Islet \hat{I}^2 -cell secretion determines glucagon release from

Nature Cell Biology 5, 330-335

DOI: 10.1038/ncb951

Citation Report

#	Article	IF	CITATIONS
1	Zinc ions in beta-cells of obese, insulin-resistant, and type 2 diabetic rats traced by autometallography. Apmis, 2003, 111, 1147-1154.	0.9	27
2	A Reappraisal of the Blood Glucose Homeostat which Comprehensively Explains the Type 2 Diabetes Mellitus–Syndrome X Complex. Journal of Physiology, 2003, 549, 333-346.	1.3	40
3	Glutamate-mediated signaling in the islets of Langerhans: a thread entangled. Trends in Pharmacological Sciences, 2003, 24, 511-517.	4.0	45
4	Targeted Elimination of Peroxisome Proliferator-Activated Receptor \hat{l}^3 in \hat{l}^2 Cells Leads to Abnormalities in Islet Mass without Compromising Glucose Homeostasis. Molecular and Cellular Biology, 2003, 23, 7222-7229.	1.1	141
5	New Insights into the Regulation of Glucagon Secretion by Glucagon-like Peptide-1. Hormone and Metabolic Research, 2004, 36, 822-829.	0.7	31
6	Disruption of the WFS1 gene in mice causes progressive Â-cell loss and impaired stimulus-secretion coupling in insulin secretion. Human Molecular Genetics, 2004, 13, 1159-1170.	1.4	232
7	Regulated Exocytosis of GABA-containing Synaptic-like Microvesicles in Pancreatic \hat{l}^2 -cells. Journal of General Physiology, 2004, 123, 191-204.	0.9	118
8	Metabolic Pathways That Mediate Inhibition of Hypothalamic Neurons by Glucose. Diabetes, 2004, 53, 67-73.	0.3	126
9	Glucose Sensitivity and Metabolism-Secretion Coupling Studied during Two-Year Continuous Culture in INS-1E Insulinoma Cells. Endocrinology, 2004, 145, 667-678.	1.4	521
10	GABA in the Endocrine Pancreas. Journal of General Physiology, 2004, 123, 185-190.	0.9	90
11	Oligonucleotide Microarray Analysis Reveals PDX1 as an Essential Regulator of Mitochondrial Metabolism in Rat Islets. Journal of Biological Chemistry, 2004, 279, 31121-31130.	1.6	65
12	A Novel Variant of Ionotropic Glutamate Receptor Regulates Somatostatin Secretion From Â-Cells of Islets of Langerhans. Diabetes, 2004, 53, 1743-1753.	0.3	36
13	Identification and Cloning of a Â-Cell-Specific Zinc Transporter, ZnT-8, Localized Into Insulin Secretory Granules. Diabetes, 2004, 53, 2330-2337.	0.3	435
14	The diabetes-linked transcription factor PAX4 promotes \hat{l}^2 -cell proliferation and survival in rat and human islets. Journal of Cell Biology, 2004, 167, 1123-1135.	2.3	133
15	Stem cells and regenerative medicine for the treatment of type 1 diabetes: the challenges lying ahead. Pediatric Diabetes, 2004, 5, 88-93.	1.2	11
16	Zinc is both an intracellular and extracellular regulator of KATPchannel function. Journal of Physiology, 2004, 559, 157-167.	1.3	61
17	A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic \hat{l} ±-cell. Cell Calcium, 2004, 35, 357-365.	1.1	104
18	Functional identification and monitoring of individual ? and ? cells in cultured mouse islets of Langerhans. Acta Diabetologica, 2004, 41, 185-193.	1.2	26

#	Article	IF	Citations
19	Visualising insulin secretion. The Minkowski Lecture 2004. Diabetologia, 2004, 47, 1861-1872.	2.9	75
20	ATP-Sensitive K+ Channel-Dependent Regulation of Glucagon Release and Electrical Activity by Glucose in Wild-Type and SUR1-/- Mouse Â-Cells. Diabetes, 2004, 53, S181-S189.	0.3	142
21	Glucose Inhibition of Glucagon Secretion From Rat Â-Cells Is Mediated by GABA Released From Neighboring Â-Cells. Diabetes, 2004, 53, 1038-1045.	0.3	246
22	The islet Î ² -cell. International Journal of Biochemistry and Cell Biology, 2004, 36, 365-371.	1.2	63
23	Stimulatory short-term effects of free fatty acids on glucagon secretion at low to normal glucose concentrations. Metabolism: Clinical and Experimental, 2004, 53, 1443-1448.	1.5	34
24	Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia, 2005, 48, 720-731.	2.9	68
25	Zinc, the Pancreas, and Diabetes: Insights from Rodent Studies and Future Directions. BioMetals, 2005, 18, 305-312.	1.8	175
26	ZnT-8, A Pancreatic Beta-Cell-Specific Zinc Transporter. BioMetals, 2005, 18, 313-317.	1.8	146
27	Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E570-E577.	1.8	38
28	Glucose Stimulates Glucagon Release in Single Rat \hat{I} ±-Cells by Mechanisms that Mirror the Stimulus-Secretion Coupling in \hat{I}^2 -Cells. Endocrinology, 2005, 146, 4861-4870.	1.4	139
29	Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue. Journal of Endocrinology, 2005, 184, 505-513.	1.2	10
30	Two SUR1-specific Histidine Residues Mandatory for Zinc-induced Activation of the Rat KATP Channel. Journal of Biological Chemistry, 2005, 280, 8793-8799.	1.6	28
31	Glucose Dependence of the Regulated Secretory Pathway in $\hat{l}\pm TC1$ -6 Cells. Endocrinology, 2005, 146, 4514-4523.	1.4	61
32	Zinc Fluxes during Acute and Chronic Exposure of INS-1E Cells to Increasing Glucose Levels. Hormone and Metabolic Research, 2005, 37, 133-139.	0.7	16
33	SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment. Journal of Cell Science, 2005, 118, 5647-5660.	1.2	48
34	Â-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes, 2005, 54, 482-491.	0.3	213
35	Serum Glucagon Counterregulatory Hormonal Response to Hypoglycemia Is Blunted in Congenital Hyperinsulinism. Diabetes, 2005, 54, 2946-2951.	0.3	53
36	Dopamine D2-like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion. Journal of Biological Chemistry, 2005, 280, 36824-36832.	1.6	214

