Catalytic Enantioselective Câ[^]'H Activation by Means of Insertion

Chemical Reviews 103, 2861-2904 DOI: 10.1021/cr0200217

Citation Report

#	Article	IF	CITATIONS
1	Catalytic Enantioselective C—H Activation by Means of Metal—Carbenoid-Induced C—H Insertion. ChemInform, 2003, 34, no.	0.0	0
2	Direct gas-phase interaction of aryldiazoacetates and dirhodium catalystsElectronic supplementary information (ESI) available: 1H NMR spectra for compounds 1 and 2. See http://www.rsc.org/suppdata/dt/b3/b309809p/. Dalton Transactions, 2003, , 4221.	3.3	14
3	Asymmetric Catalysis Special Feature Part I: Asymmetric catalysis: An enabling science. Proceedings of the United States of America, 2004, 101, 5348-5355.	7.1	116
4	Asymmetric Catalysis Special Feature Part I: Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5363-5367.	7.1	783
5	Asymmetric Catalysis Special Feature Part I: Catalytic enantioselective intermolecular cycloadditions of 2-diazo-3,6-diketoester-derived carbonyl ylides with alkene dipolarophiles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5450-5454.	7.1	59
6	A New Dirhodium(II) Carboxamidate Complex as a Chiral Lewis Acid Catalyst for Enantioselective Hetero-Diels–Alder Reactions. Angewandte Chemie - International Edition, 2004, 43, 2665-2668.	13.8	113
8	Stereo―and Regiocontrol in the Formation of Lactams by Rhodiumâ€Carbenoid Câ^'H Insertion of αâ€Diazoacetamides. European Journal of Organic Chemistry, 2004, 2004, 3773-3788.	2.4	108
9	Chiral Nonracemic Late-Transition-Metal Organometallics with a Metal-Bonded Stereogenic Carbon Atom: Development of New Tools for Asymmetric Organic Synthesis. Chemistry - A European Journal, 2004, 10, 2636-2646.	3.3	15
10	Dirhodium-catalyzed enantioselective C-H insertion ofN-(2-benzyloxyethyl)-N-(tert-butyl)diazoacetamide and its application for the synthesis of chiral GABOB. Chirality, 2004, 16, 516-519.	2.6	8
11	Ruthenium-catalyzed cyclization of 3-en-1-ynyl imines with nucleophiles via tandem 5-exo-dig cyclization and nucleophilic addition. Tetrahedron Letters, 2004, 45, 9245-9247.	1.4	23
12	Transition metals in organic synthesis: highlights for the year 2002. Coordination Chemistry Reviews, 2004, 248, 1085-1158.	18.8	41
13	Multifunctional Behavior by a Bis-(phosphinimino)methanide Ligand: η2- vs η3-coordination vs Bronsted Basicity. Journal of the American Chemical Society, 2004, 126, 2312-2313.	13.7	37
14	Asymmetric synthesis of secondary alcohols from primary alcohols via intramolecular carbenoid C–H insertion catalyzed by rhodium(ii) 3-phenylcholestane-2-carboxylate. Chemical Communications, 2004, , 816-817.	4.1	11
15	Practical highly enantioselective synthesis of terminal propargylamines. An expeditious synthesis of (S)-(+)-coniine. Chemical Communications, 2004, , 2324.	4.1	110
17	Anomalous Intramolecular Câ^'H Insertion Reactions of Rhodium Carbenoids:  Factors Influencing the Reaction Course and Mechanistic Implications. Journal of Organic Chemistry, 2004, 69, 3886-3898.	3.2	35
18	Catalytic Asymmetric Reactions for Organic Synthesis:Â The Combined Câ^'H Activation/Siloxy-Cope Rearrangement. Journal of Organic Chemistry, 2004, 69, 9241-9247.	3.2	49
19	Dirhodium(II) Tetra(N-(dodecylbenzenesulfonyl)prolinate) Catalyzed Enantioselective Cyclopropenation of Alkynes. Organic Letters, 2004, 6, 1233-1236.	4.6	115
20	Regiospecific Functionalization of Methyl Câ^'H Bonds of Alkyl Groups in Reagents with Heteroatom Functionality. Journal of the American Chemical Society, 2004, 126, 15334-15335.	13.7	126

#	Article	IF	CITATIONS
21	Simple Strategy for the Immobilization of Dirhodium Tetraprolinate Catalysts Using a Pyridine-Linked Solid Support. Journal of the American Chemical Society, 2004, 126, 4271-4280.	13.7	95
22	Nâ^'H Insertion Reactions of Primary Ureas:  The Synthesis of Highly Substituted Imidazolones and Imidazoles from Diazocarbonyls. Journal of Organic Chemistry, 2004, 69, 8829-8835.	3.2	55
23	Highly Diastereoselective and Enantioselective Câ^'H Functionalization of 1,2-Dihydronaphthalenes:Â A Combined Câ^'H Activation/Cope Rearrangement Followed by a Retro-Cope Rearrangement. Journal of the American Chemical Society, 2004, 126, 10862-10863.	13.7	92
24	Enantioselective Synthesis of Cyclopropylphosphonates Containing Quaternary Stereocenters Using aD2-Symmetric Chiral Catalyst Rh2(S-biTISP)2. Organic Letters, 2004, 6, 2117-2120.	4.6	46
25	Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds. Chemical Society Reviews, 2004, 33, 183.	38.1	299
26	Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. Journal of Biotechnology, 2004, 113, 183-210.	3.8	121
29	Practical Synthesis of Dirhodium(II) Tetrakis[N-phthaloyl-(S)-tert-leucinate]. Chemical and Pharmaceutical Bulletin, 2005, 53, 1366-1368.	1.3	55
30	Dinuclear ruthenium(I) complexes of the type [Ru2(CO)4L2] with carboxylate or 2-pyridonate ligands: Evaluation as catalysts for olefin cyclopropanation with diazoacetates. Journal of Organometallic Chemistry, 2005, 690, 5562-5569.	1.8	17
31	Copper, silver and gold-based catalysts for carbene addition or insertion reactions. Journal of Organometallic Chemistry, 2005, 690, 5441-5450.	1.8	117
32	Asymmetric C–H insertion of Rh(II) stabilized carbenoids into acetals: A C–H activation protocol as a Claisen condensation equivalent. Journal of Organometallic Chemistry, 2005, 690, 6111-6124.	1.8	35
33	Preparation of enantioselective enriched α-(dialkoxyphosphoryl)lactams via intramolecular CH insertion with chiral dirhodium(II) catalysts. Journal of Molecular Catalysis A, 2005, 227, 17-24.	4.8	24
34	Dirhodium catalyzed intramolecular enantioselective C–H insertion reaction of N-cumyl-N-(2-p-anisylethyl)diazoacetamide: synthesis of (â^')-Rolipram. Tetrahedron: Asymmetry, 2005, 16, 1693-1698.	1.8	27
35	Catalytic and stereoselective iodination of prochiral C–H bonds. Tetrahedron: Asymmetry, 2005, 16, 3502-3505.	1.8	60
36	Synthesis of chiral γ-lactams via Rh(II) catalyzed intramolecular C–H insertion: α-substituents and conformational effects. Tetrahedron Letters, 2005, 46, 143-146.	1.4	22
37	A concise synthesis of the functionalised cyclopentane unit in the antitumoural antibiotic viridenomycin. Tetrahedron Letters, 2005, 46, 1913-1915.	1.4	14
38	A tandem C–H insertion—acetal cleavage sequence: stereocontrolled synthesis of substituted tetrahydrofurans. Tetrahedron Letters, 2005, 46, 7175-7178.	1.4	5
39	The synthesis of baclofen and GABOB via Rh(II) catalyzed intramolecular C–H insertion of α-diazoacetamides. Tetrahedron, 2005, 61, 1579-1586.	1.9	35
40	High-load, soluble oligomeric benzenesulfonyl azide: application to facile diazo-transfer reactions. Tetrahedron, 2005, 61, 12093-12099.	1.9	40

#	Article	IF	CITATIONS
41	Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds. Current Opinion in Chemical Biology, 2005, 9, 285-292.	6.1	229
42	The chemistry of the carbon-transition metal double and triple bond: annual survey covering the year 2003. Coordination Chemistry Reviews, 2005, 249, 999-1083.	18.8	36
43	Homogeneous catalysis by gold: The current status of C,H activation. Applied Catalysis A: General, 2005, 291, 238-246.	4.3	61
44	Regioselective Nucleophilic Addition to Carbonyl Ylide Intermediates:  A Novel Diastereoselective Synthesis of Cycloalkyl Fused Furan-3-ones. Organic Letters, 2005, 7, 4577-4580.	4.6	24
45	The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. European Journal of Organic Chemistry, 2005, 2005, 1479-1492.	2.4	350
46	Direct Synthesis of (+)-Erogorgiaene through a Kinetic Enantiodifferentiating Step. Angewandte Chemie - International Edition, 2005, 44, 1733-1735.	13.8	90
47	Palladium-Catalyzed Asymmetric Iodination of Unactivated C?H Bonds under Mild Conditions. Angewandte Chemie - International Edition, 2005, 44, 2112-2115.	13.8	464
48	Pd-Catalyzed Stereoselective Oxidation of Methyl Groups by Inexpensive Oxidants under Mild Conditions: A Dual Role for Carboxylic Anhydrides in Catalytic Cĩ£¿H Bond Oxidation. Angewandte Chemie - International Edition, 2005, 44, 7420-7424.	13.8	409
52	Highly Enantio- and Diastereoselective Construction of 1,2-Disubstituted Cyclopentane Compounds by Dirhodium(II) Tetrakis[N-phthaloyl-(S)-tert-leucinate]-Catalyzed Cī£¿H Insertion Reactions of α-Diazo Esters. Advanced Synthesis and Catalysis, 2005, 347, 1483-1487.	4.3	86
53	Intramolecular 1,3-Dipolar Cycloaddition of Azomethine Ylides Generated from Ethoxycarbonylcarbenoids and Schiff Bases. Russian Journal of Organic Chemistry, 2005, 41, 1341-1348.	0.8	14
54	Functionalization of Primary Carbonâ^'Hydrogen Bonds of Alkanes by Carbene Insertion with a Silver-Based Catalyst. Organometallics, 2005, 24, 1528-1532.	2.3	102
55	Sequential Cycloaddition Approach to the Tricyclic Core of Vibsanin E. Total Synthesis of (±)-5-epi-10-epi-Vibsanin E. Organic Letters, 2005, 7, 5561-5563.	4.6	43
56	A Fluorous Chiral Dirhodium(II) Complex as a Recyclable Asymmetric Catalyst. Organic Letters, 2005, 7, 1841-1844.	4.6	39
57	Enantioselective Double Câ^'H Activation of Dihydronaphthalenes. Organic Letters, 2005, 7, 2293-2296.	4.6	31
59	Amplification of Asymmetric Induction in Sequential Reactions of Bis-diazoacetates Catalyzed by Chiral Dirhodium(II) Carboxamidates. Organic Letters, 2005, 7, 5035-5038.	4.6	27
60	Asymmetric Intermolecular Câ^'H Functionalization of Benzyl Silyl Ethers Mediated by Chiral Auxiliary-Based Aryldiazoacetates and Chiral Dirhodium Catalysts. Journal of Organic Chemistry, 2005, 70, 10737-10742.	3.2	53
61	Universal Strategy for the Immobilization of Chiral Dirhodium Catalysts. Organic Letters, 2005, 7, 2941-2944.	4.6	93
62	Catalytic and enantioselective allylic C–H activation with donor–acceptor-substituted carbenoids. Organic and Biomolecular Chemistry, 2005, 3, 4176.	2.8	69

#	Article	IF	CITATIONS
63	Rh(ii) catalysed intramolecular C–H insertion of diazo substrates in water: a simple and efficient approach to catalyst reuse. Chemical Communications, 2005, , 391-393.	4.1	50
64	Cyclic and acyclic sulfonimides in reactions with Rh(ii)-ketocarbenoids: a new access to chemoselective O-functionalization of the imidic carbonyl groups. Organic and Biomolecular Chemistry, 2005, 3, 4108.	2.8	26
65	Radical α-Câ^'H Hydroxyalkylation of Ethers and Acetal. Journal of Organic Chemistry, 2005, 70, 2342-2345.	3.2	52
67	Late-Stage Intermolecular CH Activation for Lead Diversification:  A Highly Chemoselective Oxyfunctionalization of the C-9 Position of Potent Bryostatin Analogues. Organic Letters, 2005, 7, 79-82.	4.6	97
68	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	2.3	84
72	2-Diazoacetoacetic acid, an efficient and convenient reagent for the synthesis of α-diazo-β-ketoesters. Chemical Communications, 2006, , 1316.	4.1	20
73	The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: No classical C–H activation, but efficient C–H functionalization. Dalton Transactions, 2006, , 5559-5566.	3.3	66
74	Enantioselective synthesis of β-amino esters and its application to the synthesis of the enantiomers of the antidepressant Venlafaxine. Chemical Communications, 2006, , 3110-3112.	4.1	55
75	The Literature of Heterocyclic Chemistry, Part IX, 2002–2004. Advances in Heterocyclic Chemistry, 2006, , 145-258.	1.7	15
76	New Aspects of Catalytic Intramolecular Câ^'H Amination:  Unexpected Formation of a Seven-Membered Ring in Nitrogen-Containing Systems. Organic Letters, 2006, 8, 4493-4496.	4.6	61
77	σ-Chelation-directed C–H functionalizations using Pd(ii) and Cu(ii) catalysts: regioselectivity, stereoselectivity and catalytic turnover. Organic and Biomolecular Chemistry, 2006, 4, 4041-4047.	2.8	301
78	Dirhodium Tetracarboxylate Derived from Adamantylglycine as a Chiral Catalyst for Carbenoid Reactions. Organic Letters, 2006, 8, 3437-3440.	4.6	175
79	Polyether Macrocycles from Intramolecular Cyclopropanation and Ylide Formation. Effect of Catalyst and Coordination. Journal of Organic Chemistry, 2006, 71, 8183-8189.	3.2	25
80	Catalytic Enantioselective Oâ^'H Insertion Reactions. Journal of the American Chemical Society, 2006, 128, 4594-4595.	13.7	241
81	Dirhodium Tetracarboxylates Derived from Adamantylglycine as Chiral Catalysts for Enantioselective Câ"H Aminations. Organic Letters, 2006, 8, 5013-5016.	4.6	242
82	Highly Chemo-, Regio-, and Stereoselective [3+2]-Cyclization of Activated and Deactivated Allenes with Alkenyl Fischer Carbene Complexes:  A Straightforward Access to Alkylidenecyclopentanone Derivatives. Journal of the American Chemical Society, 2006, 128, 7050-7054.	13.7	51
83	Diversity Synthesis Using the Complimentary Reactivity of Rhodium(II)- and Palladium(II)-Catalyzed Reactions. Journal of Organic Chemistry, 2006, 71, 5594-5598.	3.2	21
84	Methane Activation by Titanium Monoxide Molecules:Â A Matrix Isolation Infrared Spectroscopic and Theoretical Study. Journal of the American Chemical Society, 2006, 128, 5974-5980.	13.7	65

#	Article	IF	CITATIONS
85	Investigation into Factors Influencing Stereoselectivity in the Reactions of Heterocycles with Donorâ^Acceptor-Substituted Rhodium Carbenoids. Journal of Organic Chemistry, 2006, 71, 5349-5356.	3.2	91
86	Vinyldiazolactone as a Vinylcarbene Precursor:Â Highly Selective Câ´'H Insertion and Cyclopropanation Reactions. Journal of the American Chemical Society, 2006, 128, 16038-16039.	13.7	75
87	A Convergent and Enantioselective Synthesis of (+)-Amurensinine via Selective Câ^'H and Câ^'C Bond Insertion Reactions. Journal of the American Chemical Society, 2006, 128, 11752-11753.	13.7	161
88	Rhodium-Mediated Stereoselective Polymerization of "Carbenes― Journal of the American Chemical Society, 2006, 128, 9746-9752.	13.7	132
89	Perspective on Dirhodium Carboxamidates as Catalysts. Journal of Organic Chemistry, 2006, 71, 9253-9260.	3.2	235
90	Improvements of Efficiency and Regioselectivity in the Iridium(I)-Catalyzed Aromatic CH Silylation of Arenes with Fluorodisilanes. Organometallics, 2006, 25, 6068-6073.	2.3	79
91	Alkane Carbonâ^'Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 164
92	Enantio- and Diastereocontrol in Intermolecular Cyclopropanation Reaction of Styrene Catalyzed by Dirhodium(II) Complexes with Bulky ortho-Metalated Aryl Phosphines:  Catalysis in Water as Solvent. Study of a (+)-Nonlinear Effect. Organometallics, 2006, 25, 4977-4984.	2.3	41
93	C-H Bond Functionalization in Complex Organic Synthesis. Science, 2006, 312, 67-72.	12.6	2,007
95	Transition metals in organic synthesis: Highlights for the year 2003. Coordination Chemistry Reviews, 2006, 250, 300-387.	18.8	13
96	Cationic complexes of dirhodium(II) with 1,8-naphthyridine: Catalysis of reactions involving silanes. Journal of Organometallic Chemistry, 2006, 691, 3464-3471.	1.8	22
97	Application of recyclable, polymer-immobilized iodine(III) oxidants in catalytic C–H bond functionalization. Journal of Molecular Catalysis A, 2006, 251, 108-113.	4.8	63
98	Transition metal catalyzed oxidative functionalization of carbon–hydrogen bonds. Tetrahedron, 2006, 62, 2439-2463.	1.9	861
99	Application of the combined C–H activation/Cope rearrangement as a key step in the total syntheses of the assigned structure of (+)-elisabethadione and a (+)-p-benzoquinone natural product. Tetrahedron, 2006, 62, 10477-10484.	1.9	41
100	Synthesis of dihydrodehydrodiconiferyl alcohol and derivatives through intramolecular C–H insertion. Tetrahedron, 2006, 62, 12182-12190.	1.9	39
101	Constructing chiral diazoacetoacetates by enantioselective catalytic Mukaiyama aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 574-577.	1.8	28
102	Direct synthesis of methyl 2-diazo-4-aryl-3-butenoates and their application to the enantioselective synthesis of 4-aryl-4-(1-naphthyl)-2-butenoates. Tetrahedron: Asymmetry, 2006, 17, 665-673.	1.8	23
103	Enantiomerically pure α-pinene derivatives from material of 65% enantiomeric purity. Part 2: C2-symmetric N,N′-3-(2α-hydroxy)pinane diimines and diamines. Tetrahedron: Asymmetry, 2006, 17, 434-448. 	1.8	9

#	Article	IF	CITATIONS
104	Dual reactivity of imidic carbonyl ylides in Rh(II)-catalyzed reactions of α-diazocarbonyl compounds with succinimide. Tetrahedron Letters, 2006, 47, 2643-2647.	1.4	14
105	Diruthenium(I,I) saccharinate complexes: Synthesis, molecular structure, and evaluation as catalysts for carbenoid reactions of diazoacetates. Journal of Organometallic Chemistry, 2006, 691, 2774-2784.	1.8	22
106	Intramolecular Concerted Insertion of Vinyl Cations into CH Bonds: Hydroalkylating Cyclization of Alkynes with Alkyl Chloroformates To Give Cyclopentanes. Angewandte Chemie - International Edition, 2006, 45, 3076-3079.	13.8	39
107	Efficient Diastereoselective Intermolecular Rhodium-Catalyzed CH Amination. Angewandte Chemie - International Edition, 2006, 45, 4641-4644.	13.8	241
108	Recent Advances in Catalytic Enantioselective Intermolecular CH Functionalization. Angewandte Chemie - International Edition, 2006, 45, 6422-6425.	13.8	222
109	Cascade Reactions in Total Synthesis. Angewandte Chemie - International Edition, 2006, 45, 7134-7186.	13.8	1,939
110	Innovative Catalytic Protocols for the Ringâ€Closing Friedel–Craftsâ€Type Alkylation and Alkenylation of Arenes. European Journal of Organic Chemistry, 2006, 2006, 3527-3544.	2.4	135
111	Rhll-Catalyzed Reactions of Diazocarbonyl Compounds with Dicarboximides. European Journal of Organic Chemistry, 2006, 2006, 4737-4746.	2.4	16
112	Pd-Catalysed Domino Arylation/CH Activation for the Synthesis of Acenaphthylenes. European Journal of Organic Chemistry, 2006, 2006, 4676-4684.	2.4	31
117	Diruthenium(I,I) Catalysts for the Formation of β- and γ-Lactamsvia Carbenoid CH Insertion of α-Diazoacetamides. Advanced Synthesis and Catalysis, 2006, 348, 2203-2211.	4.3	51
118	Enantioselective Synthesis of 3-Arylindan-1-ones via Intramolecular C-H Insertion Reactions of α-Diazo-β-Ketoesters Catalyzed by Chiral Dirhodium(II) Carboxylates. Heterocycles, 2006, 70, 635.	0.7	26
121	Synthetic Reactions via C–H Bond Activation: Carbene and Nitrene C–H Insertion. , 2007, , 167-212.		7
122	Recent Advances in Catalytic Asymmetric Desymmetrization Reactions. , 0, , 275-311.		43
123	Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes. Organic Letters, 2007, 9, 2625-2628.	4.6	121
124	Reactions of Câ^'H Bonds in Water. Chemical Reviews, 2007, 107, 2546-2562.	47.7	608
125	Organometallic Clusters. , 2007, , 755-780.		3
126	Enhancement of Cyclopropanation Chemistry in the Silver-Catalyzed Reactions of Aryldiazoacetates. Journal of the American Chemical Society, 2007, 129, 6090-6091.	13.7	155
127	Intermolecular reactions of electron-rich heterocycles with copper and rhodium carbenoids. Chemical Society Reviews, 2007, 36, 1109.	38.1	250

#	Article	IF	CITATIONS
128	Rh-Catalyzed Intermolecular Reactions of Alkynes with α-Diazoesters That Possess β-Hydrogens: Ligand-Based Control over Divergent Pathways. Journal of the American Chemical Society, 2007, 129, 22-23.	13.7	168
129	Advances in the metallotropic [1,3]-shift of alkynyl carbenoids. Organic and Biomolecular Chemistry, 2007, 5, 3418.	2.8	45
130	Agostic Si–H bond coordination assists C–H bond activation at ruthenium in bis(phosphinobenzylsilane) complexes. Chemical Communications, 2007, , 3963.	4.1	34
131	Silver-catalyzed [2,3]-rearrangement of halonium ylides derived from allyl and propargyl halides and alkyl diazoacetates. Chemical Communications, 2007, , 731.	4.1	33
132	Carboxylate lability as a factor in the Rh2(carboxylate)4-catalysed cyclopropenation and cyclopropanation of alkynes and alkenes. Dalton Transactions, 2007, , 3798.	3.3	15
133	Catalytic Carbonâ [~] 'Hydrogen Bond Functionalization in an Ionic Liquid Medium. Organometallics, 2007, 26, 6661-6668.	2.3	26
134	Balance between Allylic Câ^'H Activation and Cyclopropanation in the Reactions of Donor/Acceptor-Substituted Rhodium Carbenoids with trans-Alkenes. Organic Letters, 2007, 9, 4971-4974.	4.6	62
135	Immobilized Chiral ortho-Metalated Dirhodium(II) Compounds as Catalysts in the Asymmetric Cyclopropanation of Styrene with Ethyl Diazoacetate. Organometallics, 2007, 26, 4145-4151.	2.3	32
136	Rhodium-Catalyzed Intramolecular Câ^'H Insertion of α-Aryl-α-diazo Ketones. Journal of Organic Chemistry, 2007, 72, 3207-3210.	3.2	33
137	A Predictably Selective Aliphatic C–H Oxidation Reaction for Complex Molecule Synthesis. Science, 2007, 318, 783-787.	12.6	1,153
138	Catalytic Multicomponent Reactions for the Synthesis ofN-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813.	3.2	148
138 139	Catalytic Multicomponent Reactions for the Synthesis of N-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813. One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium: Formation of Î ³ -(η3-Allyl)-α-Alkenylphosphine Derivatives Starting from a Dihydrideâ ⁻⁷ Dihydrogenâ ⁻⁷ Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202.	3.2 2.3	148 26
138 139 140	Catalytic Multicomponent Reactions for the Synthesis ofN-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813. One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium:Â Formation of [³-(l·3-Allyl)-f±-Alkenylphosphine Derivatives Starting from a Dihydrideâ Dihydrogenâ Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202. <i>N</i> >N>N>N>A Convenient Reagent for Facile Synthesis of Diazoacetates. Organic Letters, 2007, 9, 3195-3197.	3.2 2.3 4.6	148 26 128
138 139 140 141	Catalytic Multicomponent Reactions for the Synthesis of N-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813. One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium:Â Formation of [³-(h3-Allyl)-f±-Alkenylphosphine Derivatives Starting from a Dihydrideâ "Dihydrogenâ "Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202. <i>N</i> >, <i>N</i> >, <i>N</i> >, 3195-3197. On the mechanism of the Rh(ii)-catalysed cyclopropanation of alkenes. Dalton Transactions, 2007, 1104.	3.22.34.63.3	148 26 128 17
138 139 140 141 142	Catalytic Multicomponent Reactions for the Synthesis of N-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813.One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium: Formation of I³-(î·3-Allyl)-1±-Alkenylphosphine Derivatives Starting from a Dihydrideâ*Dihydrogenâ*Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202. <i>N</i> >, <i>N</i> >, <i>N</i> >, 3195-3197.On the mechanism of the Rh(ii)-catalysed cyclopropanation of alkenes. Dalton Transactions, 2007, , 1104.Highly Enantioselective Insertion of Carbenoids into Oâ*H Bonds of Phenols:  An Efficient Approach to Chiral α-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 2007, 129, 12616-12617.	 3.2 2.3 4.6 3.3 13.7 	148 26 128 17 203
138 139 140 141 142	Catalytic Multicomponent Reactions for the Synthesis ofN-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813. One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium: Formation of γ-(Î-3-Allyl)-1±-Alkenylphosphine Derivatives Starting from a Dihydrideâ*Dihydrogenâ*Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202. <i>N</i> >, <i>N On the mechanism of the Rh(ii)-catalysed cyclopropanation of alkenes. Dalton Transactions, 2007, 1104. Highly Enantioselective Insertion of Carbenoids into Oâ*H Bonds of Phenols:  An Efficient Approach to Chiral 1±-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 2007, 129, 12616-12617. Palladium-Catalyzed Intramolecular C(sp3)H Functionalization: Catalyst Development and Synthetic Applications. Chemistry - A European Journal, 2007, 13, 792-799.</i>	 3.2 2.3 4.6 3.3 13.7 3.3 	148 26 128 17 203 121
 138 139 140 141 142 144 144 145 	Catalytic Multicomponent Reactions for the Synthesis ofN-Aryl Trisubstituted Pyrroles. Journal of Organic Chemistry, 2007, 72, 1811-1813.One-Pot Dehydrogenative Addition of Isopropyl to Alkynes Promoted by Osmium: Formation of I*-(i-3-Allyl)-1±-Alkenylphosphine Derivatives Starting from a Dihydrideâ 'Dihydrogenâ''Triisopropylphosphine Complex. Organometallics, 2007, 26, 2193-2202. <i>><i>><i>><i>><i>><i>>On the mechanism of the Rh(ii)-catalysed cyclopropanation of alkenes. Dalton Transactions, 2007, 104.Highly Enantioselective Insertion of Carbenoids into Oâ''H Bonds of Phenols:ãe‰ An Efficient Approach to Chiral I±-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 2007, 129, 12616-12617.Palladium-Catalyzed Intramolecular C(sp3)ï£;H Functionalization: Catalyst Development and Synthetic Applications. Chemistry - A European Journal, 2007, 13, 792-799.Enantioselective Synthesis of Tertiary Alcohols by the Desymmetrizing Benzoylation of 2-Substituted Clycerols. Angewandte Chemie - International Edition, 2007, 46, 2616-2618.</i></i></i></i></i></i>	 3.2 2.3 4.6 3.3 13.7 3.3 13.8 	 148 26 128 17 203 121 69

#	Article	IF	CITATIONS
147	Tuning the Reactivity of Dirhodium(II) Complexes with Axial N-Heterocyclic Carbene Ligands: The Arylation of Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 5750-5753.	13.8	113
148	Enantioselective Insertion of Metal Carbenes into NH Bonds: A Potentially Versatile Route to Chiral Amine Derivatives. Angewandte Chemie - International Edition, 2007, 46, 9148-9150.	13.8	117
149	Enantioselective Synthesis of Tertiary Alcohols by the Desymmetrizing Benzoylation of 2-Substituted Glycerols. Angewandte Chemie, 2007, 119, 2670-2672.	2.0	28
153	Mn Quinonoid Coreâ€Rh Quinonoid Shell Organometallic Nanospheres as Atom Economical Semiheterogeneous Catalysts in Carbene Transfer Reactions. Advanced Materials, 2007, 19, 2547-2551.	21.0	11
154	Catalytic Enantioselective Tandem Carbonyl Ylide Formation/1,3-Dipolar Cycloaddition Reactions of α-Diazo Ketones with Aromatic Aldehydes using Dirhodium(II) Tetrakis[N-benzene-fused-phthaloyl-(S)-valinate]. Advanced Synthesis and Catalysis, 2007, 349, 521-526.	4.3	58
155	The Effect of Catalyst Loading in Copper-Catalyzed Cyclohexane Functionalization by Carbene Insertion. European Journal of Inorganic Chemistry, 2007, 2007, 2848-2852.	2.0	18
156	Paramagnetic (Alkene)Rh and (Alkene)Ir Complexes: Metal or Ligand Radicals?. European Journal of Inorganic Chemistry, 2007, 2007, 211-230.	2.0	65
157	Modular P-Chirogenic Aminophosphane-Phosphinite Ligands for Rh-Catalyzed Asymmetric Hydrogenation: A New Model for Prediction of Enantioselectivity. European Journal of Organic Chemistry, 2007, 2007, 2078-2090.	2.4	39
158	Recent advances in the stereoselective synthesis of tetrahydrofurans. Tetrahedron, 2007, 63, 261-290.	1.9	311
159	ReBr(CO)5-catalyzed sequential addition–cyclization of 1,3-dicarbonyl compounds with electron-deficient internal alkynes affording trisubstituted 2H-pyran-2-ones. Tetrahedron, 2007, 63, 11803-11808.	1.9	20
160	Ruthenium catalysts for carbenoid intramolecular C–H insertion of 2-diazoacetoacetamides and diazomalonic ester amides. Tetrahedron, 2007, 63, 12172-12178.	1.9	34
161	Intramolecular rhodium-catalyzed activation of α-amino C–H bonds: decisive influence of conformational factors in the synthesis of bicyclic aminals from N-sulfamoyloxyacetyl azacycloalkanes. Tetrahedron Letters, 2007, 48, 8531-8535.	1.4	21
162	A new dirhodium tetraacetate carbenoid: Synthesis, crystal structure and catalytic application. Journal of Organometallic Chemistry, 2007, 692, 5523-5527.	1.8	32
163	Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 1080-1087.	3.9	7
164	Total Syntheses of (â^')-α-Kainic Acid and (+)-α-Allokainic Acid via Stereoselective Câ^'H Insertion and Efficient 3,4-Stereocontrol. Journal of Organic Chemistry, 2007, 72, 10114-10122.	3.2	64
165	High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coordination Chemistry Reviews, 2008, 252, 545-555.	18.8	222
166	Tetra-μ-acetato-bis{[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]rhodium(II)}(<i>Rh</i> — <i>Rh</i>) tetrahydrofuran tetrasolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m345-m348.	0.4	6
167	Cĭ£;H Insertion Processes on Stabilized Indolyl and <i>ortho</i> â€Aminophenyl Fischer Carbene Complexes: Synthesis of Azepino[3,2,1â€ <i>hi</i>] indole, Benzazepine and Indole Derivatives. Chemistry -	3.3	19

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
168	Tamed Tigers: Stabilization of Reactive Carbenes. ChemPhysChem, 2008, 9, 1829-1831.	2.1	1
169	6â€(Diazomethyl)â€1,3â€bis(methoxymethyl)uracil, Synthesis and Transformation into Annulated Pyrimidinediones. Helvetica Chimica Acta, 2008, 91, 1201-1218.	1.6	13
170	Enantioselective CH Amination Using Cationic Ruthenium(II)–pybox Catalysts. Angewandte Chemie - International Edition, 2008, 47, 6825-6828.	13.8	291
171	Ironâ€Catalyzed CC Bond Formation by Direct Functionalization of CH Bonds Adjacent to Heteroatoms. Angewandte Chemie - International Edition, 2008, 47, 7497-7500.	13.8	291
172	Gold atalyzed Wasteâ€Free Generation and Reaction of Azomethine Ylides: Internal Redox/Dipolar Cycloaddition Cascade. Angewandte Chemie - International Edition, 2008, 47, 7040-7043.	13.8	228
173	Highly Selective Metal Catalysts for Intermolecular Carbenoid Insertion into Primary Cï£;H Bonds and Enantioselective Cï£;C Bond Formation. Angewandte Chemie - International Edition, 2008, 47, 9747-9751.	13.8	120
174	Acceptor/Acceptor‣ubstituted Diazo Reagents for Carbene Transfers: Cobaltâ€Catalyzed Asymmetric <i>Zâ€</i> Cyclopropanation of Alkenes with αâ€Nitrodiazoacetates. Angewandte Chemie - International Edition, 2008, 47, 8460-8463.	13.8	170
175	Synthesis of Cyclobutenes by Highly Selective Transitionâ€Metalâ€Catalyzed Ring Expansion of Cyclopropanes. Angewandte Chemie - International Edition, 2008, 47, 8933-8936.	13.8	102
183	Cycloaddition of oxidopyrylium species in organic synthesis. Tetrahedron, 2008, 64, 3405-3428.	1.9	127
184	Remote C–H bond functionalization reveals the distance-dependent isotope effect. Tetrahedron, 2008, 64, 6979-6987.	1.9	77
185	A synthesis of bicyclo[n.1.0]alkanes having tert-butyl carboxylate or acetamide moiety via the intramolecular 1,3-CH insertion of magnesium carbenoids. Tetrahedron, 2008, 64, 5711-5720.	1.9	24
186	Recent studies on the reactions of $\hat{l}\pm$ -diazocarbonyl compounds. Tetrahedron, 2008, 64, 6577-6605.	1.9	728
187	Reactions of macrocyclic rhodium carbenoids: regioselective synthesis of indol-3-yl macrocyclic lactones and cryptands. Tetrahedron Letters, 2008, 49, 475-480.	1.4	18
188	Synthesis and reactivity of an unprecedented osmium(VIII) alkylidene. Tetrahedron Letters, 2008, 49, 6800-6803.	1.4	5
189	Intramolecular C–H insertion using NHC–di-rhodium(II) complexes: the influence of axial coordination. Tetrahedron Letters, 2008, 49, 7372-7375.	1.4	28
190	A Nonâ€Crossâ€Linked Soluble Polystyreneâ€6upported Ruthenium Catalyst for Carbenoid Transfer Reactions. Chemistry - an Asian Journal, 2008, 3, 1256-1265.	3.3	33
191	Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451, 417-424.	27.8	2,064
192	Gold-Catalyzed 1,3-Addition of a sp ³ -Hybridized Câ ^{~?} H Bond to Alkenylcarbenoid Intermediate. Journal of the American Chemical Society, 2008, 130, 16488-16489	13.7	139

