A novel ubiquitin ligase is deficient in Fanconi anemia

Nature Genetics 35, 165-170 DOI: 10.1038/ng1241

Citation Report

#	Article	IF	CITATIONS
1	FANCL, as in ligase. Nature Genetics, 2003, 35, 113-114.	9.4	7
2	Knockdown of Zebrafish Fancd2 Causes Developmental Abnormalities via p53-Dependent Apoptosis. Developmental Cell, 2003, 5, 903-914.	3.1	111
3	Screening Fanconi anemia lymphoid cell lines of non-A, C, D2, E, F, G subtypes for defects in BRCA2/FANCD1. Cytogenetic and Genome Research, 2003, 103, 54-57.	0.6	7
4	EH and UIM: Endocytosis and More. Science Signaling, 2003, 2003, re17-re17.	1.6	86
7	Zebrafish: Swimming Towards a Role for Fanconi Genes in DNA Repair. Cancer Biology and Therapy, 2004, 3, 501-502.	1.5	11
8	Fanconi Anemia: Contribution of Molecular Analyses to the Identification of Bone Marrow Graft Donors and the Study of Chimerism in Grafted Patients. Genetic Testing and Molecular Biomarkers, 2004, 8, 268-275.	1.7	Ο
9	AIRE Functions As an E3 Ubiquitin Ligase. Journal of Experimental Medicine, 2004, 199, 167-172.	4.2	130
10	Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood, 2004, 103, 2554-2559.	0.6	185
11	Genetics of the FANCA gene in familial pancreatic cancer. Journal of Medical Genetics, 2004, 41, e126-e126.	1.5	24
12	Solution Structure of the Kaposi's Sarcoma-associated Herpesvirus K3 N-terminal Domain Reveals a Novel E2-binding C4HC3-type RING Domain. Journal of Biological Chemistry, 2004, 279, 53840-53847.	1.6	85
13	Phosphorylation of Fanconi Anemia (FA) Complementation Group G Protein, FANCG, at Serine 7 Is Important for Function of the FA Pathway. Journal of Biological Chemistry, 2004, 279, 46035-46045.	1.6	46
14	Recombination repair pathway in the maintenance of chromosomal integrity against DNA interstrand crosslinks. Cytogenetic and Genome Research, 2004, 104, 28-34.	0.6	54
15	Repair Kinetics of Genomic Interstrand DNA Cross-Links: Evidence for DNA Double-Strand Break-Dependent Activation of the Fanconi Anemia/BRCA Pathway. Molecular and Cellular Biology, 2004, 24, 123-134.	1.1	215
16	Gender- and age-related distinctions for the in vivo prooxidant state in Fanconi anaemia patients. Carcinogenesis, 2004, 25, 1899-1909.	1.3	44
17	Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Human Molecular Genetics, 2004, 13, 1241-1248.	1.4	190
18	Regulation of the Fanconi Anemia Group C Protein through Proteolytic Modification. Journal of Biological Chemistry, 2004, 279, 4713-4720.	1.6	16
19	Oxidative Stress/Damage Induces Multimerization and Interaction of Fanconi Anemia Proteins. Journal of Biological Chemistry, 2004, 279, 30053-30059.	1.6	61
20	The Fanconi Anemia Proteins Functionally Interact with the Protein Kinase Regulated by RNA (PKR). Journal of Biological Chemistry, 2004, 279, 43910-43919.	1.6	46

ITATION REDO

#	Article	IF	CITATIONS
21	The Fanconi Anemia Gene Product FANCF Is a Flexible Adaptor Protein. Journal of Biological Chemistry, 2004, 279, 39421-39430.	1.6	61
22	Impaired Type I IFN-Induced Jak/STAT Signaling in FA-C Cells and Abnormal CD4+ Th Cell Subsets in <i>Fancc</i> â^'/â^' Mice. Journal of Immunology, 2004, 173, 3863-3870.	0.4	24
23	FANCG Is Phosphorylated at Serines 383 and 387 during Mitosis. Molecular and Cellular Biology, 2004, 24, 8576-8585.	1.1	38
24	Characterization of the hamster FancG/Xrcc9 gene and mutations in CHO UV40 and NM3. Mutagenesis, 2004, 19, 237-244.	1.0	10
25	Functional Screen of the Fanconi Anemia Pathway in Cancer Cells by Fancd2 Immunoblot. Cancer Biology and Therapy, 2004, 3, 534-537.	1.5	24
26	Fanconi Anemia Pathway Defects in Neoplasia: Cause or Effect?. Cancer Biology and Therapy, 2004, 3, 538-539.	1.5	1
27	FANCL Replaces BRCA1 as the Likely Ubiquitin Ligase Responsible for FANCD2 Monoubiquitination. Cell Cycle, 2004, 3, 174-176.	1.3	88
29	A Role for the Fanconi Anemia C Protein in Maintaining the DNA Damage-induced G2 Checkpoint. Journal of Biological Chemistry, 2004, 279, 50986-50993.	1.6	34
30	The Fanconi Anemia Core Complex Forms Four Complexes of Different Sizes in Different Subcellular Compartments. Journal of Biological Chemistry, 2004, 279, 26201-26209.	1.6	43
31	Oxidant Hypersensitivity of Fanconi Anemia Type C-deficient Cells Is Dependent on a Redox-regulated Apoptotic Pathway. Journal of Biological Chemistry, 2004, 279, 16805-16812.	1.6	69
32	A Rad50-dependent pathway of DNA repair is deficient in Fanconi anemia fibroblasts. Nucleic Acids Research, 2004, 32, 3248-3257.	6.5	17
33	ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes and Development, 2004, 18, 1958-1963.	2.7	366
34	Fanconi anaemia and leukaemia - clinical and molecular aspects. British Journal of Haematology, 2004, 126, 176-191.	1.2	124
35	A new gene on the X involved in Fanconi anemia. Nature Genetics, 2004, 36, 1142-1143.	9.4	5
36	X-linked inheritance of Fanconi anemia complementation group B. Nature Genetics, 2004, 36, 1219-1224.	9.4	271
37	Tracing the network connecting brca and fanconi anaemia proteins. Nature Reviews Cancer, 2004, 4, 266-276.	12.8	195
38	Hallmarks of 'BRCAness' in sporadic cancers. Nature Reviews Cancer, 2004, 4, 814-819.	12.8	1,477
39	From syndrome families to functional genomics. Nature Reviews Genetics, 2004, 5, 545-551.	7.7	161

#	Article	IF	CITATIONS
40	Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA. Cancer Gene Therapy, 2004, 11, 539-546.	2.2	33
41	The DNA crosslink-induced S-phase checkpoint depends on ATR–CHK1 and ATR–NBS1–FANCD2 pathways. EMBO Journal, 2004, 23, 1178-1187.	3.5	215
42	Apparent absence of BRCA2 protein in a proportion of acute myeloid leukemia cell lines. Leukemia, 2004, 18, 1918-1920.	3.3	4
43	Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene, 2004, 23, 8611-8618.	2.6	84
44	Molecular characterization of three novel Fanconi anemia mutations in Israeli Arabs. European Journal of Haematology, 2004, 72, 330-335.	1.1	18
45	Fanconi anemia type C–deficient hematopoietic cells are resistant to TRAIL (TNF-related) Tj ETQq1 1 0.784314 r 815-821.	gBT /Over 0.2	lock 10 Tf 6
46	Crosslinks and crosstalk. Cancer Cell, 2004, 6, 539-545.	7.7	34
47	The novel functions of ubiquitination in signaling. Current Opinion in Cell Biology, 2004, 16, 119-126.	2.6	403
48	Fanconi anemia in Ashkenazi Jews. Familial Cancer, 2004, 3, 241-248.	0.9	49
49	Identification and characterization of novel mutations of the major Fanconi anemia gene FANCA in the Japanese population. Human Mutation, 2004, 24, 481-490.	1.1	39
50	Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair, 2004, 3, 77-84.	1.3	69
51	The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair, 2004, 3, 1063-1069.	1.3	62
52	Functional Defects in the Fanconi Anemia Pathway in Pancreatic Cancer Cells. American Journal of Pathology, 2004, 165, 651-657.	1.9	118
53	The Fanconi Anaemia Gene FANCC Promotes Homologous Recombination and Error-Prone DNA Repair. Molecular Cell, 2004, 15, 607-620.	4.5	279
54	Intermediate DNA Repair Activity Associated with the 322delG Allele of the Fanconi Anemia Complementation Group C Gene. Journal of Molecular Biology, 2004, 342, 1443-1455.	2.0	2
55	Update on childhood neutropenia: molecular and clinical advances. Hematology/Oncology Clinics of North America, 2004, 18, 1439-1458.	0.9	7
56	Human disorders of ubiquitination and proteasomal degradation. Current Opinion in Pediatrics, 2004, 16, 419-426.	1.0	75
57	Heterogeneity in Fanconi anemia: evidence for 2 new genetic subtypes. Blood, 2004, 103, 2498-2503.	0.6	212