#	ARTICLE	IF	CITATIONS
37	Regulation of Glucagon Secretion at Low Glucose Concentrations: Evidence for Adenosine Triphosphate-Sensitive Potassium Channel Involvement. Endocrinology, 2005, 146, 5514-5521.	1.4	49
38	Glucose-regulated Glucagon Secretion Requires Insulin Receptor Expression in Pancreatic α-Cells. Journal of Biological Chemistry, 2005, 280, 33487-33496.	1.6	75
39	Glucose or Insulin, but not Zinc Ions, Inhibit Glucagon Secretion From Mouse Pancreatic Â-Cells. Diabetes, 2005, 54, 1789-1797.	0.3	247
40	Zinc-specific Autometallographic In Vivo Selenium Methods: Tracing of Zinc-enriched (ZEN) Terminals, ZEN Pathways, and Pools of Zinc lons in a Multitude of Other ZEN Cells. Journal of Histochemistry and Cytochemistry, 2005, 53, 141-153.	1.3	110
41	Glucagon production of the rat insulinoma cell line INS-1â€"A quantitative comparison with primary rat pancreatic islets. Biochemical and Biophysical Research Communications, 2005, 330, 327-332.	1.0	21
42	Adenovirus-mediated silencing of Synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Letters, 2005, 579, 5241-5246.	1.3	53
43	Â-Cell Secretory Products Activate Â-Cell ATP-Dependent Potassium Channels to Inhibit Glucagon Release. Diabetes, 2005, 54, 1808-1815.	0.3	265
44	Beyond Insulin Therapy., 2006,, 395-416.		1
45	Paradoxical Stimulation of Glucagon Secretion by High Glucose Concentrations. Diabetes, 2006, 55, 2318-2323.	0.3	152
46	Different Metabolic Responses in \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l} -Cells of the Islet of Langerhans Monitored by Redox Confocal Microscopy. Biophysical Journal, 2006, 90, 2641-2650.	0.2	50
47	Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metabolism, 2006, 3, 47-58.	7.2	257
48	Two populations of pancreatic islet α-cells displaying distinct Ca2+ channel properties. Biochemical and Biophysical Research Communications, 2006, 345, 340-344.	1.0	18
49	Zinc influx and physiological consequences in the \hat{I}^2 -insulinoma cell line, Min6. Biochemical and Biophysical Research Communications, 2006, 346, 205-212.	1.0	33
50	Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur/zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Progress in Histochemistry and Cytochemistry, 2006, 41, 57-139.	5.1	92
51	Visualizing pancreatic β-cell mass with [11C]DTBZ. Nuclear Medicine and Biology, 2006, 33, 855-864.	0.3	112
52	Insulin's effect on the liver: "Direct or indirect?" continues to be the question. Journal of Clinical Investigation, 2006, 116, 302-304.	3.9	35
54	Central Nervous System Circuitry Involved in the Hyperinsulinism Syndrome. Neuroendocrinology, 2006, 84, 222-234.	1,2	27
55	Insulin Regulates Islet α-Cell Function by Reducing KATP Channel Sensitivity to Adenosine 5′-Triphosphate Inhibition. Endocrinology, 2006, 147, 2155-2162.	1.4	74