#	Article	IF	CITATIONS
193	Coinage Metal Catalyzed Câ^'H Bond Functionalization of Hydrocarbons. Chemical Reviews, 2008, 108, 3379-3394.	47.7	705
194	CⰒH Carbene Insertion of α-Diazo Acetamides by Photolysis in Non-Conventional Media. Journal of Organic Chemistry, 2008, 73, 5926-5932.	3.2	29
195	Highly efficient formation of halodiazoacetates and their use in stereoselective synthesis of halocyclopropanes. Organic and Biomolecular Chemistry, 2008, 6, 3670.	2.8	38
197	Copper-Catalyzed Oxidative Coupling of Benzylic Câ^'H Bonds with 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2008, 73, 7822-7825.	3.2	93
198	Direct Ortho-Acetoxylation of Anilides via Palladium-Catalyzed sp ² Câ^'H Bond Oxidative Activation. Journal of Organic Chemistry, 2008, 73, 4717-4720.	3.2	198
199	Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. Journal of the American Chemical Society, 2008, 130, 14972-14974.	13.7	470
200	Design, Synthesis, and Biological Evaluation of Platensimycin Analogues with Varying Degrees of Molecular Complexity. Journal of the American Chemical Society, 2008, 130, 13110-13119.	13.7	127
201	Enantioselective Intramolecular Hydroarylation of Alkenes via Directed Câ^'H Bond Activation. Journal of Organic Chemistry, 2008, 73, 6772-6779.	3.2	136
202	Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chemical Communications, 2008, , 4097.	4.1	965
203	Catalytic Metallonitrene/Alkyne Metathesis: A Powerful Cascade Process for the Synthesis of Nitrogen-Containing Molecules. Journal of the American Chemical Society, 2008, 130, 5020-5021.	13.7	105
204	Dehydrogenation of Inert Alkyl Groups via Remote Câ^'H Activation: Converting a Propyl Group into a ï€-Allylic Complex. Organometallics, 2008, 27, 1667-1670.	2.3	129
205	Chapter 11 Total syntheses of natural products using the combine C-H activation/cope rearrangement as the key step. Strategies and Tactics in Organic Synthesis, 2008, 7, 383-407.	0.1	1
206	Rh-Catalyzed Intermolecular Cyclopropanation with α-Alkyl-α-diazoesters: Catalyst-Dependent Chemo- and Diastereoselectivity. Organic Letters, 2008, 10, 2987-2989.	4.6	56
207	Stereoselective construction of nitrile-substituted cyclopropanes. Chemical Communications, 2008, , 1238.	4.1	53
208	Câ^'H Bond Activation of Heteroarenes Mediated by a Half-Sandwich Iron Complex of N-Heterocyclic Carbene. Journal of the American Chemical Society, 2008, 130, 17174-17186.	13.7	172
209	Influence of Electron-Deficient Ruthenium(I) Carbonyl Carboxylates on the Vinylogous Reactivity of Metal Carbenoids. Organometallics, 2008, 27, 1750-1757.	2.3	47
210	Synthesis of (â^')-Hamigeran B. Journal of Organic Chemistry, 2008, 73, 7560-7564.	3.2	61
211	Rhodium(I)-Catalyzed Cycloisomerizations of Bicyclobutanes. Journal of the American Chemical Society, 2008, 130, 6924-6925.	13.7	70

#	Article	IF	CITATIONS
212	Influence of the Nature of the Ligand on Dirhodium(II) Carbene Species: A Theoretical Analysis. Organometallics, 2008, 27, 2873-2876.	2.3	22
213	Axial Coordination of NHC Ligands on Dirhodium(II) Complexes: Generation of a New Family of Catalysts. Journal of Organic Chemistry, 2008, 73, 4076-4086.	3.2	94
214	Intrinsic Reaction Coordinate Analysis of the Activation of CH4 by Molybdenum Atoms: A Density Functional Theory Study of the Crossing Seams of the Potential Energy Surfaces. Organometallics, 2008, 27, 181-188.	2.3	25
215	Ruthenium-Catalyzed One-Pot Carbenoid Nâ^'H Insertion Reactions and Diastereoselective Synthesis of Prolines. Organic Letters, 2008, 10, 1529-1532.	4.6	103
216	A New Perfluorinated F ₂₁ -Tp Scorpionate Ligand: Enhanced Alkane Functionalization by Carbene Insertion with (F ₂₁ -Tp)M Catalysts (M = Cu, Ag). Organometallics, 2008, 27, 4779-4787.	2.3	64
217	Iterative Multifunctionalization of Unactivated Câ [~] 'H Bonds in Piperidines by Way of Intramolecular Rh(II)-Catalyzed Aminations. Journal of Organic Chemistry, 2008, 73, 2155-2162.	3.2	32
218	Rh(II)-Catalyzed Sommeletâ^'Hauser Rearrangement. Organic Letters, 2008, 10, 693-696.	4.6	62
220	Infrared Spectrum of the CH3â^'PtH Complex in Solid Argon Prepared in the Oxidative Câ^'H Insertion of Methane by Laser-Ablated Pt Atoms. Journal of Physical Chemistry A, 2008, 112, 12293-12295.	2.5	29
221	Toward a Synthetically Useful Stereoselective Câ^'H Amination of Hydrocarbons. Journal of the American Chemical Society, 2008, 130, 343-350.	13.7	352
222	Catalytic Câ^'H Insertions Using Iron(III) Porphyrin Complexes. Organometallics, 2008, 27, 637-645.	2.3	118
223	Catalytic Nucleophilic Addition Reaction to (2-Furyl)carbene Intermediates Generated from Carbonyl–Ene–Ynes. Bulletin of the Chemical Society of Japan, 2008, 81, 1158-1165.	3.2	18
224	Developments in the Photochemistry of Diazo Compounds. Current Organic Chemistry, 2009, 13, 763-787.	1.6	73
225	Functionalization of Carbon–Hydrogen Bonds Through Transition Metal Carbenoid Insertion. Topics in Current Chemistry, 2009, 292, 303-345.	4.0	65
226	Spin-Flip Reaction of Re + CH4—A Relativistic Density Functional Theory Investigation. Journal of Physical Chemistry A, 2009, 113, 8471-8477.	2.5	5
231	Construction of Nitrogenâ€Containing Heterocycles by CH Bond Functionalization. Chemistry - A European Journal, 2009, 15, 5874-5883.	3.3	517
232	Trapping Reactive Metal–Carbene Complexes by a Bisâ€Pocket Porphyrin: Xâ€ray Crystal Structures of RuCHCO ₂ Et and <i>trans</i> â€{Ru(CHR)(CO)] Species and Highly Selective Carbenoid Transfer Reactions. Chemistry - A European Journal, 2009, 15, 10707-10712.	3.3	41
235	Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics. Angewandte Chemie - International Edition, 2009, 48, 660-719.	13.8	198
236	A Phosphineâ€Mediated Conversion of Azides into Diazo Compounds. Angewandte Chemie - International Edition, 2009, 48, 2359-2363.	13.8	93

#	Article	IF	CITATIONS
237	Benzofurans Prepared by CH Bond Functionalization with Acylsilanes. Angewandte Chemie - International Edition, 2009, 48, 784-786.	13.8	88
238	Cross Dehydrogenative Arylation (CDA) of a Benzylic Cï£;H Bond with Arenes by Iron Catalysis. Angewandte Chemie - International Edition, 2009, 48, 3817-3820.	13.8	290
239	New Syntheses of Diazo Compounds. Angewandte Chemie - International Edition, 2009, 48, 8186-8195.	13.8	225
240	Ironâ€Catalyzed C(sp ³)C(sp ³) Bond Formation through C(sp ³)H Functionalization: A Crossâ€Coupling Reaction of Alcohols with Alkenes. Angewandte Chemie - International Edition, 2009, 48, 8761-8765.	13.8	132
241	Double O–H insertion reactions of cyclic rhodium carbenoids: diastereoselective synthesis of macrocyclic oxindoles. Tetrahedron Letters, 2009, 50, 3794-3797.	1.4	15
242	Iridium-catalyzed benzylic C–H activation and functionalization of alkyl arenes. Journal of Molecular Catalysis A, 2009, 312, 1-6.	4.8	19
243	Silver(I) complexes of fluorinated scorpionates: Ligand effects in silver catalyzed carbene insertion into C–H bonds in alkanes. Inorganica Chimica Acta, 2009, 362, 4347-4352.	2.4	33
244	Gold-catalyzed olefin cyclopropanation. Tetrahedron, 2009, 65, 1790-1793.	1.9	108
245	Intermolecular C–H functionalization versus cyclopropanation of electron rich 1,1-disubstituted and trisubstituted alkenes. Tetrahedron, 2009, 65, 3052-3061.	1.9	44
246	A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction. Tetrahedron, 2009, 65, 3042-3051.	1.9	226
247	Asymmetric hetero-Diels–Alder reactions of carbonyl compounds. Tetrahedron, 2009, 65, 2839-2877.	1.9	228
248	Regioselective access to substituted oxindoles via rhodium-catalyzed carbene C–H insertion. Tetrahedron, 2009, 65, 8542-8555.	1.9	21
249	A synthesis of esters, amides, and sulfones bearing a 1-cyclopentenyl group at the α-position from cyclobutanones with one-carbon ring-expansion. Tetrahedron Letters, 2009, 50, 1961-1964.	1.4	7
250	A novel rearrangement reaction of β-diazo-α-ketoacetals. Tetrahedron Letters, 2009, 50, 3568-3570.	1.4	11
251	An efficient synthesis of nitrogen-containing heterocycles via a tandem carbenoid N–H insertion/ring-closing metathesis sequence. Tetrahedron Letters, 2009, 50, 2716-2718.	1.4	40
252	Catalytic cyclopropanation of olefins using copper(I) diphosphinoamines. Journal of Organometallic Chemistry, 2009, 694, 1153-1160.	1.8	16
253	Rh ₂ (II)-Catalyzed Synthesis of Carbazoles from Biaryl Azides. Journal of Organic Chemistry, 2009, 74, 3225-3228.	3.2	203
254	Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 2009, 38, 3242.	38.1	1,498

#	Article	IF	CITATIONS
255	Infrared Spectra of Platinum Insertion and Methylidene Complexes Prepared in Oxidative Câ ^{~?} H(X) Reactions of Laser-Ablated Pt Atoms with Methane, Ethane, and Halomethanes. Organometallics, 2009, 28, 1358-1368.	2.3	59
256	Construction of Carbo- and Heterocycles Using Radical Relay Cyclizations Initiated by Alkoxy Radicals. Organic Letters, 2009, 11, 2019-2022.	4.6	70
257	A Chemistry Cascade: From Physical Organic Studies of Alkoxy Radicals to Alkaloid Synthesis. Journal of Organic Chemistry, 2009, 74, 6421-6441.	3.2	53
258	CH4 Activation by W Atom in the Gas Phase: A Case of Two-State Reactivity Process. Journal of Physical Chemistry A, 2009, 113, 13808-13815.	2.5	21
259	Computational Study on the Selectivity of Donor/Acceptor-Substituted Rhodium Carbenoids. Journal of Organic Chemistry, 2009, 74, 6555-6563.	3.2	169
260	Iridium(III) Catalyzed Diastereo- and Enantioselective Câ^'H Bond Functionalization. Journal of the American Chemical Society, 2009, 131, 14218-14219.	13.7	95
261	Why Is Copper(I) Complex More Competent Than Dirhodium(II) Complex in Catalytic Asymmetric Oâ^'H Insertion Reactions? A Computational Study of the Metal Carbenoid Oâ^'H Insertion into Water. Journal of the American Chemical Society, 2009, 131, 17783-17785.	13.7	217
262	Directed Carbozincation Reactions of Cyclopropene Derivatives. Journal of the American Chemical Society, 2009, 131, 5382-5383.	13.7	81
263	Direct Prenylation of Aromatic and α,β-Unsaturated Carboxamides via Iridium-Catalyzed Câ^'H Oxidative Additionâ^'Allene Insertion. Organic Letters, 2009, 11, 4248-4250.	4.6	159
264	Matrix Infrared Spectra of the Câ^'H Insertion and Dihydrido Cyclic Products from Reactions of Group 3 Metal Atoms with Ethylene. Journal of Physical Chemistry A, 2009, 113, 6677-6688.	2.5	7
265	Structural Study of Acidic Metallocavitands and Characterization of their Interactions with Lewis Bases. Inorganic Chemistry, 2009, 48, 1699-1710.	4.0	16
266	Rh-Catalyzed Isomerization and Intramolecular Redox Reaction of Alkynyl Ethers Affording Dihydropyrans and Ketoolefins. Journal of the American Chemical Society, 2009, 131, 3166-3167.	13.7	138
267	Matrix Infrared Spectra of Dihydrido Cyclic and Trihydrido Ethynyl Products from Reactions of Th and U Atoms with Ethylene Molecules. Journal of Physical Chemistry A, 2009, 113, 5073-5081.	2.5	13
268	Optically Active Dinuclear Palladium Complexes Containing a Pdâ Pd Bond: Preparation and Enantioinduction Ability in Asymmetric Ring-Opening Reactions. Organic Letters, 2009, 11, 2245-2248.	4.6	63
269	Rediscovering copper-based catalysts for intramolecular carbon–hydrogen bond functionalization by carbene insertion. Organic and Biomolecular Chemistry, 2009, 7, 4777.	2.8	24
270	Application of donor/acceptor-carbenoids to the synthesis of natural products. Chemical Society Reviews, 2009, 38, 3061.	38.1	423
271	Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic Compounds. Journal of the American Chemical Society, 2009, 131, 2993-3006.	13.7	226
272	Palladium-Catalyzed Cross Coupling Reaction of Benzyl Bromides with Diazoesters for Stereoselective Synthesis of (<i>E</i>)-α,β-Diarylacrylates. Organic Letters, 2009, 11, 469-472.	4.6	96

#	ARTICLE Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with <i>N </i>	IF 13.7	CITATIONS
274	1,2,3-Triazoles. Journal of the American Chemical Society, 2009, 131, 18034-18035. Enantioselective Reactions of Donor/Acceptor Carbenoids Derived from α-Aryl-α-Diazoketones. Organic Letters, 2009, 11, 787-790.	4.6	103
275	Recent development of reactions with α-diazocarbonyl compounds as nucleophiles. Chemical Communications, 2009, , 5350.	4.1	240
276	Combined Experimental and Computational Studies of Heterobimetallic Biâ^'Rh Paddlewheel Carboxylates as Catalysts for Metal Carbenoid Transformations. Journal of Organic Chemistry, 2009, 74, 6564-6571.	3.2	61
277	Copper-catalyzed enantioselective carbenoid insertion into S–H bonds. Chemical Communications, 2009, , 5362.	4.1	80
278	Rhodium catalyzed enantioselective cyclization of substituted imidazoles via C–H bond activation. Chemical Communications, 2009, , 3910.	4.1	71
279	Examination of the Mechanism of Rh ₂ (II)-Catalyzed Carbazole Formation Using Intramolecular Competition Experiments. Journal of Organic Chemistry, 2009, 74, 6442-6451.	3.2	125
280	A Two-Step, Formal [4 + 2] Approach toward Piperidin-4-ones via Au Catalysis. Journal of the American Chemical Society, 2009, 131, 8394-8395.	13.7	199
282	Palladium-Catalyzed Ligand-Directed Câ^'H Functionalization Reactions. Chemical Reviews, 2010, 110, 1147-1169.	47.7	5,643
283	Catalytic Carbene Insertion into Câ^'H Bonds. Chemical Reviews, 2010, 110, 704-724.	47.7	1,573
284	Rh ^{II} â€Catalyzed Reaction of αâ€Diazocarbonyl Compounds Bearing βâ€Trichloroacetylamino Substituent: CH Insertion versus 1,2â€Hâ€Shift. Chemistry - an Asian Journal, 2010, 5, 1112-1119.	3.3	14
285	Cï£;H Bond Activation/Borylation of Furans and Thiophenes Catalyzed by a Halfâ€Sandwich Iron Nâ€Heterocyclic Carbene Complex. Chemistry - an Asian Journal, 2010, 5, 1657-1666.	3.3	151
286	Direct functionalization of BODIPY dyes by oxidative nucleophilic hydrogen substitution at the 3- or 3,5-positions. Chemical Communications, 2010, 46, 4908.	4.1	92
287	Asymmetric synthesis of bicyclo[n.1.0]alkanes by the enantioselective 1,3-CH insertion reaction of chiral magnesium carbenoids. Tetrahedron: Asymmetry, 2010, 21, 1-5.	1.8	13
288	Computational Study of C–H Insertion Reactions with Ethyl Bromodiazoacetate. European Journal of Organic Chemistry, 2010, 2010, 4355-4359.	2.4	11
290	Functionalization of Organic Molecules by Transitionâ€Metalâ€Catalyzed C(sp ³)H Activation. Chemistry - A European Journal, 2010, 16, 2654-2672.	3.3	1,032
291	Cu and Au Metal–Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chemistry - A European Journal, 2010, 16, 9789-9795.	3.3	107
292	[Fe ^{III} (F ₂₀ â€tpp)Cl] Is an Effective Catalyst for Nitrene Transfer Reactions and Amination of Saturated Hydrocarbons with Sulfonyl and Aryl Azides as Nitrogen Source under Thermal and Microwaveâ€Assisted Conditions. Chemistry - A European Journal, 2010, 16, 10494-10501.	3.3	165

#	Article	IF	CITATIONS
293	Câ€2 Arylation of Piperidines through Directed Transitionâ€Metalâ€Catalyzed sp ³ CH Activation. Chemistry - A European Journal, 2010, 16, 13063-13067.	3.3	106
298	Highly Enantioselective Insertion of Carbenoids into NH Bonds Catalyzed by Copper(I) Complexes of Binol Derivatives. Angewandte Chemie - International Edition, 2010, 49, 4763-4766.	13.8	110
299	Enantioselective Oxidative Crossâ€Coupling Reaction of 3â€Indolylmethyl CH Bonds with 1,3â€Dicarbonyls Using a Chiral Lewis Acidâ€Bonded Nucleophile to Control Stereochemistry. Angewandte Chemie - International Edition, 2010, 49, 5558-5562.	13.8	192
300	Rhodium(II)â€Catalyzed Oneâ€Pot Fourâ€Component Synthesis of Functionalized Polyether Macrocycles at High Concentration. Angewandte Chemie - International Edition, 2010, 49, 7253-7256.	13.8	60
301	A Polymer‣upported Chiral Dirhodium(II) Complex: Highly Durable and Recyclable Catalyst for Asymmetric Intramolecular CH Insertion Reactions. Angewandte Chemie - International Edition, 2010, 49, 6979-6983.	13.8	104
302	Highly selective silylformylation of internal and functionalised alkynes with a cationic dirhodium(II) complex catalyst. Journal of Organometallic Chemistry, 2010, 695, 792-798.	1.8	12
303	A method for the synthesis of cyclopropanes by regiospecific and regioselective magnesium carbenoid 1,3-CH insertion as the key reactions. Tetrahedron, 2010, 66, 5675-5686.	1.9	13
304	Catalytic asymmetric C–H insertion reactions of α-diazocarbonyl compounds. Tetrahedron, 2010, 66, 6681-6705.	1.9	120
305	Selective arylation of aldehydes with di-rhodium(II)/NHC catalysts. Tetrahedron, 2010, 66, 8494-8502.	1.9	30
306	A short synthesis of 3-oxa- and 3-azabicyclo[3.1.0]hexanes from α,β-unsaturated esters based on the 1,5-CH insertion reaction of cyclopropylmagnesium carbenoids. Tetrahedron Letters, 2010, 51, 1955-1959.	1.4	8
307	Metal-free oxidative C–C bond formation of active methylenic sp3 C–H bonds with benzylic sp3 C–H and allylic sp3 C–H bonds mediated by DDQ. Tetrahedron Letters, 2010, 51, 4898-4903.	1.4	32
308	Rh(II) catalysts with 4-hydroxyproline-derived ligands. Tetrahedron Letters, 2010, 51, 5375-5377.	1.4	11
309	Gold (I) catalysis of X–H bond insertions. Tetrahedron Letters, 2010, 51, 5490-5492.	1.4	85
310	Catalytic [2,3]-sigmatropic rearrangement of sulfur ylide derived from metal carbene. Coordination Chemistry Reviews, 2010, 254, 941-953.	18.8	145
311	An efficient organocatalytic method for constructing biaryls through aromatic C–H activation. Nature Chemistry, 2010, 2, 1044-1049.	13.6	601
312	A Reactivity-Driven Approach to the Discovery and Development of Gold-Catalyzed Organic Reactions. Synlett, 2010, 2010, 675-691.	1.8	147
313	One-Pot Synthesis of Chiral α-Methylene-γ-lactams with Excellent Diastereoselectivities and Enantioselectivities. Organic Letters, 2010, 12, 5154-5157.	4.6	56
314	Synthesis and Reactivity of Rhodium(II) <i>N</i> -Triflyl Azavinyl Carbenes. Journal of the American Chemical Society, 2010, 132, 2510-2511.	13.7	212

#	Article	IF	CITATIONS
315	Ruthenium-Catalyzed Synthesis of Functional Conjugated Dienes via Addition of Two Carbene Units to Alkynes. Journal of the American Chemical Society, 2010, 132, 7391-7397.	13.7	65
316	Alkynes as Equivalents of α-Diazo Ketones in Generating α-Oxo Metal Carbenes: A Gold-Catalyzed Expedient Synthesis of Dihydrofuran-3-ones. Journal of the American Chemical Society, 2010, 132, 3258-3259.	13.7	361
317	A General and Efficient Cobalt(II)-Based Catalytic System for Highly Stereoselective Cyclopropanation of Alkenes with α-Cyanodiazoacetates. Journal of the American Chemical Society, 2010, 132, 12796-12799.	13.7	192
318	Investigation of the Mechanism of C(sp ³)â^'H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides. Journal of the American Chemical Society, 2010, 132, 10692-10705.	13.7	255
319	Total Synthesis of (â^')-Muraymycin D2 and Its Epimer. Journal of Organic Chemistry, 2010, 75, 1366-1377.	3.2	85
320	Asymmetric Intermolecular N-H Insertion Reaction of Phenyldiazoacetates with Anilines Catalyzed by Achiral Dirhodium(II) Carboxylates and Cinchona Alkaloids. Heterocycles, 2010, 81, 1149.	0.7	32
321	Mechanistic Insights into the Reactions of Co(III) Salens with Diazoacetates. Organic Letters, 2010, 12, 676-679.	4.6	13
322	Rhodium Carbenoid Approach for Introduction of 4-Substituted (<i>Z</i>)-Pent-2-enoates into Sterically Encumbered Pyrroles and Indoles. Organic Letters, 2010, 12, 924-927.	4.6	72
323	Cleavage of Câ^'H Bonds for Building Tetranuclear Half-Sandwich Iridium Macrocycles with Ortho-Metalated Spacers. Organometallics, 2010, 29, 2827-2830.	2.3	34
324	Pd-Catalyzed Three-Component Coupling of <i>N</i> -Tosylhydrazone, Terminal Alkyne, and Aryl Halide. Journal of the American Chemical Society, 2010, 132, 13590-13591.	13.7	200
325	Stereoselective Synthesis of Highly Functionalized α-Diazo-β-ketoalkanoates via Catalytic One-Pot Mukaiyama-Aldol Reactions. Organic Letters, 2010, 12, 796-799.	4.6	26
326	Câ^'H Bond Activation and Subsequent C(sp2)â^'C(sp3) Bond Formation: Coupling of Bromomethyl and Triphenylphosphine in an Iridium Complex. Organometallics, 2010, 29, 2904-2910.	2.3	17
327	Highly Enantioselective Intramolecular Copper Catalyzed Câ^'H Insertion Reactions of α-Diazosulfones. Journal of the American Chemical Society, 2010, 132, 1184-1185.	13.7	75
328	Rhodium-Catalyzed [3 + 2] Annulation of Indoles. Journal of the American Chemical Society, 2010, 132, 440-441.	13.7	268
329	Di- and Trisubstituted Î ³ -Lactams via Rh(II)-carbenoid Reaction of <i>N</i> -C _α -Branched, <i>N</i> -Bis(trimethylsilyl)methyl α-Diazoamides. Synthesis of (±)-α-Allokainic Acid. Organic Letters, 2010, 12, 5386-5389.	4.6	28
330	Benzotriazol-1-yl-sulfonyl Azide for Diazotransfer and Preparation of Azidoacylbenzotriazoles. Journal of Organic Chemistry, 2010, 75, 6532-6539.	3.2	52
331	Synthetic Applications of Pd(II)-Catalyzed Câ^'H Carboxylation and Mechanistic Insights: Expedient Routes to Anthranilic Acids, Oxazolinones, and Quinazolinones. Journal of the American Chemical Society, 2010, 132, 686-693.	13.7	295
332	Ruthenium Catalyzed Directing Group-Free C2-Selective Carbenoid Functionalization of Indoles by α-Aryldiazoesters. Organic Letters, 2010, 12, 604-607.	4.6	118

#	Article	IF	CITATIONS
333	Controlling Factors for Câ^'H Functionalization versus Cyclopropanation of Dihydronaphthalenes. Journal of Organic Chemistry, 2010, 75, 1927-1939.	3.2	48
334	A Water-Soluble Ruthenium Glycosylated Porphyrin Catalyst for Carbenoid Transfer Reactions in Aqueous Media with Applications in Bioconjugation Reactions. Journal of the American Chemical Society, 2010, 132, 1886-1894.	13.7	82
335	Nano-Fe2O3-catalyzed direct borylation of arenes. Chemical Communications, 2010, 46, 3170.	4.1	88
336	Copper-Catalyzed Synthesis of α-Amino Imides from Tertiary Amines: Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp ³ Câ^'Hs Adjacent to Nitrogen Atoms. Organic Letters, 2010, 12, 4240-4243.	4.6	77
337	Solvent-free catalytic enantioselective C–C bond forming reactions with very high catalyst turnover numbers. Chemical Science, 2010, 1, 254.	7.4	63
338	Atom-efficient synthesis of α-alkylidene-N-furylimines via catalytic vinylcarbene-transfer reactions to carbonyl-ene-nitrile compounds. Chemical Communications, 2010, 46, 3366.	4.1	17
339	Selectivity enhancement in functionalization of C–H bonds: A review. Organic and Biomolecular Chemistry, 2010, 8, 4217.	2.8	198
340	Câ^'H Activation of Alkanes, Alkenes, Alkynes, Arenes, and Ethers Using a Stannylene/Aryl Halide Mixture. Organometallics, 2010, 29, 5033-5039.	2.3	21
341	Enantioselective Câ^'C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Allylic Alcohols. Journal of the American Chemical Society, 2010, 132, 396-401.	13.7	106
342	Asymmetric copper-catalysed intramolecular C–H insertion reactions of α-diazo-β-keto sulfones. Organic and Biomolecular Chemistry, 2011, 9, 667-669.	2.8	29
343	Asymmetric synthesis of highly functionalized cyclopentanes by a rhodium- and scandium-catalyzed five-step domino sequence. Chemical Science, 2011, 2, 2378.	7.4	54
344	N-Heterocyclic Carbene Palladium Catalyzed Regioselective Oxidative Trifluoroacetoxylation of Unactivated Methylene sp ³ C–H Bonds in Linear Alkyl Esters. Organometallics, 2011, 30, 6053-6056.	2.3	41
345	Cooperative catalysis in highly enantioselective Mannich-type three-component reaction of a diazoacetophenone with an alcohol and an imine. Chemical Communications, 2011, 47, 797-799.	4.1	65
346	Synthesis ofl-epi-Capreomycidine Derivatives via C–H Amination. Organic Letters, 2011, 13, 4028-4031.	4.6	22
347	Solvent Enhancement of Reaction Selectivity: A Unique Property of Cationic Chiral Dirhodium Carboxamidates. Journal of the American Chemical Society, 2011, 133, 9572-9579.	13.7	46
348	Asymmetric Synthesis of All-Carbon Quaternary Stereocenters via Desymmetrization of 2,2-Disubstituted 1,3-Propanediols. Journal of the American Chemical Society, 2011, 133, 1772-1774.	13.7	76
349	Cobalt-Mediated Selective Bâ^'H Activation and Formation of a Coâ^'B Bond in the Reaction of the 16-Electron CpCo Half-Sandwich Complex Containing an <i>o</i> -Carborane-1,2-dithiolate Ligand with Ethyl Diazoacetate. Inorganic Chemistry, 2011, 50, 4187-4194.	4.0	30
350	Enantiomer Recognition of Amides by Dirhodium(II) Tetrakis[methyl 2-oxopyrrolidine-5(<i>S</i>)-carboxylate]. Inorganic Chemistry, 2011, 50, 7610-7617.	4.0	15

#	Article	IF	CITATIONS
351	CpRu-Catalyzed Oâ^'H Insertion and Condensation Reactions of α-Diazocarbonyl Compounds. Organic Letters, 2011, 13, 1394-1397.	4.6	68
352	Direct Sp3α-C–H activation and functionalization of alcohol and ether. Chemical Society Reviews, 2011, 40, 1937.	38.1	446
353	Catalytic Formation of Silyl Enol Ethers and Its Applications for Aldol-Type Condensation and Aminomethylation Reactions. ACS Catalysis, 2011, 1, 544-547.	11.2	13
354	Thermally Induced Cycloadditions of Donor/Acceptor Carbenes. Organic Letters, 2011, 13, 4284-4287.	4.6	61
355	Copper-Catalyzed Aerobic Oxidative Intramolecular Alkene C–H Amination Leading toN-Heterocycles. Organic Letters, 2011, 13, 3694-3697.	4.6	77
356	Diazo Reagents with Small Steric Footprints for Simultaneous Arming/SAR Studies of Alcohol-Containing Natural Products <i>via</i> O–H Insertion. ACS Chemical Biology, 2011, 6, 1175-1181.	3.4	32
357	TBHP-mediated oxidative thiolation of an sp3 C–H bond adjacent to a nitrogen atom in an amide. Chemical Communications, 2011, 47, 12867.	4.1	143
360	Steric Modifications Tune the Regioselectivity of the Alkane Oxidation Catalyzed by Non-Heme Iron Complexes. Inorganic Chemistry, 2011, 50, 12651-12660.	4.0	51
361	An Efficient [2 + 2 + 1] Synthesis of 2,5-Disubstituted Oxazoles via Gold-Catalyzed Intermolecular Alkyne Oxidation. Journal of the American Chemical Society, 2011, 133, 8482-8485.	13.7	336
362	Structural characterization of manganese and iron complexes with methylated derivatives of bis(2-pyridylmethyl)-1,2-ethanediamine reveals unanticipated conformational flexibility. Dalton Transactions, 2011, 40, 4048.	3.3	22
363	Chlorination and ortho-acetoxylation of 2-arylbenzoxazoles. Organic and Biomolecular Chemistry, 2011, 9, 5288.	2.8	54
364	Enantioselective C–H carbene insertions with homogeneous and immobilized copper complexes. Organic and Biomolecular Chemistry, 2011, 9, 6075.	2.8	36
365	Combined C–H Functionalization/Cope Rearrangement with Vinyl Ethers as a Surrogate for the Vinylogous Mukaiyama Aldol Reaction. Journal of the American Chemical Society, 2011, 133, 11940-11943.	13.7	61
366	Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chemical Society Reviews, 2011, 40, 1857.	38.1	916
367	On the Mechanism and Selectivity of the Combined Câ^'H Activation/Cope Rearrangement. Journal of the American Chemical Society, 2011, 133, 5076-5085.	13.7	92
368	Bifunctional Acid Catalysts for Organic Synthesis. Topics in Organometallic Chemistry, 2011, , 161-183.	0.7	29
369	Enantioenriched Synthesis of Cyclopropenes with a Quaternary Stereocenter, Versatile Building Blocks. Journal of the American Chemical Society, 2011, 133, 170-171.	13.7	98
370	Approaching and Bond Breaking Energies in the Câ^'H Activation and Their Application in Catalyst Design. Journal of Physical Chemistry A, 2011, 115, 904-910.	2.5	14