#	Article	IF	CITATIONS
58	Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood, 2004, 103, 3226-3229.	0.6	194
59	Individualized risks of first adverse events in patients with Fanconi anemia. Blood, 2004, 104, 350-355.	0.6	84
60	Continuous in vivo infusion of interferon-gamma (IFN-γ) preferentially reduces myeloid progenitor numbers and enhances engraftment of syngeneic wild-type cells in Fancc-/- mice. Blood, 2004, 104, 1204-1209.	0.6	48
61	Crosslinks and crosstalkHuman cancer syndromes and DNA repair defects. Cancer Cell, 2004, 6, 539-545.	7.7	58
62	Dissecting Cancer Pathways and Vulnerabilities with RNAi. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 435-444.	2.0	35
63	Regulated interaction of the Fanconi anemia protein, FANCD2, with chromatin. Blood, 2005, 105, 1003-1009.	0.6	118
64	Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood, 2005, 105, 1329-1336.	0.6	124
65	A common founder mutation in FANCA underlies the world's highest prevalence of Fanconi anemia in Gypsy families from Spain. Blood, 2005, 105, 1946-1949.	0.6	89
66	Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood, 2005, 106, 75-85.	0.6	60
67	The Fanconi anemia core complex associates with chromatin during S phase. Blood, 2005, 105, 759-766.	0.6	54
68	Ex vivo culture of Fancc-/- stem/progenitor cells predisposes cells to undergo apoptosis, and surviving stem/progenitor cells display cytogenetic abnormalities and an increased risk of malignancy. Blood, 2005, 105, 3465-3471.	0.6	60
69	Identification and characterization of a novel testicular germ cell-specific geneGgnbp1. Molecular Reproduction and Development, 2005, 70, 301-307.	1.0	10
70	Germ-cell specific protein gametogenetin protein 2 (GGN2), expression in the testis, and association with intracellular membrane. Molecular Reproduction and Development, 2005, 72, 31-39.	1.0	15
71	Molecular Pathogenesis of Fanconi Anemia. International Journal of Hematology, 2005, 82, 176-183.	0.7	23
72	Multiple Repair Pathways Mediate Tolerance to Chemotherapeutic Cross-linking Agents in Vertebrate Cells. Cancer Research, 2005, 65, 11704-11711.	0.4	172
73	Lack of Self-Renewal Capacity in Fancc â^'/â^ Stem Cells After Ex Vivo Expansion. Stem Cells, 2005, 23, 1135-1141.	1.4	17
74	DUBing down a tumour suppressor. Nature Cell Biology, 2005, 7, 332-333.	4.6	1
75	The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nature Genetics, 2005, 37, 931-933.	9.4	337

#	Article	IF	CITATIONS
76	A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nature Genetics, 2005, 37, 958-963.	9.4	395
77	Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO Journal, 2005, 24, 418-427.	3.5	117
78	BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity. EMBO Journal, 2005, 24, 1465-1476.	3.5	170
79	Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases. Immunological Reviews, 2005, 207, 112-125.	2.8	117
80	BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell, 2005, 8, 255-265.	7.7	361
81	Genomic instability and cancer: Networks involved in response to DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 592, 18-28.	0.4	86
82	Mechanisms leading to chromosomal instability. Seminars in Cancer Biology, 2005, 15, 33-42.	4.3	112
83	How Fanconi anemia proteins promote the four Rs: Replication, recombination, repair, and recovery. Environmental and Molecular Mutagenesis, 2005, 45, 128-142.	0.9	101
84	A cross-linker-sensitive myeloid leukemia cell line from a 2-year-old boy with severe Fanconi anemia and biallelicFANCD1/BRCA2 mutations. Genes Chromosomes and Cancer, 2005, 42, 404-415.	1.5	28
85	Spectrum of sequence variations in the FANCA gene: An International Fanconi Anemia Registry (IFAR) study. Human Mutation, 2005, 25, 142-149.	1.1	71
86	On ubiquitin ligases and cancer. Human Mutation, 2005, 25, 507-512.	1.1	8
87	Ubiquitin Binding Modules: The Ubiquitin Network beyond the Proteasome. , 2005, , 291-319.		Ο
88	Nijmegen breakage syndrome diagnosed as Fanconi anaemia. Pediatric Blood and Cancer, 2005, 44, 494-499.	0.8	29
89	Prenatal diagnosis of Fanconi anemia (Group C) subsequent to abnormal sonographic findings. Prenatal Diagnosis, 2005, 25, 20-22.	1.1	15
91	Molecular analysis of the most prevalent mutations of the FANCA and FANCC genes in Brazilian patients with Fanconi anaemia. Genetics and Molecular Biology, 2005, 28, 205-209.	0.6	4
92	The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Human Molecular Genetics, 2005, 14, 693-701.	1.4	254
93	Fanconi Anemia Protein FANCD2 Promotes Immunoglobulin Gene Conversion and DNA Repair through a Mechanism Related to Homologous Recombination. Molecular and Cellular Biology, 2005, 25, 34-43.	1.1	127
94	Generation and Molecular Characterization of Head and Neck Squamous Cell Lines of Fanconi Anemia Patients. Cancer Research, 2005, 65, 1271-1276.	0.4	76

#	Article	IF	CITATIONS
95	Direct DNA Binding Activity of the Fanconi Anemia D2 Protein. Journal of Biological Chemistry, 2005, 280, 23593-23598.	1.6	67
96	New Advances in the DNA Damage Response Network of Fanconi Anemia and BRCA proteins: FAAP95 Replaces BRCA2 as the True FANCB Protein. Cell Cycle, 2005, 4, 80-86.	1.3	45
97	A Rapid Method for Retrovirus-Mediated Identification of Complementation Groups in Fanconi Anemia Patients. Molecular Therapy, 2005, 12, 976-984.	3.7	79
98	FANCC, FANCE, and FANCD2 Form a Ternary Complex Essential to the Integrity of the Fanconi Anemia DNA Damage Response Pathway. Journal of Biological Chemistry, 2005, 280, 36118-36125.	1.6	38
99	Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Human Molecular Genetics, 2005, 14, 1351-1365.	1.4	147
100	The genetic and molecular bases of monogenic disorders affecting proteolytic systems. Journal of Medical Genetics, 2005, 42, 529-539.	1.5	20
101	Head and Neck Squamous Cell Carcinoma in Patients With Fanconi Anemia. JAMA Otolaryngology, 2005, 131, 640.	1.5	7
102	Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. Journal of Medical Genetics, 2005, 42, 147-151.	1.5	101
103	Fanconi Anemia Complementation Group D2 (FANCD2) Functions Independently of BRCA2- and RAD51-associated Homologous Recombination in Response to DNA Damage. Journal of Biological Chemistry, 2005, 280, 14877-14883.	1.6	77
104	The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells. Carcinogenesis, 2005, 26, 1731-1740.	1.3	69
105	Identification of multiple nuclear export sequences in Fanconi anemia group A protein that contribute to CRM1-dependent nuclear export. Human Molecular Genetics, 2005, 14, 1271-1281.	1.4	30
106	Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Human Molecular Genetics, 2005, 14, 3027-3033.	1.4	54
107	The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes and Development, 2005, 19, 2925-2940.	2.7	349
108	Non-homologous End-Joining Defect in Fanconi Anemia Hematopoietic Cells Exposed to Ionizing Radiation. Radiation Research, 2005, 164, 635-641.	0.7	13
109	The FA/BRCA pathway is involved in melphalan-induced DNA interstrand cross-link repair and accounts for melphalan resistance in multiple myeloma cells. Blood, 2005, 106, 698-705.	0.6	126
110	The Deubiquitinating Enzyme USP1 Regulates the Fanconi Anemia Pathway. Molecular Cell, 2005, 17, 331-339.	4.5	510
111	A FancD2-Monoubiquitin Fusion Reveals Hidden Functions of Fanconi Anemia Core Complex in DNA Repair. Molecular Cell, 2005, 19, 841-847.	4.5	134
112	The Caenorhabditis elegans FancD2 ortholog is required for survival following DNA damage. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 141, 453-460.	0.7	19

