Regulation of endospore formation in Bacillus subtilis

Nature Reviews Microbiology 1, 117-126 DOI: 10.1038/nrmicro750

Citation Report

#	Article	IF	CITATIONS
1	Emerging Applications of Bacterial Spores in Nanobiotechnology. , 2003, 1, 6.		75
2	Genetic analysis of the Bacillus subtilis sigG promoter, which controls the sporulation-specific transcription factor Ïf G. Microbiology (United Kingdom), 2004, 150, 2277-2287.	0.7	10
3	Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes and Development, 2004, 18, 2916-2928.	2.7	93
4	Cell division protein DivIB influences the Spo0J/Soj system of chromosome segregation in Bacillus subtilis. Molecular Microbiology, 2004, 55, 349-367.	1.2	25
5	From fundamental studies of sporulation to applied spore research. Molecular Microbiology, 2004, 55, 330-338.	1.2	25
6	Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Archives of Microbiology, 2004, 181, 255-268.	1.0	44
7	Crystal Structures of the ADP and ATP Bound Forms of the Bacillus Anti-σ Factor SpoIIAB in Complex with the Anti-anti-σ SpoIIAA. Journal of Molecular Biology, 2004, 340, 941-956.	2.0	63
8	Efficient Regulation of σF, the First Sporulation-specific Sigma Factor in B.subtilis. Journal of Molecular Biology, 2004, 342, 1187-1195.	2.0	20
9	The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis. PLoS Biology, 2004, 2, e328.	2.6	308
10	Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 2005, 56, 845-857.	1.2	1,292
11	Differential gene expression in genetically identical sister cells: the initiation of sporulation in genetically identical sister cells: the initiation of sporulation inBacillus subtilisâ€. Molecular Microbiology, 2005, 56, 578-589.	1.2	40
12	Where asymmetry in gene expression originates. Molecular Microbiology, 2005, 57, 611-620.	1.2	29
13	Engulfment-regulated proteolysis of SpollQ: evidence that dual checkpoints control σK activity. Molecular Microbiology, 2005, 58, 102-115.	1.2	42
14	Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-ÏfKduringBacillus subtilisdevelopment. Molecular Microbiology, 2005, 58, 835-846.	1.2	43
15	Alternatives to binary fission in bacteria. Nature Reviews Microbiology, 2005, 3, 214-224.	13.6	175
16	A comparative genomic view of clostridial sporulation and physiology. Nature Reviews Microbiology, 2005, 3, 969-978.	13.6	295
17	Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage φ29. EMBO Journal, 2005, 24, 3647-3657.	3.5	33
18	Removing a bottleneck in theBacillus subtilis biotin pathway: BioA utilizes lysine rather thanS-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Biotechnology and Bioengineering, 2005, 91, 75-83.	1.7	40

TION RE

#	Article	IF	CITATIONS
19	ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 2053-2064.	0.7	33
20	A Gene Encoding a Holin-Like Protein Involved in Spore Morphogenesis and Spore Germination in Bacillus subtilis. Journal of Bacteriology, 2005, 187, 6443-6453.	1.0	13
21	Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 999-1012.	0.7	21
22	Diversity and redundancy in bacterial chromosome segregation mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 497-505.	1.8	34
23	Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiology and Molecular Biology Reviews, 2005, 69, 585-607.	2.9	499
24	Soj Antagonizes Spo0A Activation of Transcription in Bacillus subtilis. Journal of Bacteriology, 2005, 187, 2532-2536.	1.0	9
25	Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology (United Kingdom), 2005, 151, 399-420.	0.7	157
26	Strain development in Bacillus licheniformis: Construction of biologically contained mutants deficient in sporulation and DNA repair. Journal of Biotechnology, 2005, 119, 245-254.	1.9	27
27	Nocturnal Production of Endospores in Natural Populations of Epulopiscium-Like Surgeonfish Symbionts. Journal of Bacteriology, 2005, 187, 7460-7470.	1.0	45
28	Lessons from DNA microarray analysis: the gene expression profile of biofilms. Current Opinion in Microbiology, 2005, 8, 222-227.	2.3	143
29	The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture. Cell, 2005, 120, 577-586.	13.5	155
30	Developmental Commitment in a Bacterium. Cell, 2005, 121, 401-409.	13.5	89
31	Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases. Microbiology and Molecular Biology Reviews, 2006, 70, 910-938.	2.9	592
32	Measurement of Multisite Oxidation Kinetics Reveals an Active Site Conformational Change in SpoOF as a Result of Protein Oxidation. Biochemistry, 2006, 45, 6260-6266.	1.2	31
33	Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site. Cell, 2006, 124, 1025-1037.	13.5	187
34	A Checkpoint Protein That Scans the Chromosome for Damage at the Start of Sporulation in Bacillus subtilis. Cell, 2006, 125, 679-690.	13.5	135
35	Forespore Engulfment Mediated by a Ratchet-Like Mechanism. Cell, 2006, 126, 917-928.	13.5	84
36	Sporulation-specific expression of the yvgW (cadA) gene and the effect of blockage on spore properties in Bacillus subtilis. Gene, 2006, 382, 71-78.	1.0	1

ARTICLE IF CITATIONS # A Branched Pathway Governing the Activation of a Developmental Transcription Factor by Regulated 37 4.5 63 Intramembrane Proteolysis. Molecular Cell, 2006, 23, 25-35. The evolution of development inStreptomycesanalysed by genome comparisons. FEMS Microbiology Reviews, 2006, 30, 651-672. Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus. 40 1.2 44 Molecular Microbiology, 2006, 59, 301-316. Evidence that the SpollIE DNA translocase participates in membrane fusion during cytokinesis and engulfment. Molecular Microbiology, 2006, 59, 1097-1113. Phenotypic variation in bacteria: the role of feedback regulation. Nature Reviews Microbiology, 2006, 42 13.6 443 4, 259-271. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. EMBO Journal, 2006, 25, 3890-3899. 3.5 DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development. EMBO 44 3.5 92 Journal, 2006, 25, 5919-5931. The Enigmatic Cytoarchitecture of Epulopiscium spp.. Microbiology Monographs, 2006, , 285-301. 0.3 Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future 46 1.0 41 Microbiology, 2006, 1, 397-415. The Bacillus subtilis DivIVA Protein Has a Sporulation-Specific Proximity to Spo0J. Journal of 1.0 Bacteriology, 2006, 188, 6039-6043. ExsY and CotY Are Required for the Correct Assembly of the Exosporium and Spore Coat of Bacillus 48 1.0 56 cereus. Journal of Bacteriology, 2006, 188, 7905-7913. Requirement for the Cell Division Protein DivIB in Polar Cell Division and Engulfment during 49 Sporulation in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 7677-7685. Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks. Molecular 50 3.2 53 Systems Biology, 2006, 2, 2006.0005. Localization of the Bacillus subtilis murB Gene within the dcw Cluster Is Important for Growth and 1.0 Sporulation. Journal of Bacteriology, 2006, 188, 1721-1732. Role of Membrane-Bound Thiol–Disulfide Oxidoreductases in Endospore-Forming Bacteria. 52 2.525 Antioxidants and Redox Signaling, 2006, 8, 823-833. Impact of Membrane Fusion and Proteolysis on SpolIQ Dynamics and Interaction with SpolIIAH. Journal of Biological Chemistry, 2007, 282, 2576-2586. Cytological Analysis of the Mother Cell Death Process during Sporulation in Bacillus subtilis. 54 1.0 24 Journal of Bacteriology, 2007, 189, 2561-2565. The LysR-Type Transcriptional Regulator YofA Controls Cell Division through the Regulation of Expression of ftsW in Bacillus subtilis. Journal of Bacteriology, 2007, 189, 5642-5651.