#	Article	IF	CITATIONS
371	Gold-Catalyzed Formal [3 + 3] and [4 + 2] Cycloaddition Reactions of Nitrosobenzenes with Alkenylgold Carbenoids. Journal of the American Chemical Society, 2011, 133, 20728-20731.	13.7	177
372	Enantioselective Total Synthesis of Aperidine. Organic Letters, 2011, 13, 2789-2791.	4.6	35
373	A Diruthenium Catalyst for Selective, Intramolecular Allylic C–H Amination: Reaction Development and Mechanistic Insight Gained through Experiment and Theory. Journal of the American Chemical Society, 2011, 133, 17207-17216.	13.7	281
374	Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts. Chemical Society Reviews, 2011, 40, 1950.	38.1	565
375	Regioselectivity of the borylation of alkanes and arenes. Chemical Society Reviews, 2011, 40, 1992.	38.1	696
376	Do we fully understand what controls chemical selectivity?. Physical Chemistry Chemical Physics, 2011, 13, 20906.	2.8	158
377	Intramolecular catalytic asymmetric carbon–hydrogen insertion reactions. Synthetic advantages in total synthesis in comparison with alternative approaches. Organic and Biomolecular Chemistry, 2011, 9, 4007.	2.8	87
378	Direct Access to β-Oxodiazo Compounds by Copper(II)-Catalyzed Oxidative Rearrangement of Stabilized Vinyl Diazo Derivatives. Journal of the American Chemical Society, 2011, 133, 18138-18141.	13.7	38
379	Propargyl Alcohols as β-Oxocarbenoid Precursors for the Ruthenium-Catalyzed Cyclopropanation of Unactivated Olefins by Redox Isomerization. Journal of the American Chemical Society, 2011, 133, 4766-4769.	13.7	64
380	Sequential Rhodium-, Silver-, and Gold-Catalyzed Synthesis of Fused Dihydrofurans. Organic Letters, 2011, 13, 4316-4319.	4.6	36
381	Sequential Au(I)-catalyzed reaction of water with <i>o</i> -acetylenyl-substituted phenyldiazoacetates. Beilstein Journal of Organic Chemistry, 2011, 7, 631-637.	2.2	32
384	Catalytic carbene insertion into an aminoporphyrin and formation of a new chiral supramolecular porphyrin system. Tetrahedron Letters, 2011, 52, 4741-4744.	1.4	4
385	Desymmetrization of meso [3.2.1]oxabicyclic systems using metal-catalysed asymmetric intramolecular C–H insertion. Tetrahedron Letters, 2011, 52, 6763-6766.	1.4	8
386	Heterogeneous catalysts for carbene insertion reactions. Journal of Catalysis, 2011, 281, 273-278.	6.2	19
387	Reactivity of <i>N</i> -(1,2,4-Triazolyl)-Substituted 1,2,3-Triazoles. Organic Letters, 2011, 13, 4870-4872.	4.6	82
388	Catalytic Asymmetric C–H Insertions of Rhodium(II) Azavinyl Carbenes. Journal of the American Chemical Society, 2011, 133, 10352-10355.	13.7	204
389	Intramolecular Aromatic Carbenoid Insertion of Biaryldiazoacetates for the Regioselective Synthesis of Fluorenes. Chemistry - an Asian Journal, 2011, 6, 2040-2047.	3.3	34
390	Regioselective Synthesis of Sulfonylpyrazoles via Base Mediated Reaction of Diazosulfones with Nitroalkenes and a Facile Entry into Withasomnine. Organic Letters, 2011, 13, 4016-4019.	4.6	66

#	Article	IF	CITATIONS
392	Intermetallic coinage metal-catalyzed functionalization of alkanes with ethyl diazoacetate: Gold as a ligand. Inorganica Chimica Acta, 2011, 369, 146-149.	2.4	14
393	Synthesis, structure and reactivity of complexes containing a transition metal–bismuth bond. Coordination Chemistry Reviews, 2011, 255, 101-117.	18.8	75
394	Transitionâ€metalâ€catalyzed aminations and aziridinations of CH and CC bonds with iminoiodinanes. Chemical Record, 2011, 11, 331-357.	5.8	193
395	Ironâ€Catalyzed CH Fuctionalization of Indoles. Advanced Synthesis and Catalysis, 2011, 353, 2939-2944.	4.3	142
396	Highly Regioselective, Threeâ€Component Reactions of Diazoacetates with Anilines and β,γâ€Unsaturated αâ€Keto Esters: 1,2â€Addition versus 1,4â€Addition. European Journal of Organic Chemistry, 2011, 2011, 1113	-1124.	25
397	Neighboring Acetalâ€Assisted BrÃ,nstedâ€Acidâ€Catalyzed Si–H Bond Activation: Divergent Synthesis of Functional Siloxanes through Silylation and Hydrolytic Oxidation of Organosilanes. European Journal of Organic Chemistry, 2011, 2011, 1736-1742.	2.4	17
398	Recent Developments in Pdâ€Catalyzed Reactions of Diazo Compounds. European Journal of Organic Chemistry, 2011, 2011, 1015-1026.	2.4	250
399	Catalytic Oxyâ€Functionalization of Methane and Other Hydrocarbons: Fundamental Advancements and New Strategies. ChemSusChem, 2011, 4, 37-49.	6.8	113
409	Rhodium(II) atalyzed Cross oupling of Diazo Compounds. Angewandte Chemie - International Edition, 2011, 50, 2544-2548.	13.8	114
410	Direct Cross oupling of CH Bonds with Grignard Reagents through Cobalt Catalysis. Angewandte Chemie - International Edition, 2011, 50, 1109-1113.	13.8	165
411	lf Cï£;H Bonds Could Talk: Selective Cï£;H Bond Oxidation. Angewandte Chemie - International Edition, 2011, 50, 3362-3374.	13.8	1,189
412	Rhodiumâ€Catalyzed Direct Addition of Aryl Cĩ£¿H Bonds to <i>N</i> â€Sulfonyl Aldimines. Angewandte Chemie - International Edition, 2011, 50, 2115-2119.	13.8	262
413	One‣tep Catalytic Asymmetric Synthesis of Configurationally Stable Tröger Bases. Angewandte Chemie - International Edition, 2011, 50, 3677-3680.	13.8	63
414	A Practical Strategy for the Structural Diversification of Aliphatic Scaffolds through the Palladium atalyzed Picolinamideâ€Directed Remote Functionalization of Unactivated C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2011, 50, 5192-5196.	13.8	365
415	Computationally Guided Stereocontrol of the Combined CH Functionalization/Cope Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 9370-9373.	13.8	33
416	Catalytic Asymmetric Activation of a Cĩ£¿H Bond Adjacent to a Nitrogen Atom: A Versatile Approach to Optically Active αâ€Alkyl αâ€Amino Acids and C1â€Alkylated Tetrahydroisoquinoline Derivatives. Angewandte Chemie - International Edition, 2011, 50, 10429-10432.	13.8	268
417	Synthesis of Functionalized Polycyclic Compounds: Rhodium(I)â€Catalyzed Intramolecular Cycloaddition of Yne and Ene Vinylidenecyclopropanes. Angewandte Chemie - International Edition, 2011, 50, 12027-12031.	13.8	41
418	Alkynylcyclopropanes from Terminal Alkynes through Consecutive Coupling to Fischer Carbene Complexes and Selective Propargylene Transfer. Chemistry - A European Journal, 2011, 17, 2349-2352.	3.3	21

#	Article	IF	CITATIONS
419	Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies. Chemistry - A European Journal, 2011, 17, 14199-14223.	3.3	180
420	Rapid Access to αâ€Alkoxy and αâ€Amino Acid Derivatives through Safe Continuousâ€Flow Generation of Diazoesters. Chemistry - A European Journal, 2011, 17, 9586-9589.	3.3	59
421	Mechanism Selection for Regiocontrol in Baseâ€Assisted, Palladiumâ€Catalysed Direct CH Coupling with Halides: First Approach for Oxazole―and Thiazoleâ€4â€Carboxylates. Chemistry - A European Journal, 2011, 17, 14450-14463.	3.3	57
422	Continuous Flow System with a Polymerâ€Supported Dirhodium(II) Catalyst: Application to Enantioselective Carbonyl Ylide Cycloaddition Reactions. Chemistry - A European Journal, 2011, 17, 13992-13998.	3.3	61
423	Stable Nâ€Heterocyclic Carbene (NHC)–Palladium(0) Complexes as Active Catalysts for Olefin Cyclopropanation Reactions with Ethyl Diazoacetate. Chemistry - A European Journal, 2011, 17, 14885-14895.	3.3	17
424	Hydrocarbon chlorination promoted by manganese and iron complexes with methylated derivatives of bis(2-pyridylmethyl)-1,2-ethanediamine. Journal of Molecular Catalysis A, 2011, 335, 24-30.	4.8	11
425	Solvent influence in the Rh-catalyzed intramolecular 1,6 C–H insertions: a general approach to the chromane and flavanone skeletons. Tetrahedron, 2011, 67, 3071-3075.	1.9	16
426	Rh2(S-PTAD)4-catalyzed asymmetric cyclopropenation of aryl alkynes. Tetrahedron, 2011, 67, 4313-4317.	1.9	61
427	Olefin cyclopropanation with aryl diazocompounds upon catalysis by a dirhodium(II) complex. Tetrahedron Letters, 2011, 52, 1136-1139.	1.4	15
428	Enantio- and diastereoselective cyclopropanation with tert-butyl α-diazopropionate catalyzed by dirhodium(II) tetrakis[N-tetrabromophthaloyl-(S)-tert-leucinate]. Tetrahedron Letters, 2011, 52, 4200-4203.	1.4	43
429	Vinyl Diazophosphonates as Precursors to Quaternary Substituted Indolines and Cyclopentenes. Organic Letters, 2011, 13, 700-702.	4.6	19
431	New Trends in Organic Synthesis with Oxidative Enzymes. Current Organic Chemistry, 2012, 16, 2598-2612.	1.6	9
432	Chiral Dirhodium Catalysts: A New Era for Asymmetric Catalysis. Current Organic Chemistry, 2012, 16, 1808-1836.	1.6	19
433	Hetero Bi-Paddle-Wheel Coordination Networks: A New Synthetic Route to Rh-Containing Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2012, 85, 433-438.	3.2	17
435	Highly Enantioselective Rh-Catalyzed Carboacylation of Olefins: Efficient Syntheses of Chiral Poly-Fused Rings. Journal of the American Chemical Society, 2012, 134, 20005-20008.	13.7	178
436	Homogeneous Organometallic Chemistry of Methane. Advances in Organometallic Chemistry, 2012, 60, 1-47.	1.0	29
437	Intramolecular Direct Dehydrohalide Coupling Promoted by KO ^{<i>t</i>} Bu: Total Synthesis of <i>Amaryllidaceae</i> Alkaloids Anhydrolycorinone and Oxoassoanine. Organic Letters, 2012, 14, 4466-4469.	4.6	118
438	Metal-Free N–H Insertions of Donor/Acceptor Carbenes. Organic Letters, 2012, 14, 4626-4629.	4.6	63

#	Article	IF	CITATIONS
439	Expanding the Scope of Donor/Acceptor Carbenes to <i>N</i> -Phthalimido Donor Groups: Diastereoselective Synthesis of 1-Cyclopropane α-Amino Acids. Organic Letters, 2012, 14, 6020-6023.	4.6	124
440	4.8 C–C Bond Formation (Metal-Carbene Catalyzed). , 2012, , 132-167.		1
441	Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. Journal of the American Chemical Society, 2012, 134, 15497-15504.	13.7	177
442	Chemoselective Aromatic C–H Insertion of α-Diazo-β-ketoesters Catalyzed by Dirhodium(II) Carboxylates. Organic Letters, 2012, 14, 238-240.	4.6	30
443	Making expensive dirhodium(ii) catalysts cheaper: Rh(ii) recycling methods. Organic and Biomolecular Chemistry, 2012, 10, 3357.	2.8	43
444	Rhodium-Catalyzed Enantioselective Vinylogous Addition of Enol Ethers to Vinyldiazoacetates. Journal of the American Chemical Society, 2012, 134, 18241-18244.	13.7	82
445	CATALYTIC ASYMMETRIC INTERMOLECULAR C–H INSERTION OF 1,4-CYCLOHEXADIENE WITH α-ALKYL-α-DIAZOESTERS USING CHIRAL DIRHODIUM(II) CARBOXYLATES. Heterocycles, 2012, 86, 1647.	0.7	11
449	Highly Efficient Stereoselective Catalytic C(sp ³)H Insertions with Donor Rhodium Carbenoids Generated from Cyclopropenes. Angewandte Chemie - International Edition, 2012, 51, 11540-11544.	13.8	51
450	Dirhodium Carboxylates Catalyzed Enantioselective Coupling Reactions of αâ€Diazophosphonates, Anilines, and Electronâ€Deficient Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 11376-11380.	13.8	109
451	Organocatalytic Enantioselective Dehydrogenative <i>α</i> â€Alkylation of Aldehydes with Benzylic Compounds. Chinese Journal of Chemistry, 2012, 30, 2721-2725.	4.9	21
452	Recent Advances in the Chemistry and Synthetic Uses of Magnesium Carbenoids. Heterocycles, 2012, 85, 1.	0.7	41
453	Highly enantioselective intermolecular carbene insertion to C–H and Si–H bonds catalyzed by a chiral iridium(iii) complex of a D4-symmetric Halterman porphyrin ligand. Chemical Communications, 2012, 48, 4299.	4.1	91
454	Infrared Spectra of CH ₃ –MH through Methane Activation by Laser-Ablated Sn, Pb, Sb, and Bi Atoms. Journal of Physical Chemistry A, 2012, 116, 8500-8506.	2.5	19
455	Theoretical Investigations of Spin–Orbit Coupling and Kinetics in Reaction W + NH3 → N≡WH3. Journal of Physical Chemistry A, 2012, 116, 2583-2590.	2.5	10
456	Highly Selective Intramolecular Carbene Insertion into Primary C–H Bond of α-Diazoacetamides Mediated by a (<i>p</i> -Cymene)ruthenium(II) Carboxylate Complex. Journal of the American Chemical Society, 2012, 134, 7588-7591.	13.7	61
457	Silver(I)-Catalyzed Insertion of Carbene into Alkane C–H Bonds and the Origin of the Special Challenge of Methane Activation Using DFT as a Mechanistic Probe. ACS Catalysis, 2012, 2, 2066-2078.	11.2	61
458	Ruthenium(II)-Catalyzed C–H Bond Activation and Functionalization. Chemical Reviews, 2012, 112, 5879-5918.	47.7	2,520
459	Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids. Journal of the American Chemical Society, 2012, 134, 14670-14673.	13.7	165

#	Article	IF	CITATIONS
460	Highly selective synthesis of tetra-substituted furans and cyclopropenes: copper(i)-catalyzed formal cycloadditions of internal aryl alkynes and diazoacetates. Organic and Biomolecular Chemistry, 2012, 10, 7483.	2.8	23
461	Tempering the Reactivities of Postulated α-Oxo Gold Carbenes Using Bidentate Ligands: Implication of Tricoordinated Gold Intermediates and the Development of an Expedient Bimolecular Assembly of 2,4-Disubstituted Oxazoles. Journal of the American Chemical Society, 2012, 134, 17412-17415.	13.7	196
462	Design and Synthesis of Chiral Heteroleptic Rhodium(II) Carboxylate Catalysts: Experimental Investigation of Halogen Bond Rigidification Effects in Asymmetric Cyclopropanation. ACS Catalysis, 2012, 2, 1221-1225.	11.2	66
463	A Polymer‣upported Chiral Fluorinated Dirhodium(II) Complex for Asymmetric Amination of Silyl Enol Ethers. Advanced Synthesis and Catalysis, 2012, 354, 2331-2338.	4.3	24
465	CH Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angewandte Chemie - International Edition, 2012, 51, 8960-9009.	13.8	2,669
466	Recent developments in copper-catalyzed reactions of diazo compounds. Chemical Communications, 2012, 48, 10162.	4.1	323
467	Efficient synthesis of oxazoles by dirhodium(ii)-catalyzed reactions of styryl diazoacetate with oximes. Chemical Communications, 2012, 48, 11522.	4.1	33
470	Intramolecular C–H insertion catalyzed by dirhodium(II) complexes using CO ₂ as the reaction media. Green Chemistry Letters and Reviews, 2012, 5, 211-240.	4.7	14
471	Asymmetric Intramolecular CH Insertion of αâ€Điazoacetamides in Water by Dirhodium(II) Catalysts Derived from Natural Amino Acids. Advanced Synthesis and Catalysis, 2012, 354, 2921-2927.	4.3	26
472	Recent advances in transition metal-catalyzed sp ³ C–H amination adjacent to double bonds and carbonyl groups. Chemical Society Reviews, 2012, 41, 931-942.	38.1	422
473	Room temperature selective oxidation of cyclohexane over Cu-nanoclusters supported on nanocrystalline Cr2O3. Green Chemistry, 2012, 14, 2600.	9.0	56
474	Asymmetric catalytic carbon–carbon coupling reactions via C–H bond activation. Catalysis Science and Technology, 2012, 2, 1099.	4.1	144
475	2.18 Selected Diastereoselective Reactions: Diastereoselective Intra- and Intermolecular 1,3-Dipolar Cycloadditions in Natural Product Synthesis. , 2012, , 525-562.		4
476	2.24 Selected Diastereoselective Reactions: C–H Insertions. , 2012, , 738-782.		0
477	Rh-Catalyzed Intermolecular Reactions of Cyclic α-Diazocarbonyl Compounds with Selectivity over Tertiary C–H Bond Migration. Journal of the American Chemical Society, 2012, 134, 11035-11043.	13.7	70
478	A short and convenient strategy for the synthesis of pyridazines via Diaza–Wittig reaction. Tetrahedron Letters, 2012, 53, 6489-6491.	1.4	16
479	The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates. Dalton Transactions, 2012, 41, 700-713.	3.3	116
480	Rh2(S-PTTL)3TPA—a mixed-ligand dirhodium(ii) catalyst for enantioselective reactions of α-alkyl-α-diazoesters. Chemical Science, 2012, 3, 1589.	7.4	61

#	Article	IF	CITATIONS
481	Enantioselective Carbenoid Insertion into Phenolic O–H Bonds with a Chiral Copper(I) Imidazoindolephosphine Complex. Organic Letters, 2012, 14, 194-197.	4.6	66
482	Design, Preparation, X-ray Crystal Structure, and Reactivity of <i>o</i> -Alkoxyphenyliodonium Bis(methoxycarbonyl)methanide, a Highly Soluble Carbene Precursor. Organic Letters, 2012, 14, 3170-3173.	4.6	83
483	Rhodium catalyzed synthesis of isoindolinones via C–H activation of N-benzoylsulfonamides. Tetrahedron, 2012, 68, 9192-9199.	1.9	51
484	Electrophilicity of α-oxo gold carbene intermediates: halogen abstractions from halogenated solvents leading to the formation of chloro/bromomethyl ketones. Organic and Biomolecular Chemistry, 2012, 10, 3168.	2.8	106
485	A highly diastereoselective three-component tandem 1,4-conjugated addition–cyclization reaction to multisubstituted pyrrolidines. Organic and Biomolecular Chemistry, 2012, 10, 2133.	2.8	27
486	Experimental Study of the Reaction of a Ni(PEt ₃) ₂ Synthon with Polyfluorinated Pyridines: Concerted, Phosphine-Assisted, or Radical C–F Bond Activation Mechanisms?. Organometallics, 2012, 31, 1361-1373.	2.3	50
487	Highly Enantioselective Addition of Enals to Isatin-Derived Ketimines Catalyzed by N-Heterocyclic Carbenes: Synthesis of Spirocyclic γ-Lactams. Organic Letters, 2012, 14, 5412-5415.	4.6	185
489	A Combined Spectroscopic and Computational Study of a High-Spin <i>S</i> = 7/2 Diiron Complex with a Short Iron–Iron Bond. Inorganic Chemistry, 2012, 51, 728-736.	4.0	45
490	Rh-Catalyzed Intermolecular Carbenoid Functionalization of Aromatic C–H Bonds by α-Diazomalonates. Journal of the American Chemical Society, 2012, 134, 13565-13568.	13.7	451
492	Recent Advances in Catalysis for Efficient Process Chemistry. Recent Patents on Catalysis, 2012, 1, 2-12.	0.2	1
493	Intramolecular carbenoid ylide forming reactions of 2-diazo-3-keto-4-phthalimidocarboxylic esters derived from methionine and cysteine. Beilstein Journal of Organic Chemistry, 2012, 8, 433-440.	2.2	8
494	The Combined C–H Functionalization/Cope Rearrangement: Discovery and Applications in Organic Synthesis. Accounts of Chemical Research, 2012, 45, 923-935.	15.6	284
495	Directed Metal (Oxo) Aliphatic C–H Hydroxylations: Overriding Substrate Bias. Journal of the American Chemical Society, 2012, 134, 9721-9726.	13.7	178
496	Copper-Catalyzed Aerobic Oxidative Intramolecular C–H Amination Leading to Imidazobenzimidazole Derivatives. Organic Letters, 2012, 14, 452-455.	4.6	98
497	Urea Activation of α-Nitrodiazoesters: An Organocatalytic Approach to N–H Insertion Reactions. Journal of the American Chemical Society, 2012, 134, 8798-8801.	13.7	52
498	Ruthenium Catalyzed Synthesis of Enaminones. Organic Letters, 2012, 14, 440-443.	4.6	69
499	Divergent Stereocontrol of Acid Catalyzed Intramolecular Aldol Reactions of 2,3,7-Triketoesters: Synthesis of Highly Functionalized Cyclopentanones. Organic Letters, 2012, 14, 3608-3611.	4.6	51
500	Methane: a new frontier in organometallic chemistry. Chemical Science, 2012, 3, 3356.	7.4	90

ARTICLE IF CITATIONS # Understanding Reactivity and Stereoselectivity in Palladium-Catalyzed Diastereoselective sp³ Câ€"H Bond Activation: Intermediate Characterization and Computational Studies. 501 13.7 115 Journal of the American Chemical Society, 2012, 134, 14118-14126. 1,3-Dipolar Cycloaddition of Ethyl Diazoacetate with (E)-3-Arylidenechroman-4-ones. A New Access to 9 Spirocycloprópane Derivatives. Heterocycles, 2012, 85, 835. Dirhodium(II) Complexes of 2â€(Sulfonylimino)pyrrolidine: Synthesis and Application in Catalytic 504 2.4 30 Benzylic Oxidation. European Journal of Organic Chemistry, 2012, 2012, 3088-3092. Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. 647 Accounts of Chemical Research, 2012, 45, 1365-1377. Substrate-Dependent Divergent Outcomes from Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides: Azabicyclo[3.1.0]hexanes or 5-Arylaminofuran-2(3<i>H</i>)-ones. 506 3.2 23 Journal of Organic Chemistry, 2012, 77, 5313-5317. Fine Tuning of Dirhodium(II) Complexes: Exploring the Axial Modification. ACS Catalysis, 2012, 2, 370-383. 11.2 101 Functionalizations of Aryl CH Bonds in 2â€Arylpyridines <i>via</i> Sequential Borylation and Copper 508 4.3 41 Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 2211-2217. Copperâ€Catalyzed Aerobic Oxidative Synthesis of 5â€Substituted Imidazo/Benzimidazoquinazolinones 509 4.3 26 through Intramolecular Cï£;H Amination. Advanced Synthesis and Catalysis, 2012, 354, 1773-1779. Copper Carbenoid, Reactant and Catalyst for Oneâ€Pot Diazo Ester Coupling Cascade Rearrangement of 510 Enediynes: Formation of Two Contiguous Tetrasubstituted Stereocenters. Advanced Synthesis and 4.3 38 Catalýsis, 2012, 354, 1987-2000. Enol Acetal Synthesis through Carbenoid Cï£; H Insertion into Tetrahydrofuran Catalyzed by CpRu 514 13.8 Complexes. Ángewandte Chemie - International Edition, 2012, 51, 5847-5851. Alkynoate Synthesis through the Vinylogous Reactivity of Rhodium(II) Carbenoids. Angewandte Chemie 515 13.8 32 - International Edition, 2012, 51, 8636-8639. A New Dirhodium Catalyst with Hemilabile Tropolonato Ligands for Cĩ£;H Bond Functionalization. 3.3 Chemistry - A European Journal, 2012, 18, 4854-4858. Recent advances in the total synthesis of cyclopropane-containing natural products. Chemical 517 38.1 473 Society Reviews, 2012, 41, 4631. Molecular scaffolds with remote directing groups for selective palladium-catalyzed C–H bond 7.4 functionalizations. Chemical Science, 2012, 3, 1623. Synthesis, including asymmetric synthesis, of 3-oxabicyclo[3.1.0]hexanes and bicyclo[3.1.0]hexanes by the 1,5-CH insertion of cyclopropylmagnesium carbenoids as the key reaction. Tetrahedron, 2012, 68, 519 9 1.9 1071-1084. Catalytic enantioselective synthesis of azacycloalkenes via intermolecular rhodium carbenoid C–H 1.4 insertion/ring-closing metathesis sequence. Tetrahedron Letters, 2012, 53, 849-851. A new approach to the synthesis of 1-oxaspiro[4.n]alkanes and tetrahydrofurans by the 1,5-CH 521 1.4 5 insertion reaction of magnesium carbenoids. Tetrahedron Letters, 2012, 53, 2074-2077. Copperâ€Catalyzed Oneâ€Pot Synthesis of Imidazo/Benzoimidazoquinazolinones by Sequential Ullmannâ€Type 3.3 Coupling and Intramolecular Cï£; H Amidation. Chemistry - A European Journal, 2012, 18, 1180-1186.

#	Article	IF	CITATIONS
523	Cooperative Catalysis with Firstâ€Row Late Transition Metals. European Journal of Inorganic Chemistry, 2012, 2012, 363-375.	2.0	418
524	Transitionâ€Metal atalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems. Angewandte Chemie - International Edition, 2012, 51, 862-872.	13.8	547
525	Carbenoid insertions into benzylic C–H bonds with heterogeneous copper catalysts. Tetrahedron, 2013, 69, 7360-7364.	1.9	9
526	Expeditious Approach to Pyrrolophenanthridones, Phenanthridines, and Benzo[<i>c</i>]phenanthridines via Organocatalytic Direct Biaryl-Coupling Promoted by Potassium <i>tert</i> -Butoxide. Journal of Organic Chemistry, 2013, 78, 7823-7844.	3.2	100
527	Rhodiumâ€Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4â€Alkenylâ€1â€sulfonylâ€1,2,3â€triaz with Dienes. Angewandte Chemie - International Edition, 2013, 52, 10044-10047.	oles 13.8	114
528	Combined C–H functionalization/O–H insertion reaction to form tertiary β-alkoxy substituted β-aminophosphonates catalyzed by [Cu(MeCN)4]PF6. Organic and Biomolecular Chemistry, 2013, 11, 5491.	2.8	11
529	Strategy for the Synthesis of Pyridazine Heterocycles and Their Derivatives. Journal of Organic Chemistry, 2013, 78, 7845-7858.	3.2	50
530	Catalytic Asymmetric Syntheses of Quinolizidines by Dirhodium-Catalyzed Dearomatization of Isoquinolinium/Pyridinium Methylides–The Role of Catalyst and Carbene Source. Journal of the American Chemical Society, 2013, 135, 12439-12447.	13.7	127
531	Rh(III)-Catalyzed Synthesis of Multisubstituted Isoquinoline and Pyridine <i>N</i> -Oxides from Oximes and Diazo Compounds. Journal of the American Chemical Society, 2013, 135, 12204-12207.	13.7	418
532	Palladium-catalyzed carbenoid based N–H bond insertions: application to the synthesis of chiral α-amino esters. Organic and Biomolecular Chemistry, 2013, 11, 5998.	2.8	40
533	Arylation of Diazoesters by a Transient Nï٤¿H Insertion Organocascade. Angewandte Chemie - International Edition, 2013, 52, 11317-11320.	13.8	33
534	Heteroatom methods. Annual Reports on the Progress of Chemistry Section B, 2013, 109, 167.	0.9	2
535	Copper atalyzed Aerobic Oxidative CH and CC Functionalization of 1â€{2â€(Arylamino)aryl]ethanones Leading to Acridone Derivatives. Chemistry - A European Journal, 2013, 19, 4271-4277.	3.3	52
536	Insertion of Reactive Rhodium Carbenes into Boron–Hydrogen Bonds of Stable N-Heterocyclic Carbene Boranes. Journal of the American Chemical Society, 2013, 135, 12076-12081.	13.7	98
537	Palladium-Catalyzed Carbene Migratory Insertion Using Conjugated Ene–Yne–Ketones as Carbene Precursors. Journal of the American Chemical Society, 2013, 135, 13502-13511.	13.7	153
538	Gold atalyzed Oxidative Cycloadditions to Activate a Quinoline Framework. Chemistry - A European Journal, 2013, 19, 12965-12969.	3.3	41
539	Review: active homogeneous reagents and catalysts in <i>n</i> -alkane activation. Journal of Coordination Chemistry, 2013, 66, 2091-2109.	2.2	25
540	Selectivity in CH Functionalizations. , 2013, , 79-104.		8

#	Article	IF	CITATIONS
541	A novel and convenient strategy for the synthesis of phthalazines from an aryne precursor. Tetrahedron Letters, 2013, 54, 7056-7058.	1.4	11
542	Reactions of Indoles with Metal-Bound Carbenoids. Advances in Heterocyclic Chemistry, 2013, 110, 43-72.	1.7	16
543	Matrix-IR Spectroscopic Investigations of the Thermolysis and Photolysis of Diazoamides. Journal of Organic Chemistry, 2013, 78, 10705-10717.	3.2	11
544	Copper-Catalyzed <i>gem</i> -Difluoroolefination of Diazo Compounds with TMSCF ₃ via C–F Bond Cleavage. Journal of the American Chemical Society, 2013, 135, 17302-17305.	13.7	214
545	Silica-Immobilized Chiral Dirhodium(II) Catalyst for Enantioselective Carbenoid Reactions. Organic Letters, 2013, 15, 6136-6139.	4.6	66
546	tert-BuOK-Catalyzed condensation of ethyl diazoacetate to aldehydes and palladium-catalyzed 1,2-hydrogen migration for the synthesis of β-ketoesters under solvent-free conditions. RSC Advances, 2013, 3, 12616.	3.6	10
547	Copper-Catalyzed B–H Bond Insertion Reaction: A Highly Efficient and Enantioselective C–B Bond-Forming Reaction with Amine–Borane and Phosphine–Borane Adducts. Journal of the American Chemical Society, 2013, 135, 14094-14097.	13.7	137
549	Rh ₂ (<i>R</i> -TPCP) ₄ -Catalyzed Enantioselective [3+2]-Cycloaddition between Nitrones and Vinyldiazoacetates. Journal of the American Chemical Society, 2013, 135, 14516-14519.	13.7	97
550	Efficient Oneâ€Pot Synthesis of Multiâ€Substituted Dihydrofurans by Ruthenium(II)â€Catalyzed [3+2] Cycloaddition of Cyclic or Acyclic Diazodicarbonyl Compounds with Olefins. Advanced Synthesis and Catalysis, 2013, 355, 2361-2374.	4.3	60
551	Conversion of Azides into Diazo Compounds in Water. Journal of the American Chemical Society, 2013, 135, 14936-14939.	13.7	40
552	Capture of <i>In Situ</i> Generated Diazo Compounds or Copper Carbenoids by Triphenylphosphine: Selective Synthesis of <i>trans</i> â€Alkenes and Unsymmetric Azines <i>via</i> Reaction of Aldehydes with Ketoneâ€Derived <i>N</i> â€Tosylhydrazones. Advanced Synthesis and Catalysis, 2013, 355, 2145-2150.	4.3	15
553	Exploring the Unique Reactivity of Diazoesters: An Efficient Approach to Chiral β-Amino Acids. Organic Letters, 2013, 15, 440-443.	4.6	24
554	Catalyst, additive and counterion effects on the efficiency and enantioselectivity of copper-catalysed C–H insertion reactions of α-diazosulfones. Tetrahedron, 2013, 69, 1297-1301.	1.9	19
555	Understanding C–H Bond Activation on a Diruthenium(I) Platform. Organometallics, 2013, 32, 340-349.	2.3	20
556	Enantioselective Synthesis of 2-Arylbicyclo[1.1.0]butane Carboxylates. Organic Letters, 2013, 15, 310-313.	4.6	40
557	A highly enantioselective Darzens reaction between diazoacetamides and aldehydes catalyzed by a (+)-pinanediol–Ti(OiPr)4 system. Organic and Biomolecular Chemistry, 2013, 11, 900.	2.8	23
558	A Noninnocent Cyclooctadiene (COD) in the Reaction of an "lr(COD)(OAc)―Precursor with Imidazolium Salts. Organometallics, 2013, 32, 192-201.	2.3	22
559	Asymmetric cyclopropanation of olefins catalysed by Cu(<scp>i</scp>) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*). Dalton Transactions, 2013, 42, 2451-2462.	3.3	24

#	Article	IF	CITATIONS
560	Reactivity of Stabilized Vinyl Diazo Derivatives toward Unsaturated Hydrocarbons: Regioselective Gold atalyzed Carbon–Carbon Bond Formation. Chemistry - A European Journal, 2013, 19, 1573-1576.	3.3	78
561	Functionalization of Nonâ€activated CH Bonds of Alkanes: An Effective and Recyclable Catalytic System Based on Fluorinated Silver Catalysts and Solvents. Chemistry - A European Journal, 2013, 19, 1327-1334.	3.3	35
563	Ruthenium atalyzed αâ€(Hetero)Arylation of Saturated Cyclic Amines: Reaction Scope and Mechanism. Chemistry - A European Journal, 2013, 19, 10378-10387.	3.3	54
564	Enhanced Reactivity in Dioxirane C–H Oxidations via Strain Release: A Computational and Experimental Study. Journal of Organic Chemistry, 2013, 78, 4037-4048.	3.2	74
565	Vinylogous Reactivity of Enol Diazoacetates with Donor–Acceptor Substituted Hydrazones. Synthesis of Substituted Pyrazole Derivatives. Journal of Organic Chemistry, 2013, 78, 1583-1588.	3.2	46
566	Rhodium-Catalyzed Conversion of Furans to Highly Functionalized Pyrroles. Journal of the American Chemical Society, 2013, 135, 4716-4718.	13.7	215
567	Dirhodium(ii)-catalyzed formal [3+2+1]-annulation of azomethine imines with two molecules of a diazo ketone. Chemical Communications, 2013, 49, 2762.	4.1	33
568	A highly enantioselective four-component reaction for the efficient construction of chiral β-hydroxy-α-amino acid derivatives. Chemical Communications, 2013, 49, 2700.	4.1	39
569	3,3-gem-Difluorinated-β-lactams: synthesis pathways and applications. Tetrahedron, 2013, 69, 4015-4039.	1.9	18
570	Iridium(iii)-bis(oxazolinyl)phenyl catalysts for enantioselective C–H functionalization. Chemical Science, 2013, 4, 2590.	7.4	49
571	Unveiling Latent αâ€Iminocarbene Reactivity for Intermolecular Cascade Reactions through Alkyne Oxidative Amination. Angewandte Chemie - International Edition, 2013, 52, 5836-5839.	13.8	53
572	Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews, 2013, 42, 4918.	38.1	460
573	Construction of Enantiomerically Enriched Diazo Compounds Using Diazo Esters as Nucleophiles: Chiral Lewis Base Catalysis. Angewandte Chemie - International Edition, 2013, 52, 6288-6292.	13.8	49
574	Rhodium-catalyzed enantioselective cyclopropanation of electron-deficient alkenes. Chemical Science, 2013, 4, 2844.	7.4	116
575	Enantioselective Intramolecular Carbene C–H Insertion Catalyzed by a Chiral Iridium(III) Complex of <i>D</i> ₄ -Symmetric Porphyrin Ligand. ACS Catalysis, 2013, 3, 1144-1148.	11.2	54
576	α-Diazo-β-ketonitriles: Uniquely Reactive Substrates for Arene and Alkene Cyclopropanation. Journal of the American Chemical Society, 2013, 135, 7304-7311.	13.7	91
577	Optimizing P,Nâ€Bidentate Ligands for Oxidative Gold Catalysis: Efficient Intermolecular Trapping of αâ€Oxo Gold Carbenes by Carboxylic Acids. Angewandte Chemie - International Edition, 2013, 52, 6508-6512.	13.8	118
578	Tantalum Catalyzed Hydroaminoalkylation for the Synthesis of α- and β-Substituted <i>N</i> -Heterocycles. Organic Letters, 2013, 15, 2182-2185.	4.6	67