#	Article	IF	Citations
113	Fanconi Anemia (Cross)linked to DNA Repair. Cell, 2005, 123, 1191-1198.	13.5	275
114	Targeting the DNA repair defect of BRCA tumours. Current Opinion in Pharmacology, 2005, 5, 388-393.	1.7	155
115	New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair, 2005, 4, 11-22.	1.3	58
116	Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair, 2005, 4, 782-792.	1.3	94
117	3R coordination by Fanconi anemia proteins. Biochimie, 2005, 87, 647-658.	1.3	23
118	Yeast two-hybrid screens imply that GCNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Letters, 2005, 579, 559-566.	1.3	47
119	The S phase checkpoint: When the crowd meets at the fork. Seminars in Cell and Developmental Biology, 2005, 16, 355-368.	2.3	66
120	Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Research, 2005, 7, R1005-16.	2.2	44
123	Fanconi Anemia. Seminars in Hematology, 2006, 43, 147-156.	1.8	174
124	The Fanconi anemia/BRCA pathway: A coordinator of cross-link repair. Experimental Cell Research, 2006, 312, 2647-2653.	1.2	76
125	The Fanconi anemia gene network is conserved from zebrafish to human. Gene, 2006, 371, 211-223.	1.0	35
126	Disruption of the Fanconi anemia/BRCA pathway in sporadic cancer. Cancer Letters, 2006, 232, 99-106.	3.2	56
127	The nuclear accumulation of the Fanconi anemia protein FANCE depends on FANCC. DNA Repair, 2006, 5, 556-565.	1.3	19
128	Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair, 2006, 5, 629-640.	1.3	45
129	Dedicated to the core: Understanding the Fanconi anemia complex. DNA Repair, 2006, 5, 1119-1125.	1.3	54
130	The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair, 2006, 5, 875-884.	1.3	46
131	Drosophila homologs of FANCD2 and FANCL function in DNA repair. DNA Repair, 2006, 5, 1317-1326.	1.3	35
132	C. elegans FANCD2 responds to replication stress and functions in interstrand cross-link repair. DNA Repair, 2006, 5, 1398-1406.	1.3	60

#	Article	IF	CITATIONS
133	UBE2T Is the E2 in the Fanconi Anemia Pathway and Undergoes Negative Autoregulation. Molecular Cell, 2006, 23, 589-596.	4.5	244
134	FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure: Activation is not required for repair of Cr(VI)-induced DSBs. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 610, 21-30.	0.9	11
135	Overexpression of the Fanconi Anemia A Gene in Hela and MCF10A Cells. The Korean Journal of Hematology, 2006, 41, 1.	0.7	1
136	Natural gene therapy in monozygotic twins with Fanconi anemia. Blood, 2006, 107, 3084-3090.	0.6	76
137	Molecular pathogenesis of Fanconi anemia: recent progress. Blood, 2006, 107, 4223-4233.	0.6	338
138	Evidence for subcomplexes in the Fanconi anemia pathway. Blood, 2006, 108, 2072-2080.	0.6	84
139	Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biology, 2006, 8, 341-347.	4.6	486
140	Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nature Reviews Cancer, 2006, 6, 776-788.	12.8	375
141	Regulation of DNA repair by ubiquitylation. Nature Reviews Molecular Cell Biology, 2006, 7, 323-334.	16.1	246
142	Fanconi anaemia genes and susceptibility to cancer. Oncogene, 2006, 25, 5875-5884.	2.6	183
143	Generation of Mouse FANCL Antibody and Analysis of FANCL Protein Expression Profile in Mouse Tissues. Journal of Genetics and Genomics, 2006, 33, 49-55.	0.3	1
144	Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 39-48.	0.4	68
145	Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 596, 64-75.	0.4	22
146	Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 601, 191-201.	0.4	41
147			
	Oxidative Stress in Cancer-Prone Diseases. , 2006, , 761-788.		0
148	Oxidative Stress in Cancer-Prone Diseases. , 2006, , 761-788. Disruption of the fanconi anemia pathway in human cancer in the general population. Cancer Biology and Therapy, 2006, 5, 1637-1639.	1.5	6
148 149	Oxidative Stress in Cancer-Prone Diseases., 2006, 761-788. Disruption of the fanconi anemia pathway in human cancer in the general population. Cancer Biology and Therapy, 2006, 5, 1637-1639. Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells. Cancer Biology and Therapy, 2006, 5, 1632-1636.	1.5	0 6 30

	CITATION	Report	
#	Article	IF	CITATIONS
151	FANCD2 associated with sporadic breast cancer risk. Carcinogenesis, 2006, 27, 1930-1937.	1.3	40
152	In vivorepopulation ability of genetically corrected bone marrow cells from Fanconi anemia patients. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2340-2345.	3.3	40
153	The WD40 Repeats of FANCL Are Required for Fanconi Anemia Core Complex Assembly. Journal of Biological Chemistry, 2006, 281, 10896-10905.	1.6	44
154	Functional Interplay between BRCA2/FancD1 and FancC in DNA Repair. Journal of Biological Chemistry, 2006, 281, 21312-21320.	1.6	39
155	Fanconi anemia D2 protein confers chemoresistance in response to the anticancer agent, irofulven. Molecular Cancer Therapeutics, 2006, 5, 3153-3161.	1.9	19
156	Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Molecular Cancer Therapeutics, 2006, 5, 952-961.	1.9	190
157	Fanconi Anemia: Causes and Consequences of Genetic Instability. , 2006, 1, 218-242.		31
158	Roles of the BRCA1 and BRCA2 Breast Cancer Susceptibility Proteins in DNA Repair. , 2006, , 47-60.		0
159	DNA Repair Pathways in Clinical Practice: Lessons From Pediatric Cancer Susceptibility Syndromes. Journal of Clinical Oncology, 2006, 24, 3799-3808.	0.8	262
160	Activation of the Fanconi Anemia/BRCA Pathway and Recombination Repair in the Cellular Response to Solar Ultraviolet Light. Cancer Research, 2006, 66, 11140-11147.	0.4	34
161	Phosphorylation of FANCD2 on Two Novel Sites Is Required for Mitomycin C Resistance. Molecular and Cellular Biology, 2006, 26, 7005-7015.	1.1	109
162	Fanconi Anemia Proteins Are Required To Prevent Accumulation of Replication-Associated DNA Double-Strand Breaks. Molecular and Cellular Biology, 2006, 26, 425-437.	1.1	103
163	Inherited Bone Marrow Failure Syndromes. , 0, , 30-63.		8
165	Structural Determinants of Human FANCF Protein That Function in the Assembly of a DNA Damage Signaling Complex. Journal of Biological Chemistry, 2007, 282, 2047-2055.	1.6	38
166	A comprehensive strategy for the subtyping of patients with Fanconi anaemia: conclusions from the Spanish Fanconi Anemia Research Network. Journal of Medical Genetics, 2007, 44, 241-249.	1.5	47
167	Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation. Cancer Research, 2007, 67, 7395-7405.	0.4	198
168	Insights into Fanconi Anaemia from the structure of human FANCE. Nucleic Acids Research, 2007, 35, 1638-1648.	6.5	39
169	Fanconi Anemia Genes: Structure, Mutations, and Genotype-Phenotype Correlations. , 2007, 15, 39-58.		0

#	Article	IF	CITATIONS
170	Fanconi anemia: genetic analysis of a human disease using chicken system. Cytogenetic and Genome Research, 2007, 117, 346-351.	0.6	6
171	DNA Structure-Induced Recruitment and Activation of the Fanconi Anemia Pathway Protein FANCD2. Molecular and Cellular Biology, 2007, 27, 4283-4292.	1.1	34
172	Targeting Fanconi Anemia/BRCA2 Pathway Defects in Cancer: The Significance of Preclinical Pharmacogenomic Models. Clinical Cancer Research, 2007, 13, 4-10.	3.2	41
173	Chk1-Mediated Phosphorylation of FANCE Is Required for the Fanconi Anemia/BRCA Pathway. Molecular and Cellular Biology, 2007, 27, 3098-3108.	1.1	132
174	UBE2T, the Fanconi Anemia Core Complex, and FANCD2 Are Recruited Independently to Chromatin: a Basis for the Regulation of FANCD2 Monoubiquitination. Molecular and Cellular Biology, 2007, 27, 8421-8430.	1.1	79
175	Systems Biology-Based Identification of Crosstalk between E2F Transcription Factors and the Fanconi Anemia Pathway. Gene Regulation and Systems Biology, 2007, 1, 117762500700100.	2.3	0
177	Developmental stage- and DNA damage-specific functions of C. elegans FANCD2. Biochemical and Biophysical Research Communications, 2007, 352, 479-485.	1.0	20
178	The Fanconi Family Adds a Fraternal Twin. Developmental Cell, 2007, 12, 661-662.	3.1	30
179	Variation in cisplatinum sensitivity is not associated with Fanconi Anemia/BRCA pathway inactivation in head and neck squamous cell carcinoma cell lines. Cancer Letters, 2007, 245, 75-80.	3.2	11
180	Identification of FAAP24, a Fanconi Anemia Core Complex Protein that Interacts with FANCM. Molecular Cell, 2007, 25, 331-343.	4.5	264
181	The Fanconi Anemia Signalosome Anchor. Molecular Cell, 2007, 25, 487-490.	4.5	31
182	Fanconi Anemia and Ubiquitination. Journal of Genetics and Genomics, 2007, 34, 573-580.	1.7	20
183	Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood, 2007, 109, 5016-5026.	0.6	57
184	The broken genome: Genetic and pharmacologic approaches to breaking DNA. Annals of Medicine, 2007, 39, 208-218.	1.5	4
185	Inflammatory Reactive Oxygen Species-Mediated Hemopoietic Suppression in <i>Fancc</i> -Deficient Mice. Journal of Immunology, 2007, 178, 5277-5287.	0.4	67
186	Fanconi Anemia Genes in Vertebrates: Evolutionary Conservation, Sex-Linkage, and Embryonic Expression of FANCC and FANCG in Avian Cells. , 2007, , 183-199.		3
187	Genomic Instability in Fanconi Anaemia and Nijmegen Breakage Syndrome. , 2006, , 363-380.		1
188	Identification of the Fanconi Anemia Complementation Group I Gene, FANCI. Analytical Cellular Pathology, 2007, 29, 211-218.	0.7	89