#	ARTICLE	IF	CITATIONS
56	Cell type-specific activation of metabolism reveals that \hat{l}^2 -cell secretion suppresses glucagon release from \hat{l}_2 -cells in rat pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E308-E316.	1.8	14
57	The Zn2+-transporting Pathways in Pancreatic β-Cells. Journal of Biological Chemistry, 2006, 281, 9361-9372.	1.6	83
59	Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: involvement of protein kinases. Journal of Endocrinology, 2006, 190, 703-710.	1.2	75
60	Target Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptors (t-SNAREs) Differently Regulate Activation and Inactivation Gating of Kv2.2 and Kv2.1: Implications on Pancreatic Islet Cell Kv Channels. Molecular Pharmacology, 2006, 70, 818-828.	1.0	17
61	Minireview: Implication of Mitochondria in Insulin Secretion and Action. Endocrinology, 2006, 147, 2643-2649.	1.4	183
62	Glucose Induces Opposite Intracellular Ca2+Concentration Oscillatory Patterns in Identified α- and β-Cells Within Intact Human Islets of Langerhans. Diabetes, 2006, 55, 2463-2469.	0.3	89
63	In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. Journal of Cell Science, 2006, 119, 4199-4206.	1.2	316
64	Zinc, Not Insulin, Regulates the Rat Â-Cell Response to Hypoglycemia In Vivo. Diabetes, 2007, 56, 1107-1112.	0.3	118
65	A KATP Channel-Dependent Pathway within \hat{l}_{\pm} Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans. PLoS Biology, 2007, 5, e143.	2.6	203
66	Fasting Hyperglycemia Impairs Glucose- But Not Insulin-Mediated Suppression of Glucagon Secretion. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1778-1784.	1.8	43
67	The diabetes-linked transcription factor Pax4 is expressed in human pancreatic islets and is activated by mitogens and GLP-1. Human Molecular Genetics, 2007, 17, 478-489.	1.4	51
68	Ca2+, NAD(P)H and membrane potential changes in pancreatic \hat{l}^2 -cells by methyl succinate: comparison with glucose. Biochemical Journal, 2007, 403, 197-205.	1.7	40
69	Oleic Acid Glucose-Independently Stimulates Glucagon Secretion by Increasing Cytoplasmic Ca2+via Endoplasmic Reticulum Ca2+Release and Ca2+Influx in the Rat Islet α-Cells. Endocrinology, 2007, 148, 2496-2504.	1.4	12
70	Targeting of Voltage-Gated K+and Ca2+Channels and SolubleN-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins to Cholesterol-Rich Lipid Rafts in Pancreatic î±-Cells: Effects on Glucagon Stimulus-Secretion Coupling. Endocrinology, 2007, 148, 2157-2167.	1.4	50
71	Efficient and controlled gene expression in mouse pancreatic islets by arterial delivery of tetracycline-inducible adenoviral vectors. Journal of Molecular Endocrinology, 2007, 38, 127-136.	1.1	15
72	Adiponectin Resistance Exacerbates Insulin Resistance in Insulin Receptor Transgenic/Knockout Mice. Diabetes, 2007, 56, 1969-1976.	0.3	81
73	Glucose-Dependent Regulation of \hat{I}^3 -Aminobutyric Acid (GABAA) Receptor Expression in Mouse Pancreatic Islet \hat{I}_\pm -Cells. Diabetes, 2007, 56, 320-327.	0.3	64
74	Transgenic insulin released from G cells preferentially signals in the liver. Biochemical and Biophysical Research Communications, 2007, 355, 23-27.	1.0	0

#	ARTICLE	IF	CITATIONS
75	Attenuation of insulin secretion by insulin-like growth factor binding protein-1 in pancreatic \hat{l}^2 -cells. Biochemical and Biophysical Research Communications, 2007, 362, 152-157.	1.0	16
76	Glucose-induced swelling in rat pancreatic î±-cells. Molecular and Cellular Endocrinology, 2007, 264, 61-67.	1.6	18
77	Zinc-transporter genes in human visceral and subcutaneous adipocytes: Lean versus obese. Molecular and Cellular Endocrinology, 2007, 264, 68-73.	1.6	76
78	The GluCreâ€ROSA26EYFP mouse: A new model for easy identification of living pancreatic αâ€cells. FEBS Letters, 2007, 581, 4235-4240.	1.3	77
79	\hat{l}_{\pm} -Cells of the Endocrine Pancreas: 35 Years of Research but the Enigma Remains. Endocrine Reviews, 2007, 28, 84-116.	8.9	511
80	Splanchnic Regulation of Glucose Production. Annual Review of Nutrition, 2007, 27, 329-345.	4.3	161
81	The transcription factor PAX4 acts as a survival gene in INS-1E insulinoma cells. Oncogene, 2007, 26, 4261-4271.	2.6	39
82	Clioquinol attenuates zinc-dependent \hat{I}^2 -cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. European Journal of Pharmacology, 2007, 565, 232-239.	1.7	35
83	Zinc fluxes and zinc transporter genes in chronic diseases. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 622, 84-93.	0.4	124
84	Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia, 2007, 50, 370-379.	2.9	182
85	ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Archiv European Journal of Physiology, 2007, 453, 703-718.	1.3	140
86	Islet α-cells do not influence insulin secretion from β-cells through cell–cell contact. Endocrine, 2007, 31, 61-65.	2.2	27
87	The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patientsâ€"the EUGENE2 study. Diabetologia, 2008, 51, 816-820.	2.9	119
88	Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia, 2008, 51, 2263-2270.	2.9	197
89	Presence of functional hyperpolarisation-activated cyclic nucleotide-gated channels in clonal alpha cell lines and rat islet alpha cells. Diabetologia, 2008, 51, 2290-2298.	2.9	23
90	VMAT2 quantitation by PET as a biomarker for βâ€cell mass in health and disease. Diabetes, Obesity and Metabolism, 2008, 10, 98-108.	2.2	44
91	Molecular mechanism of Zn ²⁺ agonism in the extracellular domain of GPR39. FEBS Letters, 2008, 582, 2583-2588.	1.3	60
92	Impact of mitochondrial calcium on the coupling of metabolism to insulin secretion in the pancreatic \hat{l}^2 -cell. Cell Calcium, 2008, 44, 64-76.	1.1	90