ARTICLE IF CITATIONS CuO/SiO2 as a simple, effective and recoverable catalyst for alkylation of indole derivatives with 579 2.8 41 diazo compounds. Organic and Biomolecular Chemistry, 2013, 11, 4327. Chemistry of Bridged Lactams and Related Heterocycles. Chemical Reviews, 2013, 113, 5701-5765. 580 47.7 223 Tetrahydroquinolines and Benzazepines through Catalytic Diastereoselective Formal [4 + 2]-Cycloaddition Reactions between Donor–Acceptor Cyclopropenes and Imines. Organic Letters, 2013, 581 4.6 42 15, 3278-3281. Rh(II)-catalyzed enantioselective synthesis of acuminatin through a Câ€"H insertion reaction of a non-stabilized carbenoid. Tetrahedron, 2013, 69, 5511-5516. Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes. 583 13.7 132 Journal of the American Chemical Society, 2013, 135, 8201-8204. Optimizing P,Nâ€Bidentate Ligands for Oxidative Gold Catalysis: Efficient Intermolecular Trapping of 584 αâ€Oxo Gold Carbenes by Carboxylic Acids. Angewandte Chemie, 2013, 125, 6636-6640. Diazoacetoacetate Enones for the Synthesis of Diverse Natural Product-like Scaffolds. Organic 585 4.6 28 Letters, 2013, 15, 3642-3645. Siteâ€Selective Oxidation of Unactivated Cĩ£¿H Bonds with Hypervalent Iodine(III) Reagents. Angewandte 13.8 586 Chemie - International Edition, 2013, 52, 8657-8660. Catalyst-controlled switchable phosphination of α-diazoesters. Organic and Biomolecular Chemistry, 587 2.8 21 2013, 11, 3612. Stereochemical Outcome of Copper-Catalyzed Câ€"H Insertion Reactions. An Experimental and 3.2 Theoretical Study. Journal of Organic Chemistry, 2013, 78, 5851-5857. A catalyst-free N–H insertion/Mannich-type reaction cascade of α-nitrodiazoesters. Tetrahedron 589 7 1.4 Letters, 2013, 54, 4159-4163. Rhodium(III)-Catalyzed Indole Synthesis Using Nâ
 \ref{N} Bond as an Internal Oxidant. Journal of the American Chemical Society, 2013, 135, 16625-16631. 590 13.7 Recent catalytic approaches to chemical synthesis from carbon feedstocks. Pure and Applied 591 1.9 2 Chemistry, 2013, 85, 941-956. Direct Spectroscopic Characterization of a Transitory Dirhodium Donor-Acceptor Carbene Complex. Science, 2013, 342, 351-354. 12.6 165 Theoretical Study on the Dissociation of Ligands in the Rhodium and Iridium Complexes Containing 593 2 4.9 1,1,1,5,5,5â€Hexafluoroacetylacetonato. Chinese Journal of Chemistry, 2013, 31, 421-429. Copperâ€Catalyzed Aerobic Oxidative Cï£;H Functionalization of Substituted Pyridines: Synthesis of 53 Imidazopyridiné Derivatives. Chemistry - A European Journal, 2013, 19, 16804-16808. Templated Carbene Metathesis Reactions from the Modular Assembly of Enolâ€diazo Compounds and 597 2.4 33 Propargyl Acetates. European Journal of Organic Chemistry, 2013, 2013, 6032-6037. Ethyl diazoacetate synthesis in flow. Beilstein Journal of Organic Chemistry, 2013, 9, 1813-1818. 2.2

#	Article	IF	CITATIONS
602	Gold-catalyzed regioselective oxidation of propargylic carboxylates: a reliable access to α-carboxy-α,β-unsaturated ketones/aldehydes. Beilstein Journal of Organic Chemistry, 2013, 9, 1925-1930.	2.2	25
604	Gold-Catalyzed Carbene Transfer Reactions. Topics in Current Chemistry, 2014, 357, 25-62.	4.0	15
605	Rhodiumâ€Catalyzed Intramolecular Hydroarylation of 1â€Haloâ€1â€alkynes: Regioselective Synthesis of Semihydrogenated Aromatic Heterocycles. Chemistry - A European Journal, 2014, 20, 317-322.	3.3	38
606	4.20 Addition of Ketocarbenes to Alkenes, Alkynes, and Aromatic Systems. , 2014, , 1081-1280.		2
608	lridium(III)â€Catalyzed CH Amidation of Arylphosphoryls Leading to a <i>P</i> â€Stereogenic Center. Chemistry - A European Journal, 2014, 20, 12421-12425.	3.3	89
609	Amideâ€Functionalized Naphthyridines on a Rh ^{II} –Rh ^{II} Platform: Effect of Steric Crowding, Hemilability, and Hydrogenâ€Bonding Interactions on the Structural Diversity and Catalytic Activity of Dirhodium(II) Complexes. Chemistry - A European Journal, 2014, 20, 16537-16549.	3.3	34
610	A survey of enoldiazo nucleophilicity in selective C–C bond forming reactions for the synthesis of natural product-like frameworks. Organic and Biomolecular Chemistry, 2014, 12, 5227-5234.	2.8	12
612	Formation and Reactivity of Gold Carbene Complexes in the Gas Phase. Organometallics, 2014, 33, 7135-7140.	2.3	19
614	Electronic Effects in Carbeneâ€Mediated Cï£;H Bond Functionalization: An Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2014, 356, 2493-2505.	4.3	12
615	Acylsilanes in Rhodium(III)â€Catalyzed Directed Aromatic C–H Alkenylations and Siloxycarbene Reactions with CC Double Bonds. Angewandte Chemie - International Edition, 2014, 53, 269-271.	13.8	84
617	Unexpected rearrangements of rhodium carbenoids containing a pyrrolidin-1-yl group. Tetrahedron Letters, 2014, 55, 2629-2632.	1.4	6
618	Iridium-mediated N–H and methyl C–H bond activations in N-(2′,6′-dimethylphenyl)pyrrole-2-aldimine. Synthesis, characterization and catalytic applications. Journal of Organometallic Chemistry, 2014, 751, 760-768.	1.8	9
619	Palladiumâ€Catalyzed C(sp ³)H Activation: A Facile Method for the Synthesis of 3,4â€Dihydroquinolinone Derivatives. Angewandte Chemie - International Edition, 2014, 53, 4945-4949.	13.8	91
620	Theoretical studies on the mechanism of palladium(II)-catalysed ortho-carboxylation of acetanilide with CO. Journal of Chemical Sciences, 2014, 126, 265-272.	1.5	3
621	Elevated Catalytic Activity of Ruthenium(II)–Porphyrinâ€Catalyzed Carbene/Nitrene Transfer and Insertion Reactions with Nâ€Heterocyclic Carbene Ligands. Angewandte Chemie - International Edition, 2014, 53, 2982-2987.	13.8	116
622	Metallophthalocyanine-catalyzed cyclopropanation. Tetrahedron Letters, 2014, 55, 2715-2717.	1.4	16
623	Copperâ€Catalyzed NH Insertion and Oxidative Aromatization Cascade: Facile Synthesis of 2â€Arylaminophenols. Chemistry - an Asian Journal, 2014, 9, 1539-1542.	3.3	26
624	Directed Rutheniumâ€Catalyzed C(<i>sp</i> ³)H αâ€Alkylation of Cyclic Amines Using Dioxolaneâ€Protected Alkenones. Advanced Synthesis and Catalysis, 2014, 356, 1610-1618.	4.3	47

#	Article	IF	CITATIONS
625	Copper(I) lodide Catalyzed Aerobic Oxidative CN and CS bond formations through CH Activation: Synthesis of Functionalized Imidazo[1,2â€ <i>a</i>]pyridines. Asian Journal of Organic Chemistry, 2014, 3, 609-613.	2.7	64
626	Unexpected Stereoselective Synthesis of (<i>Z</i>)â€î²â€Alkenyl Substituted βâ€Amino Phosphonates through β,γâ€Dihydrogen Shift Reaction Catalyzed by a Copper(I) Complex and Iodine [Cu(MeCN) ₄]PF ₆ /I ₂ . Advanced Synthesis and Catalysis, 2014, 356, 596-602.	4.3	5
627	Mechanisms of the PtCl2-Catalyzed Intramolecular Cyclization of o-Isopropyl-Substituted Aryl Alkynes for the Synthesis of Indenes and Comparison of Three sp3 C–H Bond Activation Modes. Journal of Organic Chemistry, 2014, 79, 5684-5696.	3.2	31
628	Using Soluble Polymers to Enforce Catalystâ€Phaseâ€Selective Solubility and as Antileaching Agents to Facilitate Homogeneous Catalysis. Angewandte Chemie - International Edition, 2014, 53, 8084-8087.	13.8	16
629	Ureaâ€Induced Acid Amplification: A New Approach for Metalâ€Free Insertion Chemistry. Chemistry - A European Journal, 2014, 20, 8283-8287.	3.3	24
630	A One-Pot C–H Insertion/Olefination Sequence for the Formation of α-Alkylidene-γ-butyrolactones. Organic Letters, 2014, 16, 2772-2775.	4.6	22
631	Transition metal-catalyzed direct nucleophilic addition of C–H bonds to carbon–heteroatom double bonds. Chemical Science, 2014, 5, 2146-2159.	7.4	292
632	Recent advances in metal carbenoid mediated nitrogen-containing zwitterionic intermediate trapping process. Tetrahedron Letters, 2014, 55, 777-783.	1.4	52
635	N–N bond cleavage in diazoalkanes with a titanium alkylidene. Polyhedron, 2014, 84, 177-181.	2.2	8
636	Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation. Topics in Organometallic Chemistry, 2014, , 119-193.	0.7	30
638	Quinone Diazides for Olefin Functionalization. Angewandte Chemie - International Edition, 2014, 53, 14382-14386.	13.8	54
639	Rh2(OAc)4-catalyzed 2,3-migration of \hat{l}^2 -ferrocenecarboxyl $\hat{l}\pm$ -diazocarbonyl compounds: an efficient synthesis of ferrocene-containing $\hat{l}\pm,\hat{l}^2$ -unsaturated esters. RSC Advances, 2014, 4, 12482.	3.6	4
640	A copper-catalyzed formal O–H insertion reaction of α-diazo-1,3-dicarbonyl compounds to carboxylic acids with the assistance of isocyanide. Chemical Communications, 2014, 50, 3976-3978.	4.1	29
641	Investigation into the reactivity of 16-electron complexes Cp [#] Co(S ₂ C ₂ B ₁₀ H ₁₀) (Cp [#] =) Tj E	T&q110	.7 8 4314 rgl
642	Lewis Acid Catalyzed Diastereoselective 1,3-Dipolar Cycloaddition between Diazoacetoacetate Enones and Azomethine Ylides. Heterocycles, 2014, 88, 1039.	0.7	3
643	Palladium catalyzed N–H bond insertion and intramolecular cyclization cascade: the divergent synthesis of heterocyclics. Organic and Biomolecular Chemistry, 2014, 12, 2533-2537.	2.8	17
644	Regiospecific and highly stereoselective synthesis of β-amino (Z)-enylphosphonates via β-hydrogen migration reaction of dialkyl α-diazophosphonates catalyzed by AgOTf. RSC Advances, 2014, 4, 21492-21496.	3.6	4
645	Lewis base mediated halogenation/semipinacol rearrangement of diazo compounds: new access to α-halo-quaternary ketones. Chemical Communications, 2014, 50, 9773-9775.	4.1	19

#	Article	IF	CITATIONS
646	7.03 Asymmetric C–H Functionalization by Transition Metal-Catalyzed Carbene Transfer Reactions. , 2014, , 86-120.		3
647	A General Method for Artificial Metalloenzyme Formation through Strainâ€Promoted Azide–Alkyne Cycloaddition. ChemBioChem, 2014, 15, 223-227.	2.6	89
648	Mechanistic Insight into the Rhodium-Catalyzed O–H Insertion Reaction: A DFT Study. Organometallics, 2014, 33, 2448-2456.	2.3	36
649	A Versatile Tripodal Cu(I) Reagent for C–N Bond Construction via Nitrene-Transfer Chemistry: Catalytic Perspectives and Mechanistic Insights on C–H Aminations/Amidinations and Olefin Aziridinations. Journal of the American Chemical Society, 2014, 136, 11362-11381.	13.7	115
650	Gold-Catalyzed C–H Bond Functionalization of Metallocenes: Synthesis of Densely Functionalized Ferrocene Derivatives. Organometallics, 2014, 33, 5924-5927.	2.3	56
651	Efficient discovery of bioactive scaffolds by activity-directed synthesis. Nature Chemistry, 2014, 6, 872-876.	13.6	48
652	Mechanistic Investigation of Dirhodium-Catalyzed Intramolecular Allylic C–H Amination versus Alkene Aziridination. Journal of Organic Chemistry, 2014, 79, 9799-9811.	3.2	48
653	Catalytic Enantioselective Desymmetrization of 1,3-Diazido-2-propanol via Intramolecular Interception of Alkyl Azides with Diazo(aryl)acetates. Organic Letters, 2014, 16, 5339-5341.	4.6	22
654	Enaminones via Ruthenium-Catalyzed Coupling of Thioamides and α-Diazocarbonyl Compounds. Journal of Organic Chemistry, 2014, 79, 7405-7414.	3.2	49
655	From Triazoles to Imidazolines through the Sequential N–H Insertion of α-Imino Rhodium–Carbenes into β-Enamino Esters/Enamine–Imine Tautomerization/Conjugate Addition Cascade. Journal of Organic Chemistry, 2014, 79, 9865-9871.	3.2	47
656	Transition-Metal-Catalyzed Ring Expansion of Diazocarbonylated CyclicN-Hydroxylamines: A New Approach to Cyclic Ketonitrones. Organic Letters, 2014, 16, 4484-4487.	4.6	10
657	Cu(I)-Catalyzed Cross-Coupling of Conjugated Ene-yne-ketones and Terminal Alkynes: Synthesis of Furan-Substituted Allenes. Organic Letters, 2014, 16, 4082-4085.	4.6	70
658	Novel one-pot synthesis of diverse γ,δ-unsaturated β-ketoesters by thermal cascade reactions of diazodicarbonyl compounds and enol ethers: transformation into substituted 3,5-diketoesters. Organic and Biomolecular Chemistry, 2014, 12, 4407-4411.	2.8	18
659	Gold(I) atalyzed Diazo Coupling: Strategy towards Alkene Formation and Tandem Benzannulation. Angewandte Chemie - International Edition, 2014, 53, 11070-11074.	13.8	136
660	Synthesis of Aryldiazoacetates through Palladium(0) atalyzed Deacylative Cross oupling of Aryl Iodides with Acyldiazoacetates. Angewandte Chemie - International Edition, 2014, 53, 11625-11628.	13.8	40
661	Cĩ£¿H Functionalization/Asymmetric Michael Addition Cascade Enabled by Relay Catalysis: Metal Carbenoid Used for Cĩ£¿C Bond Formation. Angewandte Chemie - International Edition, 2014, 53, 10763-10767.	13.8	105
662	Highly stereoselective synthesis of cyclopentanes bearing four stereocentres by a rhodium carbene-initiated domino sequence. Nature Communications, 2014, 5, 4455.	12.8	39
663	Rh(II)/BrÃ,nsted Acid Cocatalyzed Intramolecular Trapping of Ammonium Ylides with Enones: Diastereoselective Synthesis of 2,2,3-Trisubstituted Indolines. Journal of Organic Chemistry, 2014, 79, 8440-8446.	3.2	34

#	Article	IF	CITATIONS
664	Catalytic Asymmetric Functionalization of Aromatic Cï£;H Bonds by Electrophilic Trapping of Metal arbeneâ€Induced Zwitterionic Intermediates. Angewandte Chemie - International Edition, 2014, 53, 13098-13101.	13.8	146
665	Synthesis of <i>N</i> â€{2,3,4,5,6â€Pentafluorobenzyloxy)â€Î³â€łactams by Rhodiumâ€Catalyzed Cyclization of D Amides. European Journal of Organic Chemistry, 2014, 2014, 6361-6365.)iazo 2.4	6
666	Reactions of metallocarbenes derived from N-sulfonyl-1,2,3-triazoles. Chemical Society Reviews, 2014, 43, 5151.	38.1	529
668	Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chemical Society Reviews, 2014, 43, 5009-5031.	38.1	148
669	Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 6173.	3.6	532
670	Mechanism and regioselectivity of the cycloaddition between nitrone and dirhodium vinylcarbene catalyzed by Rh2(O2CH)4: a computational study. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	7
671	Iron or boron-catalyzed C–H arylthiation of substituted phenols at room temperature. Chemical Communications, 2014, 50, 8875-8877.	4.1	76
674	Cĩ£¿H Bond Activation during and after the Reactions of a Metallacyclic Amide with Silanes: Formation of a ι⁄4â€Alkylidene Hydride Complex, Its H–D Exchange, and βâ€H Abstraction by a Hydride Ligand. Chemistry European Journal, 2014, 20, 6033-6039.	- A 3	4
675	Cu-Catalyzed Arylcarbocyclization of Alkynes with Diaryliodonium Salts through C–C Bond Formation on Inert C _(sp3) –H Bond. Organic Letters, 2014, 16, 3776-3779.	4.6	56
676	Mild Aminoacylation of Indoles and Pyrroles through a Three-Component Reaction with Ynol Ethers and Sulfonyl Azides. Journal of the American Chemical Society, 2014, 136, 10266-10269.	13.7	124
677	Catalytic Conversion of Diazocarbonyl Compounds to Imines: Applications to the Synthesis of Tetrahydropyrimidines and β-Lactams. Organic Letters, 2014, 16, 740-743.	4.6	48
678	Palladium(II)/Lewis Acid Synergistically Catalyzed Allylic C–H Olefination. Organic Letters, 2014, 16, 3332-3335.	4.6	59
679	Catalytic asymmetric synthesis of 3,3-disubstituted oxindoles: diazooxindole joins the field. Tetrahedron Letters, 2014, 55, 2571-2584.	1.4	129
680	Catalytic Access to α-Oxo Gold Carbenes by N–O Bond Oxidants. Accounts of Chemical Research, 2014, 47, 966-977.	15.6	313
681	Rh(II) acetate catalyzed cyclopropanation of styrenes with enaldiazo esters: diastereoselective synthesis of enal-cyclopropanes. Tetrahedron Letters, 2014, 55, 6370-6372.	1.4	6
682	Enantioselective copper catalysed C–H insertion reaction of 2-sulfonyl-2-diazoacetamides to form γ-lactams. Organic and Biomolecular Chemistry, 2014, 12, 7612-7628.	2.8	25
683	A Practical Approach for the Oxidation of Unactivated C _{sp3} H Bonds with <i>o</i> â€Nitro(diacetoxyiodo)benzene as an Efficient Hypervalent Iodine(III)â€Based Oxidizing Agent. Asian Journal of Organic Chemistry, 2014, 3, 932-935.	2.7	18
684	Rhodium Catalyzed Direct Arylation of α-Diazoimines. Organic Letters, 2014, 16, 2510-2513.	4.6	117

#	Article	IF	CITATIONS
685	Iron-catalyzed/mediated oxidative transformation of C–H bonds. Organic Chemistry Frontiers, 2014, 1, 194-214.	4.5	253
686	Enantioselective Synthesis of SB-203207. Organic Letters, 2014, 16, 1646-1649.	4.6	28
687	Asymmetric Synthesis of Isoindolones by Chiral Cyclopentadienylâ€Rhodium(III)â€Catalyzed CH Functionalizations. Angewandte Chemie - International Edition, 2014, 53, 7896-7899.	13.8	270
688	Role of <i>Ortho</i> -Substituents on Rhodium-Catalyzed Asymmetric Synthesis of β-Lactones by Intramolecular C–H Insertions of Aryldiazoacetates. Organic Letters, 2014, 16, 3036-3039.	4.6	47
689	Regulation of Diastereoselectivity in the Carbocyclization of Allenyl (<i>S</i>)- <i>N</i> - <i>tert</i> -Butylsulfinimines through a Three-Component Assembly. Journal of Organic Chemistry, 2014, 79, 1040-1046.	3.2	8
690	Chemospecific Intramolecular Buchner Reaction Catalyzed by Copper(II) Acetylacetonate. ChemCatChem, 2014, 6, 1679-1683.	3.7	29
691	Catalytic enantioselective intramolecular cyclization of N-aryl diazoamides using a titanium–BINOLate complex. Chemical Communications, 2014, 50, 3220-3223.	4.1	23
695	Rhodium(II) Azavinyl Carbenes and their Recent Application to Organic Synthesis. Australian Journal of Chemistry, 2015, 68, 1796.	0.9	37
697	The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodiumâ€ŧoâ€Gold Transmetalation. Angewandte Chemie - International Edition, 2015, 54, 15452-15456.	13.8	106
699	Activityâ€Directed Synthesis with Intermolecular Reactions: Development of a Fragment into a Range of Androgen Receptor Agonists. Angewandte Chemie - International Edition, 2015, 54, 13538-13544.	13.8	27
701	Reactivity and Catalysis at Sites Trans to the [Ru–Ru] Bond. Topics in Organometallic Chemistry, 2015, , 59-101.	0.7	3
705	An Inexpensive and Recyclable Silverâ€Foil Catalyst for the Cyclopropanation of Alkenes with Diazoacetates under Mechanochemical Conditions. Angewandte Chemie - International Edition, 2015, 54, 11084-11087.	13.8	71
706	Axial Ligand Coordination to the C–H Amination Catalyst Rh ₂ (esp) ₂ : A Structural and Spectroscopic Study. Inorganic Chemistry, 2015, 54, 8817-8824.	4.0	37
708	Activation of αâ€Diazocarbonyls by Organic Catalysts: Diazo Group Acting as a Strong Nâ€Terminal Electrophile. Angewandte Chemie - International Edition, 2015, 54, 12107-12111.	13.8	56
709	Readily Removable Directing Group Assisted Chemo―and Regioselective C(sp ³)H Activation by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13686-13690.	13.8	53
711	Fe ^{III} â€Catalyzed Crossâ€Dehydrogenative Arylation (CDA) between Oxindoles and Arenes under an Air Atmosphere. Chemistry - A European Journal, 2015, 21, 16744-16748.	3.3	52
712	Rhodium(II)â€Catalyzed Annulation of Azavinyl Carbenes Through Ringâ€Expansion of 1,3,5â€Trioxane: Rapid Access to Nineâ€Membered 1,3,5,7â€Trioxazonines. Chemistry - an Asian Journal, 2015, 10, 2624-2630.	3.3	20
714	Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations. Angewandte Chemie - International Edition, 2015, 54, 12905-12908.	13.8	28

#	Article	IF	CITATIONS
715	Copper atalyzed Formation of αâ€Alkoxycycloalkenones from <i>N</i> â€Tosylhydrazones. Angewandte Chemie - International Edition, 2015, 54, 12942-12946.	13.8	28
716	Atomâ€Economical Dimerization Strategy by the Rhodiumâ€Catalyzed Addition of Carboxylic Acids to Allenes: Protectingâ€Groupâ€Free Synthesis of Clavosolide A and Lateâ€Stage Modification. Angewandte Chemie - International Edition, 2015, 54, 15530-15534.	13.8	49
717	Development of a Rhodium(II)â€Catalyzed Chemoselective C(sp ³)H Oxygenation. Chemistry - A European Journal, 2015, 21, 14937-14942.	3.3	38
718	Design of a Heterogeneous Catalyst Based on Cellulose Nanocrystals for Cyclopropanation: Synthesis and Solidâ€State NMR Characterization. Chemistry - A European Journal, 2015, 21, 12414-12420.	3.3	49
719	3â€Naphthylindole Construction by Rhodium(II)â€Catalyzed Regioselective Direct Arylation of Indoles with 1â€Diazonaphthalenâ€2â€(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2015, 357, 2883-2892.	4.3	42
721	Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate. Beilstein Journal of Organic Chemistry, 2015, 11, 2254-2260.	2.2	5
722	Recent Advances in Catalytic Selective Synthesis of Epoxide and Aziridine via Diazocarbonyl Compound. Current Organic Chemistry, 2015, 20, 19-28.	1.6	12
723	Metal-Catalyzed Cross-Coupling of Terminal Alkynes with Different Carbene Precursors. Current Organic Chemistry, 2015, 20, 41-60.	1.6	20
724	C-H amination in the synthesis of N-heterocycles. Reports in Organic Chemistry, 0, , 1.	1.0	1
725	Chiral Dirhodium(II) Catalysts for Selective Metal Carbene Reactions. Current Organic Chemistry, 2015, 20, 61-81.	1.6	57
726	Intramolecular Insertions into Unactivated C(sp ³)–H Bonds by Oxidatively Generated β-Diketone-α-Gold Carbenes: Synthesis of Cyclopentanones. Journal of the American Chemical Society, 2015, 137, 5316-5319.	13.7	122
727	Ir-Catalyzed enantioselective group transfer reactions. Chemical Society Reviews, 2015, 44, 5969-5980.	38.1	29
728	Copper(ii)-catalyzed oxidative [3+2] cycloaddition reactions of secondary amines with α-diazo compounds: a facile and efficient synthesis of 1,2,3-triazoles. Chemical Communications, 2015, 51, 11564-11567.	4.1	55
729	The insertion reaction of diazocarbonyl compounds at Ðj–Еbonds in the synthesis of biologically active nitrogen- and oxygen-containing heterocycles. Chemistry of Heterocyclic Compounds, 2015, 51, 775-784.	1.2	3
730	Cyclopentadiene Construction via Rh-Catalyzed Carbene/Alkyne Metathesis Terminated with Intramolecular Formal [3 + 2] Cycloaddition. Organic Letters, 2015, 17, 5638-5641.	4.6	56
731	Ruthenium(II)-Catalysed Functionalisation of C–H Bonds with Alkenes: Alkenylation versus Alkylation. Topics in Organometallic Chemistry, 2015, , 137-188.	0.7	44
732	Dirhodium(II)-Catalyzed C(sp3)–H Amination Using Iodine(III) Oxidants. Advances in Organometallic Chemistry, 2015, 64, 77-118.	1.0	41
734	Amide and Amine Nucleophiles in Polar Radical Crossover Cycloadditions: Synthesis of Î ³ -Lactams and Pyrrolidines. Organic Letters, 2015, 17, 1316-1319.	4.6	77
#	Article	IF	CITATIONS
-----	---	------	-----------
735	Diastereo- and enantioselective intramolecular 1,6-C–H insertion reactions of α-diazo esters catalyzed by chiral dirhodium(II) carboxylates. Tetrahedron Letters, 2015, 56, 1397-1400.	1.4	32
736	Metal-Induced B–H Activation in Three-Component Reactions: 16-Electron Complex CpCo(S ₂ C ₂ B ₁₀ H ₁₀), Ethyl Diazoacetate, and Alkynes. Organometallics, 2015, 34, 591-598.	2.3	14
737	Metal-Catalyzed Routes for the Synthesis of Furocoumarins and Coumestans. , 2015, , 77-100.		1
738	Domino [4 + 1]-annulation of α,β-unsaturated δ-amino esters with Rh(<scp>ii</scp>)–carbenoids – a new approach towards multi-functionalized N-aryl pyrrolidines. Organic and Biomolecular Chemistry, 2015, 13, 2640-2651.	2.8	22
739	Diazo Groups Endure Metabolism and Enable Chemoselectivity in Cellulo. Journal of the American Chemical Society, 2015, 137, 2412-2415.	13.7	69
740	Electronic and Steric Effects in Rollover C–H Bond Activation. Organometallics, 2015, 34, 817-828.	2.3	35
741	Natural Abundance ¹⁵ Nâ€NMR by Dynamic Nuclear Polarization: Fast Analysis of Binding Sites of a Novel Amineâ€Carboxyl‣inked Immobilized Dirhodium Catalyst. Chemistry - A European Journal, 2015, 21, 3798-3805.	3.3	59
742	Rhodium atalyzed Desulfination of Sodium Arenesulfinates and Oxidative Annulation with Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 489-499.	4.3	6
743	Late-stage C–H functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nature Communications, 2015, 6, 5943.	12.8	113
744	Palladium(II)-Catalyzed Highly Enantioselective C–H Arylation of Cyclopropylmethylamines. Journal of the American Chemical Society, 2015, 137, 2042-2046.	13.7	218
745	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
746	Metal-Catalyzed Thermal Reactions of Cyclic β-Dicarbonyl Phenyliodonium Ylide with Styrenes. Journal of Organic Chemistry, 2015, 80, 1279-1283.	3.2	28
747	Gold atalyzed Cycloaddition Reactions of Ethyl Diazoacetate, Nitrosoarenes, and Vinyldiazo Carbonyl Compounds: Synthesis of Isoxazolidine and Benzo[<i>b</i>]azepine Derivatives. Angewandte Chemie - International Edition, 2015, 54, 4923-4926.	13.8	110
748	Rh(<scp>ii</scp>)-catalyzed cycloadditions of 1-tosyl 1,2,3-triazoles with 2H-azirines: switchable reactivity of Rh-azavinylcarbene as [2C]- or aza-[3C]-synthon. Chemical Communications, 2015, 51, 4507-4510.	4.1	111
749	Intramolecular Cyclopropanation and C–H Insertion Reactions with Metal Carbenoids Generated from Cyclopropenes. Accounts of Chemical Research, 2015, 48, 1021-1031.	15.6	156
750	Ring-Strain-Enabled Reaction Discovery: New Heterocycles from Bicyclo[1.1.0]butanes. Accounts of Chemical Research, 2015, 48, 1149-1158.	15.6	103
751	Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents. Organic Letters, 2015, 17, 3978-3981.	4.6	16
752	Rh-Catalyzed Cyclization of 3-Aryloxycarbonyldiazonaphthoquinones for the Synthesis of β-Phenylnaphthalene Lactones and Formal Synthesis of Pradimicinone. Journal of Organic Chemistry, 2015, 80, 8406-8416.	3.2	17

# 753	ARTICLE Enantioselective Synthesis of Carbo- and Heterocycles through a CuH-Catalyzed Hydroalkylation Approach. Journal of the American Chemical Society, 2015, 137, 10524-10527.	IF 13.7	Citations
754	DFT Study on the Rhodium(II)-Catalyzed C–H Functionalization of Indoles: Enol versus Oxocarbenium Ylide. Organometallics, 2015, 34, 3112-3119.	2.3	27
755	α-Alkylidene-γ-butyrolactone synthesis via one-pot C–H insertion/olefination: substrate scope and the total synthesis ofÂ(±)-cedarmycins A and B. Tetrahedron, 2015, 71, 7107-7123.	1.9	23
756	Carbene-Induced Intra- vs Intermolecular Transfer-Fluoromethylation of Aryl Fluoromethylthio Compounds under Rhodium Catalysis. ACS Catalysis, 2015, 5, 4668-4672.	11.2	26
757	Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights. Chemical Reviews, 2015, 115, 9532-9586.	47.7	479
758	Reactivity of an NHC-stabilized silylene towards ketones. Formation of silicon bis-enolates vs. bis-silylation of the $Ci \in O$ bond. Dalton Transactions, 2015, 44, 14085-14091.	3.3	11
759	Catalytic asymmetric synthesis of (â^')-E-Î-viniferin via an intramolecular C–H insertion of diaryldiazomethane using Rh2(S-TFPTTL)4. Tetrahedron Letters, 2015, 56, 4324-4327.	1.4	31
760	Enantioselective dirhodium(II)-catalyzed cyclopropanations with trimethylsilylethyl and trichloroethyl aryldiazoacetates. Tetrahedron, 2015, 71, 7415-7420.	1.9	38
761	Catalytic Asymmetric Arylation of Î \pm -Aryl-Î \pm -diazoacetates with Aniline Derivatives. Journal of the American Chemical Society, 2015, 137, 8700-8703.	13.7	158
763	Regioselective Syntheses of 1,2â€Benzothiazines by Rhodium atalyzed Annulation Reactions. Angewandte Chemie, 2015, 127, 12526-12529.	2.0	49
764	Copper-catalyzed oxygen atom transfer of N-oxides leading to a facile deoxygenation procedure applicable to both heterocyclic and amine N-oxides. Chemical Communications, 2015, 51, 7035-7038.	4.1	47
765	Regioselective Syntheses of 1,2â€Benzothiazines by Rhodium atalyzed Annulation Reactions. Angewandte Chemie - International Edition, 2015, 54, 12349-12352.	13.8	184
767	Metal–metal multiple bonded intermediates in catalysis. Journal of Chemical Sciences, 2015, 127, 209-214.	1.5	26
768	Optimized Diazo Scaffold for Protein Esterification. Organic Letters, 2015, 17, 2358-2361.	4.6	72
769	Ironâ€Catalyzed Cross Dehydrogenative Coupling (CDC) of Indoles and Benzylic CH Bonds. Advanced Synthesis and Catalysis, 2015, 357, 950-954.	4.3	35
770	Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. Journal of the American Chemical Society, 2015, 137, 4435-4444.	13.7	94
771	Rhodium(I)-Catalyzed Asymmetric Carbene Insertion into B–H Bonds: Highly Enantioselective Access to Functionalized Organoboranes. Journal of the American Chemical Society, 2015, 137, 5268-5271.	13.7	151
772	Realized C–H Functionalization of Aryldiazo Compounds via Rhodium Relay Catalysis. Organic Letters, 2015, 17, 1810-1813	4.6	60