# 189	ARTICLE The Fanconi anemia pathway and ubiquitin. BMC Biochemistry, 2007, 8, S10.	IF 4.4	Citations
190	Human Mus81 and FANCB independently contribute to repair of DNA damage during replication. Genes To Cells, 2007, 12, 1111-1122.	0.5	27
191	Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nature Reviews Genetics, 2007, 8, 735-748.	7.7	621
192	Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO Journal, 2007, 26, 1340-1351.	3.5	115
193	FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO Journal, 2007, 26, 2104-2114.	3.5	130
194	A novel Leu153Ser mutation of the Fanconi anemia FANCD2 gene is associated with severe chemotherapy toxicity in a pediatric T-cell acute lymphoblastic leukemia. Leukemia, 2007, 21, 72-78.	3.3	21
195	A requirement of FancL and FancD2 monoubiquitination in DNA repair. Genes To Cells, 2007, 12, 299-310.	0.5	33
196	Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9. Genes To Cells, 2007, 12, 841-851.	0.5	12
197	Immunoglobulin gene conversion: Synthesizing antibody diversification and DNA repair. DNA Repair, 2007, 6, 1557-1571.	1.3	17
198	Loss of FANCC function is associated with failure to inhibit late firing replication origins after DNA cross-linking. Experimental Cell Research, 2007, 313, 2283-2292.	1.2	3
199	Loss of expression of FANCD2 protein in sporadic and hereditary breast cancer. Breast Cancer Research and Treatment, 2008, 107, 41-47.	1.1	40
200	Defects of FA/BRCA pathway in lymphoma cell lines. International Journal of Hematology, 2008, 88, 543-550.	0.7	4
201	The ubiquitin system, disease, and drug discovery. BMC Biochemistry, 2008, 9, S7.	4.4	148
202	The DNA damage response pathways: at the crossroad of protein modifications. Cell Research, 2008, 18, 8-16.	5.7	177
203	A major switch for the Fanconi anemia DNA damage–response pathway. Nature Structural and Molecular Biology, 2008, 15, 1128-1130.	3.6	22
204	Integration of an electric-metal sensory experience in the Slo1 BK channel. Nature Structural and Molecular Biology, 2008, 15, 1130-1132.	3.6	4
205	AMD3100 synergizes with G-CSF to mobilize repopulating stem cells in Fanconi anemia knockout mice. Experimental Hematology, 2008, 36, 1084-1090.	0.2	36
206	Fanconi anemia proteins stabilize replication forks. DNA Repair, 2008, 7, 1973-1981.	1.3	59

#	Article	IF	CITATIONS
207	Oxidative Stress in Fanconi Anemia Hematopoiesis and Disease Progression. Antioxidants and Redox Signaling, 2008, 10, 1909-1921.	2.5	112
208	Chromatin Recruitment of DNA Repair Proteins: Lessons from the Fanconi Anemia and Double-Strand Break Repair Pathways. Molecular Cell, 2008, 32, 306-312.	4.5	73
209	Mechanistic Insight into Site-Restricted Monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Molecular Cell, 2008, 32, 767-777.	4.5	170
210	Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 656, 1-7.	0.9	12
211	Differential p53 Engagement in Response to Oxidative and Oncogenic Stresses in Fanconi Anemia Mice. Cancer Research, 2008, 68, 9693-9702.	0.4	32
212	Remodeling of DNA replication structures by the branch point translocase FANCM. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16107-16112.	3.3	200
213	FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Human Molecular Genetics, 2008, 17, 1641-1652.	1.4	113
214	FANCD2 monoubiquitination provides a link between the HHR6 and FA-BRCA pathways. Cell Cycle, 2008, 7, 407-413.	1.3	32
215	Structural and Functional Relationships of the XPF/MUS81 Family of Proteins. Annual Review of Biochemistry, 2008, 77, 259-287.	5.0	244
216	Cell cycle–dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood, 2008, 111, 5215-5222.	0.6	165
217	HES1 is a novel interactor of the Fanconi anemia core complex. Blood, 2008, 112, 2062-2070.	0.6	49
218	FANCD2 Western blot as a diagnostic tool for Brazilian patients with Fanconi anemia. Brazilian Journal of Medical and Biological Research, 2009, 42, 237-243.	0.7	4
219	Fanconi Anemia Complementation Group FANCD2 Protein Serine 331 Phosphorylation Is Important for Fanconi Anemia Pathway Function and BRCA2 Interaction. Cancer Research, 2009, 69, 8775-8783.	0.4	56
220	The Fanconi Anemia Core Complex Acts as a Transcriptional Co-regulator in Hairy Enhancer of Split 1 Signaling. Journal of Biological Chemistry, 2009, 284, 13384-13395.	1.6	17
221	FANCI Binds Branched DNA and Is Monoubiquitinated by UBE2T-FANCL. Journal of Biological Chemistry, 2009, 284, 23182-23186.	1.6	82
222	Functional Interaction between the Fanconi Anemia D2 Protein and Proliferating Cell Nuclear Antigen (PCNA) via a Conserved Putative PCNA Interaction Motif. Journal of Biological Chemistry, 2009, 284, 28935-28942.	1.6	51
223	Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Human Molecular Genetics, 2009, 18, 3484-3495.	1.4	120
224	Mutational analysis of FANCL , FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis, 2009, 30, 1898-1902.	1.3	29

		CITATION R	Report	
#	Article		IF	CITATIONS
225	Solving the RIDDLE of 53BP1 recruitment to sites of damage. Cell Cycle, 2009, 8, 1532	-1538.	1.3	96
226	Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Thera Cancer Drug Targets, 2009, 9, 101-117.	apy. Current	0.8	46
227	Validation of Fanconi anemia complementation Group A assignment using molecular a in Medicine, 2009, 11, 183-192.	nalysis. Genetics	1.1	13
228	Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Gene Development, 2009, 23, 555-560.	s and	2.7	63
229	XPF-ERCC1 Participates in the Fanconi Anemia Pathway of Cross-Link Repair. Molecular Biology, 2009, 29, 6427-6437.	and Cellular	1.1	121
230	Involvement of p29 in DNA damage responses and Fanconi anemia pathway. Carcinoge 1710-1716.	2nesis, 2009, 30,	1.3	16
231	Targeting the Fanconi Anemia/BRCA Pathway Circumvents Drug Resistance in Multiple Research, 2009, 69, 9367-9375.	Myeloma. Cancer	0.4	100
232	Identification of FANCA as a protein interacting with centromere-associated protein E. Biochimica Et Biophysica Sinica, 2009, 41, 816-821.	Acta	0.9	4
233	A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Research 1740-1754.	, 2009, 37,	6.5	71
234	The DNA Damage Response: Implications on Cancer Formation and Treatment. , 2009,			6
235	The genetic and molecular basis of Fanconi anemia. Mutation Research - Fundamental a Mechanisms of Mutagenesis, 2009, 668, 11-19.	and Molecular	0.4	174
236	C. elegans: A model of Fanconi anemia and ICL repair. Mutation Research - Fundamenta Mechanisms of Mutagenesis, 2009, 668, 103-116.	al and Molecular	0.4	34
237	The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and compa Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 6	arative genomics. 68, 117-132.	0.4	27
238	The Fanconi anemia protein interaction network: Casting a wide net. Mutation Researc and Molecular Mechanisms of Mutagenesis, 2009, 668, 27-41.	h - Fundamental	0.4	20
239	The Fanconi anemia pathway: Insights from somatic cell genetics using DT40 cell line. N Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 668, 92-10	Mutation 2.	0.4	13
240	Cellular and molecular consequences of defective Fanconi anemia proteins in replicatio DNA repair: Mechanistic insights. Mutation Research - Fundamental and Molecular Mec Mutagenesis, 2009, 668, 54-72.	n-coupled hanisms of	0.4	136
241	RAD51D- and FANCC-dependent base substitution mutagenesis at the ATP1A1 locus in Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 6	nammalian cells. 65, 61-66.	0.4	2
242	Fanconi anemia proteins and endogenous stresses. Mutation Research - Fundamental a Mechanisms of Mutagenesis, 2009, 668, 42-53.	and Molecular	0.4	43