#	Article	IF	Citations
π 56	A Novel Lipolytic Enzyme, YcsK (LipC), Located in the Spore Coat of Bacillus subtilis , Is Involved in Spore Germination. Journal of Bacteriology, 2007, 189, 2369-2375.	1.0	20
57	Isolation and Characterization of Sporulation-Initiation Mutation in theBacillus subtilisprfBGene. Bioscience, Biotechnology and Biochemistry, 2007, 71, 397-406.	0.6	9
58	SpoIVB and CtpB Are Both Forespore Signals in the Activation of the Sporulation Transcription Factor If K in Bacillus subtilis. Journal of Bacteriology, 2007, 189, 6021-6027.	1.0	37
59	Global Gene Expression Profiling of <i>Bacillus subtilis</i> in Response to Ammonium and Tryptophan Starvation as Revealed by Transcriptome and Proteome Analysis. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 121-130.	1.0	20
60	LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology (United Kingdom), 2007, 153, 2530-2540.	0.7	40
61	Essential Internal Promoter in the spoIIIA Locus of Bacillus subtilis. Journal of Bacteriology, 2007, 189, 7181-7189.	1.0	21
63	Structure, Assembly, and Function of the Spore Surface Layers. Annual Review of Microbiology, 2007, 61, 555-588.	2.9	481
64	Dissecting Timing Variability in Yeast Meiosis. Cell, 2007, 131, 544-556.	13.5	131
65	Nonhomologous End-Joining in Bacteria: A Microbial Perspective. Annual Review of Microbiology, 2007, 61, 259-282.	2.9	140
66	TheBacillusandMyxococcusDevelopmental Networks and Their Transcriptional Regulators. Annual Review of Genetics, 2007, 41, 13-39.	3.2	122
68	Evolution of global regulatory networks during a longâ€ŧerm experiment with <i>Escherichia coli</i> . BioEssays, 2007, 29, 846-860.	1.2	134
69	Feature-based reappraisal of theBacillus subtilis exoproteome. Proteomics, 2007, 7, 73-81.	1.3	22
70	Cannibalism and fratricide: mechanisms and raisons d'être. Nature Reviews Microbiology, 2007, 5, 219-229.	13.6	215
71	The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO Journal, 2007, 26, 1444-1455.	3.5	70
72	Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system inBacillus subtilis. Molecular Microbiology, 2007, 65, 103-120.	1.2	73
73	Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation. Molecular Microbiology, 2007, 65, 1534-1546.	1.2	40
74	Division site recognition inEscherichia coliandBacillus subtilis. FEMS Microbiology Reviews, 2007, 31, 311-326.	3.9	55
75	Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochemistry, 2007, 42, 535-541.	1.8	46

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
76	Cell envelope stress response in Gram-positive bacteria. FEMS Microbiology Reviews, 2008, 32, 107-146.	3.9	323	
77	Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 2008, 32, 259-286.	3.9	725	
78	A Procedure for High-Yield Spore Production by Bacillus s ubtilis. Biotechnology Progress, 2008, 21, 1026-1031.	1.3	90	
79	DNA replication during endospore development in Metabacterium polyspora. Molecular Microbiology, 2008, 67, 1360-1370.	1.2	9	
80	The FtsEX ABC transporter directs cellular differentiation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 69, 1018-1028.	1.2	49	
81	tmRNAâ€dependent <i>trans</i> â€translation is required for sporulation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 69, 1491-1498.	1.2	22	
82	Inducible protein degradation in <i>Bacillus subtilis</i> using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Molecular Microbiology, 2008, 70, 1012-1025.	1.2	86	
83	Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. Journal of Allergy and Clinical Immunology, 2008, 122, 307-312.e8.	1.5	65	
84	Structural Biochemistry of a Bacterial Checkpoint Protein Reveals Diadenylate Cyclase Activity Regulated by DNA Recombination Intermediates. Molecular Cell, 2008, 30, 167-178.	4.5	366	
85	Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expression and Purification, 2008, 59, 1-8.	0.6	18	
86	Overproduction and purification of recombinant Bacillus subtilis RNA polymerase. Protein Expression and Purification, 2008, 59, 86-93.	0.6	32	
87	Dynamic Control of the DNA Replication Initiation Protein DnaA by Soj/ParA. Cell, 2008, 135, 74-84.	13.5	189	
88	Sequence analysis of GerM and SpoVS, uncharacterized bacterial â€ sporulation' proteins with widespread phylogenetic distribution. Bioinformatics, 2008, 24, 1793-1797.	1.8	30	
89	Functional Role for a Conserved Aspartate in the SpoOE Signature Motif Involved in the Dephosphorylation of the Bacillus subtilis Sporulation Regulator SpoOA. Journal of Biological Chemistry, 2008, 283, 2962-2972.	1.6	27	
90	Processing of a Membrane Protein Required for Cell-to-Cell Signaling during Endospore Formation in Bacillus subtilis. Journal of Bacteriology, 2008, 190, 7786-7796.	1.0	15	
91	SpollIE strips proteins off the DNA during chromosome translocation. Genes and Development, 2008, 22, 1786-1795.	2.7	63	
92	PSICIC: Noise and Asymmetry in Bacterial Division Revealed by Computational Image Analysis at Sub-Pixel Resolution. PLoS Computational Biology, 2008, 4, e1000233.	1.5	96	
93	The Origins of 168, W23, and Other <i>Bacillus subtilis</i> Legacy Strains. Journal of Bacteriology, 2008, 190, 6983-6995.	1.0	321	

		CITATION R	EPORT	
#	Article		IF	CITATIONS
94	The Solute Carrier 26 Family of Proteins in Epithelial Ion Transport. Physiology, 2008, 23,	104-114.	1.6	166
95	<i>Clostridium perfringens</i> : Sporulation, Spore Resistance and Germination Journal of Microbiology, 2008, 24, 1-8.	n. Bangladesh	0.2	5
97	Lab-Scale production of Bacillus atrophaeus' spores by solid state fermentation in fifferen bioreactors. Brazilian Archives of Biology and Technology, 2009, 52, 159-170.	it types of	0.5	17
98	Cytology of Terminally Differentiated <i>Epulopiscium</i> Mother Cells. DNA and Cell Bio 28, 57-64.	ogy, 2009,	0.9	22
99	Cellular Polarity in Prokaryotic Organisms. Cold Spring Harbor Perspectives in Biology, 20 a003368-a003368.)09, 1,	2.3	49
100	Characterization and subcellular localization of a bacterial flotillin homologue. Microbiolo (United Kingdom), 2009, 155, 1786-1799.	ogy	0.7	92
101	From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference ge decade later. Microbiology (United Kingdom), 2009, 155, 1758-1775.	nome a	0.7	317
102	Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pat Biochemical Society Transactions, 2009, 37, 539-545.	nway.	1.6	35
103	Differential Spo0A-mediated effects on transcription and replication of the related Bacillu phages Nf and I•29 explain their different behaviours in vivo. Nucleic Acids Research, 200	ıs subtilis 9, 37, 4955-4964.	6.5	2
104	Lifeâ€cycle kinetic model for endosporeâ€forming bacteria, including germination and sp Biotechnology and Bioengineering, 2009, 104, 1012-1024.	porulation.	1.7	6
105	Comparative genomic study of spo0E family genes and elucidation of the role of Spo0E i BacillusÂanthracis. Archives of Microbiology, 2009, 191, 241-253.	n	1.0	6
106	Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences, 2 3127-3136.	2009, 66,	2.4	70
107	Bioindicator production with Bacillus atrophaeus' thermal-resistant spores cultivated fermentation. Applied Microbiology and Biotechnology, 2009, 82, 1019-1026.	by solid-state	1.7	10
108	High-density spore production of a B. cereus aquaculture biological agent by nutrient supplementation. Applied Microbiology and Biotechnology, 2009, 83, 59-66.		1.7	25
109	SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation <i>Bacillus subtilis</i> . Molecular Microbiology, 2009, 73, 963-974.	in	1.2	72
110	The coat morphogenetic protein SpoVID is necessary for spore encasement in <i>Bacillus Molecular Microbiology, 2009, 74, 634-649.</i>	subtilis.	1.2	64
111	Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus s EMBO Journal, 2009, 28, 830-842.	ubtilis.	3.5	171
112	Different responses to SpoOAâ€mediated suppression of the related <i>Bacillus subtilis< and φ29. Environmental Microbiology, 2009, 11, 1137-1149.</i>	/i> phages Nf	1.8	8

#	Article	IF	Citations
113	The Bacillus anthracis spore. Molecular Aspects of Medicine, 2009, 30, 368-373.	2.7	82
114	Crystal Structure of SpoVT, the Final Modulator of Gene Expression during Spore Development in Bacillus subtilis. Journal of Molecular Biology, 2009, 386, 962-975.	2.0	18
115	Bacterial landlines: contact-dependent signaling in bacterial populations. Current Opinion in Microbiology, 2009, 12, 177-181.	2.3	53
116	Cannibalism enhances biofilm development in <i>Bacillus subtilis</i> . Molecular Microbiology, 2009, 74, 609-618.	1.2	179
119	The stressosome: molecular architecture of a signalling hub. Biochemical Society Transactions, 2010, 38, 928-933.	1.6	29
120	Role of the Y-Family DNA Polymerases YqjH and YqjW in Protecting Sporulating BacillusÂsubtilis Cells from DNA Damage. Current Microbiology, 2010, 60, 263-267.	1.0	26
121	Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins. Journal of Membrane Biology, 2010, 235, 145-162.	1.0	10
122	Reduction of a detailed biological signaling model. Procedia Computer Science, 2010, 1, 987-996.	1.2	0
123	Growth, cell division and sporulation in mycobacteria. Antonie Van Leeuwenhoek, 2010, 98, 165-177.	0.7	23
124	Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics, 2010, 11, 332.	1.2	143
125	Hierarchical Evolution of the Bacterial Sporulation Network. Current Biology, 2010, 20, R735-R745.	1.8	183
127	Penicillin-binding protein SpoVD disulphide is a target for StoA in <i>Bacillus subtilis</i> forespores. Molecular Microbiology, 2010, 75, 46-60.	1.2	17
128	Gene position in a long operon governs motility development in <i>Bacillus subtilis</i> . Molecular Microbiology, 2010, 76, 273-285.	1.2	65
129	How mathematical modelling elucidates signalling in Bacillus subtilis. Molecular Microbiology, 2010, 77, 1083-1095.	1.2	11
131	A Global Metabolic Shift Is Linked to Salmonella Multicellular Development. PLoS ONE, 2010, 5, e11814.	1.1	66
132	A highly coordinated cell wall degradation machine governs spore morphogenesis in <i>Bacillus subtilis</i> . Genes and Development, 2010, 24, 411-422.	2.7	91
133	Dynamic SpoIIIE assembly mediates septal membrane fission during <i>Bacillus subtilis</i> sporulation. Genes and Development, 2010, 24, 1160-1172.	2.7	60
134	From spores to antibiotics via the cell cycle. Microbiology (United Kingdom), 2010, 156, 1-13.	0.7	20