		CITATION REPORT		
#	Article		IF	CITATIONS
773	Transition-Metal-Catalyzed Cleavage of C–N Single Bonds. Chemical Reviews, 2015,	115, 12045-12090.	47.7	547
774	From Indoles to Carbazoles: Tandem Cp*Rh(III)-Catalyzed C–H Activation/BrÃ,nsted / Cyclization Reactions. ACS Catalysis, 2015, 5, 6453-6457.	Acid-Catalyzed	11.2	136
775	Bidentate ligand 8-aminoquinoline-aided Pd-catalyzed diastereoselective β-arylation of secondary sp3 C–H bonds of 2-phenylbutanamides and related aliphatic carboxamid 2015, 71, 8333-8349.	the prochiral es. Tetrahedron,	1.9	27
776	Palladium-Catalyzed Formal Insertion of Carbenoids into Aminals via C–N Bond Activ the American Chemical Society, 2015, 137, 12490-12493.	ation. Journal of	13.7	99
777	Synthesis of Benzofurans <i>via</i> Tandem Rhodiumâ€Catalyzed C(<i>sp</i> sup>3 and Copperâ€Catalyzed Dehydrogenation. Advanced Synthesis and Catalysis, 2015, 3)ï£;H Insertion 57, 2089-2097.	4.3	34
778	Palladium-Catalyzed Intermolecular Carbene Insertion Prior to Intramolecular Heck Cyc Synthesis of 2-Arylidene-3-aryl-1-indanones. Organic Letters, 2015, 17, 5448-5451.	lization:	4.6	35
779	Chemomimetic Biocatalysis: Exploiting the Synthetic Potential of Cofactor-Dependent Create New Catalysts. Journal of the American Chemical Society, 2015, 137, 13992-14	Enzymes To 006.	13.7	125
780	Rhodium-catalysed alkoxylation/acetalization of diazo compounds: one-step synthesis functionalised quaternary carbon centres. Chemical Communications, 2015, 51, 1450	of highly 5-14508.	4.1	10
781	Regioselective synthesis of multisubstituted isoquinolones and pyridones via Rh(<scp>iii</scp>)-catalyzed annulation reactions. Chemical Communications, 2015, 5	51, 17277-17280.	4.1	117
782	Iridium-Catalyzed Direct Câ \in "H Amination with Alkylamines: Facile Oxidative Insertion into Iridacycle. ACS Catalysis, 2015, 5, 6665-6669.	of Amino Group	11.2	67
783	Catalytic functionalization of low reactive C(sp ³)–H and C(sp ^{2<!--<br-->alkanes and arenes by carbene transfer from diazo compounds. Dalton Transactions, 2 20295-20307.}	sup>)–H bonds of 015, 44,	3.3	104
784	Computational study on the mechanism and enantioselectivity of Rh ₂ (S-PTAD) ₄ catalyzed asymmetric [4+3] cycloaddition bet vinylcarbenoids and dienes. RSC Advances, 2015, 5, 83459-83470.	ween	3.6	8
785	Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazo compounds. Russian Chemical Reviews, 2015, 84, 737-757.	ocarbonyl	6.5	21
786	Modern Organic Synthesis with α-Diazocarbonyl Compounds. Chemical Reviews, 2015	5, 115, 9981-10080.	47.7	1,229
787	Mixed-ligand complexes of paddlewheel dinuclear molybdenum as hydrodehalogenatio polyhaloalkanes. Chemical Science, 2015, 6, 3434-3439.	n catalysts for	7.4	22
788	Gold carbene chemistry from diazo compounds. Science Bulletin, 2015, 60, 1479-1492	2.	9.0	105
789	Catalyst-free cross-coupling of N-tosylhydrazones with chromium(0) Fischer carbene connew approach to diarylethanone. Organic Chemistry Frontiers, 2015, 2, 1450-1456.	omplexes: a	4.5	21
790	NaOH/Et ₃ N-Promoted Stereoselective One-Pot Synthesis of <i>α</i> Diazo Transfer Reaction. Synthetic Communications, 2015, 45, 2454-2461.	o Oxime Ethers via	2.1	10

#	ARTICLE	IF	CITATIONS
791	Diastereo- and Enantiomerically Enriched Polysubstituted Cyclopropanes. Journal of the American Chemical Society, 2015, 137, 15414-15417.	13.7	107
792	Zinc(II)-Mediated Carbene Insertion into C–H Bonds in Alkanes. Inorganic Chemistry, 2015, 54, 11043-11045.	4.0	24
793	Ir(III)-Catalyzed Aromatic C–H Bond Functionalization via Metal Carbene Migratory Insertion. Journal of Organic Chemistry, 2015, 80, 223-236.	3.2	142
794	Gold-catalyzed cyclopropanation reactions using a carbenoid precursor toolbox. Chemical Society Reviews, 2015, 44, 677-698.	38.1	428
795	Gold(I) atalyzed Diazo Cross oupling: A Selective and Ligand ontrolled Denitrogenation/Cyclization Cascade. Angewandte Chemie - International Edition, 2015, 54, 883-887.	13.8	108
796	Stereoselective radical C–H alkylation with acceptor/acceptor-substituted diazo reagents via Co(<scp>ii</scp>)-based metalloradical catalysis. Chemical Science, 2015, 6, 1219-1224.	7.4	100
797	Interception of Cobaltâ€Based Carbene Radicals with αâ€Aminoalkyl Radicals: A Tandem Reaction for the Construction of βâ€Esterâ€Î³â€amino Ketones. Angewandte Chemie - International Edition, 2015, 54, 1231-1235	.13.8	77
798	Mechanism, reactivity, and selectivity of the iridium-catalyzed C(sp ³)–H borylation of chlorosilanes. Chemical Science, 2015, 6, 1735-1746.	7.4	63
799	Diazo―and Transitionâ€Metalâ€Free CH Insertion: A Direct Synthesis of βâ€Lactams. Chemistry - A European Journal, 2015, 21, 1449-1453.	3.3	38
800	Taming Hazardous Chemistry in Flow: The Continuous Processing of Diazo and Diazonium Compounds. Chemistry - A European Journal, 2015, 21, 2298-2308.	3.3	163
801	Enantioselective synthesis of arylglycine derivatives by direct C–H oxidative cross-coupling. Chemical Communications, 2015, 51, 832-835.	4.1	80
802	Enantioselective Radical Alkynylation of C(sp ³)â€H Bonds Using Sulfoximine as a Traceless Chiral Auxiliary. Chemistry - an Asian Journal, 2015, 10, 120-123.	3.3	39
804	Unusual reactions of diazocarbonyl compounds with α,β-unsaturated δ-amino esters: Rh(II)-catalyzed Wolff rearrangement and oxidative cleavage of N–H-insertion products. Beilstein Journal of Organic Chemistry, 2016, 12, 1904-1910.	2.2	3
805	The Total Synthesis of (â~')-Tetrodotoxin: A Historical Account. Studies in Natural Products Chemistry, 2016, 47, 235-260.	1.8	2
806	Recent advances in C(sp ³)–H bond functionalization via metal–carbene insertions. Beilstein Journal of Organic Chemistry, 2016, 12, 796-804.	2.2	68
807	Enantioselective carbenoid insertion into C(sp ³)–H bonds. Beilstein Journal of Organic Chemistry, 2016, 12, 882-902.	2.2	38
808	Rhodium(II)â€Catalyzed Regioselective Carbenoid Insertion Reaction of Simple Indoles with <i>N</i> â€Sulfonyltriazoles: A Rapid Access to Tryptamine Vinylogues. Advanced Synthesis and Catalysis, 2016, 358, 201-206.	4.3	26
809	Neue AnsÃæe für die Synthese von Metallcarbenen. Angewandte Chemie, 2016, 128, 9280-9313.	2.0	62

#	Article	IF	CITATIONS
810	New Approaches to the Synthesis of Metal Carbenes. Angewandte Chemie - International Edition, 2016, 55, 9134-9166.	13.8	279
811	Three Efficient Methods for Preparation of Coelenterazine Analogues. Chemistry - A European Journal, 2016, 22, 10369-10375.	3.3	17
813	Transition-Metal-Free Fluoroarylation of Diazoacetamides: A Complementary Approach to 3-Fluorooxindoles. Journal of Organic Chemistry, 2016, 81, 6887-6892.	3.2	34
814	Mutating a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropanation. ChemBioChem, 2016, 17, 394-397.	2.6	64
815	Rhodium atalysed Enantioselective C–H Functionalization in Asymmetric Synthesis. European Journal of Organic Chemistry, 2016, 2016, 1459-1475.	2.4	50
816	Rhodium(III) atalyzed Synthesis of Indole Derivatives From Pyrimidyl‣ubstituted Anilines and Diazo Compounds. Advanced Synthesis and Catalysis, 2016, 358, 661-666.	4.3	53
817	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie, 2016, 128, 8592-8596.	2.0	29
818	Rh(II)â€Catalyzed Chemoselective Synthesis of 3â€Substituted Oxindoles by C(sp ²)â^'H and C(sp ²)â^'N Functionalization of βâ€Enaminoesters. Asian Journal of Organic Chemistry, 2016, 5, 1142-1147.	2.7	6
819	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie - International Edition, 2016, 55, 8452-8456.	13.8	130
820	Ironâ€Catalyzed Intramolecular C(sp ²)â^'H Amination. Angewandte Chemie - International Edition, 2016, 55, 1519-1522.	13.8	110
821	Dienamine Activation of Diazoenals: Application to the Direct Synthesis of Functionalized 1,4â€Oxazines. Angewandte Chemie - International Edition, 2016, 55, 7831-7835.	13.8	37
822	Demonstration of 11–21â€Membered Intramolecular Sulfonium Ylides: Regio―and Diastereoselective Synthesis of Spiroâ€Oxindoleâ€Incorporated Macrocycles. European Journal of Organic Chemistry, 2016, 2016, 1849-1859.	2.4	13
823	Metal-Diazo Radicals of α-Carbonyl Diazomethanes. Scientific Reports, 2016, 6, 22876.	3.3	10
824	Copper atalyzed Difunctionalization of Terminal Alkynes with Diazo Esters and Amines to Construct βâ€Enamino Esters. Advanced Synthesis and Catalysis, 2016, 358, 4075-4084.	4.3	13
825	Catalytic Diazosulfonylation of Enynals toward Diazoindenes via Oxidative Radical-Triggered 5- <i>exo</i> - <i>trig</i> Carbocyclizations. Organic Letters, 2016, 18, 1884-1887.	4.6	66
826	Theoretical investigations toward the [3 + 2]-dipolar cycloadditions of nitrones with vinyldiazoacetates catalyzed by Rh ₂ (R-TPCP) ₄ : mechanism and enantioselectivity. RSC Advances, 2016, 6, 53839-53851.	3.6	6
827	Rh(I)-Catalyzed Coupling of Conjugated Enynones with Arylboronic Acids: Synthesis of Furyl-Containing Triarylmethanes. Journal of Organic Chemistry, 2016, 81, 10484-10490.	3.2	44
828	Mechanistic Insights into Asymmetric C–H Insertion Cooperatively Catalyzed by a Dirhodium(II) Complex and Chiral Phosphoric Acid. Organometallics, 2016, 35, 2003-2009.	2.3	24

		15	<u></u>
#	ARTICLE	IF	CITATIONS
829	diverse pyrazoloquinazoline derivatives. RSC Advances, 2016, 6, 24792-24796.	3.6	23
830	Various difunctionalizations of acrylamide: an efficient approach to synthesize oxindoles. Organic and Biomolecular Chemistry, 2016, 14, 4365-4377.	2.8	105
831	Gold and diazo reagents: a fruitful tool for developing molecular complexity. Chemical Communications, 2016, 52, 7326-7335.	4.1	126
832	The Rh(<scp>ii</scp>)-catalyzed formal N–S bond insertion reaction of aryldiazoacetates into N-phenyl-sulfenyl phthalimide. Chemical Communications, 2016, 52, 6079-6082.	4.1	40
833	Mechanism of Ruthenium-Catalyzed Direct Arylation of C–H Bonds in Aromatic Amides: A Computational Study. Organometallics, 2016, 35, 1440-1445.	2.3	39
834	Transition metal-free generation of the acceptor/acceptor-carbene via α-elimination: synthesis of fluoroacetyl cyclopropanes. Chemical Communications, 2016, 52, 6817-6820.	4.1	22
835	Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles. Journal of Organic Chemistry, 2016, 81, 4158-4169.	3.2	77
836	Rhodium(II)-Catalyzed C–H Functionalization of Electron-Deficient Methyl Groups. Journal of the American Chemical Society, 2016, 138, 5761-5764.	13.7	41
837	Substituent effects and chemoselectivity of the intramolecular Buchner reaction of diazoacetamide derivatives catalyzed by the di-Rh(<scp>ii</scp>)-complex. Dalton Transactions, 2016, 45, 8506-8512.	3.3	25
838	Rhodium-catalyzed C–C coupling reactions via double C–H activation. Organic and Biomolecular Chemistry, 2016, 14, 4554-4570.	2.8	158
839	Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Central Science, 2016, 2, 281-292.	11.3	614
840	Double C–H amination by consecutive SET oxidations. Chemical Communications, 2016, 52, 7138-7141.	4.1	35
841	Precision pruning of molecules. Nature, 2016, 533, 183-184.	27.8	2
842	Ancient air caught by shooting stars. Nature, 2016, 533, 184-186.	27.8	10
843	Enantioselective Formal C(sp ²)â^'H Vinylation. Chemistry - A European Journal, 2016, 22, 14912-14919.	3.3	28
844	Rhodium(II)-Alkynyl Carbenoids Insertion into Si–H bonds: An Entry to Propargylic Geminal Bis(silanes). Organic Letters, 2016, 18, 4818-4820.	4.6	15
845	Rh(<scp>i</scp>)-Catalyzed coupling of 2-bromoethyl aryldiazoacetates with tertiary propargyl alcohols through carbene migratory insertion. Organic Chemistry Frontiers, 2016, 3, 1691-1698.	4.5	7
846	Synthesis of 5-lodo-1,2,3,4-tetrahydropyridines by Rhodium-Catalyzed Tandem Nucleophilic Attacks Involving 1-Sulfonyl-1,2,3-triazoles and lodides. Organic Letters, 2016, 18, 4962-4965.	4.6	46

#	Article	IF	CITATIONS
847	Catalyst-Controlled and Tunable, Chemoselective Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and Computational Studies. Journal of the American Chemical Society, 2016, 138, 14658-14667.	13.7	130
848	DFT Calculations on the Mechanism of Transition-Metal-Catalyzed Reaction of Diazo Compounds with Phenols: O–H Insertion versus C–H Insertion. Journal of Physical Chemistry A, 2016, 120, 6485-6492.	2.5	45
849	Stabilization of a Chiral Dirhodium Carbene by Encapsulation and a Discussion of the Stereochemical Implications. Angewandte Chemie - International Edition, 2016, 55, 10760-10765.	13.8	64
850	Multicomponent reaction comprising one-pot installation of bidentate directing group and Pd(II)-catalyzed direct β-arylation of C(sp3) H bond of aliphatic and alicyclic carboxamides. Tetrahedron, 2016, 72, 5853-5863.	1.9	12
851	The Outerâ€ S phere Mechanism of Nitrene Transfer onto Gold(I) Alkyne Complexes. ChemCatChem, 2016, 8, 2387-2392.	3.7	6
852	How Dirhodium Catalyst Controls the Enantioselectivity of [3 + 2]-Cycloaddition between Nitrone and Vinyldiazoacetate: A Density Functional Theory Study. Journal of Organic Chemistry, 2016, 81, 8082-8086.	3.2	12
853	Diastereoselective Synthesis of Macrocyclic Spiro and Dispiroâ€1,4â€dithianes, â€1,4â€oxathianes, and â€1,4â€dithiepanes through Intramolecular Sulfonium Ylides. Asian Journal of Organic Chemistry, 2016, 5, 162-172.	2.7	8
854	Rhodium(II)â€Catalyzed Carbenoid Insertion of <i>N</i> â€Tosylhydrazones into Amide NH Bonds: An Efficient Approach to <i>N</i> ³ â€Benzyl/Alkylâ€2â€arylquinazolinones. Advanced Synthesis and Catalysis, 2016, 358, 81-89.	4.3	23
855	BrÃ,nsted or Lewis Acid Initiated Multicomponent Cascade Reaction: Diastereoselective Synthesis of Imidazolidinyl Spirooxindole Derivatives. ChemCatChem, 2016, 8, 2797-2807.	3.7	14
856	Rhodium-Catalyzed Oxy-Aminofluorination of Diazoketones with Tetrahydrofurans and <i>N</i> -Fluorobenzenesulfonimide. ACS Catalysis, 2016, 6, 6687-6691.	11.2	46
858	Gold-catalyzed [3+2]-annulations of α-aryl diazonitriles with ynamides and allenamides to yield 1-amino-1H-indenes. Chemical Communications, 2016, 52, 11434-11437.	4.1	24
859	Rhodium atalyzed Dehydrogenative Silylation of Acetophenone Derivatives: Formation of Silyl Enol Ethers versus Silyl Ethers. Chemistry - A European Journal, 2016, 22, 14717-14729.	3.3	21
860	Iridium(III) atalyzed Regioselective Intermolecular Unactivated Secondary Csp ³ â^'H Bond Amidation. Angewandte Chemie, 2016, 128, 12076-12080.	2.0	17
861	Iridium(III) atalyzed Regioselective Intermolecular Unactivated Secondary Csp ³ â^'H Bond Amidation. Angewandte Chemie - International Edition, 2016, 55, 11897-11901.	13.8	57
862	Preparation of Optically Active <i>cis</i> -Cyclopropane Carboxylates: Cyclopropanation of α-Silyl Stryenes with Aryldiazoacetates and Desilylation of the Resulting Silyl Cyclopropanes. Organic Letters, 2016, 18, 4356-4359.	4.6	24
863	Combining Ru-Catalyzed C–H Functionalization with Pd-Catalyzed Asymmetric Allylic Alkylation: Synthesis of 3-Allyl-3-aryl Oxindole Derivatives from Aryl α-Diazoamides. Organic Letters, 2016, 18, 4954-4957.	4.6	76
864	Bu ₄ NI-Catalyzed Cross-Coupling between Sulfonyl Hydrazides and Diazo Compounds To Construct β-Carbonyl Sulfones Using Molecular Oxygen. Organic Letters, 2016, 18, 5082-5085.	4.6	55
865	Mechanistic Insights of a Selective C-H Alkylation of Alkenes by a Ru-based Catalyst and Alcohols. ChemistrySelect, 2016, 1, 4218-4228.	1.5	3

#	Article	IF	CITATIONS
866	Selective Synthesis of Six Products from a Single Indolyl αâ€Điazocarbonyl Precursor. Angewandte Chemie - International Edition, 2016, 55, 9671-9675.	13.8	57
867	Regioselective BF ₃ ·Et ₂ O-catalyzed C–H functionalization of indoles and pyrrole with reaction of α-diazophosphonates. RSC Advances, 2016, 6, 69352-69356.	3.6	5
868	Selective Synthesis of Six Products from a Single Indolyl αâ€Diazocarbonyl Precursor. Angewandte Chemie, 2016, 128, 9823-9827.	2.0	14
869	NBS-mediated dinitrogen extrusion of diazoacetamides under catalyst-free conditions: practical access to 3-bromooxindole derivatives. RSC Advances, 2016, 6, 70221-70225.	3.6	16
870	Catalytic Asymmetric Synthesis of Phosphorylâ€1,4â€dihydropyridazines <i>via</i> an Enantioselective Allylic Alkylation/1,3â€Dipolar Cycloaddition/Rearrangement Reaction Sequence. Advanced Synthesis and Catalysis, 2016, 358, 2280-2285.	4.3	11
871	Diazo Compounds: Versatile Tools for Chemical Biology. ACS Chemical Biology, 2016, 11, 3233-3244.	3.4	164
872	Rhodium-catalyzed C–H activation of 3-(indolin-1-yl)-3-oxopropanenitriles with diazo compounds and tandem cyclization leading to hydrogenated azepino[3,2,1-hi]indoles. Chemical Communications, 2016, 52, 14117-14120.	4.1	54
873	Relay Rh(II)/Pd(0) Dual Catalysis: Selective Construction of Cyclic All-Quaternary Carbon Centers. Organic Letters, 2016, 18, 5876-5879.	4.6	31
874	In situ generation of nitrilium from nitrile ylide and the subsequent Mumm rearrangement: copper-catalyzed synthesis of unsymmetrical diacylglycine esters. Organic and Biomolecular Chemistry, 2016, 14, 10723-10732.	2.8	28
875	Stabilization of a Chiral Dirhodium Carbene by Encapsulation and a Discussion of the Stereochemical Implications. Angewandte Chemie, 2016, 128, 10918-10923.	2.0	28
876	Silver-catalyzed nucleophilic substitution of aminals with ethyl diazoacetate: a new pathway to β-amino-α-diazoesters. Organic and Biomolecular Chemistry, 2016, 14, 10572-10575.	2.8	9
877	Substrate and catalyst effects in C–H insertion reactions of α-diazoacetamides. Tetrahedron Letters, 2016, 57, 5399-5406.	1.4	20
878	Dienamine Activation of Diazoenals: Application to the Direct Synthesis of Functionalized 1,4â€Oxazines. Angewandte Chemie, 2016, 128, 7962-7966.	2.0	12
879	Thermally Induced Denitrogenative Annulation for the Synthesis of Dihydroquinolinimines and Chromanâ€4â€imines. Chemistry - an Asian Journal, 2016, 11, 757-765.	3.3	14
880	Catalysts Containing the Adamantane Scaffold. Advanced Synthesis and Catalysis, 2016, 358, 675-700.	4.3	61
881	Enantio-and diastereoselective desymmetrization of α-alkyl-α-diazoesters by dirhodium(II)-catalyzed intramolecular C–H insertion. Tetrahedron, 2016, 72, 3939-3947.	1.9	19
882	C–C bond forming reactions catalyzed by chiral metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2016, 20, 76-95.	0.8	8
883	Tandem Rh(III)-Catalyzed C–H Amination/Annulation Reactions: Synthesis of Indoloquinoline Derivatives in Water. Organic Letters, 2016, 18, 2820-2823.	4.6	106

#	Article	IF	CITATIONS
884	Rhodium(ii)-catalyzed direct sulfenylation of diazooxindoles with disulfides. RSC Advances, 2016, 6, 58501-58510.	3.6	19
885	The ligand influence in stereoselective carbene transfer reactions promoted by chiral metal porphyrin catalysts. Dalton Transactions, 2016, 45, 15746-15761.	3.3	30
886	Co ^{III} –Carbene Radical Approach to Substituted 1 <i>H</i> -Indenes. Journal of the American Chemical Society, 2016, 138, 8968-8975.	13.7	117
887	Selective C H functionalization of electron-deficient aromatics by carbamoylsilanes: synthesis of aromatic carbinolamines or amides. Tetrahedron Letters, 2016, 57, 937-941.	1.4	10
888	Catalytic Oxidative Carbene Coupling of α-Diazo Carbonyls for the Synthesis of β-Amino Ketones via C(sp ³)–H Functionalization. Organic Letters, 2016, 18, 3078-3081.	4.6	37
889	Catalyst-Free Halogenation of α-Diazocarbonyl Compounds with <i>N</i> -Halosuccinimides: Synthesis of 3-Halooxindoles or Vinyl Halides. Organic Letters, 2016, 18, 3134-3137.	4.6	37
890	Rhodium(iii)-catalyzed alkylation of primary C(sp3)–H bonds with α-diazocarbonyl compounds. Chemical Communications, 2016, 52, 9672-9675.	4.1	67
891	Die Eisenâ€katalysierte intramolekulare C(sp ²)â€Hâ€Aminierung. Angewandte Chemie, 2016, 128, 1542-1545.	2.0	29
892	Dual-Functionalization of Alkynes via Copper-Catalyzed Carbene/Alkyne Metathesis: A Direct Access to the 4-Carboxyl Quinolines. ACS Catalysis, 2016, 6, 1024-1027.	11.2	74
893	Ligand-Enabled, Copper-Promoted Regio- and Chemoselective Hydroxylation of Arenes, Aryl Halides, and Aryl Methyl Ethers. Journal of Organic Chemistry, 2016, 81, 831-841.	3.2	51
894	Recent advances in transition metal (Pd, Ni)-catalyzed C(sp 3) H bond activation with bidentate directing groups. Tetrahedron Letters, 2016, 57, 819-836.	1.4	125
895	Evolution of C–H Bond Functionalization from Methane to Methodology. Journal of the American Chemical Society, 2016, 138, 2-24.	13.7	632
896	Cobalt(<scp>i</scp>)-catalysed CH-alkylation of terminal olefins, and beyond. Chemical Communications, 2016, 52, 1389-1392.	4.1	60
897	Rh(III)-Catalyzed C–H Cyclization of Arylnitrones with Diazo Compounds: Access to <i>N</i> -Hydroxyindolines. Organic Letters, 2016, 18, 68-71.	4.6	87
898	Highly Efficient Synthesis of Amine-Substituted Diazoacetoacetates from Aldimines and Vinyldiazoacetate Catalysed by MgI2 Etherate. Journal of Chemical Research, 2016, 40, 160-163.	1.3	2
899	Cu(I)-Catalyzed Synthesis of Furan-Substituted Allenes by Use of Conjugated Ene-yne Ketones as Carbene Precursors. Journal of Organic Chemistry, 2016, 81, 3275-3285.	3.2	43
900	Ruthenium-catalyzed direct arylations with aryl chlorides. RSC Advances, 2016, 6, 30875-30885.	3.6	49
901	Iridium(<scp>iii</scp>)-bis(imidazolinyl)phenyl catalysts for enantioselective C–H functionalization with ethyl diazoacetate. Chemical Science, 2016, 7, 3142-3146.	7.4	53

#	Article	IF	CITATIONS
902	Homologation Reaction of Ketones with Diazo Compounds. Chemical Reviews, 2016, 116, 2937-2981.	47.7	275
903	Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis. Journal of the American Chemical Society, 2016, 138, 3797-3805.	13.7	142
904	Synthesis of bicyclic γ-butyrolactone derivatives by rhodium catalyzed intramolecular C–H insertion of α-dizao α-phosphoryl cycloalkyl esters. Tetrahedron, 2016, 72, 1590-1601.	1.9	9
905	Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and <i>N</i> -Aryl Enaminones. Organic Letters, 2016, 18, 1298-1301.	4.6	46
906	Taming tosyl azide: the development of a scalable continuous diazo transfer process. Organic and Biomolecular Chemistry, 2016, 14, 3423-3431.	2.8	40
907	An unprecedented benzannulation of oxindoles with enalcarbenoids: a regioselective approach to functionalized carbazoles. Chemical Communications, 2016, 52, 5812-5815.	4.1	26
908	Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations. Journal of Organic Chemistry, 2016, 81, 2930-2942.	3.2	53
910	Expanding the family of heterobimetallic Bi–Rh paddlewheel carboxylate complexes via equatorial carboxylate exchange. Dalton Transactions, 2016, 45, 50-55.	3.3	26
911	Aminofluorination: transition-metal-free N–F bond insertion into diazocarbonyl compounds. Chemical Science, 2016, 7, 1786-1790.	7.4	53
912	A selective C–H insertion/olefination protocol for the synthesis of α-methylene-γ-butyrolactone natural products. Organic and Biomolecular Chemistry, 2016, 14, 1641-1645.	2.8	16
913	Enantioselective syntheses of indanes: from organocatalysis to C–H functionalization. Chemical Society Reviews, 2016, 45, 1368-1386.	38.1	125
914	Palladium-catalysed coupling reaction of aminals with N-sulfonyl hydrazones to give allylic sulfones. Organic Chemistry Frontiers, 2016, 3, 259-267.	4.5	21
915	Applications of C-H Insertion Reaction in Total Synthesis of Biologically Active Heterocyclic Natural Products. Heterocycles, 2016, 92, 31.	0.7	11
916	Computational Studies on Rhodium(III) Catalyzed C–H Functionalization versus Deoxygenation of Quinoline N-Oxides with Diazo Compounds. Organometallics, 2017, 36, 650-656.	2.3	19
917	Cĩ€N bond formation via palladium-catalyzed carbene insertion into Nĩ€N bonds: inhibiting the general 1,2-migration process of ylide intermediates. Chemical Communications, 2017, 53, 2697-2700.	4.1	13
918	Synthesis of 2,2,2,â€Trichloroethyl Aryl―and Vinyldiazoacetates by Palladiumâ€Catalyzed Crossâ€Coupling. Chemistry - A European Journal, 2017, 23, 3272-3275.	3.3	19
919	lridium catalyzed acceptor/acceptor carbene insertion into N–H bonds in water. Organic and Biomolecular Chemistry, 2017, 15, 2392-2396.	2.8	23
920	First Insertions of Carbene Ligands into Geâ^'N and Siâ^'N Bonds. Chemistry - A European Journal, 2017, 23, 4287-4291.	3.3	13

ATION R

#	Article	IF	CITATIONS
922	Selective C(sp 2)â^'H Functionalization of Arenes for Amination Reactions by Using Photoredox Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 469-474.	2.7	15
923	Asymmetric Reaction of α-Diazomethylphosphonates with α-Ketoesters To Access Optically Active α-Diazo-β-hydroxyphosphonate Derivatives. Organic Letters, 2017, 19, 1310-1313.	4.6	22
924	Palladium-catalysed intramolecular carbenoid insertion of α-diazo-α-(methoxycarbonyl)acetanilides for oxindole synthesis. Chemical Communications, 2017, 53, 3110-3113.	4.1	15
925	Enantioselective Azaâ€Eneâ€type Reactions of Enamides with Gold Carbenes Generated from αâ€Diazoesters. Angewandte Chemie, 2017, 129, 3295-3299.	2.0	6
926	A Rh(II)-catalyzed multicomponent reaction by trapping an α-amino enol intermediate in a traditional two-component reaction pathway. Science Advances, 2017, 3, e1602467.	10.3	42
927	Late stage modification of peptides via C H activation reactions. Tetrahedron Letters, 2017, 58, 1357-1372.	1.4	71
928	Enantioselective copper catalysed intramolecular C–H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent. Organic and Biomolecular Chemistry, 2017, 15, 2609-2628.	2.8	12
929	Highly Regio-, Diastereo-, and Enantioselective Rhodium-Catalyzed Intramolecular Cyclopropanation of (<i>Z</i>)-1,3-Dienyl Aryldiazoacetates. Organic Letters, 2017, 19, 1306-1309.	4.6	16
930	Metal-Free C–H Functionalization of Alkanes by Aryldiazoacetates. Organic Letters, 2017, 19, 770-773.	4.6	48
931	Enantioselective Azaâ€Eneâ€type Reactions of Enamides with Gold Carbenes Generated from αâ€Diazoesters. Angewandte Chemie - International Edition, 2017, 56, 3247-3251.	13.8	28
932	Towards nitrile-substituted cyclopropanes – a slow-release protocol for safe and scalable applications of diazo acetonitrile. Green Chemistry, 2017, 19, 2118-2122.	9.0	46
934	Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts. Advanced Synthesis and Catalysis, 2017, 359, 2076-2089.	4.3	121
935	Observation and Characterization of CH3CH2–MH, (CH2)2–MH2, and CH3–C≡MH3 Prepared in Reactic of Ethane with Laser-Ablated Group 6 Metal Atoms. Organometallics, 2017, 36, 1479-1487.	ons 2.3	7
936	Asymmetric Copper atalyzed Carbomagnesiation of Cyclopropenes. Angewandte Chemie - International Edition, 2017, 56, 6783-6787.	13.8	106
937	Mechanism of Nickelâ€Catalyzed Suzuki–Miyaura Coupling of Amides. Chemistry - an Asian Journal, 2017, 12, 1765-1772.	3.3	25
938	Rhodium-catalyzed synthesis of 1,2-dihydropyridine by a tandem reaction of 4-(1-acetoxyallyl)-1-sulfonyl-1,2,3-triazole. Chemical Communications, 2017, 53, 6417-6420.	4.1	39
939	α-Diazo oxime ethers for N-heterocycle synthesis. Chemical Communications, 2017, 53, 6054-6064.	4.1	35
940	Radical-carbene coupling reaction: Mn-catalyzed synthesis of indoles from aromatic amines and diazo compounds. Chemical Communications, 2017, 53, 5993-5996.	4.1	28