#	Article	IF	CITATIONS
243	Mouse models of Fanconi anemia. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 668, 133-140.	0.4	135
244	FANCM–FAAP24 and FANCJ: FA proteins that metabolize DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 668, 20-26.	0.4	25
245	Cisplatin sensitivity is related to late DNA damage processing and checkpoint control rather than to the early DNA damage response. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 670, 32-41.	0.4	28
246	Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair, 2009, 8, 430-435.	1.3	62
247	Identification and characterization of mutations in FANCL gene: A second case of Fanconi anemia belonging to FA-L complementation group. Human Mutation, 2009, 30, E761-E770.	1.1	23
248	Targeting the ubiquitinâ€proteasome system for cancer therapy. Cancer Science, 2009, 100, 24-28.	1.7	115
249	Principles of ubiquitin and SUMO modifications in DNA repair. Nature, 2009, 458, 461-467.	13.7	497
250	Fanconi anemia deficiency stimulates HPV-associated hyperplastic growth in organotypic epithelial raft culture. Oncogene, 2009, 28, 674-685.	2.6	58
251	Linking the Cellular Functions of <i>BRCA</i> Genes to Cancer Pathogenesis and Treatment. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 461-487.	9.6	183
252	Identification and analysis of new proteins involved in the DNA damage response network of Fanconi anemia and Bloom syndrome. Methods, 2009, 48, 72-79.	1.9	24
253	Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 2009, 33, 275-286.	4.5	783
254	Recruitment of Fanconi Anemia and Breast Cancer Proteins to DNA Damage Sites Is Differentially Governed by Replication. Molecular Cell, 2009, 35, 716-723.	4.5	82
255	The Fanconi anemia-BRCA Pathway and Cancer. , 2009, , 367-414.		0
256	Fanconi Anemia. Hematology/Oncology Clinics of North America, 2009, 23, 193-214.	0.9	74
257	The role of the Fanconi anemia network in the response to DNA replication stress. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 292-325.	2.3	12
258	Defining protein interactions that regulate disease progression. Expert Opinion on Therapeutic Targets, 2009, 13, 13-17.	1.5	4
259	How the Fanconi Anemia Pathway Guards the Genome. Annual Review of Genetics, 2009, 43, 223-249.	3.2	537
260	ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood, 2009, 113, 2181-2190.	0.6	79

#	Article	IF	CITATIONS
261	Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood, 2009, 114, 174-180.	0.6	118
262	Better Posttransplant Outcome With Fludarabine Based Conditioning in Multitransfused Fanconi Anemia Patients Who Underwent Peripheral Blood Stem Cell Transplantation. Journal of Pediatric Hematology/Oncology, 2009, 31, 512-515.	0.3	6
263	FANCJ Helicase Operates in the Fanconi Anemia DNA Repair Pathway and the Response to Replicational Stress. Current Molecular Medicine, 2009, 9, 470-482.	0.6	32
264	Inherited bone marrow failure syndromes. Haematologica, 2010, 95, 1236-1240.	1.7	105
265	Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood, 2010, 116, 2915-2920.	0.6	50
266	Role of ubiquitination in the DNA damage response: proteomic analysis to identify new DNA-damage-induced ubiquitinated proteins. Biochemical Society Transactions, 2010, 38, 87-91.	1.6	4
267	Ubiquitin and SUMO signalling in DNA repair. Biochemical Society Transactions, 2010, 38, 116-131.	1.6	29
268	Using synthetic DNA interstrand crosslinks to elucidate repair pathways and identify new therapeutic targets for cancer chemotherapy. Cellular and Molecular Life Sciences, 2010, 67, 3683-3697.	2.4	58
269	The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans. DNA Repair, 2010, 9, 374-382.	1.3	25
270	FANCJ: Solving problems in DNA replication. DNA Repair, 2010, 9, 250-256.	1.3	35
271	Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environmental and Molecular Mutagenesis, 2010, 51, 552-566.	0.9	103
272	Role of homologous recombination in DNA interstrand crosslink repair. Environmental and Molecular Mutagenesis, 2010, 51, 582-603.	0.9	52
273	The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nature Structural and Molecular Biology, 2010, 17, 294-298.	3.6	65
274	Ubiquitin signalling in DNA replication and repair. Nature Reviews Molecular Cell Biology, 2010, 11, 479-489.	16.1	261
275	Structure and putative function of NFX1â€like proteins in plants. Plant Biology, 2010, 12, 381-394.	1.8	20
276	Convergence of Rad6/Rad18 and Fanconi Anemia Tumor Suppressor Pathways upon DNA Damage. PLoS ONE, 2010, 5, e13313.	1.1	32
277	Assembling an orchestra: Fanconi anemia pathway of repair. Frontiers in Bioscience - Landmark, 2010, 15, 1131.	3.0	10
278	Susceptibility Pathways in Fanconi's Anemia and Breast Cancer. New England Journal of Medicine, 2010, 362, 1909-1919.	13.9	332

#	Article	IF	CITATIONS
279	<i>brca2</i> in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19350-19355.	3.3	89
280	RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. Journal of Cell Biology, 2010, 191, 249-257.	2.3	95
281	Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis. PLoS Genetics, 2010, 6, e1001034.	1.5	175
282	RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis, 2010, 31, 2031-2038.	1.3	96
283	Four-Dimensional Orthogonal Electrophoresis System for Screening Protein Complexes and Proteinâ^'Protein Interactions Combined with Mass Spectrometry. Journal of Proteome Research, 2010, 9, 5325-5334.	1.8	10
284	The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 424-439.	2.3	40
285	Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway. Science, 2011, 333, 312-316.	6.0	144
286	The Ubiquitin-Proteasome System and DNA Repair. , 2011, , .		1
287	FANCD1/BRCA2 Plays Predominant Role in the Repair of DNA Damage Induced by ACNU or TMZ. PLoS ONE, 2011, 6, e19659.	1.1	35
288	Disorders of Protein Biogenesis and Stability. Protein and Peptide Letters, 2011, 18, 110-121.	0.4	6
289	Regulatory Functions of Ubiquitin in Diverse DNA Damage Responses. Current Molecular Medicine, 2011, 11, 152-169.	0.6	18
290	The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood, 2011, 117, 5078-5087.	0.6	77
291	Fanconi anemia: at the Crossroads of DNA repair. Biochemistry (Moscow), 2011, 76, 36-48.	0.7	29
292	Regulation of DNA repair by ubiquitylation. Biochemistry (Moscow), 2011, 76, 69-79.	0.7	15
293	Physical and functional crosstalk between Fanconi anemia core components and the GINS replication complex. DNA Repair, 2011, 10, 149-158.	1.3	15
294	Coordinated action of the Fanconi anemia and ataxia telangiectasia pathways in response to oxidative damage. DNA Repair, 2011, 10, 518-525.	1.3	21
295	Ubiquitylation and the Fanconi anemia pathway. FEBS Letters, 2011, 585, 2853-2860.	1.3	51
296	The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Letters, 2011, 585, 2836-2844.	1.3	43

#	Article	IF	CITATIONS
297	GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines. Radiation Research, 2011, 176, 603-612.	0.7	37
298	UBE2W Interacts with FANCL and Regulates the Monoubiquitination of Fanconi Anemia Protein FANCD2. Molecules and Cells, 2011, 31, 113-122.	1.0	25
299	Fanconi anaemia: from a monogenic disease to sporadic cancer. Clinical and Translational Oncology, 2011, 13, 215-221.	1.2	19
300	The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein and Cell, 2011, 2, 704-711.	4.8	30
301	Fanconi anemia D2 protein is an apoptotic target mediated by caspases. Journal of Cellular Biochemistry, 2011, 112, 2383-2391.	1.2	6
302	The Fanconi anemia pathway is downregulated upon macrophage differentiation through two distinct mechanisms. Cell Cycle, 2011, 10, 3300-3310.	1.3	10
303	Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Human Molecular Genetics, 2011, 20, 4395-4410.	1.4	46
304	Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition. Cell Cycle, 2011, 10, 1625-1638.	1.3	65
305	FANCP/SLX4. Cell Cycle, 2011, 10, 1757-1763.	1.3	49
306	Structural Analysis of Human FANCL, the E3 Ligase in the Fanconi Anemia Pathway. Journal of Biological Chemistry, 2011, 286, 32628-32637.	1.6	45
307	DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Research, 2012, 40, 4553-4561.	6.5	79
308	Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair. EMBO Journal, 2012, 31, 3524-3536.	3.5	61
309	Broad-spectrum Four-dimensional Orthogonal Electrophoresis: A Novel Comprehensively Feasible System for Protein Complexomics Investigation. Molecular and Cellular Proteomics, 2012, 11, 786-799.	2.5	3
310	FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer. Cell Cycle, 2012, 11, 2947-2955.	1.3	28
311	Regulation of the activation of the Fanconi anemia pathway by the p21 cyclin-dependent kinase inhibitor. Oncogene, 2012, 31, 366-375.	2.6	35
312	Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing. Anemia, 2012, 2012, 1-13.	0.5	39
313	Towards a Molecular Understanding of the Fanconi Anemia Core Complex. Anemia, 2012, 2012, 1-10.	0.5	20
314	Fanconi Anemia Proteins and Their Interacting Partners: A Molecular Puzzle. Anemia, 2012, 2012, 1-11.	0.5	13