#	ARTICLE	IF	CITATIONS
93	Gap Junction Coupling and Calcium Waves in the Pancreatic Islet. Biophysical Journal, 2008, 95, 5048-5061.	0.2	206
94	KATP-channels and glucose-regulated glucagon secretion. Trends in Endocrinology and Metabolism, 2008, 19, 277-284.	3.1	86
95	Glutamate Is a Positive Autocrine Signal for Glucagon Release. Cell Metabolism, 2008, 7, 545-554.	7.2	186
96	Physiology of the pancreatic \hat{l} ±-cell and glucagon secretion: role in glucose homeostasis and diabetes. Journal of Endocrinology, 2008, 199, 5-19.	1.2	328
97	Insulin as a physiological modulator of glucagon secretion. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E751-E761.	1.8	124
98	The calcium-sensing receptor and insulin secretion: a role outside systemic control 15 years on. Journal of Endocrinology, 2008, 199, 1-4.	1.2	15
99	Investigation of Transport Mechanisms and Regulation of Intracellular Zn2+ in Pancreatic \hat{l}_{\pm} -Cells. Journal of Biological Chemistry, 2008, 283, 10184-10197.	1.6	98
100	Selective Actions of Mitochondrial Fission/Fusion Genes on Metabolism-Secretion Coupling in Insulin-releasing Cells. Journal of Biological Chemistry, 2008, 283, 33347-33356.	1.6	111
101	Amplification of pulsatile glucagon counterregulation by switch-off of \hat{l}_{\pm} -cell-suppressing signals in streptozotocin-treated rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E575-E585.	1.8	17
102	Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic α-cells by extracellular ATP and purinergic receptors. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E952-E960.	1.8	41
103	UCP2 is highly expressed in pancreatic Â-cells and influences secretion and survival. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12057-12062.	3.3	61
104	Deletion of Glutamate Dehydrogenase in ß-Cells Abolishes Part of the Insulin Secretory Response Not Required for Glucose Homeostasis*. Journal of Biological Chemistry, 2009, 284, 921-929.	1.6	88
105	Requirement for Aralar and Its Ca2+-binding Sites in Ca2+ Signal Transduction in Mitochondria from INS-1 Clonal β-Cells. Journal of Biological Chemistry, 2009, 284, 515-524.	1.6	41
106	Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants. Diabetes, 2009, 58, 2070-2083.	0.3	347
107	Somatostatin Secreted by Islet \hat{I} -Cells Fulfills Multiple Roles as a Paracrine Regulator of Islet Function. Diabetes, 2009, 58, 403-411.	0.3	254
108	Transient Oxidative Stress Damages Mitochondrial Machinery Inducing Persistent β-Cell Dysfunction. Journal of Biological Chemistry, 2009, 284, 23602-23612.	1.6	77
109	System-Level Control to Optimize Glucagon Counterregulation by Switch-Off of \hat{l}_{\pm} -Cell Suppressing Signals in \hat{l}^2 -Cell Deficiency. Journal of Diabetes Science and Technology, 2009, 3, 21-33.	1.3	7
110	Preserved Inhibitory Potency of GLP-1 on Glucagon Secretion in Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4679-4687.	1.8	89

#	Article	IF	CITATIONS
111	Insulin modulation of glucagon secretion: The role of insulin and other factors in the regulation of glucagon secretion. Islets, 2009, 1, 276-279.	0.9	49
112	Downregulation of ZnT8 expression in pancreatic \hat{l}^2 -cells of diabetic mice. Islets, 2009, 1, 124-128.	0.9	38
113	Glucose and Pharmacological Modulators of ATP-Sensitive K+ Channels Control [Ca2+]c by Different Mechanisms in Isolated Mouse α-Cells. Diabetes, 2009, 58, 412-421.	0.3	69
114	The α-Cell Conundrum: ATP-Sensitive K+ Channels and Glucose Sensing. Diabetes, 2009, 58, 304-306.	0.3	12
115	Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. Journal of Endocrinology, 2009, 203, 33-43.	1.2	44
116	Regulating Glucagon Secretion: Somatostatin in the Spotlight. Diabetes, 2009, 58, 299-301.	0.3	33
117	Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1324-1333.	0.5	311
118	The lipophilic zinc chelator DP-b99 prevents zinc induced neuronal death. European Journal of Pharmacology, 2009, 618, 15-21.	1.7	27
119	Niflumic acid-sensitive ion channels play an important role in the induction of glucose-stimulated insulin secretion by cyclic AMP in mice. Diabetologia, 2009, 52, 863-872.	2.9	30
120	Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?. BMC Endocrine Disorders, 2009, 9, 7.	0.9	48
121	Synaptotagminâ€7 is a principal Ca ²⁺ sensor for Ca ²⁺ â€induced glucagon exocytosis in pancreas. Journal of Physiology, 2009, 587, 1169-1178.	1.3	87
122	Matrix alkalinization: a novel mitochondrial signal for sustained pancreatic \hat{l}^2 -cell activation. EMBO Journal, 2009, 28, 417-428.	3.5	66
123	Cell–cell interactions in the endocrine pancreas. Diabetes, Obesity and Metabolism, 2009, 11, 159-167.	2.2	116
124	Zinc, a regulator of islet function and glucose homeostasis. Diabetes, Obesity and Metabolism, 2009, 11, 202-214.	2.2	130
125	Beneficial effects of intercellular interactions between pancreatic islet cells in blood glucose regulation. Journal of Theoretical Biology, 2009, 257, 312-319.	0.8	21
126	Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14872-14877.	3.3	294
127	Chapter 21 Pancreatic Network Control of Glucagon Secretion and Counterregulation. Methods in Enzymology, 2009, 467, 547-581.	0.4	9
128	Insulin Signaling in α Cells Modulates Glucagon Secretion In Vivo. Cell Metabolism, 2009, 9, 350-361.	7.2	271