#	Article	IF	CITATIONS
941	A Rhodium(II)â€Catalyzed Formal [4+1]â€Cycloaddition toward Spirooxindole Pyrrolone Construction Employing Vinyl Isocyanates as 1,4â€Dipoles. Angewandte Chemie - International Edition, 2017, 56, 6604-6608.	13.8	41
942	Specific intramolecular aromatic C H insertion of diazosulfonamides. Tetrahedron, 2017, 73, 3255-3265.	1.9	15
943	Rearrangement of an Intermediate Cyclopropyl Ketene in a Rh ^{II} -Catalyzed Formal [4 + 1]-Cycloaddition Employing Vinyl Ketenes as 1,4-Dipoles and Donor–Acceptor Metallocarbenes. Organic Letters, 2017, 19, 2482-2485.	4.6	27
944	Palladium-Catalyzed Transformations of Alkyl C–H Bonds. Chemical Reviews, 2017, 117, 8754-8786.	47.7	1,660
945	Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C–H Functionalization. Organic Letters, 2017, 19, 3055-3058.	4.6	33
946	Fe-Catalyzed insertion of fluoromethylcarbenes generated from sulfonium salts into X–H bonds (X =) Tj ETQq1	1 0 78431 4.5	l4rgBT /Ove
947	Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chemical Reviews, 2017, 117, 11680-11752.	47.7	176
948	A Rhodium(II)â€Catalyzed Formal [4+1]â€Cycloaddition toward Spirooxindole Pyrrolone Construction Employing Vinyl Isocyanates as 1,4â€Dipoles. Angewandte Chemie, 2017, 129, 6704-6708.	2.0	31
949	Synthesis of Benzodihydrofurans by Asymmetric Câ´'H Insertion Reactions of Donor/Donor Rhodium Carbenes. Chemistry - A European Journal, 2017, 23, 11843-11855.	3.3	43
950	Recent progress in the catalytic carbene insertion reactions into the silicon–hydrogen bond. Organic and Biomolecular Chemistry, 2017, 15, 5441-5456.	2.8	88
951	Enabling iron catalyzed Doyle–Kirmse rearrangement reactions with in situ generated diazo compounds. Chemical Communications, 2017, 53, 6577-6580.	4.1	67
952	Ir(III)/Ir(V) or Ir(I)/Ir(III) Catalytic Cycle? Steric-Effect-Controlled Mechanism for the <i>para</i> -C–H Borylation of Arenes. Organometallics, 2017, 36, 2107-2115.	2.3	38
953	The Origins of Dramatic Differences in Five-Membered vs Six-Membered Chelation of Pd(II) on Efficiency of C(sp ³)–H Bond Activation. Journal of the American Chemical Society, 2017, 139, 8514-8521.	13.7	96
954	An Ir(<scp>iii</scp>)-catalyzed aryl C–H bond carbenoid functionalization cascade: access to 1,3-dihydroindol-2-ones. Organic and Biomolecular Chemistry, 2017, 15, 3638-3647.	2.8	28
955	Iron-Catalyzed C–H Bond Activation. Chemical Reviews, 2017, 117, 9086-9139.	47.7	750
956	Gold-catalyzed oxidative couplings of two indoles with one aryldiazo cyanide under oxidant-free conditions. Chemical Communications, 2017, 53, 4593-4596.	4.1	37
957	Difluorocarbene transfer from a cobalt complex to an electron-deficient alkene. Chemical Communications, 2017, 53, 4382-4385.	4.1	40
958	Scope of the Reactions of Indolyl- and Pyrrolyl-Tethered <i>N</i> -Sulfonyl-1,2,3-triazoles: Rhodium(II)-Catalyzed Synthesis of Indole- and Pyrrole-Fused Polycyclic Compounds. Organic Letters, 2017, 19, 1504-1507.	4.6	59

#	Article	IF	CITATIONS
959	Palladium-Catalyzed Synthesis of Indoles and Isoquinolines with <i>in Situ</i> Generated Phosphinimine. Journal of Organic Chemistry, 2017, 82, 48-56.	3.2	30
960	Anilinopyridinate-supported Ru ₂ ^{x+} (x = 5 or 6) paddlewheel complexes with labile axial ligands. Dalton Transactions, 2017, 46, 5532-5539.	3.3	8
961	C–H imidation: a distinct perspective of C–N bond formation. Organic and Biomolecular Chemistry, 2017, 15, 1282-1293.	2.8	55
962	Copperâ€Catalyzed Cascade Cyclization Reactions of Isocyanides with αâ€Diazocarbonyls as Nâ€Terminal Electrophiles: Efficient Synthesis of 2″midazolines and 1,1′â€Biimidazoles. Advanced Synthesis and Catalysis, 2017, 359, 351-356.	4.3	29
963	Funktionalisierung nichtaktivierter C(sp ³)â€Hâ€Bindungen durch Metallcarbenâ€Insertionen. Angewandte Chemie, 2017, 129, 46-48.	2.0	11
964	Rh(II) Catalyzed High Order Cycloadditions of 8-Azaheptafulvenes with N-Sulfonyl 1,2,3-Triazloes or α-Oxo Diazocompounds. Organic Letters, 2017, 19, 364-367.	4.6	43
965	A one-pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalines from 1-azido-2-isocyanoarenes with high bond-forming efficiency. Chemical Communications, 2017, 53, 1305-1308.	4.1	41
966	Polycyclic Ring Formation Using Bis-diazolactams for Cascade Stitching. Journal of Organic Chemistry, 2017, 82, 642-651.	3.2	26
967	A Transitionâ€Metalâ€Free and Baseâ€Mediated Carbene Insertion into Sulfurâ€Sulfur and Seleniumâ€Selenium Bonds: An Easy Access to Thio―and Selenoacetals. Advanced Synthesis and Catalysis, 2017, 359, 698-708.	4.3	18
968	Bimodal Evans–Polanyi Relationships in Dioxirane Oxidations of sp ³ C–H: Non-perfect Synchronization in Generation of Delocalized Radical Intermediates. Journal of the American Chemical Society, 2017, 139, 16650-16656.	13.7	27
969	Câ^'H Insertions by Iron Porphyrin Carbene: Basic Mechanism and Origin of Substrate Selectivity. Chemistry - A European Journal, 2017, 23, 17654-17658.	3.3	29
970	Matrix Infrared Spectra of Insertion and Metallacyclopropane Complexes [CH ₃ CH ₂ –MH and (CH ₂) ₂ –MH ₂] Prepared in Reactions of Laser-Ablated Group 3 Metal Atoms with Ethane. Journal of Physical Chemistry A, 2017, 121. 8583-8595.	2.5	1
971	General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols. Journal of the American Chemical Society, 2017, 139, 14857-14860.	13.7	131
972	Combination of Cross-Coupling and Metal Carbene Transformations for the Development of New Multicomponent Reactions. , 2017, , 279-303.		0
973	An iron-catalyzed hydroalkylation reaction of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones with ethers. Chemical Communications, 2017, 53, 12353-12356.	4.1	18
974	Coupling Reaction of Cu-Based Carbene and Nitroso Radical: AÂTandem Reaction To Construct Isoxazolines. Organic Letters, 2017, 19, 5896-5899.	4.6	48
975	Rh(II)-Catalyzed Denitrogenative Reaction of <i>N</i> -Sulfonyl-1,2,3-triazoles with Isatins for the Construction of Indigoids. Organic Letters, 2017, 19, 5764-5767.	4.6	34
976	Exploiting the Continuous in situ Generation of Mesyl Azide for Use in a Telescoped Process. European Journal of Organic Chemistry, 2017, 2017, 6533-6539.	2.4	21

#	Article	IF	CITATIONS
977	A Combination of Visible-light Photoredox and Metal Catalysis for the Mannich-type Reaction of <i>N</i> -Aryl Glycine Esters. Chemistry Letters, 2017, 46, 1597-1600.	1.3	7
978	Solvent and Base in One: Tetraâ€ <i>n</i> â€butylammonium Acetate as a Multiâ€Purpose lonic Liquid Medium for Ruâ€Catalyzed Directed Mono―and Diâ€ <i>o</i> â€C–H Arylation Reactions. European Journal of Organic Chemistry, 2017, 2017, 6274-6282.	2.4	8
979	Rhodium- and Non-Metal-Catalyzed Approaches for the Conversion of Isoxazol-5-ones to 2,3-Dihydro-6 <i>H</i> -1,3-oxazin-6-ones. Organic Letters, 2017, 19, 5158-5161.	4.6	32
980	Catalytic C(sp ³)–H Alkylation via an Iron Carbene Intermediate. Journal of the American Chemical Society, 2017, 139, 13624-13627.	13.7	71
981	Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers. Journal of Organic Chemistry, 2017, 82, 10209-10218.	3.2	30
982	Observation and Characterization of CH3CH2–MH, (CH2)2–MH2, CH2â•CH–MH3, and CH3–C≡MH3; Produced by Reactions of Group 5 Metal Atoms with Ethane. Journal of Physical Chemistry A, 2017, 121, 6766-6777.	– 2.5	2
983	Cycloaddition reactions of enoldiazo compounds. Chemical Society Reviews, 2017, 46, 5425-5443.	38.1	220
984	Revealing Structure Reactivity Relationships in Heterogenized Dirhodium Catalysts by Solid-State NMR Techniques. Journal of Physical Chemistry C, 2017, 121, 17409-17416.	3.1	20
985	Synthesis of 1,2-naphthalenediol derivatives by Rh-catalyzed intermolecular O H insertion reaction of 1,2-diazonaphthoquinones with water and alcohols. Tetrahedron Letters, 2017, 58, 3508-3511.	1.4	16
986	Tandem Hydroalumination/Cu-Catalyzed Asymmetric Vinyl Metalation as a New Access to Enantioenriched Vinylcyclopropane Derivatives. Organic Letters, 2017, 19, 3970-3973.	4.6	52
987	Synthetic Applications of Vinyl Ruthenium Carbenes Derived from Diazoalkanes and Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2709-2722.	4.3	14
988	A Concise Enantioselective Total Synthesis of (â^')â€Virosaineâ€A. Angewandte Chemie - International Edition, 2017, 56, 10830-10834.	13.8	42
989	A Concise Enantioselective Total Synthesis of (â^')â€Virosaineâ€A. Angewandte Chemie, 2017, 129, 10970-109	7 4. 0	13
990	Remote C–H insertion of vinyl cations leading to cyclopentenones. Chemical Science, 2017, 8, 6810-6814.	7.4	39
991	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â~H Activation Strategy. Angewandte Chemie - International Edition, 2017, 56, 13145-13149.	13.8	60
992	Transition Metalâ€Catalysed Intramolecular Carbenoid Câ^'H Insertion for Pyrrolidine Formation by Decomposition of αâ€Diazoesters. Advanced Synthesis and Catalysis, 2017, 359, 3654-3664.	4.3	16
993	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â^'H Activation Strategy. Angewandte Chemie, 2017, 129, 13325-13329.	2.0	46
994	A Binaphthyl-Based Scaffold for a Chiral Dirhodium(II) Biscarboxylate Ligand with α-Quaternary Carbon Centers. ACS Catalysis, 2017, 7, 6155-6161.	11.2	33

#	Article	IF	CITATIONS
995	Direct carboxamidation of cyclic 2-diazo-1,3-diketones by Rh2(OAc)4-catalyzed isocyanide insertion–hydrolysis. Organic and Biomolecular Chemistry, 2017, 15, 7127-7130.	2.8	24
996	<i>t</i> BuLiâ€Promoted Intermolecular Regioselective Nucleophilic Addition of Arenes to Diazo Compounds as Nâ€Terminal Electrophiles: Efficient Synthesis of Hydrazine Derivatives. European Journal of Organic Chemistry, 2017, 2017, 6137-6145.	2.4	11
997	Simultaneous Ring-Opened THF and insertion of diazoketone derived carbene into carbonyl O-H: Synthesis for Î ² -keto enol ethers. Tetrahedron Letters, 2017, 58, 3262-3266.	1.4	5
998	Recent progress in insertion and cyclopropanation reactions of metal carbenoids from α-diazocarbonyl compounds. Research on Chemical Intermediates, 2017, 43, 6447-6504.	2.7	43
999	Rh(II)-Catalyzed Chemoselective Oxidative Amination and Cyclization Cascade of	4.6	24
1000	Catalytic asymmetric trifluoromethylthiolation via enantioselective [2,3]-sigmatropic rearrangement of sulfonium ylides. Nature Chemistry, 2017, 9, 970-976.	13.6	188
1001	Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chemical Reviews, 2017, 117, 11894-11951.	47.7	166
1002	Functionalization of Unactivated C(sp ³)â~'H Bonds Using Metalâ€Carbene Insertion Reactions. Angewandte Chemie - International Edition, 2017, 56, 46-48.	13.8	47
1003	Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 1029-1050.	2.8	60
1004	Metal-catalyzed C H activation/functionalization: The fundamentals. Journal of Molecular Catalysis A, 2017, 426, 275-296.	4.8	235
1005	Recent Developments in Coinage Metal Catalyzed Transformations of Stabilized Vinyldiazo Compounds: Beyond Carbenic Pathways. Chemical Record, 2017, 17, 312-325.	5.8	42
1006	Palladium(II)-catalyzed arylation of unactivated C(sp 3)-H bonds by using 2,1,3-benzoselenadiazole-4-amine as directing ligand. Tetrahedron Letters, 2017, 58, 54-58.	1.4	7
1007	Transition metal-catalyzed [2,3]-sigmatropic rearrangements of ylides: An update of the most recent advances. Tetrahedron, 2017, 73, 4011-4022.	1.9	109
1008	Assessing inter- and intramolecular continuous-flow strategies towards methylphenidate (Ritalin) hydrochloride. Reaction Chemistry and Engineering, 2017, 2, 149-158.	3.7	30
1009	Rh(II)-mediated domino [4 + 1]-annulation of α-cyanothioacetamides using diazoesters: A new entry for the synthesis of multisubstituted thiophenes. Beilstein Journal of Organic Chemistry, 2017, 13, 2569-2576.	2.2	10
1010	On the Structure of Chiral Dirhodium(II) Carboxylate Catalysts: Stereoselectivity Relevance and Insights. Catalysts, 2017, 7, 347.	3.5	31
1011	Nickel atalyzed Alkylarylation of Activated Alkenes with Benzylâ€amines via Câ^'N Bond Activation. Chemistry - A European Journal, 2018, 24, 7114-7117.	3.3	19
1012	Synthesis of TMPA Derivatives through Sequential Ir(III)-Catalyzed C–H Alkylation and Their Antidiabetic Evaluation. ACS Omega, 2018, 3, 2661-2672.	3.5	10

#	Article	IF	CITATIONS
1013	Copper-catalyzed carbene insertion into the sulfur–sulfur bond of benzenesulfonothioate. Organic Chemistry Frontiers, 2018, 5, 1371-1374.	4.5	42
1014	Total synthesis of natural products using a desymmetrization strategy. Tetrahedron Letters, 2018, 59, 1343-1347.	1.4	13
1015	Gold-catalyzed (4 + 2)-annulations between α-alkyl alkenylgold carbenes and benzisoxazoles with reactive alkyl groups. Chemical Science, 2018, 9, 4488-4492.	7.4	61
1016	Substrate and Catalyst Effects in the Enantioselective Copperâ€Catalysed C–H Insertion Reactions of αâ€Diazoâ€Î²â€oxo Sulfones. European Journal of Organic Chemistry, 2018, 2018, 2277-2289.	2.4	13
1017	Rh ^{III} â€Catalyzed Direct C8â€Arylation of Quinoline <i>N</i> â€Oxides using Diazonaphthalenâ€2(1 <i>H</i>)â€ones: A Practical Approach towards 8â€aza BINOL. Chemistry - an Asian Journal, 2018, 13, 2388-2392.	3.3	40
1018	Rhodiumâ€Catalyzed Arylation of Cyclopropenes Based on Asymmetric Direct Functionalization of Threeâ€Membered Carbocycles. Angewandte Chemie, 2018, 130, 3744-3748.	2.0	22
1019	α-Diazo Ketones in On-Surface Chemistry. Journal of the American Chemical Society, 2018, 140, 6000-6005.	13.7	24
1020	DBUâ€Catalyzed [3+3] and [3+2] Annulation Reactions of Azomethine Ylides with αâ€Diazocarbonyls as <i>N</i> â€Terminal Electrophiles: Modular, Atomâ€Economical Access to 1,2,4â€Triazine and 1,2,4â€Triazole Derivatives. Advanced Synthesis and Catalysis, 2018, 360, 2172-2177.	4.3	30
1021	Gold atalyzed Oxidative Cyclization of Tryptamine Derived Enynamides: A Stereoselective Approach to Tetracyclic Spiroindolines. Advanced Synthesis and Catalysis, 2018, 360, 2280-2284.	4.3	39
1022	Formation of Tertiary Alcohols from the Rhodium-Catalyzed Reactions of Donor/Acceptor Carbenes with Esters. Organic Letters, 2018, 20, 2399-2402.	4.6	11
1023	Rh(<scp>ii</scp>)/phosphine-cocatalyzed synthesis of dithioketal derivatives from diazo compounds through simultaneous construction of two different C–S bonds. Chemical Communications, 2018, 54, 5964-5967.	4.1	31
1024	Formal Carbene Insertion into Câ [^] O or Câ [^] N Bond: An Efficient Strategy for the Synthesis of 2â€Substituted 2 <i>H</i> â€Chromene Derivatives from Chromene Acetals or Hemiaminal Ethers. Advanced Synthesis and Catalysis, 2018, 360, 2446-2452.	4.3	17
1025	Divergent reactivity of phenol- and anisole-tethered donor-acceptor α-diazoketones. Tetrahedron, 2018, 74, 5374-5382.	1.9	10
1026	Rhodium(III)â€Catalyzed Regioselective Direct C4â€Alkylation and C2â€Annulation of Indoles: Straightforward Access to Indolopyridone. European Journal of Organic Chemistry, 2018, 2018, 1426-1436.	2.4	35
1027	Carbohydrate/DBU Cocatalyzed Alkene Diboration: Mechanistic Insight Provides Enhanced Catalytic Efficiency and Substrate Scope. Journal of the American Chemical Society, 2018, 140, 3663-3673.	13.7	37
1028	Rhodium atalyzed Arylation of Cyclopropenes Based on Asymmetric Direct Functionalization of Threeâ€Membered Carbocycles. Angewandte Chemie - International Edition, 2018, 57, 3682-3686.	13.8	69
1029	Catalytic vinylogous cross-coupling reactions of rhenium vinylcarbenoids. Chemical Science, 2018, 9, 2489-2492.	7.4	14
1031	Co(III)-Catalyzed Coupling-Cyclization of Aryl C–H Bonds with α-Diazoketones Involving Wolff Rearrangement. ACS Catalysis, 2018, 8, 1308-1312.	11.2	98

#	Article	IF	CITATIONS
1032	Displacement of Dinitrogen by Oxygen: A Methodology for the Catalytic Conversion of Diazocarbonyl Compounds to Ketocarbonyl Compounds by 2,6-Dichloropyridine- <i>N</i> -oxide. Organic Letters, 2018, 20, 776-779.	4.6	27
1033	A General Protocol for Addressing Speciation of the Active Catalyst Applied to Ligand-Accelerated Enantioselective C(sp ³)–H Bond Arylation. ACS Catalysis, 2018, 8, 1528-1531.	11.2	27
1034	KomplementÃæ Strategien für die dirigierte C(sp ³)â€Hâ€Funktionalisierung: ein Vergleich von übergangsmetallkatalysierter Aktivierung, Wasserstoffatomtransfer und Carben―oder Nitrentransfer. Angewandte Chemie, 2018, 130, 64-105.	2.0	156
1035	Thioketoneâ€Directed Palladium(II) atalyzed Câ^'H Arylation of Ferrocenes with Aryl Boronic Acids. Angewandte Chemie, 2018, 130, 1310-1313.	2.0	18
1036	Arylsulfonyl Radical Triggered 1,6-Enyne Cyclization: Synthesis of γ-Lactams Containing Alkenyl C–X Bonds. Organic Letters, 2018, 20, 449-452.	4.6	85
1037	Cobalt(II)â€based Metalloradical Activation of 2â€(Diazomethyl)pyridines for Radical Transannulation and Cyclopropanation. Angewandte Chemie, 2018, 130, 2260-2265.	2.0	25
1038	A bio-inspired cascade and a late-stage directed sp3 C H lithiation enables a concise total synthesis of (â~')-virosaine A. Tetrahedron, 2018, 74, 759-768.	1.9	11
1039	Structure and Reactivity of Half-Sandwich Rh(+3) and Ir(+3) Carbene Complexes. Catalytic Metathesis of Azobenzene Derivatives. Journal of the American Chemical Society, 2018, 140, 1884-1893.	13.7	73
1040	Synthesis of 2,5-disubstituted oxazoles <i>via</i> cobalt(<scp>iii</scp>)-catalyzed cross-coupling of <i>N</i> -pivaloyloxyamides and alkynes. Chemical Communications, 2018, 54, 1197-1200.	4.1	20
1041	Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angewandte Chemie - International Edition, 2018, 57, 1543-1546.	13.8	74
1042	Asymmetric Catalytic Preparation of Polysubstituted Cyclopropanol and Cyclopropylamine Derivatives. Angewandte Chemie, 2018, 130, 1559-1562.	2.0	34
1043	Rh(<scp>iii</scp>)-Catalyzed synthesis of pyrazolo[1,2- <i>a</i>]cinnolines from pyrazolidinones and diazo compounds. Organic Chemistry Frontiers, 2018, 5, 1777-1781.	4.5	49
1044	Counterion effect and directing group effect in Rh-mediated C H bond activation processes: A theoretical study. Journal of Organometallic Chemistry, 2018, 864, 148-153.	1.8	8
1045	α-Arylamino Diazoketones: Diazomethane-Loading Controlled Synthesis, Spectroscopic Investigations, and Structural X-ray Analysis. Journal of Organic Chemistry, 2018, 83, 4336-4347.	3.2	13
1046	A chiral BrÃ,nsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with <i>in situ</i> generated <i>N</i> -acyl ketimines. Chemical Communications, 2018, 54, 3516-3519.	4.1	43
1047	Total Syntheses of Basiliolide A ₁ , Basiliolide A ₂ , Basiliolide C, and their Structural Analogues. European Journal of Organic Chemistry, 2018, 2018, 196-208.	2.4	5
1048	Insertion of carbenoids into X-H bonds catalyzed by the cyclobutadiene rhodium complexes. Journal of Organometallic Chemistry, 2018, 867, 86-91.	1.8	17
1049	Palladiumâ€Catalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> â€Bromobenzaldehydes. Angewandte Chemie, 2018, 130, 325-329.	2.0	13

#	Article	IF	CITATIONS
1050	Thioketoneâ€Directed Palladium(II)â€Catalyzed Câ^'H Arylation of Ferrocenes with Aryl Boronic Acids. Angewandte Chemie - International Edition, 2018, 57, 1296-1299.	13.8	60
1051	Cobalt(II)â€based Metalloradical Activation of 2â€(Diazomethyl)pyridines for Radical Transannulation and Cyclopropanation. Angewandte Chemie - International Edition, 2018, 57, 2238-2243.	13.8	99
1052	Complementary Strategies for Directed C(sp ³)â^'H Functionalization: A Comparison of Transitionâ€Metalâ€Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. Angewandte Chemie - International Edition, 2018, 57, 62-101.	13.8	552
1053	Synthesis of spirocyclic orthoesters by â€~anomalous' rhodium(ii)-catalysed intramolecular C–H insertions. Organic and Biomolecular Chemistry, 2018, 16, 256-261.	2.8	8
1054	Enantioselective palladium-catalyzed C–H functionalization of pyrroles using an axially chiral 2,2′-bipyridine ligand. Organic Chemistry Frontiers, 2018, 5, 611-614.	4.5	26
1055	Catalytic Synthesis of Indolines by Hydrogen Atom Transfer to Cobalt(III)–Carbene Radicals. Chemistry - A European Journal, 2018, 24, 5253-5258.	3.3	50
1056	Palladium atalyzed Intermolecular Acylation of Aryl Diazoesters with <i>ortho</i> â€Bromobenzaldehydes. Angewandte Chemie - International Edition, 2018, 57, 319-323.	13.8	46
1057	Cyclopropanation of Benzene Rings by Oxidatively Generated αâ€Oxo Gold Carbene: Oneâ€Pot Access to Tetrahydropyranoneâ€Fused Cycloheptatrienes from Propargyl Benzyl Ethers. Advanced Synthesis and Catalysis, 2018, 360, 647-651.	4.3	25
1058	BF3·Et2O-Promoted Decomposition of Cyclic α-Diazo-β-Hydroxy Ketones: Novel Insights into Mechanistic Aspects. Catalysts, 2018, 8, 600.	3.5	3
1059	A Rh(<scp>iii</scp>)-catalyzed cascade C–H functionalization/cyclization reaction of salicylaldehydes with diazomalonates for the synthesis of 4-hydroxycoumarin derivatives. New Journal of Chemistry, 2018, 42, 18358-18362.	2.8	6
1060	Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands. Organic and Biomolecular Chemistry, 2018, 16, 8064-8071.	2.8	14
1062	Regioselective C–H and N–H functionalization of purine derivatives and analogues: a synthetic and mechanistic perspective. Catalysis Science and Technology, 2018, 8, 6029-6056.	4.1	14
1064	Rapid Interception of CnF2n+1(O)SO• Radical with Copperâ€Based Carbene: A Novel Access to Perfluoroalkanesulfinate Ester. Chemistry - A European Journal, 2018, 25, 2195-2198.	3.3	9
1066	Cu(I) atalyzed Cross oupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. Chemical Record, 2018, 18, 1548-1559.	5.8	43
1067	A Catalytic Crossâ€Olefination of Diazo Compounds with Sulfoxonium Ylides. Angewandte Chemie - International Edition, 2018, 57, 16215-16218.	13.8	81
1068	Cp*Co(iii)-catalysed selective alkylation of C–H bonds of arenes and heteroarenes with α-diazocarbonyl compounds. Organic and Biomolecular Chemistry, 2018, 16, 7346-7350.	2.8	30
1069	Eine katalytische Kreuzâ€Olefinierung von Diazoverbindungen mit Sulfoxonium‥liden. Angewandte Chemie, 2018, 130, 16448-16452.	2.0	15
1070	Direct C(sp3)-H functionalization of 2-methylazaarenes using 4-substituted-TEMPO. Tetrahedron Letters, 2018, 59, 4454-4457.	1.4	1

#	Article	IF	CITATIONS
1072	Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by Câ^'H Insertion of Donor/Donor Carbenes. Angewandte Chemie, 2018, 130, 15433-15436.	2.0	11
1073	Silver-Catalyzed Olefination of Acetals and Ketals with Diazoesters to β-Alkoxyacrylates. Organic Letters, 2018, 20, 7090-7094.	4.6	6
1074	Iridium-Catalyzed, β-Selective C(sp3)–H Silylation of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alcohols. Journal of the American Chemical Society, 2018, 140, 18032-18038.	13.7	77
1075	Iron atalyzed Carbenoidâ€Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angewandte Chemie, 2018, 130, 16412-16416.	2.0	6
1076	Iron atalyzed Carbenoidâ€Transfer Reactions of Vinyl Sulfoxonium Ylides: An Experimental and Computational Study. Angewandte Chemie - International Edition, 2018, 57, 16180-16184.	13.8	52
1077	Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angewandte Chemie, 2018, 130, 16792-16796.	2.0	20
1078	BF ₃ -Promoted, Carbene-like, C–H Insertion Reactions of Benzynes. Journal of the American Chemical Society, 2018, 140, 15616-15620.	13.7	31
1079	Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 16554-16558.	13.8	61
1080	Enhanced Electrophilicity of Heterobimetallic Bi–Rh Paddlewheel Carbene Complexes: A Combined Experimental, Spectroscopic, and Computational Study. Journal of the American Chemical Society, 2018, 140, 13042-13055.	13.7	56
1081	Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Accounts of Chemical Research, 2018, 51, 2036-2046.	15.6	422
1082	Novel dirhodium coordination polymers: the impact of side chains on cyclopropanation. Catalysis Science and Technology, 2018, 8, 5190-5200.	4.1	15
1083	Enantioselective Synthesis of Indolines, Benzodihydrothiophenes, and Indanes by Câ^'H Insertion of Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2018, 57, 15213-15216.	13.8	37
1084	Asymmetric Rh(I)-Catalyzed Functionalization of the 3-C(<i>sp</i> ³)–H Bond of Benzofuranones with α-Diazoesters. Organic Letters, 2018, 20, 5889-5893.	4.6	24
1085	Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth–Rhodium- and Dirhodium-Catalyzed Carbene Chemistry. ACS Catalysis, 2018, 8, 10676-10682.	11.2	33
1086	Zn(OAc)2-Catalyzed C3-Carbonylacetylation of Indoles with α-Diazoketones Involving Wolff Rearrangement. Organic Letters, 2018, 20, 6140-6143.	4.6	16
1087	Selective C(sp ³)–H Bond Insertion in Carbene/Alkyne Metathesis Reactions. Enantioselective Construction of Dihydroindoles. ACS Catalysis, 2018, 8, 9543-9549.	11.2	48
1088	Recent advances in β-lactam synthesis. Organic and Biomolecular Chemistry, 2018, 16, 6840-6852.	2.8	86
1089	Asymmetric Preparation of Polysubstituted Cyclopropanes Based on Direct Functionalization of Achiral Three-Membered Carbocycles. Chemical Reviews, 2018, 118, 8415-8434.	47.7	163

#	Article	IF	CITATIONS
1090	Oxidative nitrene transfer from azides to alkynes <i>via</i> Ti(<scp>ii</scp>)/Ti(<scp>iv</scp>) redox catalysis: formal [2+2+1] synthesis of pyrroles. Chemical Communications, 2018, 54, 6891-6894.	4.1	40
1091	Rationally Designing Regiodivergent Dipolar Cycloadditions: Frontier Orbitals Show How To Switch between [5 + 3] and [4 + 2] Cycloadditions. ACS Catalysis, 2018, 8, 6353-6361.	11.2	30
1092	Designs and Strategies for the Haloâ€Functionalization of Diazo Compounds. Advanced Synthesis and Catalysis, 2018, 360, 3185-3212.	4.3	25
1093	Solid-State NMR Studies of Supported Transition Metal Catalysts and Nanoparticles. , 2018, , 683-703.		0
1094	Controlling Selectivities in Palladium-Catalyzed Cyclization Reactions Leading to Heterocycles. , 2018, , 311-337.		6
1095	Goldâ€Catalyzed Formal Câ^'C Bond Insertion Reaction of 2â€Arylâ€2â€diazoesters with 1,3â€Diketones. Chemis - an Asian Journal, 2018, 13, 2606-2610.	try 3.3	17
1096	Pincer Carbenoid Complexes With Late Transition Metals. , 2018, , 359-381.		4
1097	Rhodium(I)-Catalyzed Coupling–Cyclization of Câ•O Bonds with α-Diazoketones. Organic Letters, 2018, 20, 3980-3983.	4.6	19
1098	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective α-C(sp ³)–H Acetalization. Journal of the American Chemical Society, 2018, 140, 8350-8356.	13.7	42
1099	Ru (II)â€Catalyzed Coupling yclization of Sulfoximines with <i>alpha</i> arbonyl Sulfoxonium Ylides as an Approach to 1,2â€Benzothiazines. Advanced Synthesis and Catalysis, 2018, 360, 3534-3543.	4.3	80
1100	Highly Chemo―and Stereoselective Catalyst ontrolled Allylic Câ^'H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angewandte Chemie, 2018, 130, 12585-12589.	2.0	21
1101	Rh(III)-Catalyzed C–C Coupling of Diverse Arenes and 4-Acyl-1-sulfonyltriazoles via C–H Activation. Organic Letters, 2018, 20, 4946-4949.	4.6	32
1102	Highly Chemo―and Stereoselective Catalystâ€Controlled Allylic Câ^'H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2018, 57, 12405-12409.	13.8	83
1103	Catalyst-dependent selectivity in sulfonium ylide cycloisomerization reactions. Chemical Science, 2018, 9, 7091-7095.	7.4	19
1104	Complexes of [(dadi)Ti(L/X)] ^{<i>m</i>} That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond. Organometallics, 2018, 37, 3488-3501.	2.3	13
1105	Metal- and Base-Free Electrophilic Addition of 3-Diazooxindoles with H-phosphine Oxides for N–P Bond Formation. Journal of Chemical Research, 2018, 42, 63-67.	1.3	5
1106	Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation. Organic Letters, 2018, 20, 3105-3108.	4.6	58
1107	Palladium-Catalyzed C–H Amination of C(sp ²) and C(sp ³)–H Bonds: Mechanism and Scope for N-Based Molecule Synthesis. ACS Catalysis, 2018, 8, 5732-5776.	11.2	127

#	Article	IF	CITATIONS
1108	Copper-oxide tip functionalization for submolecular atomic force microscopy. Chemical Communications, 2018, 54, 9874-9888.	4.1	16
1109	<i>In situ</i> generation of nitrile oxides from copper carbene and <i>tert</i> -butyl nitrite: synthesis of fully substituted isoxazoles. Organic and Biomolecular Chemistry, 2018, 16, 4683-4687.	2.8	26
1110	Dirhodium(II)â€Mediated Alkene Epoxidation with Iodine(III) Oxidants. European Journal of Organic Chemistry, 2018, 2018, 5836-5842.	2.4	10
1111	Iridium-Catalyzed Reductive Allylation of Esters. Organic Letters, 2019, 21, 6663-6667.	4.6	4
1112	Recent Advances in Ru-Catalyzed Olefin and C–H Bond Oxidation. ACS Symposium Series, 2019, , 85-101.	0.5	0
1113	One-pot Mukaiyama–Mannich reaction of aldehydes, amines and silyl enol diazoacetate catalyzed by MgI ₂ etherate. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1176-1179.	1.6	1
1114	Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions. Chemistry - A European Journal, 2019, 25, 13231-13247.	3.3	16
1115	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	4.6	21
1116	Bis(imino)pyridine iron complexes for catalytic carbene transfer reactions. Chemical Science, 2019, 10, 7958-7963.	7.4	41
1117	Norcaradiene Synthesis via Visible-Light-Mediated Cyclopropanation Reactions of Arenes. Organic Letters, 2019, 21, 8814-8818.	4.6	77
1118	Dual Benzophenone/Copperâ€₽hotocatalyzed Gieseâ€Type Alkylation of C(sp ³)â^'H Bonds. Chemistry - A European Journal, 2019, 25, 16120-16127.	3.3	28
1120	Prevalence and incidence of systemic sclerosis: A systematic review and metaâ€analysis. International Journal of Rheumatic Diseases, 2019, 22, 2096-2107.	1.9	35
1122	Insights into the Stability of Siloxy Carbene Intermediates and Their Corresponding Oxocarbenium Ions. Journal of Organic Chemistry, 2019, 84, 11813-11822.	3.2	35
1123	Cobalt-catalyzed hydroxymethylarylation of terpenes with formaldehyde and arenes. Chemical Science, 2019, 10, 9560-9564.	7.4	49
1124	Catalytic Cleavage of C(<i>sp</i> ²)–C(<i>sp</i> ²) Bonds with Rh-Carbynoids. Journal of the American Chemical Society, 2019, 141, 15509-15514.	13.7	53
1125	Ruthenium-Catalyzed Enantioselective C–H Functionalization: A Practical Access to Optically Active Indoline Derivatives. Journal of the American Chemical Society, 2019, 141, 15730-15736.	13.7	89
1126	Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C–H Functionalization. Journal of Organic Chemistry, 2019, 84, 12722-12745.	3.2	66
1127	Copper(<scp>i</scp>)-carbenes as key intermediates in the [3 + 2]-cyclization of pyridine derivatives with alkenyldiazoacetates: a computational study. Organic and Biomolecular Chemistry, 2019, 17, 646-654.	2.8	11