#	Article	IF	CITATIONS
315	FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood, 2012, 119, 3285-3294.	0.6	78
316	FANCL ubiquitinates Î ² -catenin and enhances its nuclear function. Blood, 2012, 120, 323-334.	0.6	30
317	Regulation of the Fanconi anemia pathway by a CUE ubiquitin-binding domain in the FANCD2 protein. Blood, 2012, 120, 2109-2117.	0.6	27
318	Monoubiquitination-dependent chromatin loading of FancD2 in silkworms, a species lacking the FA core complex. Gene, 2012, 501, 180-187.	1.0	10
319	Fanconi-like crosslink repair in yeast. Genome Integrity, 2012, 3, 7.	1.0	11
320	Pathways for repairing and tolerating the spectrum of oxidative DNA lesions. Cancer Letters, 2012, 327, 61-72.	3.2	118
321	The Fanconi anemia pathway in replication stress and DNA crosslink repair. Cellular and Molecular Life Sciences, 2012, 69, 3963-3974.	2.4	20
322	The Fanconi Anaemia Components UBE2T and FANCM Are Functionally Linked to Nucleotide Excision Repair. PLoS ONE, 2012, 7, e36970.	1.1	38
323	The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. Journal of Pathology, 2012, 226, 326-337.	2.1	92
324	Identification of polymorphisms in ultraconserved elements associated with clinical outcomes in locally advanced colorectal adenocarcinoma. Cancer, 2012, 118, 6188-6198.	2.0	14
325	Rescue of replication failure by Fanconi anaemia proteins. Chromosoma, 2012, 121, 21-36.	1.0	30
326	FANCD2 Binds MCM Proteins and Controls Replisome Function upon Activation of S Phase Checkpoint Signaling. Molecular Cell, 2013, 51, 678-690.	4.5	210
327	Assessment of FANCD2 nuclear foci formation in paraffin-embedded tumors: a potential patient-enrichment strategy for treatment with DNA interstrand crosslinking agents. Translational Research, 2013, 161, 156-164.	2.2	21
328	FANCM and FAAP24 Maintain Genome Stability via Cooperative as Well as Unique Functions. Molecular Cell, 2013, 49, 997-1009.	4.5	69
329	Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 2013, 493, 356-363.	13.7	523
330	The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 78-88.	0.4	50
331	ATR-Dependent Phosphorylation of FANCM at Serine 1045 Is Essential for FANCM Functions. Cancer Research, 2013, 73, 4300-4310.	0.4	59
332	Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair. Nucleic Acids Research, 2013, 41, 10573-10583.	6.5	13

19

CITAT	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
333	The PI3K/Akt1 pathway enhances steady-state levels of FANCL. Molecular Biology of the Cell, 2013, 24, 2582-2592.	0.9	7
334	<scp>DNA</scp> interstrand crossâ€link repair: understanding role of <scp>F</scp> anconi anemia pathway and therapeutic implications. European Journal of Haematology, 2013, 91, 381-393.	1.1	17
335	Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle, 2013, 12, 803-809.	1.3	47
336	Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood, 2013, 121, e138-e148.	0.6	74
337	The Ubiquitin/SUMO Pathway and Radial Ray Deficiency Syndromes. Annals of Plastic Surgery, 2013, 70, 240-245.	0.5	3
338	Loss of GGN Leads to Pre-Implantation Embryonic Lethality and Compromised Male Meiotic DNA Double Strand Break Repair in the Mouse. PLoS ONE, 2013, 8, e56955.	1.1	14
339	A Protein Prioritization Approach Tailored for the FA/BRCA Pathway. PLoS ONE, 2013, 8, e62017.	1.1	8
340	Defective FANCI Binding by a Fanconi Anemia-Related FANCD2 Mutant. PLoS ONE, 2014, 9, e114752.	1.1	5
341	Additional Diseases Associated with Defective Responses to DNA Damage. , 2014, , 979-999.		0
342	Fanconi Anemia Founder Mutation in Macedonian Patients. Acta Haematologica, 2014, 132, 15-21.	0.7	4
343	Abundance of the Fanconi anaemia core complex is regulated by the RuvBL1 and RuvBL2 AAA+ ATPases. Nucleic Acids Research, 2014, 42, 13736-13748.	6.5	37
344	Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection. Structure, 2014, 22, 337-344.	1.6	71
345	FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. Cell Reports, 2014, 7, 1030-1038.	2.9	75
346	PALB2: The hub of a network of tumor suppressors involved in DNA damage responses. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 263-275.	3.3	52
347	Large deletion causing von Hippel-Lindau disease and hereditary breast cancer syndrome. Hereditary Cancer in Clinical Practice, 2014, 12, 16.	0.6	5
348	Coregulation of FANCA and BRCA1 in human cells. SpringerPlus, 2014, 3, 381.	1.2	5
349	TNF-Î \pm signaling in Fanconi anemia. Blood Cells, Molecules, and Diseases, 2014, 52, 2-11.	0.6	41
350	Modularized Functions of the Fanconi Anemia Core Complex. Cell Reports, 2014, 7, 1849-1857.	2.9	81

		CITATION REPORT		
#	ARTICLE		IF	Citations
351	The Genetic and Biochemical Basis of FANCD2 Monoubiquitination. Molecular Cell, 202	14, 54, 858-869.	4.5	109
352	Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fan cells. Oncogene, 2014, 33, 165-172.	coni Anemia	2.6	98
353	Association of human papillomavirus with Fanconi anemia promotes carcinogenesis in patients. Reviews in Medical Virology, 2015, 25, 345-353.	Fanconi anemia	3.9	13
354	Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy. Molecules a 38, 669-676.	nd Cells, 2015,	1.0	23
355	The Fanconi Anemia Pathway of DNA Repair and Human Cancer. , 2015, , .			1
356	FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Indeper PLoS Genetics, 2015, 11, e1005563.	idently of FANCD2.	1.5	67
357	The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Sig Post Formation of BRUCE-USP8-BRIT1 Complex. PLoS ONE, 2015, 10, e0144957.	naling and Repair	1.1	9
358	Ubiquitylation, neddylation and the DNA damage response. Open Biology, 2015, 5, 15	0018.	1.5	117
359	Celastrol induces proteasomal degradation of <scp>FANCD</scp> 2 to sensitize lung c <scp>DNA</scp> crosslinking agents. Cancer Science, 2015, 106, 902-908.	ancer cells to	1.7	26
360	The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiq E2-like Fold Domain of FANCL. Journal of Biological Chemistry, 2015, 290, 20995-2100	uitin and the 6.	1.6	23
361	FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independe Fanconi Anemia core complex. Cell Cycle, 2015, 14, 342-353.	ntly of the	1.3	65
362	DNA damage response $\hat{a} \in \hat{A}$ double-edged sword in cancer prevention and cancer the Letters, 2015, 358, 8-16.	apy. Cancer	3.2	155
363	DNA helicases FANCM and DDX11 are determinants of PARP inhibitor sensitivity. DNA 54-64.	Repair, 2015, 26,	1.3	26
364	Deficiency of UBE2T, the E2ÂUbiquitin Ligase Necessary for FANCD2 and FANCI Ubiqui FA-T Subtype of Fanconi Anemia. Cell Reports, 2015, 12, 35-41.	tination, Causes	2.9	107
365	FANCB is essential in the male germline and regulates H3K9 methylation on the sex ch during meiosis. Human Molecular Genetics, 2015, 24, 5234-5249.	romosomes	1.4	53
366	Human FAN1 promotes strand incision in $5\hat{a}\in^2$ -flapped DNA complexed with RPA. Journ 2015, 158, 263-270.	nal of Biochemistry,	0.9	8
367	Loss-of-Function <i>FANCL</i> Mutations Associate with Severe Fanconi Anemia Overla VACTERL Association. Human Mutation, 2015, 36, 562-568.	pping the	1.1	23
368	Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteir spermatogenesis. Spermatogenesis, 2015, 5, e979061.	is during	0.8	11