#	Article	IF	CITATIONS
129	PDX1 Deficiency Causes Mitochondrial Dysfunction and Defective Insulin Secretion through TFAM Suppression. Cell Metabolism, 2009, 10, 110-118.	7.2	102
130	The incretin system and its role in type 2 diabetes mellitus. Molecular and Cellular Endocrinology, 2009, 297, 127-136.	1.6	447
131	G Protein-Coupled Receptor 39 Deficiency Is Associated with Pancreatic Islet Dysfunction. Endocrinology, 2009, 150, 2577-2585.	1.4	82
132	Molecular Pathways Underlying the Pathogenesis of Pancreatic \hat{l}_{\pm} -Cell Dysfunction. Advances in Experimental Medicine and Biology, 2010, 654, 421-445.	0.8	26
133	Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia, 2010, 53, 1656-1668.	2.9	270
134	Subplasmalemmal Ca2+ measurements in mouse pancreatic beta cells support the existence of an amplifying effect of glucose on insulin secretion. Diabetologia, 2010, 53, 1947-1957.	2.9	24
135	Zinc, zinc transporters and diabetes. Diabetologia, 2010, 53, 1549-1551.	2.9	83
136	The glucagon-producing alpha cell: an electrophysiologically exceptional cell. Diabetologia, 2010, 53, 1827-1830.	2.9	12
137	Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. European Journal of Clinical Pharmacology, 2010, 66, 1207-1215.	0.8	62
138	Imaging metabolic syndrome. EMBO Molecular Medicine, 2010, 2, 196-210.	3.3	10
139	The role of glucagon―and somatostatinâ€secreting cells in the regulation of insulin release and betaâ€cell function in heterotypic pseudoislets. Diabetes/Metabolism Research and Reviews, 2010, 26, 525-533.	1.7	25
140	Zinc, Alpha Cells and Glucagon Secretion. Current Diabetes Reviews, 2010, 6, 52-57.	0.6	41
141	Î ³ -Aminobutyric Acid (GABA) Is an Autocrine Excitatory Transmitter in Human Pancreatic Î ² -Cells. Diabetes, 2010, 59, 1694-1701.	0.3	190
142	Models of Glucagon Secretion, Their Application to the Analysis of the Defects in Glucagon Counterregulation and Potential Extension to Approximate Glucagon Action. Journal of Diabetes Science and Technology, 2010, 4, 1345-1356.	1.3	11
143	Glucose Suppression of Glucagon Secretion. Journal of Biological Chemistry, 2010, 285, 14389-14398.	1.6	130
144	ATP-Sensitive K+ Channel Mediates the Zinc Switch-Off Signal for Glucagon Response During Glucose Deprivation. Diabetes, 2010, 59, 128-134.	0.3	55
145	Mitochondrial matrix pH controls oxidative phosphorylation and metabolismâ€secretion coupling in INSâ€1E clonal β cells. FASEB Journal, 2010, 24, 4613-4626.	0.2	49
146	Palmitate Affects Insulin Receptor Phosphorylation and Intracellular Insulin Signal in a Pancreatic α-Cell Line. Endocrinology, 2010, 151, 4197-4206.	1.4	41

#	Article	IF	Citations
147	Effect of Glucagon-Like Peptide-1 on \hat{l}_{2} -Cell Function in C-Peptide-Negative Type 1 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2492-2496.	1.8	45
148	Dipeptidyl-Peptidase 4 and Attractin Expression is Increased in Circulating Blood Monocytes of Obese Human Subjects. Experimental and Clinical Endocrinology and Diabetes, 2010, 118, 473-477.	0.6	24
149	A role for islet somatostatin in mediating sympathetic regulation of glucagon secretion. Islets, 2010, 2, 341-344.	0.9	17
150	The insulin secretory granule as a signaling hub. Trends in Endocrinology and Metabolism, 2010, 21, 599-609.	3.1	163
151	ATP-gated P2X $<$ sub>3 $<$ /sub> receptors constitute a positive autocrine signal for insulin release in the human pancreatic \hat{I}^2 cell. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6465-6470.	3.3	113
152	Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics, 2010, 2, 306.	1.0	380
153	Pancreatic islet cells: A model for calciumâ€dependent peptide release. HFSP Journal, 2010, 4, 52-60.	2.5	13
154	Mitochondrial Matrix Calcium Is an Activating Signal for Hormone Secretion. Cell Metabolism, 2011, 13, 601-611.	7.2	137
155	Reduction of plasma membrane glutamate transport potentiates insulin but not glucagon secretion in pancreatic islet cells. Molecular and Cellular Endocrinology, 2011, 338, 46-57.	1.6	36
156	Glucose- and Hormone-Induced cAMP Oscillations in \hat{l}_{\pm} - and \hat{l}^2 -Cells Within Intact Pancreatic Islets. Diabetes, 2011, 60, 1535-1543.	0.3	123
157	Glucagon Responses of Isolated a Cells to Glucose, Insulin, Somatostatin, and Leptin. Endocrine Practice, 2011, 17, 819-825.	1.1	14
158	Amino acids and diabetes: implications for endocrine, metabolic and immune function. Frontiers in Bioscience - Landmark, 2011, 16, 315.	3.0	41
159	Growth factor signalling in the regulation of <i>α</i> â€cell fate. Diabetes, Obesity and Metabolism, 2011, 13, 21-30.	2.2	23
160	A role for zinc in pancreatic islet ⟨i⟩β⟨ i⟩â€cell crossâ€talk with the ⟨i⟩α⟨ i⟩â€cell during hypoglycaemia. Diabetes, Obesity and Metabolism, 2011, 13, 106-111.	2.2	28
161	Regulation of glucagon secretion by glucose: paracrine, intrinsic or both?. Diabetes, Obesity and Metabolism, 2011, 13, 95-105.	2.2	160
162	Regulation of glucagon secretion by zinc: lessons from the \hat{l}^2 cellâ \in specific Znt8 knockout mouse model. Diabetes, Obesity and Metabolism, 2011, 13, 112-117.	2.2	44
163	siRNAâ€mediated knockâ€down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INSâ€1E cells. Apmis, 2011, 119, 93-102.	0.9	29
164	Unperturbed islet αâ€cell function examined in mouse pancreas tissue slices. Journal of Physiology, 2011, 589, 395-408.	1.3	61