#	Article	IF	Citations
135	Expression of soluble, active fragments of the morphogenetic protein SpollE from Bacillus subtilis using a library-based construct screen. Protein Engineering, Design and Selection, 2010, 23, 817-825.	1.0	10
136	A Comprehensive Proteomics and Transcriptomics Analysis of <i>Bacillus subtilis</i> Salt Stress Adaptation. Journal of Bacteriology, 2010, 192, 870-882.	1.0	175
137	Lethal protein produced in response to competition between sibling bacterial colonies. Proceedings of the United States of America, 2010, 107, 6258-6263.	3.3	52
138	Protein Subcellular Localization in Bacteria. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000307-a000307.	2.3	163
139	SpoIID-Mediated Peptidoglycan Degradation Is Required throughout Engulfment during <i>Bacillus subtilis</i> Sporulation. Journal of Bacteriology, 2010, 192, 3174-3186.	1.0	43
140	Akinetes: Dormant Cells of Cyanobacteria. Topics in Current Genetics, 2010, , 5-27.	0.7	76
141	<i>Bacillus subtilis</i> Spore Coat Protein LipC Is a Phospholipase B. Bioscience, Biotechnology and Biochemistry, 2010, 74, 24-30.	0.6	12
142	Expression and localization of SpoIISA toxin during the life cycle of Bacillus subtilis. Research in Microbiology, 2010, 161, 750-756.	1.0	5
143	Multi-species integrative biclustering. Genome Biology, 2010, 11, R96.	13.9	38
144	Isolation and characterization of <i>Bacillus subtilis</i> KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology, 2011, 21, 705-720.	0.5	61
145	Peptidoglycan Remodeling and Conversion of an Inner Membrane into an Outer Membrane during Sporulation. Cell, 2011, 146, 799-812.	13.5	98
146	Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked Phosphorylation and Second Messenger Networks. Molecular Cell, 2011, 43, 550-560.	4.5	169
147	Bistable responses in bacterial genetic networks: Designs and dynamical consequences. Mathematical Biosciences, 2011, 231, 76-89.	0.9	60
148	Inferring Biological Mechanisms by Data-Based Mathematical Modelling: Compartment-Specific Gene Activation during Sporulation in <i>Bacillus subtilis</i> as a Test Case. Advances in Bioinformatics, 2011, 2011, 1-12.	5.7	1
149	Cannibalism: a social behavior in sporulating <i>Bacillus subtilis</i> . FEMS Microbiology Reviews, 2011, 35, 415-424.	3.9	143
150	Bacillus probiotics. Food Microbiology, 2011, 28, 214-220.	2.1	648
151	Origin of bacterial spores contaminating foods. Food Microbiology, 2011, 28, 177-182.	2.1	107
152	Bacterial abl-like genes: production of the archaeal osmolyte \$\$ {N^{varepsilon }}{ext{ - acetyl - }}eta {ext{ - lysine}} \$\$ by homologous overexpression of the yodP–kamA genes in Bacillus subtilis. Applied Microbiology and Biotechnology, 2011, 91, 689-697.	1.7	4

#	ARTICLE	IF	CITATIONS
153	Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei. BMC Microbiology, 2011, 11, 119.	1.3	37
154	Adaptation of cells to new environments. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 544-561.	6.6	148
155	Surviving Bacterial Sibling Rivalry: Inducible and Reversible Phenotypic Switching in Paenibacillus dendritiformis. MBio, 2011, 2, e00069-11.	1.8	19
156	Surface architecture of endospores of the <i>Bacillus cereus/anthracis/thuringiensis</i> family at the subnanometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16014-16019.	3.3	67
157	Modeling sporulation decisions in Bacillus subtilis as optimal evolutionary decision-making. , 2011, , .		1
158	SpollE Is Necessary for Asymmetric Division, Sporulation, and Expression of σ ^F , σ ^E , and σ ^G but Does Not Control Solvent Production in Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 2011, 193, 5130-5137.	1.0	47
159	The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile. Journal of Bacteriology, 2011, 193, 3186-3196.	1.0	193
160	The <i>spollE</i> Homolog of Epulopiscium sp. Type B Is Expressed Early in Intracellular Offspring Development. Journal of Bacteriology, 2011, 193, 2642-2646.	1.0	8
161	The Nudix Hydrolase CDP-Chase, a CDP-Choline Pyrophosphatase, Is an Asymmetric Dimer with Two Distinct Enzymatic Activities. Journal of Bacteriology, 2011, 193, 3175-3185.	1.0	10
162	Inactivation of σ ^F in Clostridium acetobutylicum ATCC 824 Blocks Sporulation Prior to Asymmetric Division and Abolishes σ ^E and σ ^G Protein Expression but Does Not Block Solvent Formation. Journal of Bacteriology, 2011, 193, 2429-2440.	1.0	62
163	CsfG, a sporulation-specific, small non-coding RNA highly conserved in endospore formers. RNA Biology, 2011, 8, 358-364.	1.5	32
164	Progesterone Analogs Influence Germination of Clostridium sordellii and Clostridium difficile Spores In Vitro. Journal of Bacteriology, 2011, 193, 2776-2783.	1.0	34
165	Spo0Aâ^1⁄4P Imposes a Temporal Gate for the Bimodal Expression of Competence in Bacillus subtilis. PLoS Genetics, 2012, 8, e1002586.	1.5	44
166	Relacin, a Novel Antibacterial Agent Targeting the Stringent Response. PLoS Pathogens, 2012, 8, e1002925.	2.1	130
167	Ultrasensitivity of the <i>Bacillus subtilis</i> sporulation decision. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3513-22.	3.3	62
168	Global Transcriptional Control by NsrR in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 1679-1688.	1.0	20
169	Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. Journal of Bacteriology, 2012, 194, 4494-4504.	1.0	279
170	RefZ Facilitates the Switch from Medial to Polar Division during Spore Formation in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 4608-4618.	1.0	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
171	Are Uncultivated Bacteria Really Uncultivable?. Microbes and Environments, 2012, 27,	356-366.	0.7	123
172	Effect of the Bacillus atrophaeus subsp. globigii SpoOF H101R Mutation on Strain Fitn Environmental Microbiology, 2012, 78, 8601-8610.	ess. Applied and	1.4	1
173	Genomic determinants of sporulation in <i>Bacilli</i> and <i>Clostridia</i> : towards the of sporulationâ€specific genes. Environmental Microbiology, 2012, 14, 2870-2890.	ne minimal set	1.8	235
174	Alternative Excision Repair of Ultraviolet B- and C-Induced DNA Damage in Dormant ar Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 6096-6104.	nd Developing	1.0	23
175	Coatings Capable of Germinating and Neutralizing <i>Bacillus anthracis</i> Endospore Materials & Interfaces, 2012, 4, 738-743.	es. ACS Applied	4.0	8
176	The sporulation control gene spo0M of Bacillus subtilis is a target of the FtsH metallop Research in Microbiology, 2012, 163, 114-118.	protease.	1.0	6
177	Chromosome Replication and Segregation in Bacteria. Annual Review of Genetics, 201	2, 46, 121-143.	3.2	194
178	Structure of the Phosphatase Domain of the Cell Fate Determinant SpollE from Bacillu Journal of Molecular Biology, 2012, 415, 343-358.	s subtilis.	2.0	27
179	RNA Dynamics in Aging Bacterial Spores. Cell, 2012, 148, 139-149.		13.5	93
180	Role of the gerA operon in L-alanine germination of Bacillus licheniformisspores. BMC 2012, 12, 34.	Microbiology,	1.3	17
181	DNA Replication and Genomic Architecture of Very Large Bacteria. Annual Review of N 2012, 66, 197-212.	licrobiology,	2.9	46
182	Bacterial outer membrane evolution via sporulation?. Nature Chemical Biology, 2012,	8, 14-18.	3.9	22
183	Pleiomorphism in Mycobacterium. Advances in Applied Microbiology, 2012, 80, 81-11	2.	1.3	4
184	Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures us cytometry-based proteomics approach. Applied Microbiology and Biotechnology, 2012	ing a flow 2, 96, 1301-1312.	1.7	42
185	C. difficile 630Δerm Spo0A Regulates Sporulation, but Does Not Contribute to Toxin F Direct High-Affinity Binding to Target DNA. PLoS ONE, 2012, 7, e48608.	Production, by	1.1	75
186	Fermentation Processes Using Lactic Acid Bacteria Producing Bacteriocins for Preserva Improving Functional Properties of Food Products. , 2012, , .	ition and		9
187	Physical Interaction between Coat Morphogenetic Proteins SpoVID and CotE Is Neces Encasement in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 4941-4950.	sary for Spore	1.0	30
188	Isolation and characterisation of <i>Bacillus amyloliquefaciens</i> S13-3 as a biological for anthracnose caused by <i>Colletotrichum gloeosporioides</i> Biocontrol Science a Technology, 2012, 22, 697-709.	control agent and	0.5	31