#	ARTICLE	IF	CITATIONS
369	The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Molecular Cell, 2015, 60, 351-361.	4.5	283
370	DNA Repair and Chromosomal Translocations. Recent Results in Cancer Research, 2015, 200, 1-37.	1.8	6
371	What is the DNA repair defect underlying Fanconi anemia?. Current Opinion in Cell Biology, 2015, 37, 49-60.	2.6	124
372	Fanconi anaemia: genetics, molecular biology, and cancer–Âimplications for clinical management in children and adults. Clinical Genetics, 2015, 88, 13-24.	1.0	69
373	How SUMOylation Fine-Tunes the Fanconi Anemia DNA Repair Pathway. Frontiers in Genetics, 2016, 7, 61.	1.1	8
374	Hereditary truncating mutations of <scp>DNA</scp> repair and other genes in <i><scp>BRCA1</scp></i> / <i><scp>BRCA2</scp></i> / <i><scp>PALB2</scp></i> á€negatively tested breast cancer patients. Clinical Genetics, 2016, 90, 324-333.	1.0	38
375	Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discovery, 2016, 2, 16047.	3.1	47
376	Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cellular and Molecular Life Sciences, 2016, 73, 3097-3114.	2.4	97
377	FANCI is a negative regulator of Akt activation. Cell Cycle, 2016, 15, 1134-1143.	1.3	32
378	Specificity and disease in the ubiquitin system. Biochemical Society Transactions, 2016, 44, 212-227.	1.6	44
379	Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochemical Journal, 2016, 473, 3401-3419.	1.7	51
380	FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end. Nucleic Acids Research, 2016, 44, 10758-10771.	6.5	44
381	The ubiquitin family meets the Fanconi anemia proteins. Mutation Research - Reviews in Mutation Research, 2016, 769, 36-46.	2.4	15
382	Elucidation of the Fanconi Anemia Protein Network in Meiosis and Its Function in the Regulation of Histone Modifications. Cell Reports, 2016, 17, 1141-1157.	2.9	46
383	The Simple Chordate <i>Ciona intestinalis</i> Has a Reduced Complement of Genes Associated with Fanconi Anemia. Evolutionary Bioinformatics, 2016, 12, EBO.S37920.	0.6	6
384	Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO Journal, 2016, 35, 909-923.	3.5	167
385	Aurora A kinase is required for activation of the Fanconi anemia/ BRCA pathway upon DNA damage. FEBS Open Bio, 2016, 6, 782-790.	1.0	3
386	The Fanconi Anemia Pathway and Interstrand Cross-Link Repair. , 2016, , 175-210.		1

#	Article	IF	CITATIONS
387	The Crossroads of Ubiquitination and DNA Repair: A Structural Perspective. , 2016, , 211-232.		1
388	FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Research, 2016, 44, 3219-3232.	6.5	41
389	The FA Core Complex Contains a Homo-dimeric Catalytic Module for the Symmetric Mono-ubiquitination of FANCI-FANCD2. Cell Reports, 2017, 18, 611-623.	2.9	55
390	Fanconi anemia protein <scp>FANCD</scp> 2 is activated by <scp>AICAR</scp> , a modulator of <scp>AMPK</scp> and cellular energy metabolism. FEBS Open Bio, 2017, 7, 284-292.	1.0	1
391	Novel homozygous FANCL mutation and somatic heterozygous SETBP1 mutation in a Chinese girl with Fanconi Anemia. European Journal of Medical Genetics, 2017, 60, 369-373.	0.7	5
392	Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. Molecular Cell, 2017, 65, 247-259.	4.5	113
393	DNA replication and inter-strand crosslink repair: Symmetric activation of dimeric nanomachines?. Biophysical Chemistry, 2017, 225, 15-19.	1.5	2
394	Constitutive role of the Fanconi anemia D2 gene in the replication stress response. Journal of Biological Chemistry, 2017, 292, 20184-20195.	1.6	25
395	Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome. Journal of Molecular Biology, 2017, 429, 3471-3485.	2.0	44
396	A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents. Journal of Physical Education and Sports Management, 2017, 3, a001487.	0.5	25
397	Strong antitumor synergy between DNA crosslinking and HSP90 inhibition causes massive premitotic DNA fragmentation in ovarian cancer cells. Cell Death and Differentiation, 2017, 24, 300-316.	5.0	16
398	Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Reviews, 2017, 31, 93-99.	2.8	109
399	FANCI and FANCD2 have common as well as independent functions during the cellular replication stress response. Nucleic Acids Research, 2017, 45, 11837-11857.	6.5	34
400	Fanconi Anemia Signaling and Cancer. Trends in Cancer, 2017, 3, 840-856.	3.8	75
401	FANCD2 and DNA Damage. International Journal of Molecular Sciences, 2017, 18, 1804.	1.8	42
402	DNA damage response and cancer therapeutics through the lens of the Fanconi Anemia DNA repair pathway. Cell Communication and Signaling, 2017, 15, 41.	2.7	67
403	The Role of BRCA1 and BRCA2 Genes in the Appearance of Pediatric and Adolescent Disorders. Journal of Neoplasm, 2017, 02, .	0.1	1
404	MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing <i>SPTAN1</i> . Oncotarget, 2017, 8, 58098-58107.	0.8	37

#	Article	IF	CITATIONS
405	A never-ending story: the steadily growing family of the FA and FA-like genes. Genetics and Molecular Biology, 2017, 40, 398-407.	0.6	32
406	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	2.9	83
407	Inhibition of non-homologous end joining in Fanconi Anemia cells results in rescue of survival after interstrand crosslinks but sensitization to replication associated double-strand breaks. DNA Repair, 2018, 64, 1-9.	1.3	20
408	Fanconi anaemia and cancer: an intricate relationship. Nature Reviews Cancer, 2018, 18, 168-185.	12.8	275
409	Fanconi anemia core complex-dependent HES1 mono-ubiquitination regulates its transcriptional activity. BMC Research Notes, 2018, 11, 138.	0.6	2
410	Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells. Clinical Cancer Research, 2018, 24, 2700-2709.	3.2	21
411	Multifaceted Fanconi Anemia Signaling. Trends in Genetics, 2018, 34, 171-183.	2.9	56
412	Ubiquitin and Fanconi Anemia. , 2018, , .		2
413	Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. International Journal of Molecular Sciences, 2018, 19, 2909.	1.8	12
414	Myelodysplastic Syndrome, Acute Myeloid Leukemia, and Cancer Surveillance in Fanconi Anemia. Hematology/Oncology Clinics of North America, 2018, 32, 657-668.	0.9	42
415	Rare variants in Fanconi anemia genes are enriched in acute myeloid leukemia. Blood Cancer Journal, 2018, 8, 50.	2.8	17
416	Warsaw breakage syndrome DDX11 helicase acts jointly with RAD17 in the repair of bulky lesions and replication through abasic sites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8412-8417.	3.3	34
417	Chromosome instability syndromes. Nature Reviews Disease Primers, 2019, 5, 64.	18.1	123
418	Regional Heterogeneity in Gene Expression, Regulation, and Coherence in the Frontal Cortex and Hippocampus across Development and Schizophrenia. Neuron, 2019, 103, 203-216.e8.	3.8	158
419	Phosphorylation of FANCD2 Inhibits the FANCD2/FANCI Complex and Suppresses the Fanconi Anemia Pathway in the Absence of DNA Damage. Cell Reports, 2019, 27, 2990-3005.e5.	2.9	29
420	Dental-craniofacial manifestation and treatment of rare diseases. International Journal of Oral Science, 2019, 11, 9.	3.6	20
421	Mammalian INO80 chromatin remodeler cooperates with FANCM to mediate DNA interstrand crosslink-induced checkpoint activation and repair. DNA Repair, 2019, 74, 38-50.	1.3	4
422	The Fanconi Anemia Pathway in Cancer. Annual Review of Cancer Biology, 2019, 3, 457-478.	2.3	261