#	Article	IF	CITATIONS
165	Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell. Pflugers Archiv European Journal of Physiology, 2011, 462, 443-454.	1.3	35
166	AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells. Diabetologia, 2011, 54, 125-134.	2.9	54
167	Delayed onset of hyperglycaemia in a mouse model with impaired glucagon secretion demonstrates that dysregulated glucagon secretion promotes hyperglycaemia and type 2 diabetes. Diabetologia, 2011, 54, 415-422.	2.9	10
168	Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia, 2011, 54, 819-827.	2.9	46
169	Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells. Journal of Nutritional Biochemistry, 2011, 22, 79-88.	1.9	52
170	Electrophysiological identification of mouse islet α-cells: From isolated single α-cells to in situ assessment within pancreas slices. Islets, 2011, 3, 139-143.	0.9	18
171	An Overview of a Wide Range of Functions of ZnT and Zip Zinc Transporters in the Secretory Pathway. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1036-1043.	0.6	95
172	Hepatic Nuclear Factor $1\hat{l}\pm$ (HNF1 $\hat{l}\pm$) Dysfunction Down-regulates X-box-binding Protein 1 (XBP1) and Sensitizes \hat{l}^2 -Cells to Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2011, 286, 32300-32312.	1.6	20
173	$\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia. International Journal of Endocrinology, 2011, 2011, 1-8.	0.6	19
174	Logistic model of glucose-regulated C-peptide secretion: hysteresis pathway disruption in impaired fasting glycemia. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E397-E409.	1.8	9
175	Glucotoxicity and \hat{l}_{\pm} Cell Dysfunction: Involvement of the PI3K/Akt Pathway in Glucose-Induced Insulin Resistance in Rat Islets and Clonal \hat{l}_{\pm} TC1-6 Cells. Endocrine Research, 2012, 37, 12-24.	0.6	14
176	The physiology and pathophysiology of the neural control of the counterregulatory response. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R215-R223.	0.9	52
177	A computational systems analysis of factors regulating \hat{l}_{\pm} cell glucagon secretion. Islets, 2012, 4, 262-283.	0.9	11
178	Dietary Zinc Reduction, Pyruvate Supplementation, or Zinc Transporter 5 Knockout Attenuates β-Cell Death in Nonobese Diabetic Mice, Islets, and Insulinoma Cells3. Journal of Nutrition, 2012, 142, 2119-2127.	1.3	11
179	Remodeling of Hepatic Metabolism and Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides. Diabetes, 2012, 61, 74-84.	0.3	52
181	Autocrine regulation of insulin secretion. Diabetes, Obesity and Metabolism, 2012, 14, 143-151.	2.2	83
182	Repair of diverse diabetic defects of $\hat{l}^2 \hat{a} \in \mathcal{E}$ ells in man and \hat{l} mouse by pharmacological glucokinase activation. Diabetes, Obesity and Metabolism, 2012, 14, 109-119.	2.2	23
183	Glucagon secretion and signaling in the development of diabetes. Frontiers in Physiology, 2012, 3, 349.	1.3	56

#	Article	IF	CITATIONS
184	Mathematical models for insulin secretion in pancreatic β-cells. Islets, 2012, 4, 94-107.	0.9	9
185	Calcium Sensing in Exocytosis. Advances in Experimental Medicine and Biology, 2012, 740, 731-757.	0.8	17
186	Isolated mouse islets respond to glucose with an initial peak of glucagon release followed by pulses of insulin and somatostatin in antisynchrony with glucagon. Biochemical and Biophysical Research Communications, 2012, 417, 1219-1223.	1.0	46
187	Regulation and functional effects of ZNT8 in human pancreatic islets. Journal of Endocrinology, 2012, 214, 225-232.	1.2	29
188	Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. Journal of Endocrinology, 2012, 214, 257-265.	1.2	45
189	Protein Restriction during Early Life in Rats Alters Pancreatic GABAA Receptor Subunit Expression and Glucagon Secretion in Adulthood. Canadian Journal of Diabetes, 2012, 36, 100-107.	0.4	6
190	Vitamin D Receptor Activation Induces Peptide YY Transcription in Pancreatic Islets. Endocrinology, 2012, 153, 5188-5199.	1.4	11
191	Model for Glucagon Secretion by Pancreatic î±-Cells. PLoS ONE, 2012, 7, e32282.	1.1	20
192	Imaging Functional Beta Cell Mass: Can we See Islets Clearly Now?. Current Molecular Imaging, 2012, 1, 44-54.	0.7	2
193	Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia, 2012, 55, 1995-2004.	2.9	25
194	Mitochondrial signals drive insulin secretion in the pancreatic \hat{l}^2 -cell. Molecular and Cellular Endocrinology, 2012, 353, 128-137.	1.6	122
195	Zinc transporters and their role in the pancreatic βâ€cell. Journal of Diabetes Investigation, 2012, 3, 202-211.	1.1	51
196	Pancreatic safety of GLP-1-based therapeutic agents: further insights from rodent studies?. Diabetologia, 2013, 56, 1869-1872.	2.9	6
197	KATP channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 2013, 9, 660-669.	4.3	221
198	Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutrition Research Reviews, 2013, 26, 1-11.	2.1	99
199	Regulation of Glucagon Secretion in Normal and Diabetic Human Islets by \hat{I}^3 -Hydroxybutyrate and Glycine. Journal of Biological Chemistry, 2013, 288, 3938-3951.	1.6	86
200	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	7.2	179
201	UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes, 2013, 62, 1623-1633.	0.3	62