#	Article	IF	CITATIONS
189	Dynamics of spore coat morphogenesis in <i>Bacillus subtilis</i> . Molecular Microbiology, 2012, 83, 245-260.	1.2	110
190	Structure and function of the bacterial AAA protease FtsH. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 40-48.	1.9	153
191	Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. Journal of Applied Microbiology, 2012, 112, 954-965.	1.4	66
192	Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends in Cell Biology, 2012, 22, 14-21.	3.6	6
193	Small proteins link coat and cortex assembly during sporulation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2012, 84, 682-696.	1.2	44
194	Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnology Letters, 2012, 34, 729-735.	1.1	27
195	Biological Consequences and Advantages of Asymmetric Bacterial Growth. Annual Review of Microbiology, 2013, 67, 417-435.	2.9	64
196	Optimization of Inocula Conditions for Enhanced Biosurfactant Production by Bacillus subtilis SPB1, in Submerged Culture, Using Box–Behnken Design. Probiotics and Antimicrobial Proteins, 2013, 5, 92-98.	1.9	25
197	In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. Journal of Proteome Research, 2013, 12, 4507-4521.	1.8	72
198	Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: A molecular rotor/FLIM study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2436-2443.	1.4	45
199	<scp>Spo</scp> 0 <scp>A</scp> regulates chromosome copy number during sporulation by directly binding to the origin of replication in <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 87, 925-938.	1.2	32
200	The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. Journal of Biological Engineering, 2013, 7, 29.	2.0	195
201	Activation of Bacillus spores at moderately elevated temperatures (30–33°C). Antonie Van Leeuwenhoek, 2013, 103, 693-700.	0.7	5
202	Membrane Remodeling: FisB Will Do In a Pinch. Current Biology, 2013, 23, R251-R253.	1.8	3
203	Programmed Heterogeneity: Epigenetic Mechanisms in Bacteria. Journal of Biological Chemistry, 2013, 288, 13929-13935.	1.6	193
204	CtpB Assembles a Gated Protease Tunnel Regulating Cell-Cell Signaling during Spore Formation in Bacillus subtilis. Cell, 2013, 155, 647-658.	13.5	31
205	General and Regulatory Proteolysis in Bacillus subtilis. Sub-Cellular Biochemistry, 2013, 66, 73-103.	1.0	14
206	<scp>Spo0A</scp> links <i>de novo</i> fatty acid synthesis to sporulation and biofilm development in <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 87, 348-367.	1.2	65

#	Article	IF	CITATIONS
207	Cell-Cell Interactions. , 2013, , 511-528.		0
208	Peptidoglycan transformations during <i><scp>B</scp>acillus subtilis</i> sporulation. Molecular Microbiology, 2013, 88, 673-686.	1.2	109
209	The Normalcy of Dormancy: Common Themes in Microbial Quiescence. Cell Host and Microbe, 2013, 13, 643-651.	5.1	277
210	Global Analysis of the Sporulation Pathway of Clostridium difficile. PLoS Genetics, 2013, 9, e1003660.	1.5	219
211	FisB mediates membrane fission during sporulation in <i>Bacillus subtilis</i> . Genes and Development, 2013, 27, 322-334.	2.7	47
212	Molecular Kinetics of Reviving Bacterial Spores. Journal of Bacteriology, 2013, 195, 1875-1882.	1.0	28
213	ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E151-60.	3.3	40
214	Unique Regulatory Mechanism of Sporulation and Enterotoxin Production in Clostridium perfringens. Journal of Bacteriology, 2013, 195, 2931-2936.	1.0	29
215	The Deep Roots of the Rings of Life. Genome Biology and Evolution, 2013, 5, 2440-2448.	1.1	13
216	Quantification of Endospore-Forming Firmicutes by Quantitative PCR with the Functional Gene <i>spo0A</i> . Applied and Environmental Microbiology, 2013, 79, 5302-5312.	1.4	44
217	Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 89, 1039-1052.	1.2	28
218	<i><scp>B</scp>acillus subtilis</i> serine/threonine protein kinase <scp>YabT</scp> is involved in spore development via phosphorylation of a bacterial recombinase. Molecular Microbiology, 2013, 88, 921-935.	1.2	46
219	The <scp>SpoIIQ</scp> landmark protein has different requirements for septal localization and immobilization. Molecular Microbiology, 2013, 89, 1053-1068.	1.2	18
220	Effects of Experimental Exclusion of Scavengers from Carcasses of Anthrax-Infected Herbivores on Bacillus anthracis Sporulation, Survival, and Distribution. Applied and Environmental Microbiology, 2013, 79, 3756-3761.	1.4	48
221	Transcriptional coupling of <scp>DNA</scp> repair in sporulating <i><scp>B</scp>acillus subtilis</i> cells. Molecular Microbiology, 2013, 90, 1088-1099.	1.2	25
222	Benchmarking Various Green Fluorescent Protein Variants in Bacillus subtilis, Streptococcus pneumoniae, and Lactococcus lactis for Live Cell Imaging. Applied and Environmental Microbiology, 2013, 79, 6481-6490.	1.4	110
223	Regulation by Alternative Sigma Factors. , 0, , 31-43.		7
224	The Use and Benefits of Bacillus Based Biological Agents in Aquaculture. , 0, , .		4

#	Article	IF	CITATIONS
225	Transcription of the Lysine-2,3-Aminomutase Gene in the <i>kam</i> Locus of Bacillus thuringiensis subsp. kurstaki HD73 Is Controlled by Both σ ⁵⁴ and σ ^K Factors. Journal of Bacteriology, 2014, 196, 2934-2943.	1.0	12
226	Alternative Sigma Factors SigF, SigE, and SigG Are Essential for Sporulation in Clostridium botulinum ATCC 3502. Applied and Environmental Microbiology, 2014, 80, 5141-5150.	1.4	25
227	Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile. Infection and Immunity, 2014, 82, 4276-4291.	1.0	108
228	Asymmetric Division and Differential Gene Expression during a Bacterial Developmental Program Requires DivIVA. PLoS Genetics, 2014, 10, e1004526.	1.5	52
229	BACTERIA Bacterial Endospores. , 2014, , 160-168.		3
230	Modeling stochastic phenotype switching and betâ€hedging in bacteria: stochastic nonlinear dynamics and critical state identification. Quantitative Biology, 2015, 2, 110-125.	0.3	25
231	Structure and DNA-binding properties of the <i>Bacillus subtilis</i> SpoIIIE DNA translocase revealed by single-molecule and electron microscopies. Nucleic Acids Research, 2014, 42, 2624-2636.	6.5	22
232	Life cycle and spore resistance of spore-forming Bacillus atrophaeus. Microbiological Research, 2014, 169, 931-939.	2.5	83
233	Phenotypic Switching in Biofilm-Forming Marine Bacterium Paenibacillus lautus NE3B01. Current Microbiology, 2014, 68, 648-656.	1.0	17
234	Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria. Aquatic Sciences, 2014, 76, 33-46.	0.6	28
235	In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology (United Kingdom), 2014, 160, 243-260.	0.7	15
236	Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expression and Purification, 2014, 95, 67-76.	0.6	14
237	Regulatory Nascent Polypeptides. , 2014, , .		9
238	The regulatory network controlling spore formation in <i>Clostridium difficile</i> . FEMS Microbiology Letters, 2014, 358, 1-10.	0.7	55
239	Sporulation during Growth in a Gut Isolate of Bacillus subtilis. Journal of Bacteriology, 2014, 196, 4184-4196.	1.0	43
240	Spore formation in <scp><i>B</i></scp> <i>acillus subtilis</i> . Environmental Microbiology Reports, 2014, 6, 212-225.	1.0	285
241	Compartmentalization and organelle formation in bacteria. Current Opinion in Cell Biology, 2014, 26, 132-138.	2.6	100
242	Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 355-360.	3.3	177