#	Article	IF	CITATIONS
423	DNA replication stress and its impact on chromosome segregation and tumorigenesis. Seminars in Cancer Biology, 2019, 55, 61-69.	4.3	23
424	Functional cross talk between the Fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery. Human Molecular Genetics, 2020, 29, 1083-1095.	1.4	21
425	A founder variant in the South Asian population leads to a high prevalence of <i>FANCL</i> Fanconi anemia cases in India. Human Mutation, 2020, 41, 122-128.	1.1	10
426	Allosteric mechanism for site-specific ubiquitination of FANCD2. Nature Chemical Biology, 2020, 16, 291-301.	3.9	23
427	Zebrafish as an emerging model to study gonad development. Computational and Structural Biotechnology Journal, 2020, 18, 2373-2380.	1.9	21
428	A Surge of DNA Damage Links Transcriptional Reprogramming and Hematopoietic Deficit in Fanconi Anemia. Molecular Cell, 2020, 80, 1013-1024.e6.	4.5	29
429	Inactivation of ribosomal protein S27-like impairs DNA interstrand cross-link repair by destabilization of FANCD2 and FANCI. Cell Death and Disease, 2020, 11, 852.	2.7	11
430	DNA polymerase Î ¹ compensates for Fanconi anemia pathway deficiency by countering DNA replication stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33436-33445.	3.3	13
431	Methodology for the identification of small molecule inhibitors of the Fanconi Anaemia ubiquitin E3 ligase complex. Scientific Reports, 2020, 10, 7959.	1.6	7
432	The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes, 2020, 11, 585.	1.0	28
433	High content drug screening for Fanconi anemia therapeutics. Orphanet Journal of Rare Diseases, 2020, 15, 170.	1.2	3
434	<i>FANCL</i> gene mutations in premature ovarian insufficiency. Human Mutation, 2020, 41, 1033-1041.	1.1	32
435	Molecular Mechanisms of Arsenic-Induced Disruption of DNA Repair. Chemical Research in Toxicology, 2020, 33, 709-726.	1.7	80
436	MLH1â€mediated recruitment of FAN1 to chromatin for the induction of apoptosis triggered by O6â€methylguanine. Genes To Cells, 2020, 25, 175-186.	0.5	6
437	Cracking the Monoubiquitin Code of Genetic Diseases. International Journal of Molecular Sciences, 2020, 21, 3036.	1.8	18
438	A distinct role for recombination repair factors in an early cellular response to transcription–replication conflicts. Nucleic Acids Research, 2020, 48, 5467-5484.	6.5	23
439	A homozygous missense variant in UBE2T is associated with a mild Fanconi anemia phenotype. Haematologica, 2021, 106, 1188-1192.	1.7	3
440	Mass spectrometry-based protein-protein interaction techniques and their applications in studies of DNA damage repair. Journal of Zhejiang University: Science B, 2021, 22, 1-20.	1.3	3

ARTICLE IF CITATIONS # MiRNA-200C expression in Fanconi anemia pathway functionally deficient lung cancers. Scientific 1.6 2 441 Reports, 2021, 11, 4420. The Classification of VACTERL Association into 3 Groups According to the Limb Defect. Plastic and 442 0.3 Reconstructive Surgery - Global Open, 2021, 9, e3360. 443 Interstrand Crosslink Repair: New Horizons of DNA Damage Repair., 0, , . 0 The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Molecular Cell, 2021, 81, 444 2278-2289. FANCM regulates repair pathway choice at stalled replication forks. Molecular Cell, 2021, 81, 445 4.5 37 2428-2444.e6. Mechanism, specificity, and function of FANCD2â€FANCI ubiquitination and deubiquitination. FEBS Journal, 2022, 289, 4811-4829. 2.2 A comprehensive molecular study identified 12 complementation groups with 56 novel FANC gene 447 1.1 6 variants in Indian Fanconi anemia subjects. Human Mutation, 2021, 42, 1648-1665. The fanconi anemia pathway promotes homologous recombination repair in DT40 cell line. 1.0 Sub-Cellular Biochemistry, 2006, 40, 295-311. Signaling Through Monoubiquitination. Current Topics in Microbiology and Immunology, 2004, 286, 450 0.7 133 149-185. BRCA1 and BRCA2: Role in the DNA Damage Response, Cancer Formation and Treatment., 2009, , 415-443. Autosomal Genes in Male Infertility., 2017, , 231-252. 452 3 TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. Journal 456 of Clinical Investigation, 2007, 117, 3283-3295. FAVL elevation in human tumors disrupts Fanconi anemia pathway signaling and promotes genomic 457 3.9 36 instability and tumor growth. Journal of Clinical Investigation, 2010, 120, 1524-1534. Recent advances in understanding hematopoiesis in Fanconi Anemia. F1000Research, 2018, 7, 105. 0.8 459 Fanconi anemia and the cell cycle: new perspectives on aneuploidy. F1000prime Reports, 2014, 6, 23. 23 5.9 Role of RUNX Family Transcription Factors in DNA Damage Response. Molecules and Cells, 2020, 43, 24 99-106. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO 461 2.0 29 Reports, 2020, 21, e50133. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks. Oncotarget, 2016, 7, 53642-53653.

		CITATION REPORT		
#	Article		IF	CITATIONS
463	A Hidden Role of the Inactivated FANCD2: Upregulating ΔNp63. Oncotarget, 2013, 4,	1416-1426.	0.8	15
464	Basal level of FANCD2 monoubiquitination is required for the maintenance of a sufficient licensed-replication origins to fire at a normal rate. Oncotarget, 2014, 5, 1326-1337.	ent number of	0.8	25
465	Overexpression of Rad51C splice variants in colorectal tumors. Oncotarget, 2015, 6, 8	3777-8787.	0.8	7
466	FANCJ protein is important for the stability of FANCD2/FANCI proteins and protects th proteasome and caspase-3 dependent degradation. Oncotarget, 2015, 6, 28816-2883	em from 32.	0.8	16
467	Introducing, OncoTarget. Oncotarget, 2010, 1, 2-2.		0.8	1
468	Fanconi anemia: a multi-age cancer susceptibility syndrome. Pediatric Health, 2008, 2,	175-187.	0.3	1
469	DNA crosslinking damage and cancer - a tale of friend and foe. Translational Cancer Re 144-154.	search, 2013, 2,	0.4	65
470	DNA damage tolerance: a double-edged sword guarding the genome. Translational Car 2013, 2, 107-129.	ncer Research,	0.4	153
471	TNF-α, a good or bad factor in hematological diseases?. Stem Cell Investigation, 2014	, 1, 12.	1.3	31
472	Role of E3 ubiquitin ligases in lung cancer. World Journal of Clinical Oncology, 2013, 4	, 58.	0.9	29
473	Ubiquitin at the crossroad of cell death and survival. Chinese Journal of Cancer, 2013,	32, 640-647.	4.9	15
474	Genetic Basis of Inherited Bone Marrow Failure Syndromes. , 0, , .			2
475	From the Molecular Biology to the Gene Therapy of a DNA Repair Syndrome: Fanconi A	Anemia. , 0, , .		1
476	The emergence of a unified mechanism in the Fanconi anemia pathway. Genome Insta 2021, 2, 281-291.	bility & Disease,	0.5	2
478	Ubiquitin ligases as cancer genes. Nature Reviews Cancer, 2004, 4, 654-654.		12.8	1
479	Fanconi Anemia. , 2004, , 447-451.			0
480	The Genetic Basis of Fanconi Anemia. , 2006, , 13-27.			0
482	Interrelationship of the Fanconi Anemia/BRCA Pathway. , 2009, , 65-80.			0

#	Article	IF	CITATIONS
483	Ubiquitin and FANC Stress Responses. , 2010, , 2265-2272.		0
484	Inflammatory ROS in Fanconi Anemia Hematopoiesis and Leukemogenesis. , 0, , .		0
485	FANC-BLM-Opathies: Recent Progress in the Understanding of Molecular Pathogenesis of Fanconi Anemia and Its Connection with Bloom Syndrome. , 2012, , 189-230.		0
488	Genetic diagnosis of Fanconi anemia. Literature review. Oncogematologiya, 2016, 11, 76-85.	0.1	1
490	Characterization of FANCL variants observed in patient cancer cells. Bioscience Reports, 2020, 40, .	1.1	6
492	Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability. Frontiers in Genetics, 2021, 12, 784167.	1.1	12
493	Clinical Features of Fanconi Anaemia. , 2006, , 1-12.		0
494	The FANCA Gene and Its Products. , 2006, , 28-35.		0
495	The FANCC Gene and Its Products. , 2006, , 36-53.		0
496	The FANC B, E, F and G Genes and Their Products. , 2006, , 54-60.		Ο
497	FANCD1/BRCA2 and FANCD2. , 2006, , 61-66.		0
498	The FANC Genome Surveillance Complex. , 2006, , 67-73.		Ο
504	Systems biology-based identification of crosstalk between E2F transcription factors and the Fanconi anemia pathway. Gene Regulation and Systems Biology, 2007, 1, 1-8.	2.3	6
509	Transcriptome Analysis Reveals the Alternative Splicing Changes in the Immune-Related Genes of the Giant Panda (Ailuropoda melanoleuca), in Response to the Canine Distemper Vaccine. Zoological Science, 2022, 39, .	0.3	3
510	Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers, 2022, 14, 2040.	1.7	2
514	Ubiquitin Signaling and Cancer Pathogenesis. , 0, , 1-20.		0
515	FANCL supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166453.	1.8	2
517	UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT. Oncology Reports, 2022, 48, .	1.2	5

#	Article	IF	CITATIONS
518	Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas. Human Cell, 0, , .	1.2	1
519	Heterozygosity for p53 (<i>Trp53 +/â^'</i>) Accelerates Epithelial Tumor Formation in Fanconi Anemia Complementation Group D2 (<i>Fancd2</i>) Knockout Mice. Cancer Research, 2005, 65, 85-91.	0.4	52
521	The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nature Structural and Molecular Biology, 2022, 29, 881-890.	3.6	10
522	Identification of a Hypomorphic FANCG Variant in Bernese Mountain Dogs. Genes, 2022, 13, 1693.	1.0	1
524	The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genetics, 2022, 18, e1010574.	1.5	0