 8, 17012.	1.6	35
222	Trypanosoma cruzi XRNA granules colocalise with distinct mRNP granules at the nuclear periphery. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170531.	0.8	10
223	Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Neglected Tropical Diseases, 2018, 12, e0006679.	1.3	26
224	Characterization of spliced leader trans-splicing in a photosynthetic rhizarian amoeba, Paulinella micropora, and its possible role in functional gene transfer. PLoS ONE, 2018, 13, e0200961.	1.1	8
225	Elucidating paramylon and other carbohydrate metabolism in Euglena gracilis: Kinetic characterization, structure and cellular localization of UDP-glucose pyrophosphorylase. Biochimie, 2018, 154, 176-186.	1.3	8
226	Fluorescenceâ€based assay for accurate measurement of transcriptional activity in trypanosomatid parasites. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 727-736.	1.1	4
227	Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology, 2019, 146, 1-27.	0.7	121
228	Identifying miltefosine-resistant key genes in protein–protein interactions network and experimental verification in Iranian Leishmania major. Molecular Biology Reports, 2019, 46, 5371-5388.	1.0	4
229	Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genetics, 2019, 15, e1008452.	1.5	12
230	Srrm234, but not canonical SR and hnRNP proteins, drive inclusion of <i>Dscam</i> exon 9 variable exons. Rna, 2019, 25, 1353-1365.	1.6	16
231	Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Scientific Reports, 2019, 9, 6919.	1.6	24
232	Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biological Reviews, 2019, 94, 1701-1721.	4.7	14
233	Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Scientific Reports, 2019, 9, 6127.	1.6	18
234	Computational approaches for the discovery of splicing regulatory RNA structures. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194380.	0.9	10

#	Article	IF	CITATIONS
235	How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends in Genetics, 2019, 35, 457-469.	2.9	27
236	Leishmania donovani 90 kD Heat Shock Protein – Impact of Phosphosites on Parasite Fitness, Infectivity and Casein Kinase Affinity. Scientific Reports, 2019, 9, 5074.	1.6	29
237	TheTrypanosoma bruceiRNAâ€Binding Protein TbRRM1 is Involved in the Transcription of a Subset ofRNAPolIIâ€Đependent Genes. Journal of Eukaryotic Microbiology, 2019, 66, 719-729.	0.8	4
238	The <i>Leishmania</i> PABP1–elF4E4 interface: a novel 5′–3′ interaction architecture for trans-spliced mRNAs. Nucleic Acids Research, 2019, 47, 1493-1504.	6.5	12
239	On the functionality of a methionine sulfoxide reductase B from Trypanosoma cruzi. Free Radical Biology and Medicine, 2020, 158, 96-114.	1.3	4
240	Heat Shock Proteins in Leishmania Parasites. Heat Shock Proteins, 2020, , 469.	0.2	2
241	Developmentally Regulated Novel Non-coding Anti-sense Regulators of mRNA Translation in Trypanosoma brucei. IScience, 2020, 23, 101780.	1.9	14
242	Regulation of Translation in the Protozoan Parasite Leishmania. International Journal of Molecular Sciences, 2020, 21, 2981.	1.8	24
243	A newly identified Leishmania IF4E-interacting protein, Leish4E-IP2, modulates the activity of cap-binding protein paralogs. Nucleic Acids Research, 2020, 48, 4405-4417.	6.5	10
244	Chimeric RNAs in cancer. Advances in Clinical Chemistry, 2021, 100, 1-35.	1.8	12
245	Application of single-cell transcriptomics to kinetoplastid research. Parasitology, 2021, 148, 1223-1236.	0.7	11
246	Exploring TERRA during Leishmania major developmental cycle and continuous in vitro passages. International Journal of Biological Macromolecules, 2021, 174, 573-586.	3.6	9
247	Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biology, 2021, 11, 200407.	1.5	102
248	Perspectives From Systems Biology to Improve Knowledge of Leishmania Drug Resistance. Frontiers in Cellular and Infection Microbiology, 2021, 11, 653670.	1.8	6
249	An AMP-activated protein kinase complex with two distinctive alpha subunits is involved in nutritional stress responses in Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2021, 15, e0009435.	1.3	5
250	Advances in Understanding Leishmania Pathobiology: What Does RNA-Seq Tell Us?. Frontiers in Cell and Developmental Biology, 2021, 9, 702240.	1.8	11
251	Computational study on the allosteric mechanism of Leishmania major IF4E-1 by 4E-interacting protein-1: Unravelling the determinants of m7GTP cap recognition. Computational and Structural Biotechnology Journal, 2021, 19, 2027-2044.	1.9	10
252	Leishmania: Responding to environmental signals and challenges without regulated transcription. Computational and Structural Biotechnology Journal, 2020, 18, 4016-4023.	1.9	14