#	Article	IF	CITATIONS
243	The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile. Infection and Immunity, 2014, 82, 4222-4232.	1.0	25
244	Fifty Years after the Replicon Hypothesis: Cell-Specific Master Regulators as New Players in Chromosome Replication Control. Journal of Bacteriology, 2014, 196, 2901-2911.	1.0	18
245	Sporulation in Bacteria: Beyond the Standard Model. Microbiology Spectrum, 2014, 2, .	1.2	51
246	Protein Targeting during <i>Bacillus subtilis</i> Sporulation. Microbiology Spectrum, 2014, 2, TBS-0006-2012.	1.2	15
247	Identification and in Vitro Effectivenesstest of Four Isolates of Mercury-resistant Bacteriaas Bioaccumulation Agents of Mercury. Procedia Environmental Sciences, 2015, 28, 258-264.	1.3	10
248	Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis. Frontiers in Microbiology, 2015, 6, 407.	1.5	15
249	Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels. PLoS ONE, 2015, 10, e0118285.	1.1	28
250	Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination. PLoS Pathogens, 2015, 11, e1005239.	2.1	66
251	Eukaryote-like Ser/Thr protein kinase PrkA modulates sporulation via regulating the transcriptional factor ÏfK in Bacillus subtilis. Frontiers in Microbiology, 2015, 06, 382.	1.5	14
252	Mechanisms of forespore formation during polysporogenesis in the anaerobic bacterium Anaerobacter polyendosporus PS-1T. Microbiology, 2015, 84, 616-623.	0.5	1
253	Updates on the sporulation process in Clostridium species. Research in Microbiology, 2015, 166, 225-235.	1.0	41
254	The Clostridium Sporulation Programs: Diversity and Preservation of Endospore Differentiation. Microbiology and Molecular Biology Reviews, 2015, 79, 19-37.	2.9	155
255	Physiological and cell morphology adaptation of <scp><i>B</i></scp> <i>acillus subtilis</i> at nearâ€zero specific growth rates: a transcriptome analysis. Environmental Microbiology, 2015, 17, 346-363.	1.8	26
256	Unraveling the contributions of hydrogen-bonding interactions to the activity of native and non-native ligands in the quorum-sensing receptor LasR. Organic and Biomolecular Chemistry, 2015, 13, 1453-1462.	1.5	25
257	<scp>SpoIIID</scp> â€mediated regulation of σ <scp>^K</scp> function during <scp><i>C</i></scp> <i>lostridium difficile</i> sporulation. Molecular Microbiology, 2015, 95, 189-208.	1.2	66
258	<i>Bacillus</i> and Other Spore-Forming Genera: Variations in Responses and Mechanisms for Survival. Annual Review of Food Science and Technology, 2015, 6, 351-369.	5.1	59
259	Bacillus anthracis and Other Bacillus Species. , 2015, , 1789-1844.		9
260	Chromosomal Arrangement of Phosphorelay Genes Couples Sporulation and DNA Replication. Cell, 2015, 162, 328-337.	13.5	79

#	Article	IF	Citations
261	Quantitative X-ray phase contrast waveguide imaging of bacterial endospores. Journal of Applied Crystallography, 2015, 48, 464-476.	1.9	12
262	Reactance and resistance: main properties to follow the cell differentiation process in Bacillus thuringiensis by dielectric spectroscopy in real time. Applied Microbiology and Biotechnology, 2015, 99, 5439-5450.	1.7	6
263	A plasmid-born Rap-Phr system regulates surfactin production, sporulation and genetic competence in the heterologous host, Bacillus subtilis OKB105. Applied Microbiology and Biotechnology, 2015, 99, 7241-7252.	1.7	37
264	Signaling in Swarming and Aggregating Myxobacteria. Advances in Marine Genomics, 2015, , 469-485.	1.2	3
265	Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, 2015, , .	1.2	18
266	Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans. Journal of Bacteriology, 2015, 197, 2675-2684.	1.0	10
267	Stochastic Switching of Cell Fate in Microbes. Annual Review of Microbiology, 2015, 69, 381-403.	2.9	157
268	Bacterial Dormancy: How to Decide When to Wake Up. Current Biology, 2015, 25, R753-R755.	1.8	27
269	Rapid and quantitative fluorescence detection of pathogenic spore-forming bacteria using a xanthene-Zn(II) complex chemosensor. Sensors and Actuators B: Chemical, 2015, 209, 606-612.	4.0	8
270	Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Applied Microbiology and Biotechnology, 2015, 99, 1011-1022.	1.7	117
271	Impact of <i>Bacillus amyloliquefaciens</i> <scp>S13</scp> â€3 on control of bacterial wilt and powdery mildew in tomato. Pest Management Science, 2015, 71, 722-727.	1.7	23
272	Metabolite profiling and peptidoglycan analysis of transient cell wallâ€deficient bacteria in a new <scp><i>E</i></scp> <i>scherichia coli</i> model system. Environmental Microbiology, 2015, 17, 1586-1599.	1.8	17
273	<i>Bacillus atrophaeus:</i> main characteristics and biotechnological applications – a review. Critical Reviews in Biotechnology, 2015, 35, 533-545.	5.1	40
274	Clostridium difficile $\hat{a} \in A$ Pathogen on the Move. , 2015, , 1031-1040.		1
275	Sporulation in Bacteria: Beyond the Standard Model. , 0, , 87-102.		2
276	Protein Targeting during Bacillus subtilis Sporulation. , 2016, , 145-156.		2
277	A Novel Cell Type Enables B. subtilis to Escape from Unsuccessful Sporulation in Minimal Medium. Frontiers in Microbiology, 2016, 7, 1810.	1.5	7
278	Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans. Minerals (Basel,) Tj ETQq1 1	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
279	A New Second Messenger: Bacterial c-di-AMP. Critical Reviews in Eukaryotic Gene Expression, 2016, 26, 309-316.	0.4	6
280	Crystal Structures of the SpolID Lytic Transglycosylases Essential for Bacterial Sporulation. Journal of Biological Chemistry, 2016, 291, 14915-14926.	1.6	15
281	Effect of ethanol perturbation on viscosity and permeability of an inner membrane in Bacillus subtilis spores. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2060-2069.	1.4	17
282	Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location. Trends in Microbiology, 2016, 24, 788-800.	3.5	68
284	Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 2016, 100, 5729-5746.	1.7	314
285	Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 2016, 32, 75.	1.7	41
286	A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME Journal, 2016, 10, 2633-2642.	4.4	75
287	Shedding light on biology of bacterial cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150499.	1.8	28
288	Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resistance Updates, 2016, 28, 91-104.	6.5	24
289	Life cycle of tetrodotoxin-producing Bacillus sp. on solid and liquid medium: Light and electron microscopy studies. Russian Journal of Marine Biology, 2016, 42, 252-257.	0.2	4
290	GerM is required to assemble the basal platform of the SpoIIIA–SpoIIQ transenvelope complex during sporulation in <i>Bacillus subtilis</i> . Molecular Microbiology, 2016, 102, 260-273.	1.2	27
291	Germinants and Their Receptors in Clostridia. Journal of Bacteriology, 2016, 198, 2767-2775.	1.0	60
292	Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nature Communications, 2016, 7, 11423.	5.8	81
293	Slowdown of growth controls cellularÂdifferentiation. Molecular Systems Biology, 2016, 12, 871.	3.2	33
294	Coordination of cell decisions and promotion of phenotypic diversity in <i>B. subtilis</i> via pulsed behavior of the phosphorelay. BioEssays, 2016, 38, 440-445.	1.2	9
295	Effect of organic carbon and metal accumulation on the bacterial communities in sulphidogenic sediments. Environmental Science and Pollution Research, 2016, 23, 10443-10456.	2.7	8
296	Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis. Clinical Proteomics, 2016, 13, 6.	1.1	41
297	Plant growth-promoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density-dependent and density-independent natural enemy responses. Journal of Pest Science, 2016, 89, 985-992.	1.9	27