#	Article	IF	CITATIONS
1128	Enantioselective synthesis of (<i>R</i>)-2-cubylglycine including unprecedented rhodium mediated C–H insertion of cubane. Organic and Biomolecular Chemistry, 2019, 17, 1067-1070.	2.8	14
1129	lminyl Radical-Triggered Intermolecular Distal C(sp ³)–H Heteroarylation via 1,5-Hydrogen-Atom Transfer (HAT) Cascade. Organic Letters, 2019, 21, 917-920.	4.6	77
1130	Chiral Heterobimetallic Bismuth–Rhodium Paddlewheel Catalysts: A Conceptually New Approach to Asymmetric Cyclopropanation. Angewandte Chemie - International Edition, 2019, 58, 3557-3561.	13.8	32
1131	Solid-state NMR of nanocrystals. Annual Reports on NMR Spectroscopy, 2019, 97, 1-82.	1.5	22
1132	Donor Rhodium Carbenes by Retroâ€Buchner Reaction. Angewandte Chemie, 2019, 131, 2110-2114.	2.0	8
1133	Palladium-catalyzed oxidative borylation of conjugated enynones through carbene migratory insertion: synthesis of furyl-substituted alkenylboronates. Chemical Communications, 2019, 55, 59-62.	4.1	22
1134	Total Synthesis of (â^')â€Salinosporamideâ€A via a Late Stage Câ^'H Insertion. Angewandte Chemie, 2019, 131, 10216-10219.	2.0	8
1135	Selective Activation of CH Bonds in Polar Vinyl Olefins and Coupling of Ethylene to the Activated Carbon Atoms in Pentaruthenium Complexes. Inorganic Chemistry, 2019, 58, 8357-8368.	4.0	6
1136	Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Organic Letters, 2019, 21, 4971-4975.	4.6	30
1137	Deoxygenative Insertion of Carbonyl Carbon into a C(sp ³)–H Bond: Synthesis of Indolines and Indoles. Journal of the American Chemical Society, 2019, 141, 9832-9836.	13.7	37
1138	Ruthenium(II) Porphyrin Quinoid Carbene Complexes: Synthesis, Crystal Structure, and Reactivity toward Carbene Transfer and Hydrogen Atom Transfer Reactions. Journal of the American Chemical Society, 2019, 141, 9027-9046.	13.7	47
1139	Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nature Reviews Chemistry, 2019, 3, 347-360.	30.2	233
1140	Fused vs. spiro: Kinetic, not thermodynamic preference may direct the reaction of α-carbonyl oxonium ylides. Tetrahedron Letters, 2019, 60, 1582-1586.	1.4	2
1141	Co(II)-Catalyzed Regioselective Pyridine C–H Coupling with Diazoacetates. Organic Letters, 2019, 21, 3427-3430.	4.6	21
1142	Gold(I) atalyzed Intramolecular C(sp ³)â^'H Insertion by Decarbenation of Cycloheptatrienes. Chemistry - A European Journal, 2019, 25, 9485-9490.	3.3	16
1143	Two Types of Ïfâ€Allenyl Complexes from Reactions of Silylenes and Germylenes with Chromium Fischer Alkynyl(alkoxy)carbenes. Chemistry - A European Journal, 2019, 25, 8635-8642.	3.3	10
1144	Rh(III) atalyzed Aldehydic Câ^'H Functionalization Reaction between Salicylaldehydes and Sulfoxonium Ylides. Advanced Synthesis and Catalysis, 2019, 361, 3318-3323.	4.3	35
1145	Theoretical Study of the Addition of Cu–Carbenes to Acetylenes to Form Chiral Allenes. Journal of the American Chemical Society, 2019, 141, 5772-5780.	13.7	35

#	Article	IF	CITATIONS
1146	Desymmetrization by Asymmetric Copper-Catalyzed Intramolecular C–H Insertion Reactions of α-Diazo-β-oxosulfones. Journal of Organic Chemistry, 2019, 84, 7543-7563.	3.2	14
1147	Computational insights into different chemoselectivities in Rh ₂ (<scp>ii</scp>)-catalyzed <i>N</i> -aryl nitrene and analogous Rh ₂ (<scp>ii</scp>)/Cu(<scp>i</scp>)-catalyzed aryl-substituted carbene involving reactions. Catalysis Science and Technology, 2019, 9, 1518-1527.	4.1	6
1148	Threeâ€Component [2+2+1] Gold(I)â€Catalyzed Oxidative Generation of Fully Substituted 1,3â€Oxazoles Involving Internal Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 2926-2935.	4.3	35
1149	Cyclopropane–alkene metathesis by gold(<scp>i</scp>)-catalyzed decarbenation of persistent cyclopropanes. Organic and Biomolecular Chemistry, 2019, 17, 4216-4219.	2.8	12
1150	Catalytic Asymmetric Synthesis of Isoindolinones. Chemistry - an Asian Journal, 2019, 14, 1306-1322.	3.3	45
1151	Total Synthesis of (â^')â€Salinosporamideâ€A via a Late Stage Câ^'H Insertion. Angewandte Chemie - International Edition, 2019, 58, 10110-10113.	13.8	18
1152	Ru(II)-Catalyzed Regioselective Hydroxymethylation of β-Carbolines and Isoquinolines via C–H Functionalization: Probing the Mechanism by Online ESI-MS/MS Screening. Journal of Organic Chemistry, 2019, 84, 5504-5513.	3.2	29
1153	Predictive Model for the [Rh ₂ (esp) ₂]-Catalyzed Intermolecular C(sp ³)–H Bond Insertion of β-Carbonyl Ester Carbenes: Interplay between Theory and Experiment. ACS Catalysis, 2019, 9, 4526-4538.	11.2	23
1154	Asymmetric N–H Insertion Reaction with Chiral Aminoalcohol as Catalytic Core of Cinchona Alkaloids. Chemical and Pharmaceutical Bulletin, 2019, 67, 393-396.	1.3	2
1156	Site-selective nitrenoid insertions utilizing postfunctionalized bifunctional rhodium(<scp>ii</scp>) catalysts. Chemical Science, 2019, 10, 3324-3329.	7.4	26
1157	Chiral Heterobimetallic Bismuth–Rhodium Paddlewheel Catalysts: A Conceptually New Approach to Asymmetric Cyclopropanation. Angewandte Chemie, 2019, 131, 3595-3599.	2.0	7
1158	Rh(II)-Catalyzed Spirocyclization of α-Diazo Homophthalimides with Cyclic Ethers. Journal of Organic Chemistry, 2019, 84, 4534-4542.	3.2	33
1159	α-Thiocarbonyl synthesis <i>via</i> the Fe ^{II} -catalyzed insertion reaction of α-diazocarbonyls into S–H bonds. Organic and Biomolecular Chemistry, 2019, 17, 3098-3102.	2.8	34
1160	Reactivity Profiles of Diazo Amides, Esters, and Ketones in Transition-Metal-Free C–H Insertion Reactions. Journal of the American Chemical Society, 2019, 141, 3558-3565.	13.7	31
1161	Catalyst-Dependent Chemoselectivity in the Dirhodium-Catalyzed Cyclization Reactions Between Enodiazoacetamide and Nitrosoarene: A Theoretical Study. Frontiers in Chemistry, 2019, 7, 586.	3.6	6
1162	Enantioselective Copper-Catalyzed Cyanation of Remote C(sp3)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer. IScience, 2019, 21, 490-498.	4.1	35
1163	Rhodium-catalyzed synthesis of C4-chalcogenoalkylated oxindoles via Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones. Journal of Chemical Sciences, 2019, 131, 1.	1.5	4
1164	Copper-catalyzed enantioselective Sonogashira-type oxidative cross-coupling of unactivated C(sp3)â^'H bonds with alkynes. Nature Communications, 2019, 10, 5689.	12.8	95

#	Article	IF	Citations
1167	Donor Rhodium Carbenes by Retroâ€Buchner Reaction. Angewandte Chemie - International Edition, 2019, 58, 2088-2092.	13.8	35
1168	Unexpected Zwitterionic Allenyls from Silylenes and a Fischer Alkynylcarbene: A Remarkable Silyleneâ€Promoted Rearrangement. Chemistry - A European Journal, 2019, 25, 2222-2225.	3.3	6
1169	Recent developments in photochemical reactions of diazo compounds. Organic and Biomolecular Chemistry, 2019, 17, 432-448.	2.8	220
1170	Rhodium(II)â€Catalyzed Highly Stereoselective C3 Functionalization of Indolizines with <i>N</i> â€Sulfonylâ€1,2,3â€triazoles. Asian Journal of Organic Chemistry, 2019, 8, 79-82.	2.7	20
1171	Reversible Carbene Insertion into a Geâ^'N Bond and Insights into CO and Carbene Substitution Reactions Involving Amidinatogermylenes and Fischer Carbene Complexes. Chemistry - A European Journal, 2019, 25, 1588-1594.	3.3	7
1172	Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coordination Chemistry Reviews, 2019, 380, 440-470.	18.8	31
1173	Copper-Catalyzed Coupling of Thioamides and Donor/Acceptor-Substituted Carbenoids: Synthesis of Enamino Esters and Enaminones. ACS Omega, 2019, 4, 269-280.	3.5	10
1174	One-Step Synthesis of Diaza Macrocycles by Rh(II)-Catalyzed [3 + 6 + 3 + 6] Condensations of Morpholines and α-Diazo-β-ketoesters. Organic Letters, 2019, 21, 687-691.	4.6	13
1176	New chromium, molybdenum, and cobalt complexes of the chelating esp ligand. Polyhedron, 2019, 161, 93-103.	2.2	5
1177	Metalâ€catalyzed alkyne oxidation/C  H functionalization: Effects of oxidant, temperature, and metal catalyst on chemoselectivity. Journal of Computational Chemistry, 2019, 40, 1038-1044.	3.3	2
1178	Recent advances in asymmetric synthesis of 2-substituted indoline derivatives. Chinese Chemical Letters, 2020, 31, 311-323.	9.0	49
1179	Enantioselective synthesis of isochromans and tetrahydroisoquinolines by C–H insertion of donor/donor carbenes. Chemical Science, 2020, 11, 494-498.	7.4	31
1180	Iridium(III) atalyzed Intermolecular C(sp 3)â^'H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angewandte Chemie, 2020, 132, 1861-1866.	2.0	4
1181	Ruthenium(II) atalyzed Asymmetric Inert Câ^'H Bond Activation Assisted by a Chiral Transient Directing Group. Angewandte Chemie, 2020, 132, 3503-3507.	2.0	21
1182	Ruthenium(II) atalyzed Asymmetric Inert Câ^'H Bond Activation Assisted by a Chiral Transient Directing Group. Angewandte Chemie - International Edition, 2020, 59, 3475-3479.	13.8	89
1183	Tandem Carbenoid C–H Functionalization/Conia-ene Cyclization of <i>N</i> -Propargyl Indoles Generates Pyrroloindoles under Cooperative Rh(II)/Zn(II) Catalysis. Organic Letters, 2020, 22, 224-229.	4.6	12
1184	Synthesis of amino acids and peptides with bulky side chains <i>via</i> ligand-enabled carboxylate-directed γ-C(sp ³)–H arylation. Chemical Science, 2020, 11, 290-294.	7.4	107
1185	Theoretical Study of the Mechanism of Catalytic Enanteoselective Nâ \in "H and Oâ \in "H Insertion Reactions. Journal of Physical Chemistry A, 2020, 124, 2-11.	2.5	8

#	Article	IF	CITATIONS
1186	Hypervalentâ€lodineâ€Mediated Carbon–Carbon Bond Cleavage and Dearomatization of 9 <i>H</i> â€Fluorenâ€9â€ols. Angewandte Chemie - International Edition, 2020, 59, 3093-3098.	13.8	22
1187	Hypervalentâ€lodineâ€Mediated Carbon–Carbon Bond Cleavage and Dearomatization of 9 H â€Fluorenâ€9â€o Angewandte Chemie, 2020, 132, 3117-3122.	ls 2.0	4
1188	Iridium(III) atalyzed Intermolecular C(sp ³)â^'H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angewandte Chemie - International Edition, 2020, 59, 1845-1850.	13.8	33
1189	Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Organic Process Research and Development, 2020, 24, 67-84.	2.7	166
1190	Mechanistic insight into the rhodium(III)â€catalyzed orthoâ€selective coupling of diverse arenes with 4â€acylâ€1â€sulfonyltriazoles: A computational study. International Journal of Quantum Chemistry, 2020, 120, e26119.	2.0	2
1191	Sulfoxonium ylides: simple compounds with chameleonic reactivity. Organic and Biomolecular Chemistry, 2020, 18, 8793-8809.	2.8	86
1192	Gold atalyzed Oxidative Cross oupling Reactions among Two Distinct Arenes and One Gold Carbene with Phosphoric Acids as Cocatalysts. Advanced Synthesis and Catalysis, 2020, 362, 5658-5668.	4.3	3
1193	Mechanism and origins of regioselectivities of Rh-catalyzed alkenylation of allylbenzenes. Dalton Transactions, 2020, 49, 17395-17400.	3.3	1
1194	Spirocyclizations Involving Oxonium Ylides Derived from Cyclic α-Diazocarbonyl Compounds: An Entry into 6-Oxa-2-azaspiro[4.5]decane Scaffold. Journal of Organic Chemistry, 2020, 85, 15586-15599.	3.2	27
1195	Synergy of activating substrate and introducing C-H···O interaction to achieve Rh2(II)-catalyzed asymmetric cycloisomerization of 1,n-enynes. Science China Chemistry, 2020, 63, 1230-1239.	8.2	19
1196	Site-Selective C–H Benzylation of Alkanes with N-Triftosylhydrazones Leading to Alkyl Aromatics. CheM, 2020, 6, 2110-2124.	11.7	49
1197	Synthesis of 2,3-diiminoindolines and 2,3-diaminoindoles via copper-catalyzed donor-acceptor metallo carbenoid formation and hydrogenation reactions. Tetrahedron Letters, 2020, 61, 152314.	1.4	4
1198	Highly Efficient Synthesis of Oxindole Derivatives Via Catalytic Intramolecular C-H Insertion Reactions of Diazoamides. Key Engineering Materials, 0, 840, 251-256.	0.4	1
1199	Gold-Catalyzed Synthesis of Small Rings. Chemical Reviews, 2021, 121, 8613-8684.	47.7	142
1200	Rhodium-catalysed diastereo- and enantio-selective cyclopropanation of $\hat{l}\pm$ -boryl styrenes. Chemical Communications, 2020, 56, 12379-12382.	4.1	10
1201	Enantioselective Silylation of Aliphatic Câ`'H Bonds for the Synthesis of Silicon‣tereogenic Dihydrobenzosiloles. Angewandte Chemie - International Edition, 2020, 59, 22217-22222.	13.8	65
1202	Experiments and Direct Dynamics Simulations That Probe η‹sup>2‹/sup>-Arene/Aryl Hydride Equilibria of Tungsten Benzene Complexes. Journal of the American Chemical Society, 2020, 142, 16437-16454.	13.7	13
1203	Dirhodium Coordination Polymers for Asymmetric Cyclopropanation of Diazooxindoles with Olefins: Synthesis and Spectroscopic Analysis. ChemPlusChem, 2020, 85, 1737-1746.	2.8	7

#	Article	IF	CITATIONS
1204	Enantioselective Silylation of Aliphatic Câ^'H Bonds for the Synthesis of Silicon‧tereogenic Dihydrobenzosiloles. Angewandte Chemie, 2020, 132, 22401-22406.	2.0	20
1205	Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chemical Reviews, 2020, 120, 10516-10543.	47.7	165
1206	Microwaveâ€Assisted Synthesis of Heterocycles from Aryldiazoacetates**. European Journal of Organic Chemistry, 2020, 2020, 7069-7078.	2.4	5
1207	Reaction mechanisms and topological analyses for the C H activation of ethylene by uranium atom using density functional theory. Computational and Theoretical Chemistry, 2020, 1190, 113022.	2.5	1
1208	A Conjugate Addition Approach to Diazoâ€Containing Scaffolds with β Quaternary Centers. Angewandte Chemie - International Edition, 2020, 59, 12827-12831.	13.8	11
1209	Reactions between Diazo Compounds and Hypervalent Iodine(III) Reagents. Angewandte Chemie - International Edition, 2020, 59, 12282-12292.	13.8	35
1210	Reactions between Diazo Compounds and Hypervalent Iodine(III) Reagents. Angewandte Chemie, 2020, 132, 12378-12388.	2.0	4
1211	A Heteroleptic Dirhodium Catalyst for Asymmetric Cyclopropanation with αâ€Stannyl αâ€Diazoacetate. "Stereoretentive―Stille Coupling with Formation of Chiral Quarternary Carbon Centers. Angewandte Chemie, 2020, 132, 14004-14011.	2.0	8
1212	A Conjugate Addition Approach to Diazoâ€Containing Scaffolds with β Quaternary Centers. Angewandte Chemie, 2020, 132, 12927-12931.	2.0	4
1213	A Heteroleptic Dirhodium Catalyst for Asymmetric Cyclopropanation with αâ€Stannyl αâ€Diazoacetate. "Stereoretentive―Stille Coupling with Formation of Chiral Quarternary Carbon Centers. Angewandte Chemie - International Edition, 2020, 59, 13900-13907.	13.8	25
1214	Blue Lightâ€promoted Carbene Transfer Reactions of Tosylhydrazones. Chemistry - an Asian Journal, 2020, 15, 1945-1947.	3.3	18
1215	Gold atalyzed Oxidative Alkyne Functionalization by Nâ^'O/Sâ^'O/Câ^'O Bond Oxidants. Advanced Synthesis and Catalysis, 2020, 362, 3664-3708.	4.3	48
1216	Substrateâ€Controlled Cyclopropanation Reactions of Glycals with Aryl Diazoacetates. ChemCatChem, 2020, 12, 4014-4018.	3.7	4
1217	A New Class of <i>C</i> ₂ ‣ymmetric Chiral Cyclopentadienyl Ligand Derived from Ferrocene Scaffold: Design, Synthesis and Application. Chemistry - A European Journal, 2020, 26, 14546-14550.	3.3	41
1218	Diazo Activation with Diazonium Salts: Synthesis of Indazole and 1,2,4-Triazole. Organic Letters, 2020, 22, 4151-4155.	4.6	26
1219	Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chemical Society Reviews, 2020, 49, 4867-4905.	38.1	74
1220	Dual-Ligand-Enabled Ir(III)-Catalyzed Enantioselective C–H Amidation for the Synthesis of Chiral Sulfoxides. ACS Catalysis, 2020, 10, 7207-7215.	11.2	65
1221	Iron- and cobalt-catalyzed C(sp ³)–H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	38.1	119

#	Article	IF	CITATIONS
1222	Chiral NCN Pincer Iridium(III) Complexes with Bis(imidazolinyl)phenyl Ligands: Synthesis and Application in Enantioselective C–H Functionalization of Indoles with I±-Aryl-α-diazoacetates. Organometallics, 2020, 39, 2222-2234.	2.3	19
1223	Synthesis of Cyclopropanes via 1,3-Migration of Acyloxy Groups Triggered by Formation of α-Imino Rhodium Carbenes. Organic Letters, 2020, 22, 5163-5169.	4.6	24
1224	Urea-Catalyzed Vinyl Carbocation Formation Enables Mild Functionalization of Unactivated C–H Bonds. Organic Letters, 2020, 22, 7775-7779.	4.6	18
1225	From reactive carbenes to chiral polyether macrocycles in two steps – synthesis and applications made easy?. Chemical Science, 2020, 11, 6362-6369.	7.4	14
1226	Rhodium(III)-Catalyzed Asymmetric C–H Activation of <i>N</i> -Methoxybenzamide with Quinone and Its Application in the Asymmetric Synthesis of a Dihydrolycoricidine Analogue. Organic Letters, 2020, 22, 3219-3223.	4.6	27
1227	Light-Mediated Asymmetric Aliphatic C–H Alkylation with Hydrogen Atom Transfer Catalyst and Chiral Phosphoric Acid. ACS Catalysis, 2020, 10, 4786-4790.	11.2	55
1228	Remote azidation of C(sp ³)–H bonds to synthesize δ-azido sulfonamides <i>via</i> iron-catalyzed radical relay. Organic and Biomolecular Chemistry, 2020, 18, 5354-5358.	2.8	12
1229	One-pot and regioselective synthesis of functionalized γ-lactams via a metal-free sequential Ugi 4CR/Intramolecular 5-exo-dig cyclization reaction. Tetrahedron, 2020, 76, 131389.	1.9	7
1230	A Modular Approach to Dibenzoâ€fused ϵâ€Lactams: Palladiumâ€Catalyzed Bridgingâ€Câ^'H Activation. Angewandte Chemie - International Edition, 2020, 59, 18261-18266.	13.8	35
1231	Utilization of Rh-carbenoid C H insertion reactions for the synthesis of bioactive natural products. Studies in Natural Products Chemistry, 2020, , 349-380.	1.8	3
1232	A Modular Approach to Dibenzoâ€fused Ïµâ€Łactams: Palladiumâ€Catalyzed Bridgingâ€Câ^'H Activation. Angewandte Chemie, 2020, 132, 18418-18423.	2.0	8
1233	Cross coupling of sulfonyl radicals with silver-based carbenes: a simple approach to β-carbonyl arylsulfones. Organic and Biomolecular Chemistry, 2020, 18, 2163-2169.	2.8	11
1234	Visibleâ€Lightâ€Driven Photocatalyst―and Additiveâ€Free Crossâ€Coupling of βâ€Ketothioamides with αâ€Dia. 1,3â€Diketones: Access to Highly Functionalized Thiazolines. Chemistry - A European Journal, 2020, 26, 8083-8089.	20 3.3	26
1235	Axially Chiral 1,1'â€Binaphthylâ€2â€Carboxylic Acid (BINAâ€Cox) as Ligands for Titaniumâ€Catalyzed Asymmetric Hydroalkoxylation. European Journal of Organic Chemistry, 2020, 2020, 2062-2076.	2.4	6
1236	Palladium-Catalyzed Three-Component Coupling Reaction of <i>o</i> -Bromobenzaldehyde, <i>N</i> -Tosylhydrazone, and Methanol. Organic Letters, 2020, 22, 2087-2092.	4.6	25
1237	Donor–Acceptor–Acceptor 1,3-Bisdiazo Compounds: An Exploration of Synthesis and Stepwise Reactivity. Organic Letters, 2020, 22, 1791-1795.	4.6	6
1238	Rhodium-Catalyzed ortho-Selective Carbene C–H Insertion of Unprotected Phenols Directed by a Transient Oxonium Ylide Intermediate. Organic Letters, 2020, 22, 908-913.	4.6	13
1239	Recent progress on donor and donor–donor carbenes. Chemical Society Reviews, 2020, 49, 908-950.	38.1	263

#	Article	IF	CITATIONS
1240	Ironâ€Catalyzed Aminomethyloxygenative Cyclization of Hydroxyâ€Î±â€diazoesters with N,O â€Aminals. Chinese Journal of Chemistry, 2020, 38, 389-393.	4.9	11
1241	A Coldâ€Catalyzed Acidâ€Assisted Regioselective Cyclization for the Synthesis of Polysubstituted Oxazoles. European Journal of Organic Chemistry, 2020, 2020, 2384-2388.	2.4	16
1242	PdBr 2 â€Catalyzed Acetal Formation of Carbonyl Compounds Using Diazophenanthrenequinone: Utility of 9,10â€Phenanthrenedioxyacetal. European Journal of Organic Chemistry, 2020, 2020, 5319-5322.	2.4	2
1243	Fluoroalkylation of Diazo Compounds with Diverse R _{fn} Reagents. Chemistry - an Asian Journal, 2020, 15, 1660-1677.	3.3	15
1244	Siliconâ€Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis. Advanced Synthesis and Catalysis, 2020, 362, 1927-1946.	4.3	74
1245	Crystallography of Reactive Intermediates. Comments on Inorganic Chemistry, 2020, 40, 116-158.	5.2	18
1246	Rh(II)-catalyzed formal [3+3] cycloaddition of diazonaphthoquinones and propargyl alcohols: Synthesis of 2,3-dihydronaphtho-1,4-dioxin derivatives. Tetrahedron Letters, 2020, 61, 151853.	1.4	1
1247	Rhodium-Stabilized Diarylcarbenes Behaving as Donor/Acceptor Carbenes. ACS Catalysis, 2020, 10, 6240-6247.	11.2	43
1248	Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catalysis, 2020, 10, 5393-5398.	11.2	38
1249	Conformational Design Principles in Total Synthesis. Angewandte Chemie, 2020, 132, 14302-14314.	2.0	2
1250	Bimetallic Reactivities of Dinuclear Iridium and Rhodium Complexes Generated from Two Types of Alkyne ontaining Bisphosphine Ligands. European Journal of Inorganic Chemistry, 2020, 2020, 1894-1901.	2.0	4
1251	Rhodiumâ€Catalyzed Cyclization Reactions of Thiadiazoles with Phosphaalkynes to Prepare 1,3â€Thiaphospholes. European Journal of Organic Chemistry, 2020, 2020, 3879-3882.	2.4	19
1252	Total Synthesis of Sophoraflavanone H and Confirmation of Its Absolute Configuration. Organic Letters, 2020, 22, 3820-3824.	4.6	5
1253	Conformational Design Principles in Total Synthesis. Angewandte Chemie - International Edition, 2020, 59, 14198-14210.	13.8	30
1254	Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angewandte Chemie, 2021, 133, 6940-6954.	2.0	22
1255	Transition Metal Catalyzed Insertion Reactions with Donor/Donor Carbenes. Angewandte Chemie - International Edition, 2021, 60, 6864-6878.	13.8	107
1256	Assembly of Complex 1,4 ycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Nonâ€Acceptor Carbenes. Angewandte Chemie - International Edition, 2021, 60, 1916-1922.	13.8	16
1257	Cobalt atalyzed Diastereo―and Enantioselective Hydroalkylation of Cyclopropenes with Cobalt Homoenolates. Angewandte Chemie - International Edition, 2021, 60, 2694-2698.	13.8	60

#	Article	IF	CITATIONS
1258	βâ€Diazocarbonyl Compounds: Synthesis and their Rh(II)â€Catalyzed 1,3 Câ^'H Insertions. Angewandte Chemie - International Edition, 2021, 60, 6177-6184.	13.8	32
1259	Iridium-catalyzed selective ortho C H carbenoid functionalization of N-aryl-7-azaindoles with diazotized Meldrum's acid. Tetrahedron Letters, 2021, 62, 152703.	1.4	6
1260	βâ€Diazocarbonyl Compounds: Synthesis and their Rh(II)â€Catalyzed 1,3 Câ^'H Insertions. Angewandte Chemie, 2021, 133, 6242-6249.	2.0	3
1261	Cobaltâ€Catalyzed Diastereo―and Enantioselective Hydroalkylation of Cyclopropenes with Cobalt Homoenolates. Angewandte Chemie, 2021, 133, 2726-2730.	2.0	19
1262	Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Organic Letters, 2021, 23, 60-65.	4.6	3
1263	Assembly of Complex 1,4â€Cycloheptadienes by (4+3) Cycloaddition of Rhodium(II) and Gold(I) Nonâ€Acceptor Carbenes. Angewandte Chemie, 2021, 133, 1944-1950.	2.0	1
1264	Singleâ€Pore versus Dualâ€Pore Bipyridineâ€Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective CH Functionalization. Small, 2021, 17, e2003970.	10.0	25
1265	Acid-Catalyzed Oxidative Cross-Coupling of Acridans with Silyl Diazoenolates and Rh-Catalyzed Rearrangement: Two-step Synthesis of I³-(9-Acridanylidene)-I²-keto Esters. Organic and Biomolecular Chemistry, 2021, 19, 5649-5657.	2.8	0
1266	Review for metal and organocatalysis of heterocyclic C-H functionalization. World Journal of Advanced Research and Reviews, 2021, 9, 001-030.	0.2	0
1267	Recent developments on the synthesis of functionalized carbohydrate/sugar derivatives involving the transition metal–catalyzed C–H activation/C–H functionalization. Studies in Natural Products Chemistry, 2021, , 311-399.	1.8	13
1268	Pericyclic reactions 2: Asymmetric synthesis. , 2021, , 421-455.		0
1269	Facile synthesis of axially chiral styrene-type carboxylic acids <i>via</i> palladium-catalyzed asymmetric C–H activation. Chemical Science, 2021, 12, 3726-3732.	7.4	62
1270	Recent advances in the synthesis of indole embedded heterocycles with 3-diazoindolin-2-imines. Organic Chemistry Frontiers, 2021, 8, 2059-2078.	4.5	32
1271	Non anonical Reactivity of Gold Carbene with Alkyne: An Overview of the Mechanistic Premise. European Journal of Organic Chemistry, 2021, 2021, 1321-1330.	2.4	26
1272	Dirhodium(<scp>ii</scp>)-catalysed cycloisomerization of azaenyne: rapid assembly of centrally and axially chiral isoindazole frameworks. Chemical Science, 2021, 12, 13730-13736.	7.4	27
1273	Metal-catalyzed routes for the synthesis of furocoumarins and coumestans. , 2021, , 53-96.		0
1274	Diastereo- and Enantioselective Intramolecular 1,6-C–H Insertion Reaction of Diaryldiazomethanes Catalyzed by Chiral Dirhodium(II) Carboxylates. Heterocycles, 2021, 103, 1078.	0.7	0
1275	Synthesis of Marine C2-Symmetrical Macrodiolide Natural Products. Topics in Heterocyclic Chemistry, 2021, , 317-360.	0.2	0

#	Article	IF	CITATIONS
1276	Bioorganometallics: Artificial Metalloenzymes With Organometallic Moieties. , 2021, , .		1
1277	Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. ACS Catalysis, 2021, 11, 829-839.	11.2	30
1278	Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C–H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst. Journal of the American Chemical Society, 2021, 143, 2608-2619.	13.7	61
1279	Formal Allylation and Enantioselective Cyclopropanation of Donor/Acceptor Rhodium(II) Azavinyl Carbenes. Organic Letters, 2021, 23, 1275-1279.	4.6	9
1280	Unusual Structural Features in the Adduct of Dirhodium Tetraacetate with Lysozyme. International Journal of Molecular Sciences, 2021, 22, 1496.	4.1	19
1281	Effect of Sulfonamide and Carboxamide Ligands on the Structural Diversity of Bimetallic Rh ^{II} –Rh ^{II} Cores: Exploring the Catalytic Activity of These Newly Synthesized Rh ₂ Complexes. Inorganic Chemistry, 2021, 60, 3534-3538.	4.0	9
1282	Phosphorusâ€Directed Câ^'H Borylation. Advanced Synthesis and Catalysis, 2021, 363, 2354-2365.	4.3	13
1283	Computational Insights into Different Mechanisms for Agâ€, Cuâ€, and Pdâ€Catalyzed Cyclopropanation of Alkenes and Sulfonyl Hydrazones. Chemistry - A European Journal, 2021, 27, 5999-6006.	3.3	17
1284	Kinetic Resolution of Allyltriflamides through a Pd-Catalyzed C–H Functionalization with Allenes: Asymmetric Assembly of Tetrahydropyridines. Journal of the American Chemical Society, 2021, 143, 3747-3752.	13.7	33
1285	Two-Step Synthesis of α-Aryl-α-diazoamides as Modular Bioreversible Labels. Organic Letters, 2021, 23, 3110-3114.	4.6	10
1286	Mechanism of Heterogenization of Dirhodium Catalysts: Insights from DFT Calculations. Inorganic Chemistry, 2021, 60, 6239-6248.	4.0	3
1287	Computational Study of Key Mechanistic Details for a Proposed Copper (I)-Mediated Deconstructive Fluorination of N-Protected Cyclic Amines. Topics in Catalysis, 2022, 65, 418-432.	2.8	4
1288	Catalytic Ring Expansion of Activated Heteroarenes Enabled by Regioselective Dearomatization. Organic Letters, 2021, 23, 4256-4260.	4.6	12
1289	Rhodium(I)â€Catalyzed Enantioselective C(sp ³)—H Functionalization <i>via</i> <scp>Carbeneâ€Induced</scp> Asymmetric Intermolecular C—H Insertion ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1911-1915.	4.9	18
1290	Blue LED Induced Manganese (I) Catalysed Direct C2â^'H Activation of Pyrroles with Aryl Diazoesters. Advanced Synthesis and Catalysis, 2021, 363, 3521-3531.	4.3	9
1291	Copper-Catalyzed Ring-Opening/Borylation of Cyclopropenes. CCS Chemistry, 2022, 4, 1232-1237.	7.8	21
1292	Rhodium atalyzed Câ~'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie - International Edition, 2021, 60, 16628-16633.	13.8	68
1293	Oxonium Ylides Generated from 1,4â€Disubstituted αâ€Diazo Glutaconimides: a Rich Source of Diverse Oxygen Heterocyclic Frameworks. European Journal of Organic Chemistry, 2021, 2021, 3411-3420.	2.4	5