#	Article	IF	Citations
202	When less is more: the forbidden fruits of gene repression in the adult $\hat{l}^2\hat{a}\in ell$. Diabetes, Obesity and Metabolism, 2013, 15, 503-512.	2.2	96
203	Glucose Control of Glucagon Secretion: There Is More to It Than KATP Channels. Diabetes, 2013, 62, 1391-1393.	0.3	21
204	X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic \hat{l} ±-Cell Function. Diabetes, 2013, 62, 2439-2449.	0.3	54
205	Protein-Mediated Interactions of Pancreatic Islet Cells. Scientifica, 2013, 2013, 1-22.	0.6	31
206	Increased fetal insulin concentrations for one week fail to improve insulin secretion or \hat{l}^2 -cell mass in fetal sheep with chronically reduced glucose supply. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R50-R58.	0.9	8
207	Tolbutamide Controls Glucagon Release From Mouse Islets Differently Than Glucose. Diabetes, 2013, 62, 1612-1622.	0.3	78
208	Increasing glucagon secretion could antagonize the action of exogenous insulin for glycemic control in streptozocin-induced diabetic rhesus monkeys. Experimental Biology and Medicine, 2013, 238, 385-391.	1.1	5
209	Hipoglicemia endógena. estudio y manejo. Revista Médica ClÃnica Las Condes, 2013, 24, 839-844.	0.2	O
211	The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. Journal of Clinical Investigation, 2013, 123, 4513-4524.	3.9	200
212	Pathology, genetic alterations, and targets of differentially expressed microRNAs in pancreatic cancer. Gastrointestinal Cancer: Targets and Therapy, 2014, , 75.	5.5	0
213	Possible Contribution of Taurine to Distorted Glucagon Secretion in Intra-Islet Insulin Deficiency: A Metabolome Analysis Using a Novel α-Cell Model of Insulin-Deficient Diabetes. PLoS ONE, 2014, 9, e113254.	1.1	7
214	Mitochondrial GTP Insensitivity Contributes to Hypoglycemia in Hyperinsulinemia Hyperammonemia by Inhibiting Glucagon Release. Diabetes, 2014, 63, 4218-4229.	0.3	20
215	Neuronostatin inhibits glucose-stimulated insulin secretion via direct action on the pancreatic \hat{l}_{\pm} -cell. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1257-E1263.	1.8	19
216	Neurotransmitter control of islet hormone pulsatility. Diabetes, Obesity and Metabolism, 2014, 16, 102-110.	2.2	52
217	Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia. World Journal of Diabetes, 2014, 5, 235.	1.3	22
218	Glucose regulation of glucagon secretion. Diabetes Research and Clinical Practice, 2014, 103, 1-10.	1.1	84
219	Interactions Between Zinc Transporter-8 Gene (<i>SLC30A8</i>) and Plasma Zinc Concentrations for Impaired Glucose Regulation and Type 2 Diabetes. Diabetes, 2014, 63, 1796-1803.	0.3	84
220	Maternally-derived zinc transporters ZIP6 and ZIP10 drive the mammalian oocyte-to-egg transition. Molecular Human Reproduction, 2014, 20, 1077-1089.	1.3	67

#	Article	IF	CITATIONS
222	Modeling the Pancreatic \hat{l} ±-Cell: Dual Mechanisms of Glucose Suppression of Glucagon Secretion. Biophysical Journal, 2014, 106, 741-751.	0.2	36
223	ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia, 2014, 57, 1749-1761.	2.9	74
224	Metabolism of Human Diseases. , 2014, , .		4
225	Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine, 2014, 9, 89-104.	1.7	168
226	Glucose promotes its own metabolism by acting on the cell-surface glucose-sensing receptor T1R3. Endocrine Journal, 2014, 61, 119-131.	0.7	49
227	A novel insulinotropic mechanism of whole grainâ€derived γâ€oryzanol via the suppression of local dopamine <scp>D₂</scp> receptor signalling in mouse islet. British Journal of Pharmacology, 2015, 172, 4519-4534.	2.7	15
228	Role of Connexins and Pannexins in the Pancreas. Pancreas, 2015, 44, 1234-1244.	0.5	21
229	Pancreatic $\hat{l}\pm$ -Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block. Diabetes and Metabolism Journal, 2015, 39, 1.	1.8	40
230	The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans. PLoS Computational Biology, 2015, 11, e1004423.	1.5	23
231	LKB1 and AMPK $\hat{l}\pm 1$ are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Molecular Metabolism, 2015, 4, 277-286.	3.0	23
232	Inhibition of the malate–aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion. Biochemical Journal, 2015, 468, 49-63.	1.7	27
233	The Zinc Transporter Slc30a8/ZnT8 Is Required in a Subpopulation of Pancreatic α-Cells for Hypoglycemia-induced Glucagon Secretion. Journal of Biological Chemistry, 2015, 290, 21432-21442.	1.6	40
234	Insulin secretion from beta cells within intact islets: Location matters. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 406-414.	0.9	36
235	Additive Effects of Miglitol and Anagliptin on Insulin-Treated Type 2 Diabetes Mellitus: A Case Study. Clinical Drug Investigation, 2015, 35, 141-147.	1.1	3
236	Submembrane ATP and Ca $<$ sup $>$ 2+ $<$ /sup $>$ kinetics in Î \pm -cells: unexpected signaling for glucagon secretion. FASEB Journal, 2015, 29, 3379-3388.	0.2	58
237	SLC transporters as therapeutic targets: emerging opportunities. Nature Reviews Drug Discovery, 2015, 14, 543-560.	21,5	584
238	Unique and Shared Metabolic Regulation in Clonal \hat{l}^2 -Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology, 2015, 156, 1995-2005.	1.4	23
239	Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides, 2015, 71, 113-120.	1.2	82