#	Article	IF	CITATIONS
298	Quantifying Current Events Identifies a Novel Endurance Regulator. Trends in Microbiology, 2016, 24, 324-326.	3.5	0
299	Iron deficiency resistance mechanisms enlightened by gene expression analysis in Paenibacillus riograndensis SBR5. Research in Microbiology, 2016, 167, 501-509.	1.0	7
300	Saltâ€sensitivity of σ ^H and Spo0A prevents sporulation of <scp><i>B</i></scp> <i>acillus subtilis</i> at high osmolarity avoiding death during cellular differentiation. Molecular Microbiology, 2016, 100, 108-124.	1.2	25
301	A novel regulator controls <scp><i>C</i></scp> <i>lostridium difficile</i> sporulation, motility and toxin production. Molecular Microbiology, 2016, 100, 954-971.	1.2	90
302	Construction and screening of metagenomic library derived from soil for β-1, 4-endoglucanase gene. Biocatalysis and Agricultural Biotechnology, 2016, 5, 186-192.	1.5	8
303	The genome of Bacillus aryabhattai T61 reveals its adaptation to Tibetan Plateau environment. Genes and Genomics, 2016, 38, 293-301.	0.5	12
304	Towards the understanding of non-thermal air plasma action: effects on bacteria and fibroblasts. RSC Advances, 2016, 6, 25286-25292.	1.7	13
305	Alkaliphilic <i>Bacillus</i> species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. Journal of Applied Microbiology, 2017, 122, 1233-1244.	1.4	79
306	Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express, 2017, 7, 16.	1.4	37
307	Cell Death Pathway That Monitors Spore Morphogenesis. Trends in Microbiology, 2017, 25, 637-647.	3.5	21
308	Cell Cycle Machinery in Bacillus subtilis. Sub-Cellular Biochemistry, 2017, 84, 67-101.	1.0	69
309	A combined lowâ€pressure hydrogen peroxide evaporation plus hydrogen plasma treatment method for sterilization â^' Part 2: An intercomparison study of different biological systems. Plasma Processes and Polymers, 2017, 14, 1600199.	1.6	2
310	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017, 15, 531-543.	13.6	150
311	Quality Control by Isoleucyl-tRNA Synthetase of Bacillus subtilis Is Required for Efficient Sporulation. Scientific Reports, 2017, 7, 41763.	1.6	14
312	Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography. Analytical Chemistry, 2017, 89, 1131-1137.	3.2	57
313	Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair, 2017, 59, 57-68.	1.3	24
314	Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Journal of Biotechnology, 2017, 263, 36-44.	1.9	35
315	A model of cell-wall dynamics during sporulation in <i>Bacillus subtilis</i> . Soft Matter, 2017, 13, 8089-8095.	1.2	1

#	Article	IF	CITATIONS
316	<i>Bacillus subtilis</i> Lipid Extract, A Branched-Chain Fatty Acid Model Membrane. Journal of Physical Chemistry Letters, 2017, 8, 4214-4217.	2.1	42
317	Implementation and Data Analysis of Tn-seq, Whole-Genome Resequencing, and Single-Molecule Real-Time Sequencing for Bacterial Genetics. Journal of Bacteriology, 2017, 199, .	1.0	16
318	El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrÃcola. Revista Mexicana De Fitopatologia, 2017, 36, .	0.2	44
319	Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes, 2017, 8, 22.	1.0	58
320	Disruption of Two-component System LytSR Affects Forespore Engulfment in Bacillus thuringiensis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 468.	1.8	6
321	Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Frontiers in Molecular Biosciences, 2017, 4, 44.	1.6	42
322	The New Kid on the Block: A Specialized Secretion System during Bacterial Sporulation. Trends in Microbiology, 2018, 26, 663-676.	3.5	22
323	Forespore Targeting of SpoVD in Bacillus subtilis Is Mediated by the N-Terminal Part of the Protein. Journal of Bacteriology, 2018, 200, .	1.0	4
324	Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell, 2018, 172, 758-770.e14.	13.5	42
325	A sigma factor toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Research, 2018, 46, 2133-2144.	6.5	74
326	Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during <i>Bacillus subtilis</i> sporulation: cellâ€specific requirement of σ ^H and σ ^A . Molecular Microbiology, 2018, 108, 45-62.	1.2	12
327	Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nature Communications, 2018, 9, 69.	5.8	73
329	Petrobactin Protects against Oxidative Stress and Enhances Sporulation Efficiency in Bacillus anthracis Sterne. MBio, 2018, 9, .	1.8	17
330	Laboratory strains of Bacillus anthracis exhibit pervasive alteration in expression of proteins related to sporulation under laboratory conditions relative to genetically related wild strains. PLoS ONE, 2018, 13, e0209120.	1.1	8
331	Experimental studies addressing the longevity of Bacillus subtilis spores – The first data from a 500-year experiment. PLoS ONE, 2018, 13, e0208425.	1.1	56
332	Variations in Fluorescence Spectra of a Bacterial Population During Different Growth Phases. , 2018, , 13-20.		0
333	Multiscale heterogeneity in filamentous microbes. Biotechnology Advances, 2018, 36, 2138-2149.	6.0	22
334	Conidia-based fluorescence quantification of Streptomyces. Journal of Microbiological Methods, 2018. 153. 104-107.	0.7	0

#	Article	IF	CITATIONS
335	Conservation of the "Outside-in―Germination Pathway in Paraclostridium bifermentans. Frontiers in Microbiology, 2018, 9, 2487.	1.5	8
337	Crystal structure of dihydrodipicolinate reductase (PaDHDPR) from Paenisporosarcina sp. TG-14: structural basis for NADPH preference as a cofactor. Scientific Reports, 2018, 8, 7936.	1.6	6
338	Cellular metabolism network of Bacillus thuringiensis related to erythromycin stress and degradation. Ecotoxicology and Environmental Safety, 2018, 160, 328-341.	2.9	38
339	Bacteria-based concrete. , 2018, , 531-567.		20
340	Biosorption of lead (Pb2+) by the vegetative and decay cells and spores of Bacillus coagulans R11 isolated from lead mine soil. Chemosphere, 2018, 211, 804-816.	4.2	31
341	Non-canonical processing of DNA photodimers with Bacillus subtilis UV-endonuclease YwjD, 5′→3′ exonuclease YpcP and low-fidelity DNA polymerases YqjH and YqjW. DNA Repair, 2018, 70, 1-9.	1.3	7
342	Metabolic engineering of <i>Bacillus subtilis</i> for <scp>l</scp> â€valine overproduction. Biotechnology and Bioengineering, 2018, 115, 2778-2792.	1.7	21
343	Structural and biochemical characterization of SpollIAF, a component of a sporulation-essential channel in Bacillus subtilis. Journal of Structural Biology, 2018, 204, 1-8.	1.3	12
344	An investigation of inactivation mechanisms of <scp><i>Bacillus amyloliquefaciens</i></scp> spores in nonâ€ŧhermal plasma of ambient air. Journal of the Science of Food and Agriculture, 2019, 99, 368-378.	1.7	20
345	Effect of Target Gene Silencing on Calcite Single Crystal Formation by Thermophilic Bacterium Geobacillus thermoglucosidasius NY05. Current Microbiology, 2019, 76, 1298-1305.	1.0	0
346	Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metabolism, 2019, 30, 800-823.e7.	7.2	70
347	Aging of a Bacterial Colony Enforces the Evolvement of Nondifferentiating Mutants. MBio, 2019, 10, .	1.8	9
348	Mechanisms of Resistance to Silver Nanoparticles in Endodontic Bacteria: A Literature Review. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	40
349	Branched-Chain Fatty Acid Content Modulates Structure, Fluidity, and Phase in Model Microbial Cell Membranes. Journal of Physical Chemistry B, 2019, 123, 5814-5821.	1.2	27
350	Expansion of the Spore Surface Polysaccharide Layer in Bacillus subtilis by Deletion of Genes Encoding Glycosyltransferases and Glucose Modification Enzymes. Journal of Bacteriology, 2019, 201, .	1.0	15
351	Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech, 2019, 9, 225.	1.1	21
353	Disruption of the pleiotropic gene scoC causes transcriptomic and phenotypical changes in Bacillus pumilus BA06. BMC Genomics, 2019, 20, 327.	1.2	4
354	Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. Journal of Biotechnology, 2019, 299, 57-65.	1.9	12