#	Article	IF	CITATIONS
253	Epigenetics and transcriptional control in African trypanosomes. Essays in Biochemistry, 2010, 48, 201-219.	2.1	35
255	Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 2009, 3, e476.	1.3	86
256	Tentative Mapping of Transcription-Induced Interchromosomal Interaction using Chimeric EST and mRNA Data. PLoS ONE, 2007, 2, e254.	1.1	20
257	An Essential Nuclear Protein in Trypanosomes Is a Component of mRNA Transcription/Export Pathway. PLoS ONE, 2011, 6, e20730.	1.1	24
258	Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma brucei. PLoS ONE, 2012, 7, e48870.	1.1	40
259	Pre-mRNA trans-splicing: from kinetoplastids to mammals, an easy language for life diversity. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 501-513.	0.8	42
260	Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Current Genomics, 2018, 19, 87-97.	0.7	44
261	Trypanosomatids: Odd Organisms, Devastating Diseases. The Open Parasitology Journal, 2010, 4, 30-59.	1.7	36
262	Using Genomic Information to Understand Leishmania Biology. The Open Parasitology Journal, 2010, 4, 156-166.	1.7	9
263	RNA Granules Living a Post-Transcriptional Life: the Trypanosome's Case. Current Chemical Biology, 2011, 5, 108-117.	0.2	36
264	Multiple roles of proline transport and metabolism in trypanosomatids. Frontiers in Bioscience - Landmark, 2012, 17, 349.	3.0	38
265	Leishmania, Stress Response in. , 2007, , 579-584.		0
267	Cancer: Viruses, Attractors, Fractals. , 2016, , 93-124.		0
268	Addressing the Molecular Biology of <i>Leishmania</i> for Drug Development. RSC Drug Discovery Series, 2017, , 235-247.	0.2	0
273	Proteomic analysis of Trypanosoma cruzi spliceosome complex. Journal of Proteomics, 2020, 223, 103822.	1.2	3
274	Gene Therapy: Back to the Basics. , 2006, , 565-582.		0
276	Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS ONE, 2022, 17, e0265692.	1.1	4
279	Finding Correlations Between mRNA and Protein Levels in Leishmania Development: Is There a Discrepancy?. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4

#	Article	IF	CITATIONS
280	Reporter gene systems: A powerful tool for Leishmania studies. Current Research in Microbial Sciences, 2022, 3, 100165.	1.4	0
281	Polycistronic Expression of Multi-Subunit Complexes in the Eukaryotic Environment: A Narrative Review. Iranian Journal of Parasitology, 0, , .	0.6	1
282	The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes. Nucleic Acids Research, 2022, 50, 12251-12265.	6.5	2
283	Role of the RNA-binding protein ZC3H41 in the regulation of ribosomal protein messenger RNAs in trypanosomes. Parasites and Vectors, 2023, 16, .	1.0	0
284	Leishmania infantum (JPCM5) Transcriptome, Gene Models and Resources for an Active Curation of Gene Annotations. Genes, 2023, 14, 866.	1.0	1