#	Article	IF	CITATIONS
1294	Rhodium atalyzed Câ^'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie, 2021, 133, 16764-16769.	2.0	16
1295	Photo-Induced <i>ortho</i> -C–H Borylation of Arenes through In Situ Generation of Rhodium(II) Ate Complexes. Journal of the American Chemical Society, 2021, 143, 11325-11331.	13.7	30
1296	Gold-Catalyzed Synthesis of Diaza-hexatrienes Via Diazo Attack at Vinylgold Carbenes: An Easy Access to 1 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridine-5-ones. Organic Letters, 2021, 23, 5496-5500.	4.6	9
1297	Cationic Dirhodium Complexes Bridged by 2-Phosphinopyridines Having an Exquisitely Positioned Axial Shielding Group: A Molecular Design for Enhancing the Catalytic Activity of the Dirhodium Core. Organometallics, 2021, 40, 2678-2690.	2.3	7
1298	C–H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SynOpen, 2021, 05, 173-228.	1.7	40
1299	Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis, 2021, 11, 9761-9797.	11.2	54
1300	Recent Advances in Theoretical Studies on Transition-Metal-Catalyzed Carbene Transformations. Accounts of Chemical Research, 2021, 54, 2905-2915.	15.6	60
1301	Dirhodium Carboxylate Catalysts from 2â€Fenchyloxy or 2â€Menthyloxy Arylacetic Acids: Enantioselective Câ^'H Insertion, Aromatic Addition and Oxonium Ylide Formation/Rearrangement. ChemCatChem, 2021, 13, 4318-4324.	3.7	4
1302	Gerüstâ€Editierung – Stickstoffâ€Deletion sekundäer Amine mithilfe anomerer Amidâ€Reagenzien. Angewandte Chemie, 2021, 133, 19674-19676.	2.0	6
1303	Skeletal Editing—Nitrogen Deletion of Secondary Amines by Anomeric Amide Reagents. Angewandte Chemie - International Edition, 2021, 60, 19522-19524.	13.8	20
1304	Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. Journal of Organic Chemistry, 2021, 86, 13955-13982.	3.2	3
1305	Silver-Catalyzed N–H Functionalization of Aryl/Aryl Diazoalkanes with Anilines. Organic Letters, 2021, 23, 6719-6723.	4.6	4
1306	Silver carbenoids derived from diazo compounds: A historical perspective on challenges and opportunities. Chem Catalysis, 2021, 1, 599-630.	6.1	34
1307	Rhodium(III)â€Catalyzed Sequential Câ^'H Activation and Cyclization from <i>N</i> â€Methoxyarylamides and 3â€Diazooxindoles for the Synthesis of Isochromenoindolones. Chemistry - an Asian Journal, 2021, 16, 3179-3187.	3.3	7
1308	Construction of Si‣tereogenic Silanes through Câ^'H Activation Approach. European Journal of Organic Chemistry, 2021, 2021, 6006-6014.	2.4	40
1309	Radical Cyclization of 1, <i>n</i> â€Enynes and 1, <i>n</i> â€Dienes for the Synthesis of 2â€Pyrrolidone. Chemistry - an Asian Journal, 2021, 16, 3068-3081.	3.3	21
1310	Construction of Câ^'C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 25714-25718.	13.8	23
1311	Construction of Câ \in C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ \in H Bonds. Angewandte Chemie, 0, , .	2.0	3

#	Article	IF	CITATIONS
1312	Synthesis and characterisation of dirhodium(II) tetraacetates bearing axial ferrocene ligands. Journal of Organometallic Chemistry, 2021, 953, 122065.	1.8	6
1313	Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catalysis, 2021, 11, 1570-1577.	11.2	25
1314	Recent advances in [3+2] cycloaddition of allenes with 1,3-carbonyl ylides; Rh(<scp>ii</scp>)-catalyzed access to bridged polyoxocarbocyles. New Journal of Chemistry, 2021, 45, 11018-11029.	2.8	10
1315	Rh(<scp>iii</scp>)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C–H activation/annulation reactions: organelle specific mitochondrial staining applications. Organic and Biomolecular Chemistry, 2021, 19, 5413-5425.	2.8	5
1316	Catalyst-free synthesis of oxazol-2(3 <i>H</i>)-ones from sulfilimines and diazo compounds through a tandem rearrangement/aziridination/ring-expansion reaction. Organic Chemistry Frontiers, 2021, 8, 3314-3319.	4.5	6
1320	Directed CH Functionalizations. , 0, , 297-312.		1
1321	Asymmetric Copperâ€Catalyzed Carbomagnesiation of Cyclopropenes. Angewandte Chemie, 2017, 129, 6887-6891.	2.0	60
1322	An efficient method to prepare sulfoxonium ylides and their reactivity studies using copper powder and Sc(III) as catalysts: Molecular and electronic structure analysis. Applied Organometallic Chemistry, 2020, 34, e5748.	3.5	10
1323	Molecularly Controlled Catalysis – Targeting Synergies Between Local and Nonâ€local Environments. ChemCatChem, 2021, 13, 1659-1682.	3.7	20
1324	Solid-state NMR Studies of Supported Transition Metal Catalysts and Nanoparticles. , 2017, , 1-21.		1
1325	Catalysis by Fe=X Complexes (X = NR, CR2). Topics in Organometallic Chemistry, 2011, , 111-138.	0.7	47
1326	Conformational Control in Dirhodium(II) Paddlewheel Catalysts Supported by Chalcogen-Bonding Interactions for Stereoselective Intramolecular C–H Insertion Reactions. ACS Catalysis, 2021, 11, 568-578.	11.2	15
1327	Asymmetric Câ \in "H Bond Insertion Reactions. RSC Catalysis Series, 2015, , 1-66.	0.1	8
1328	Rh(<scp>iii</scp>)-catalyzed regioselective intermolecular <i>N</i> -methylene Csp ³ –H bond carbenoid insertion. Chemical Science, 2018, 9, 985-989.	7.4	37
1329	Protein interactions of dirhodium tetraacetate: a structural study. Dalton Transactions, 2020, 49, 2412-2416.	3.3	29
1330	α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application. Current Organic Chemistry, 2019, 23, 530-615.	1.6	7
1331	Dirhodium(II) Tetrakis[N-benzene-fused Phthaloyl-(S)-piperidinonate] as a Chiral Lewis Acid: Catalytic Enantioselective Aldol Reactions of Acetate-derived Silylketene Acetals and Aldehydes. Heterocycles, 2005, 66, 567.	0.7	13
1332	Rh2(Opiv)4-Catalyzed Reactions of Diazo Compound Derived from Meldrum's Acid and Styrenes. Efficient Synthesis of Cyclopropanes. Bulletin of the Korean Chemical Society, 2006, 27, 503-507.	1.9	19

#	Article	IF	CITATIONS
1333	Correlation of Electrochemical Characteristics and Catalytic Activity of Rh ₂ (OAc) ₄ in the Presence of Various Phosphines. Bulletin of the Korean Chemical Society, 2008, 29, 1624-1626.	1.9	10
1334	Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds. Bulletin of the Korean Chemical Society, 2013, 34, 1735-1740.	1.9	10
1335	Carbon-Carbon and Carbon-Hydrogen Bond Transformations Mediated by Highly Reactive Radicals and Their Application to the Synthesis of Bioactive Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 665-676.	0.1	5
1336	Synthesis of Biologically Active Natural Products by Means of C-H Insertion Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 171-180.	0.1	1
1337	DFT study on Ir-quinoid catalyzed C–H functionalization: new radical reactivity or direct carbene transfer?. Chemical Communications, 2021, 57, 11370-11373.	4.1	3
1338	Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron, 2021, 101, 132478.	1.9	44
1339	Rhodium atalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie, 2022, 134, .	2.0	15
1340	Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C–H Alkynylation. Organic Letters, 2021, 23, 8132-8137.	4.6	34
1341	Rhodiumâ€Catalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie - International Edition, 2022, 61, .	13.8	77
1343	Stickstofffixierung. , 2010, , 314-346.		0
1344	Spin Forbidden Reaction Mechanism of Th Activation of C ₂ H ₄ in Gas Phase. Journal of Advances in Physical Chemistry, 2016, 05, 112-121.	0.1	0
1348	C C Bond Formation Through C-H Activation. , 2021, , .		0
1349	Uncommon carbene insertion reactions. Chemical Science, 2021, 12, 15790-15801.	7.4	43
1350	Formation of Osmium Alkylidene, Alkylidyne, and Dinitrogen Complexes from Reactions of OsCl2(PPh3)3 with Diazoalkanes. Organometallics, 0, , .	2.3	0
1351	Rhodium atalyzed Cascade Reactions using Diazo Compounds as a Carbene Precursor to Construct Diverse Heterocycles. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	12
1352	Pincer iridium(III)-catalyzed enantioselective C(sp3)-H functionalization via carbenoid C H insertion of 3-diazooxindoles with 1,4-cyclohexadiene. Chinese Chemical Letters, 2022, 33, 2437-2441.	9.0	7
1353	Rhodium-catalyzed C–H activation/cyclization of aryl sulfoximines with iodonium ylides towards polycyclic 1,2-benzothiazines. Organic and Biomolecular Chemistry, 2021, 19, 10085-10089.	2.8	11
1354	Understanding diversified chemoseletivities in Rh2(II)-catalyzed intramolecular annulation reactions of diazo and N-Sulfonyl-1,2,3-triazole compounds: A DFT study. Molecular Catalysis, 2022, 517, 112047.	2.0	1

#	Article	IF	CITATIONS
1355	Stable thiolate adducts of Rh2(OAc)4 – assembly of hexametallic Ni4Rh2 complexes. Dalton Transactions, 2021, 51, 59-62.	3.3	1
1356	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	18.8	18
1357	Mechanism of Ligandâ€Controlled Chemoselectivity‣witchable Niâ€Catalyzed Câ^'N Crossâ€Coupling of Amine. ChemistrySelect, 2022, 7, .	1.5	0
1358	Palladium-Catalyzed Migratory Insertion of Carbenes and C–C Cleavage of Cycloalkanecarboxamides. Organic Letters, 2022, 24, 536-541.	4.6	10
1359	Rh ₂ (<scp>ii</scp>)-catalyzed enantioselective intramolecular Büchner reaction and aromatic substitution of donor–donor carbenes. Chemical Science, 2022, 13, 1992-2000.	7.4	28
1360	Synthetic Applications of Carbene and Nitrene C H Insertion. , 2022, , .		Ο
1361	Selenonium ylides: synthesis, characterization, and applications to photo-induced cyclopropanation reactions. Photochemical and Photobiological Sciences, 2022, 21, 813-818.	2.9	3
1362	Rh(II)â€catalyzed Intermolecular Benzylic C(sp3)â€H Alkylation of Methylâ€substituted Arenes by Nâ€Arylâ€Î±â€diazoâ€Î²â€amidoesters. ChemCatChem, 0, , .	3.7	0
1363	Deoxygenative Crossâ€Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
1364	Deoxygenative Crossâ€Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie, 0, , .	2.0	2
1365	Asymmetric Catalytic Rearrangements with $\hat{I}\pm$ -Diazocarbonyl Compounds. Accounts of Chemical Research, 2022, 55, 415-428.	15.6	116
1366	Emerging Applications of Aryl Trifluoromethyl Diazoalkanes and Diazirines in Synthetic Transformations. ACS Organic & Inorganic Au, 2022, 2, 83-98.	4.0	18
1367	Elucidating the mechanism and reactivity of the reaction between the donor–acceptor–acceptor 1,3-bisdiazo compound and cinnamyl alcohol catalyzed by Rh2(OAc)4: a DFT study. New Journal of Chemistry, 0, , .	2.8	0
1368	Attempts at generating metathesis-active Fe(IV) and Co(IV) complexes via the reactions of (silox)2M(THF)2, [(silox)3M][Na(THF)2] (MÂ=ÂFe, Co), and related species with propellanes and triphenylboron. Polyhedron, 2022, 215, 115656.	2.2	2
1369	Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chemical Science, 2022, 13, 4327-4333.	7.4	14
1370	Gold nanoparticle-catalysed functionalization of carbon–hydrogen bonds by carbene transfer reactions. Dalton Transactions, 2022, 51, 5250-5256.	3.3	2
1371	Recent advances in transition-metal-catalyzed carbene insertion to C–H bonds. Chemical Society Reviews, 2022, 51, 2759-2852.	38.1	120
1372	Catalysts Based on the Câ `Hâ<â <m and="" application<br="" catalytic="" characterization="" interaction:="" synthesis,="" weak="">of Bis(pyrazolyl)borate Cu(I) Complexes in Carbene Insertion into Heteroatom Hydrogen Bonds. ChemistrySelect, 2022, 7, .</m>	1 1.5	0

CITATION REPORT ARTICLE IF CITATIONS Paddlewheel dirhodium(II) complexes with N-heterocyclic carbene or phosphine ligand: New reactivity 6.8 17 and selectivity. Green Synthesis and Catalysis, 2022, 3, 137-149. Dinitrogen extrusion from diazene in organic synthesis. Chinese Chemical Letters, 2022, 33, 3695-3700. Carboxylic Acid Functionalization Using Sulfoxonium Ylides as a Carbene Source. Journal of Organic 3.2 12 Chemistry, 2022, 87, 10564-10575. Catalytic Bismuth(V)-Mediated Oxidation of Hydrazones into Diazo Compounds. Organic Letters, 2022, 24, 2675-2678. Theoretical study of the substituent effect on the Oâ€"H insertion reaction of copper carbenoids. 1.4 1 Theoretical Chemistry Accounts, 2022, 141, 1. Catalytic Insertion Reactions of αâ€Imino Carbenoids. Chemical Record, 2021, 21, 4032-4058. 5.8 Effects of Axial Solvent Coordination to Dirhodium Complexes on the Reactivity and Selectivity in 2.315 Câ€"H Insertion Reactions: A Computational Study. Organometallics, 2021, 40, 4120-4132. Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Science China Chemistry, 2022, 8.2 65, 912-917. Synthesis of Diazoquinones and Azidophenols via Diazoâ€Transfer Reaction of Phenols. European 2.4 2 Journal of Organic Chemistry, 2022, 2022, . Highly Regioâ€, Stereoâ€, and Enantioselective Copper atalyzed Bâ⁻'H Bond Insertion of αâ€Silylcarbenes: Efficient Access to Chiral Allylic <i>gem</i>â€Silylboranes. Angewandte Chemie, 2022, 134, . Highly Regioâ€, Stereoâ€, and Enantioselective Copperâ€Catalyzed Bâ[^]H Bond Insertion of αâ€Silylcarbenes: Efficiént Access to Chiral Allylic <i>gem</i>â€6ilylboranes. Angéwandte Chemie - International Edition, 13.8 15 2022, 61, . Rhodium(<scp>i</scp>)-catalyzed Câ€"S bond formation <i>via</i> enantioselective carbenoid Sâ€"H insertion: catalytic asymmetric synthesis of α-thioesters. Organic Chemistry Frontiers, 2022, 9, 4.5 3467-3472. Synthesis of functionalized Î³-lactams by a lewis acid catalyzed ketene formation/cyclization/claisen 1.4 2 rearrangement sequence of 5,5-disubstituted Meldrumâ€[™]s acid. Tetrahedron Letters, 2022, 99, 153816. Cobalt Silylenes as Platforms for Catalytic Nitreneâ€Group Transfer by Metalâ€Ligand Cooperation. Angewandte Chemie, 0, , . Cobalt Silylenes as Platforms for Catalytic Nitreneâ€Group Transfer by Metalâ€Ligand Cooperation. 13.8 1 Angewandte Chemie - International Edition, 2022, , . Organometallic catalysis in aqueous and biological environments: harnessing the power of metal 14 carbenes. Chemical Science, 2022, 13, 6478-6495.

1393	Organic Chemistry, 2022, 26, 639-650.	1.6	4	
1394	Rhodium-Catalyzed Enal Transfer with <i>N</i> -Methoxypyridazinium Salts. Organic Letters, 2022, , .	4.6	4	

1.6

4

Application of Aromatic Substituted 2,2,2-Trifluoro Diazoethanes in Organic Reactions. Current

#

1373

1374

1375

1377

1382

1384

1386

1388

1389

1391

1392

#	Article	IF	CITATIONS	
1395	Transition Metal-catalyzed Regioselective Direct C-H Arylations Using Quinone Diazide as Arylating Agent: A Mini Review. Mini-Reviews in Organic Chemistry, 2023, 20, 494-508.	1.3	0	
1396	Rhodium(II)â€Catalyzed Siteâ€Selective Intramolecular Insertion of Aryldiazoacetates into Unactivated Primary C–H Bond: A Direct Route to 2â€Unsubstituted Indanes. Advanced Synthesis and Catalysis, 0, , .	4.3	1	
1397	Transitionâ€Metal atalyzed Remote C(sp ³)â^'H Functionalization Of Carboxylic Acid And Its Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6	
1398	Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chemical Society Reviews, 2022, 51, 5842-5877.	38.1	23	
1399	Recent Advances in the Synthesis of 5â€Membered <i>N</i> â€Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect, 2022, 7, .	1.5	8	
1400	An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp ³ C–H Functionalization via Intramolecular Carbene Insertion. Journal of the American Chemical Society, 2022, 144, 11676-11684.	13.7	11	
1401	Rhodium(I) Carbeneâ€Promoted Enantioselective Câ€H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angewandte Chemie, 0, , .	2.0	4	
1402	Rhodium(I) Carbeneâ€Promoted Enantioselective Câ^'H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11	
1403	Coupling of acceptor-substituted diazo compounds and tertiary thioamides: synthesis of enamino carbonyl compounds and their pharmacological evaluation. RSC Advances, 2022, 12, 19431-19444.	3.6	1	
1404	Solventâ€free, B(C ₆ F ₅) ₃ â€Catalyzed Sâ^'H Insertion of Thiophenols and Thiols with αâ€Diazoesters. Chemistry - an Asian Journal, 2022, 17, .	3.3	5	
1405	Emerging trends in C(sp3)–H borylation. Trends in Chemistry, 2022, 4, 685-698.	8.5	20	
1406	Diazo Compounds: Recent Applications in Synthetic Organic Chemistry and Beyond. SSRN Electronic Journal, 0, , .	0.4	0	
1407	1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chemical Reviews, 2022, 122, 13108-13205.	47.7	71	
1408	Safe, selective, and scalable carbenes. Science, 2022, 377, 580-581.	12.6	0	
1409	Cyclometalated Chiral-at-Ruthenium Catalyst for Enantioselective Ring-Closing C(sp ³)–H Carbene Insertion to Access Chiral Flavanones. ACS Catalysis, 2022, 12, 10304-10312.	11.2	8	
1410	Design, Synthesis, and Evaluation of Extended C ₄ –Symmetric Dirhodium Tetracarboxylate Catalysts. ACS Catalysis, 2022, 12, 10841-10848.	11.2	5	
1411	Chemo―and Regioselective Multiple C(sp2)â^'H Insertions of Malonate Metal Carbenes for Late‣tage Functionalizations of Azahelicenes. Angewandte Chemie, 0, , .	2.0	0	
1412	Chemo―and Regioselective Multiple C(sp ²)â^'H Insertions of Malonate Metal Carbenes for Lateâ€Stage Functionalizations of Azahelicenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6	
C_{1T}	TION	i D	ED.	ODT
----------	-------	-----	-----	-----
CTT A	ATION		FΡ	ORT

#	Article	IF	CITATIONS
1413	Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European Journal of Organic Chemistry, 0, , .	2.4	1
1414	Photochemical Allylation of Alkanes Enabled by Nickel Catalysis. ACS Catalysis, 2022, 12, 10039-10046.	11.2	11
1415	Nickel-Catalyzed Intermolecular Enantioselective Heteroaromatic C–H Alkylation. ACS Catalysis, 2022, 12, 11015-11023.	11.2	9
1416	Furan Synthesis via Triplet Sensitization of Acceptor/Acceptor Diazoalkanes. Advanced Synthesis and Catalysis, 2022, 364, 3149-3154.	4.3	6
1417	Palladium-catalyzed intramolecular enantioselective C(sp ³)–H insertion of donor/donor carbenes. Chemical Science, 2022, 13, 12396-12402.	7.4	3
1418	Diazo Compounds: Recent Applications in Synthetic Organic Chemistry and Beyond. SSRN Electronic Journal, 0, , .	0.4	0
1419	Mechanism of Coupling of Methylidene to Ethylene Ligands in Dimetallic Assemblies; Computational Investigation of a Model for a Key Step in Catalytic C ₁ Chemistry. Journal of the American Chemical Society, 2022, 144, 18672-18687.	13.7	2
1420	Coinage metal-catalyzed carbo- and heterocyclizations involving alkenyl carbene intermediates as C3 synthons. Tetrahedron Letters, 2022, , 154156.	1.4	0
1421	Catalytic Synthesis of Cyclopropenium Cations with Rh-Carbynoids. Journal of the American Chemical Society, 2022, 144, 16737-16743.	13.7	18
1422	Rapid and Accurate Estimation of Activation Free Energy in Hydrogen Atom Transfer-Based C–H Activation Reactions: From Empirical Model to Artificial Neural Networks. ACS Omega, 2022, 7, 34858-34867.	3.5	5
1423	Diazo compounds: Recent applications in synthetic organic chemistry and beyond. Tetrahedron Letters, 2022, 108, 154135.	1.4	16
1432	Heterometallic bond activation enabled by unsymmetrical ligand scaffolds: bridging the opposites. Chemical Science, 2022, 13, 14008-14031.	7.4	7
1433	A <scp>Copperâ€Catalyzed</scp> [5+1] Cycloaddition of Terminal Alkynes with Diazo Esters through a Tandem 1, <scp> 5―<i>H</i> â€Shift </scp> Cyclization. Chinese Journal of Chemistry, 0, , .	4.9	0
1434	Asymmetric Remote <i>meta</i> -C–H Activation Controlled by a Chiral Ligand. ACS Catalysis, 2022, 12, 13435-13445.	11.2	7
1435	Ru― Rh―and Irâ€Catalyzed Enantioselective sp ³ Câ^'H Functionalization. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
1436	Iron atalysed Carbene Transfer to Isocyanides as a Platform for Heterocycle Synthesis. Chemistry - A European Journal, 2023, 29, .	3.3	9
1437	Cu(I)-catalyzed synthesis of spiro[isoquinoline-4,2'-[1,3]oxazin]-3-ones via ring expansion reactions of isoxazoles with 4-diazoisoquinolin-3-ones. Tetrahedron, 2022, , 133092.	1.9	3
1438	Research Progress on Enantioselective Desymmetrization Reactions Involving Metal Carbenes. Chinese Journal of Organic Chemistry, 2022, 42, 3295.	1.3	4

#	Article	IF	CITATIONS
1439	Catalytic reactions for enantioselective transfers of donor-substituted carbenes. Chem Catalysis, 2022, 2, 3112-3139.	6.1	6
1440	Electrophotocatalytic Decoupled Radical Relay Enables Highly Efficient and Enantioselective Benzylic C–H Functionalization. Journal of the American Chemical Society, 2022, 144, 21674-21682.	13.7	42
1441	Synthesis of Functionalized Indolobenzazepinones via Sc(OTf) ₃ -Induced Ring Expansion/Annulation Reactions of 4-Diazoisoquinolin-3-ones with Isatins. Journal of Organic Chemistry, 2022, 87, 15938-15946.	3.2	1
1442	Visible-light-induced organocatalytic enantioselective N–H insertion of α-diazoesters enabled by indirect free carbene capture. Chemical Science, 2023, 14, 843-848.	7.4	15
1443	What is a cross-coupling? An argument for a universal definition. Tetrahedron, 2023, 130, 133176.	1.9	2
1444	B(C ₆ F ₅) ₃ -catalyzed oxidation of α-diazoesters using DMF and molecular oxygen as oxygen sources. RSC Advances, 2022, 12, 33584-33588.	3.6	1
1446	The advance in transition metal-catalyzed asymmetric O–H, S–H insertion reactions. Scientia Sinica Chimica, 2023, 53, 447-463.	0.4	2
1448	Continuous Process to Safely Manufacture an Aryldiazoacetate and Its Direct Use in a Dirhodium-Catalyzed Enantioselective Cyclopropanation. Organic Process Research and Development, 2023, 27, 90-104.	2.7	8
1449	α-Aminocarbene-Mediated Si–H Insertion: Deoxygenative Silylation of Aromatic Amides with Silanes. Journal of Organic Chemistry, 2023, 88, 594-601.	3.2	5
1450	Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catalysis, 2023, 13, 132-140.	11.2	4
1451	Au(I)-Catalyzed Formal Intermolecular Carbene Insertion into Vinylic C(sp ²)–H Bonds and Allylic C(sp ³)–H Bonds. ACS Catalysis, 2023, 13, 1554-1561.	11.2	4
1452	Serendipitous synthesis of cross-conjugated dienes by cascade deconstructive esterification of thiomorpholinone-tethered alkenoic acids. RSC Advances, 2023, 13, 3181-3185.	3.6	0
1453	Photocatalyzed alkoxycarbonylmethylation of pyridines with $\hat{I}\pm$ -diazoacetates. Organic Chemistry Frontiers, 0, , .	4.5	0
1454	Scalable Total Syntheses of (\hat{A}_{\pm}) -Catellatolactams A and B. Organic Letters, 2023, 25, 1003-1007.	4.6	1
1455	Recent progress in remote γ-C(sp ³)–H functionalization of carboxylic acid derivatives. Scientia Sinica Chimica, 2023, , .	0.4	0
1456	Theoretical Study on the Copper-Catalyzed ortho-Selective C-H Functionalization of Naphthols with α-Phenyl-α-Diazoesters. Molecules, 2023, 28, 1767.	3.8	1
1457	Rhodium-Catalyzed Allylic C–H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Organic Letters, 2023, 25, 1257-1262.	4.6	6
1458	Effects of axial C-donor ligands on metalloporphyrin-catalyzed carbene and nitrene transfer reactions. Advances in Organometallic Chemistry, 2023, , 195-259.	1.0	0

#	Article	IF	CITATIONS
1459	Generating Fischer-Type Rh-Carbenes with Rh-Carbynoids. Journal of the American Chemical Society, 2023, 145, 4975-4981.	13.7	12
1460	Recent Development in the Catalytic Applications of Pdâ€NHC (NHC=Nâ€Heterocyclic Carbene) Compounds in Amide Câ°'N Activation Reactions. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	2
1461	Dirhodium C–H Functionalization of Hole-Transport Materials. Journal of Organic Chemistry, 2023, 88, 4309-4316.	3.2	0
1462	Fragile intermediate identification and reactivity elucidation in electrochemical oxidative α-C(sp ³)–H functionalization of tertiary amines. Chemical Science, 2023, 14, 4152-4157.	7.4	3
1463	Rhodium-Catalyzed Intramolecular Cyclization to Synthesize 2-Aminobenzofurans via Carbene Metathesis Reactions. Organic Letters, 2023, 25, 2113-2117.	4.6	0
1464	Photo-Induced Carbene Transformations to Heterocycles. Topics in Heterocyclic Chemistry, 2023, , .	0.2	0
1466	Visible-light-mediated catalytic asymmetric synthesis of α-amino esters via free carbene insertion into N H bond. Tetrahedron Letters, 2023, 122, 154496.	1.4	3
1467	Dirhodium: carbene transformations and beyond. Organic Chemistry Frontiers, 2023, 10, 2849-2878.	4.5	8
1468	Diazoalkenes: From an Elusive Intermediate to a Stable Substance Class in Organic Chemistry. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
1469	Diazoalkene – Von einem flüchtigen Intermediat zu einer neuen stabilen Substanzklasse in der Organischen Chemie. Angewandte Chemie, 0, , .	2.0	0
1470	Visible light-mediated photolysis of organic molecules: the case study of diazo compounds. Chemical Communications, 2023, 59, 7346-7360.	4.1	16
1471	α-Diazo-λ ³ -iodanes and α-diazo sulfonium salts: the umpolung of diazo compounds. Chemical Communications, 2023, 59, 8032-8042.	4.1	4
1472	Heterocycles from Donor and Donor/Donor Carbenes. Topics in Heterocyclic Chemistry, 2023, , .	0.2	0
1473	Feng chiral <i>N</i> , <i>N</i> ′-dioxide ligands: uniqueness and impacts. Organic Chemistry Frontiers, 2023, 10, 3676-3683.	4.5	15
1474	Synthesis of atropisomers via transition-metal-catalyzed enantioselective carbene transformations. Trends in Chemistry, 2023, 5, 684-696.	8.5	0
1475	One-Pot Construction of β-Selective Quinolines with γ-Quaternary Carbon from Vinylquinolines with Active Ylides via Pd/Sc/BrÃ,nsted Acid Co-Catalysis. ACS Catalysis, 2023, 13, 6509-6517.	11.2	2
1476	Synthesis of <scp><i>o</i>â€carboranylâ€acylâ€substituted</scp> diazo compounds from B(4)â€acylmethyl carboranes and <scp>2â€azido</scp> â€1, <scp>3â€dimethylimidazolinium</scp> hexafluorophosphate. Bulletin of the Korean Chemical Society, 0, , .	1.9	2
1477	Cross-Linked Crystals of Dirhodium Tetraacetate/RNase A Adduct Can Be Used as Heterogeneous Catalysts. Inorganic Chemistry, 2023, 62, 7515-7524.	4.0	0

#	Article	IF	CITATIONS
1478	Process Development of Heterogeneous Rh Catalyzed Carbene Transfer Reactions Under Continuous Flow Conditions. ChemSusChem, 2023, 16, .	6.8	0
1479	Flow photolysis of aryldiazoacetates leading to dihydrobenzofurans <i>via</i> intramolecular C–H insertion. Organic and Biomolecular Chemistry, 2023, 21, 4770-4780.	2.8	0
1481	Synthesis of 3-aminoquinolines from α-imino rhodium carbenes and 2-aminobenzaldehydes. Organic and Biomolecular Chemistry, 2023, 21, 5935-5938.	2.8	0
1482	Copperâ€Catalyzed Olefinic C(<i>sp</i> ²)â^'H Activation/Carbene Insertion/Ester Hydrolysis/Cyclization with Aryl Diazo Esters for the Synthesis of Multisubstituted Furanones. Advanced Synthesis and Catalysis, 2023, 365, 2601-2606.	4.3	0
1483	Recent Progress in Copper-Catalysed C-C Bond Formations via C(sp2)-H Insertions Using Diazo and Related Compounds. Synthesis, 0, , .	2.3	1
1485	Transition metal-catalyzed reactivity of carbenes with boronic acid derivatives for arylation (alkylation) and beyond. Organic and Biomolecular Chemistry, 2023, 21, 7062-7078.	2.8	2
1486	Rhodium-Catalyzed Asymmetric C–H Functionalization Reactions. Chemical Reviews, 2023, 123, 10079-10134.	47.7	29
1487	Synthetic Strategies toward Lysergic Acid Diethylamide: Ergoline Synthesis via α-Arylation, Borrowing Hydrogen Alkylation, and C–H Insertion. Journal of Organic Chemistry, 2023, 88, 13712-13719.	3.2	4
1488	C–F bond functionalizations <i>via</i> fluorinated carbenes. Organic Chemistry Frontiers, 0, , .	4.5	0
1489	Electrochemical Late-Stage Functionalization. Chemical Reviews, 2023, 123, 11269-11335.	47.7	15
1490	A Carbene Relay Strategy for Cascade Insertion Reactions. Angewandte Chemie, 2023, 135, .	2.0	2
1491	A Carbene Relay Strategy for Cascade Insertion Reactions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1492	Is Enol Always the Culprit? The Curious Case of High Enantioselectivity in a Chiral Rh(II) Complex Catalyzed Carbene Insertion Reaction. Chemistry - A European Journal, 2023, 29, .	3.3	0
1493	Recent Advances in Transition Metal Catalyzed Synthesis of C3-Substitution-free 2-Oxindole Derivatives. Mini-Reviews in Organic Chemistry, 2023, 20, .	1.3	0
1494	A Visible-Light-Induced Cyclization Reaction. Current Organic Chemistry, 2023, 27, 1020-1035.	1.6	0
1495	Elucidating the Electronic Nature of Rhâ€basedPaddlewheel Catalysts from 103Rh NMRChemical Shifts: Insights from QuantumMechanical Calculations. Chemistry - A European Journal, 0, , .	3.3	1
1496	Generation and Aerobic Oxidation of Azavinyl Captodative Radicals. Journal of the American Chemical Society, 0, , .	13.7	0
1497	Enantioselective Rh(I)-Catalyzed C–H Arylation of Ferroceneformaldehydes. ACS Central Science, 2023, 9, 2036-2043.	11.3	4

#	Article	IF	CITATIONS
1498	Diazo-Transfer Reaction of Nonactivated Ketones with 2-Azido-1,3-bis(2,6-diisopropylphenyl)imidazolium Hexafluorophosphate (IPrAP). Journal of Organic Chemistry, 0, , .	3.2	1
1499	Catalytic, asymmetric carbon–nitrogen bond formation using metal nitrenoids: from metal–ligand complexes <i>via</i> metalloporphyrins to enzymes. Chemical Science, 2023, 14, 12447-12476.	7.4	2
1500	Asymmetric Nickel-Catalyzed Reactions. , 2023, , .		0
1501	Recent Advances in Monofluorinated Carbenes, Carbenoids, Ylides, and Related Species. Chemistry - A European Journal, 2023, 29, .	3.3	0
1502	Rh(I)-Catalyzed Cascade Carbonylative Cyclization of Propargyl α-Diazoindolacetates for Construction of Carbazoles. Organic Letters, 2023, 25, 8077-8082.	4.6	1
1503	Ruthenium-Catalyzed Chemo-Selective Carbene Insertion into C–H Bond of Styrene over Cyclopropanation: C–C Bond Formation. Journal of Organic Chemistry, 2023, 88, 15817-15831.	3.2	0
1504	Regio- and stereoselective hydrosilylation of alkynes with alkoxysilanes for the synthesis of β-(<i>Z</i>) vinylsilanes catalyzed by a dirhodium(<scp>ii</scp>)/XantPhos complex. Organic Chemistry Frontiers, 2024, 11, 448-457.	4.5	1
1505	Mechanistic Insight into Palladiumâ€Catalyzed Asymmetric Alkylation of Indoles with Diazoesters Employing Bipyridineâ€ <i>N</i> , <i>N'</i> â€dioxides as Chiral Controllers. Advanced Synthesis and Catalysis, 0, , .	4.3	0
1507	Substrate-Controlled Regioselective Alkylation of 4-Hydroxycoumarin with Diazo Compounds through TfOH Catalysis. Synlett, 0, , .	1.8	0
1508	Photoredox/copper-catalyzed formal cyclopropanation of olefins. Organic Chemistry Frontiers, 2024, 11, 1062-1068.	4.5	1
1509	Copper-Catalyzed Carbonylation Reactions: A Personal Account. Synthesis, 0, , .	2.3	0
1510	Enzymatic Assembly of Diverse Lactone Structures: An Intramolecular C–H Functionalization Strategy. Journal of the American Chemical Society, 2024, 146, 1580-1587.	13.7	1
1511	A stable Copper-Modified silica microsphere catalyst for the synthesis of N-substituted carbazoles and organosilanes. Journal of Catalysis, 2024, 429, 115294.	6.2	0
1512	Accessing Functionalized Furans from Reacting Enynones and Enynals through Furyl Metal Carbenes. Asian Journal of Organic Chemistry, 2024, 13, .	2.7	0
1513	Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. Journal of the American Chemical Society, 2024, 146, 5605-5613.	13.7	0
1514	Asymmetric Carbene Transformations for the Construction of All arbon Quaternary Centers.	3.3	0