ARTICLE IF CITATIONS Bacillus subtilis. Trends in Microbiology, 2019, 27, 724-725. 3.5 84 355 Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. 1.5 Frontiers in Microbiology, 2019, 10, 893. Growth performance, apparent retention of components, and excreta dry matter content in Shaver 357 White pullets (5 to 16 week of age) in response to dietary supplementation of graded levels of a single 1.518 strain Bacillus subtilis probiotic. Poultry Science, 2019, 98, 377-3786. The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. Journal of Biological Chemistry, 2019, 294, 8930-8941. Disruption of SpoIIID decreases sporulation, increases extracellular proteolytic activity and 359 virulence in Bacillus anthracis. Biochemical and Biophysical Research Communications, 2019, 513, 1.0 2 651-656. iTRAQ-based quantitative proteomics reveals insights into metabolic and molecular responses of glucose-grown cells of Rubrivivax benzoatilyticus JA2. Journal of Proteomics, 2019, 194, 49-59. 1.2 Contributions of crust proteins to spore surface properties in <i>Bacillus subtilis</i>. Molecular 361 1.2 38 Microbiology, 2019, 111, 825-843. Synthetic developmental regulator MciZ targets FtsZ across Bacillus species and inhibits bacterial 1.2 16 division. Molecular Microbiology, 2019, 111, 965-980. Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous 363 1.8 15 Cellulolytic and Fermentative Communities. Waste and Biomass Valorization, 2019, 10, 1899-1912. Potential association between <i>Fusobacterium nucleatum </i> enrichment on oral mucosal surface 364 1.5 and oral lichen planus. Oral Diseases, 2020, 26, 122-130. Aging in Complex Multicellular Organisms., 2020, , 231-247. 365 0 Molecular mechanism of the smart attack of pathogenic bacteria on nematodes. Microbial 366 Biotechnology, 2020, 13, 683-705. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, 367 3.6 24 and applications for producing enzymes and surfactin. Metabolic Engineering, 2020, 62, 235-248. A novel XRE family regulator that controls antibiotic production and development in Streptomyces 368 1.7 16 coelicolor. Applied Microbiology and Biotechnology, 2020, 104, 10075-10089. Shaping an Endospore: Architectural Transformations During <i>Bacillus subtilis</i> Sporulation. 369 2.9 46 Annual Review of Microbiology, 2020, 74, 361-386. Thermotogales origin scenario of eukaryogenesis. Journal of Theoretical Biology, 2020, 492, 110192. Integrative Analysis of Proteome and Transcriptome Dynamics during Bacillus subtilis Spore Revival. 371 1.324 MSphere, 2020, 5, . The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. Journal of 372 Bacteriology, 2020, 203, .

ARTICLE IF CITATIONS Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic 373 1.0 4 and Transcriptomic Analysis. Current Microbiology, 2020, 77, 3612-3622. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental 374 1.5 Conditions. Frontiers in Microbiology, 2020, 11, 588. Interplanetary transmissions of life in an evolutionary context. International Journal of 375 0.9 10 Astrobiology, 2020, 19, 335-348. Development of a multiplex real-time PCR assay for the identification and quantification of group-specific Bacillus spp. and the genus Paenibacillus. International Journal of Food Microbiology, 2020, 323, 108573. Orally Administered <i>Bacillus</i> Spores Expressing an Extracellular Vesicle-Derived Tetraspanin Protect Hamsters Against Challenge Infection With Carcinogenic Human Liver Fluke. Journal of 377 1.9 12 Infectious Diseases, 2021, 223, 1445-1455. Transcriptional coupling and repair of 8-OxoG activate a RecA-dependent checkpoint that controls the onset of sporulation in Bacillus subtilis. Scientific Reports, 2021, 11, 2513. 1.6 Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. 379 4.7 13 Science Advances, 2021, 7, . Genetics and Biochemistry of Sporulation in Endospore-Forming Bacteria (Bacillus): A Prime Example 380 of Developmental Biology, , 2021, , 71-124. Regulation of <scp>proâ€if ^K </scp> activation: a key checkpoint in <i>Bacillus subtilis</i>sporulation. Environmental Microbiology, 2021, 23, 2366-2373. 381 1.8 7 No Endospore Formation Confirmed in Members of the Phylum <i>Proteobacteria</i>. Applied and 1.4 Environmental Microbiology, 2021, 87, . ClpC-Mediated Sporulation Regulation at Engulfment Stage in Bacillus anthracis. Indian Journal of 383 3 1.5 Microbiology, 2021, 61, 170-179. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. 384 1.6 Scientific Reports, 2021, 11, 7887. Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. ELife, 385 2.8 24 2021, 10, . Attributes of Drying Define the Structure and Functioning of Microbial Communities in Temperate 1.5 Riverbed Sediment. Frontiers in Microbiology, 2021, 12, 676615. Effects of PatU3 Peptides on Cell Size and Heterocyst Frequency of Anabaena sp. Strain PCC 7120. 388 1.0 2 Journal of Bacteriology, 2021, 203, e0010821. FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biology, 2021, 19, e3001314. High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation. International 390 1.8 8 Journal of Molecular Sciences, 2021, 22, 9345. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. 391 3.8 Genome Biology, 2021, 22, 204.

#	Article	IF	CITATIONS
394	Fundamental Building Blocks of Whole-Cell Biosensor Design. , 2022, , 383-405.		0
395	Milestones in Bacillus subtilis sporulation research. Microbial Cell, 2021, 8, 1-16.	1.4	40
396	The BvgS/BvgA Phosphorelay System of Pathogenic Bordetellae. Advances in Experimental Medicine and Biology, 2008, 631, 149-160.	0.8	29
397	Phage-Phage, Phage-Bacteria, and Phage-Environment Communication. , 2020, , 23-70.		7
398	Fundamental Building Blocks of Whole-Cell Biosensor Design. , 2020, , 1-23.		4
399	Communication Among Phages, Bacteria, and Soil Environments. Soil Biology, 2011, , 37-65.	0.6	14
400	Inactivation and Extraction of Bacterial Spores for Systems Biological Analysis. , 2011, , 941-977.		1
401	Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis. Microbiology (United) Tj ETQq1 1).784314 0.7	rgBT /Overlo
402	The SpoOE phosphatase of Bacillus subtilis is a substrate of the FtsH metalloprotease. Microbiology (United Kingdom), 2009, 155, 1122-1132.	0.7	28
403	A new environmentally resistant cell type from Dictyostelium. Microbiology (United Kingdom), 2007, 153, 619-630.	0.7	6
410	<i>Bacillus subtilis</i> Sporulation and Other Multicellular Behaviors. , 0, , 363-383.		1
411	High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis. PLoS Biology, 2016, 14, e1002341.	2.6	87
412	A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genetics, 2020, 16, e1009246.	1.5	5
413	Improved Statistical Analysis of Low Abundance Phenomena in Bimodal Bacterial Populations. PLoS ONE, 2013, 8, e78288.	1.1	15
414	Transcriptional Profile of Bacillus subtilis sigF-Mutant during Vegetative Growth. PLoS ONE, 2015, 10, e0141553.	1.1	8
415	Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation. PLoS ONE, 2016, 11, e0148365.	1.1	6
416	The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation. PLoS ONE, 2016, 11, e0150348.	1.1	13
417	Analysis of Spo0M function in Bacillus subtilis. PLoS ONE, 2017, 12, e0172737.	1.1	10

#	Article	IF	CITATIONS
418	Metal-dependent SpollE oligomerization stabilizes FtsZ during asymmetric division in Bacillus subtilis. PLoS ONE, 2017, 12, e0174713.	1.1	8
419	Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovremennye Tehnologii V Medicine, 2020, 12, 105.	0.4	6
420	Spore production and sporulation efficacy of Bacillus subtilis under different source of manganese supplementation <i> [Produksi Spora dan Efisiensi Sporulasi Bacillus subtilis dengan Suplementasi Mangan dari Sumber yang Berbeda]<i> . Jurnal Ilmiah Perikanan Dan Kelautan, 2019, 11, 51.</i></i>	0.4	1
421	TAXONOMY, VIRULENCE AND LIFE CYCLES OF BACILLUS CEREUS SENSU LATO. Postepy Mikrobiologii, 2019, 56, 440-450.	0.1	2
422	Nitropropenyl Benzodioxole, An Anti-Infective Agent with Action as a Protein Tyrosine Phosphatase Inhibitor. Open Medicinal Chemistry Journal, 2014, 8, 1-16.	0.9	6
423	Control of fruit postharvest diseases: old issues and innovative approaches. Stewart Postharvest Review, 0, 10, 1-4.	0.7	60
424	Patterning of the MinD cell division protein in cells of arbitrary shape can be predicted using a heuristic dispersion relation. AIMS Biophysics, 2016, 3, 119-145.	0.3	4
425	Genomic analysis of a novel strain of Bacillus nealsonii, isolated from Surti buffalo rumen. Advances in Bioscience and Biotechnology (Print), 2014, 05, 235-245.	0.3	7
426	Modified Green Tea Polyphenols, EGCC-S and LTP, Inhibit Endospore in Three <i>Bacillus</i> spp Advances in Microbiology, 2017, 07, 175-187.	0.3	7
427	Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001. Plant Pathology Journal, 2013, 29, 168-173.	0.7	36
428	Use of Probiotic Bacteria against Bacterial and Viral Infections in Shellfish and Fish Aquaculture. , 0, ,		7
429	Kinetochore inactivation by expression of a repressive mRNA. ELife, 2017, 6, .	2.8	66
430	The molecular architecture of engulfment during Bacillus subtilis sporulation. ELife, 2019, 8, .	2.8	34
431	<i>Bacillus</i> spore-forming probiotics: benefits with concerns?. Critical Reviews in Microbiology, 2022, 48, 513-530.	2.7	12
434	Intercompartmental Signal Transduction during Sporulation in <i>Bacillus subtilis</i> ., 0, , 1-12.		0
435	Ground Water Modelling Through ModFlow. International Journal of Environmental Sciences & Natural Resources, 2017, 3, .	0.3	0
436	Chromosome Translocation Inflates <i>Bacillus subtilis</i> Forespores and Impacts Cellular Morphology. SSRN Electronic Journal, 0, , .	0.4	0
440	Role of the Putative Polysaccharide Deacetylase BA1836 from <i>B. anthracis</i> in Spore Development and Germination. Advances in Microbiology, 2019, 09, 679-702.	0.3	1

#	Article	IF	CITATIONS
441	Bacterial Spores: Mechanisms of Stability and Targets for Modern Biotechnologies. Biomedical Journal of Scientific & Technical Research, 2019, 20, .	0.0	4
443	THE STUDY OF GROWTH KINETICS OF BACILLUS SUBTILIS BMT4I (MTCC 9447) USING MOBIL OIL AS THE SOLE CARBON AND ENERGY SOURCE. Journal of Mountain Research, 2019, 14, .	0.0	0
444	What Are Model Microorganisms?. Frontiers for Young Minds, 0, 7, .	0.8	0
445	Cyclic di-GMP Signaling in Bacillus subtilis. , 2020, , 241-260.		1
446	Biochemical and molecular characterization of proteolytic bacterial strains isolated from Jazan region, KSA with the application as an antibacterial agent. , 0, 3, 1.		0
449	Dormancyâ€toâ€death transition in yeast spores occurs due to gradual loss of geneâ€expressing ability. Molecular Systems Biology, 2020, 16, e9245.	3.2	4
451	On-line monitoring of industrial interest Bacillus fermentations, using impedance spectroscopy. Journal of Biotechnology, 2022, 343, 52-61.	1.9	4
452	Green synthesis of chitosan-stabilized silver-colloidal nanoparticles immobilized on white-silica-gel beads and the antibacterial activities in a simulated-air-filter. Arabian Journal of Chemistry, 2022, 15, 103596.	2.3	24
453	Raman microspectroscopy for microbiology. Nature Reviews Methods Primers, 2021, 1, .	11.8	57
455	The Transcription Factor CpcR Determines Cell Fate by Modulating the Initiation of Sporulation in Bacillus thuringiensis. Applied and Environmental Microbiology, 2022, 88, aem0237421.	1.4	3
456	Luminescent β-diketonate coordinated europium(III) sensor for rapid and sensitive detection of Bacillus Anthracis biomarker. Journal of Luminescence, 2022, 244, 118726.	1.5	5
457	Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. Russian Journal of Genetics, 2022, 58, 1-19.	0.2	0
458	High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiology Spectrum, 2022, 10, e0204521.	1.2	2
459	Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. International Journal of Molecular Sciences, 2022, 23, 3405.	1.8	13
460	High-Throughput Sequencing Analysis of the Composition and Diversity of the Bacterial Community in Cinnamomum camphora Soil. Microorganisms, 2022, 10, 72.	1.6	6
461	Visualization and characterization of spore morphogenesis in <i>Paenibacillus polymyxa</i> ATCC39564. Journal of General and Applied Microbiology, 2022, , .	0.4	0
475	Seed application with microbial inoculants for enhanced plant growth. , 2022, , 333-368.		1
476	Programmable Living Materials Constructed with the Dynamic Covalent Interface between Synthetic Polymers and Engineered <i>B. subtilis</i> . ACS Applied Materials & Interfaces, 2022, 14, 20729-20738.	4.0	9

#	Article	IF	Citations
477	Multiple Modular Engineering of Bacillus Amyloliquefaciens Cell Factories for Enhanced Production of Alkaline Proteases From B. Clausii. Frontiers in Bioengineering and Biotechnology, 2022, 10, 866066.	2.0	7
478	Characterization of the pathogenicity of a <i>Bacillus cereus</i> isolate from the Mariana Trench. Virulence, 2022, 13, 1062-1075.	1.8	4
479	Antibiotic tolerance in environmentally stressed <i>Bacillus subtilis</i> : physical barriers and induction of a viable but nonculturable state. MicroLife, 2022, 3, .	1.0	3
480	Sporulation and Biofilms as Survival Mechanisms of <i>Bacillus</i> Species in Low-Moisture Food Production Environments. Foodborne Pathogens and Disease, 2022, 19, 448-462.	0.8	3
481	A Review of Application Strategies and Efficacy of Probiotics in Pet Food. Veterinary Medicine and Science, 0, , .	0.0	3
482	Role of serine/threonine protein phosphatase PrpN in the life cycle of Bacillus anthracis. PLoS Pathogens, 2022, 18, e1010729.	2.1	2
483	Study on spray-drying of Bacillus velezensis NKMV-3 strain, its formulation and bio efficacy against early blight of tomato. Biocatalysis and Agricultural Biotechnology, 2022, 45, 102483.	1.5	3
484	PrkA is an ATP-dependent protease that regulates sporulation in Bacillus subtilis. Journal of Biological Chemistry, 2022, 298, 102436.	1.6	3
485	Long-Term Effective Remediation of Black-Odorous Water Via Calcium Nitrate Sustained-Release. SSRN Electronic Journal, 0, , .	0.4	0
486	A luminescent terbium(<scp>iii</scp>) probe as an efficient â€~Turn-ON' sensor for dipicolinic acid, a <i>Bacillus Anthracis</i> biomarker. New Journal of Chemistry, 2022, 46, 18285-18294.	1.4	1
487	Bioencapsulation of Microbial Inoculants: Mechanisms, Formulation Types and Application Techniques. , 2022, 1, 198-220.		19
488	Novel prokaryotic system employing previously unknown nucleic acids-based receptors. Microbial Cell Factories, 2022, 21, .	1.9	5
489	Oral vaccination of fish against vibriosis using spore-display technology. Frontiers in Immunology, 0, 13, .	2.2	3
491	3D-Printable Cellular Composites for the Production of Recombinant Proteins. Biomacromolecules, 2022, 23, 4687-4695.	2.6	2
492	SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during <i>Bacillus subtilis</i> sporulation. Nucleic Acids Research, 0, , .	6.5	3
493	Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms, 2022, 10, 2355.	1.6	12
494	Comparative analysis of thioflavin T and other fluorescent dyes for fluorescent staining of <i>Bacillus subtilis</i> vegetative cell, sporulating cell, and mature spore. Bioscience, Biotechnology and Biochemistry, 2023, 87, 338-348.	0.6	3
495	A new role for monomeric ParA/Soj in chromosome dynamics in <i>Bacillus subtilis</i> . MicrobiologyOpen, 2023, 12, .	1.2	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
496	Elongation Factor P Is Important for Sporulation Initiation. Journal of Bacteriology, 2023	, 205, .	1.0	6
498	Profiling <i>Mycobacterium ulcerans</i> : sporulation, survival strategy and response to environmental factors. Future Science OA, 2023, 9, .		0.9	1
499	Function of the mdxR gene encoding a novel regulator for carbohydrate metabolism and in Bacillus subtilis 168. Archives of Microbiology, 2023, 205, .	d sporulation	1.0	0
500	Meat extract casein peptone agar – A novel culture medium for the enumeration of B endospores in commercial products. Journal of Microbiological Methods, 2023, 206, 10	acillus 6689.	0.7	0
501	Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospor myxospores, cysts and akinetes in bacteria. Microbiology (United Kingdom), 2023, 169,		0.7	0
502	Biological control efficacy of <i>Bacillus</i> sp. REB711 on sheath blight of rice. Plant H Progress, 0, , .	ealth	0.8	0
504	The contrasting effects of fluctuating temperature on bacterial diversity and performance temperate and subtropical soils. Molecular Ecology, 2023, 32, 3686-3701.	ces in	2.0	0
505	Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. ISME Journal, 2023, 17, 823-835.		4.4	1
506	Phenotypic plasticity: The role of a phosphatase family Rap in the genetic regulation of < Molecular Microbiology, 2023, 120, 20-31.	i>Bacilli.	1.2	1
525	Effect of novel and conventional food processing technologies on Bacillus cereus spores in Food and Nutrition Research, 2024, , 265-287.	s. Advances	1.5	0
537	Bacillus anthracis and other Bacillus species. , 2024, , 1681-1742.			0
541	Bacterial Endospore Based Wearable Biosensors for Selective and Sensitive Glucose Mo 2024, , .	nitoring. ,		0