#	Article	IF	CITATIONS
240	Autocrine insulin increases plasma membrane KATP channel via PI3K-VAMP2 pathway in MIN6 cells. Biochemical and Biophysical Research Communications, 2015, 468, 752-757.	1.0	8
241	Physiological and Pathophysiological Control of Glucagon Glucagon Secretion by Pancreatic $\hat{l}\pm$ -Cells. , 2015, , 175-247.		1
242	Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 343-351.	1.1	35
243	Design Principles of Pancreatic Islets: Glucose-Dependent Coordination of Hormone Pulses. PLoS ONE, 2016, 11, e0152446.	1.1	20
244	Intracellular zinc in insulin secretion and action: a determinant of diabetes risk?. Proceedings of the Nutrition Society, 2016, 75, 61-72.	0.4	61
245	Glucose control of glucagon secretion—â€~There's a brand-new gimmick every year'. Upsala Journal of Medical Sciences, 2016, 121, 120-132.	0.4	65
246	Paracrine regulation of glucagon secretion: the $\hat{l}^2/\hat{l}\pm/\hat{l}^2$ model. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E597-E611.	1.8	40
247	Glucagon secretion from pancreatic α-cells. Upsala Journal of Medical Sciences, 2016, 121, 113-119.	0.4	108
248	Clinical Islet Isolation. Advances in Experimental Medicine and Biology, 2016, 938, 89-122.	0.8	8
249	Does Zinc Really "Metal―with Diabetes? The Epidemiologic Evidence. Current Diabetes Reports, 2016, 16, 111.	1.7	17
250	Snapshot Hyperspectral Light-Sheet Imaging of Signal Transduction in Live Pancreatic Islets. Biophysical Journal, 2016, 111, 409-417.	0.2	29
252	Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. Scientific Reports, 2016, 6, 31214.	1.6	50
253	Is zinc an intra-islet regulator of glucagon secretion?. Diabetology International, 2016, 7, 106-110.	0.7	7
254	A NEET Way to Impair Mitochondrial Function in α- and β-Cells. Diabetes, 2016, 65, 1484-1486.	0.3	2
255	Gastroretentive systems – a proposed strategy to modulate anthocyanin release and absorption for the management of diabetes. Drug Delivery, 2016, 23, 1892-1901.	2.5	10
256	FoxO1: A Conductor of Insulin Signaling to Glucose and Lipid Metabolism. , 2016, , 79-99.		0
257	Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease. Journal of Hepatology, 2016, 64, 908-915.	1.8	20
258	Glucagon and the Glucagon-Like Peptides. , 2016, , 586-597.e5.		1

#	Article	IF	CITATIONS
259	FoxO integration of insulin signaling with glucose and lipid metabolism. Journal of Endocrinology, 2017, 233, R67-R79.	1.2	249
260	The New Biology and Pharmacology of Glucagon. Physiological Reviews, 2017, 97, 721-766.	13.1	264
261	Depletion of insulin receptors leads to \hat{l}^2 -cell hyperplasia in zebrafish. Science Bulletin, 2017, 62, 486-492.	4.3	12
262	The effect of PPARÎ 3 agonist on SGLT2 and glucagon expressions in alpha cells under hyperglycemia. Journal of Endocrinological Investigation, 2017, 40, 1069-1076.	1.8	3
263	Vessel Network Architecture of Adult Human Islets Promotes Distinct Cell-Cell Interactions In Situ and Is Altered After Transplantation. Endocrinology, 2017, 158, 1373-1385.	1.4	65
264	Glucose-Sensitive CFTR Suppresses Glucagon Secretion by Potentiating KATP Channels in Pancreatic Islet α Cells. Endocrinology, 2017, 158, 3188-3199.	1.4	25
265	Exploring the molecular mechanisms underlying \hat{l}_{\pm} - and \hat{l}^2 -cell dysfunction in diabetes. Diabetology International, 2017, 8, 248-256.	0.7	14
266	Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 2017, 68, 3-33.	1.3	745
267	High-Resolution Recording of the Circadian Oscillator in Primary Mouse \hat{l}_{\pm} - and \hat{l}^2 -Cell Culture. Frontiers in Endocrinology, 2017, 8, 68.	1.5	7
268	Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis. PLoS ONE, 2017, 12, e0187547.	1.1	17
269	Zinc Supplementation Does Not Affect Glucagon Response to Intravenous Glucose and Insulin Infusion in Patients with Well-Controlled Type 2 Diabetes. Biological Trace Element Research, 2018, 185, 255-261.	1.9	13
270	δâ€cells and βâ€cells are electrically coupled and regulate αâ€cell activity via somatostatin. Journal of Physiology, 2018, 596, 197-215.	1.3	117
271	The α-cell in diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 694-704.	4.3	103
272	GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca ²⁺ channels. Physiological Reports, 2018, 6, e13852.	0.7	71
273	Altered pancreatic islet morphology and function in SGLT1 knockout mice on a glucose-deficient, fat-enriched diet. Molecular Metabolism, 2018, 13, 67-76.	3.0	7
274	Mechanisms of Aerobic Exercise Impairment in Diabetes: A Narrative Review. Frontiers in Endocrinology, 2018, 9, 181.	1.5	28
275	The Cells of the Islets of Langerhans. Journal of Clinical Medicine, 2018, 7, 54.	1.0	151
276	Dietary Flavonoids in the Prevention of T2D: An Overview. Nutrients, 2018, 10, 438.	1.7	73

#	ARTICLE	IF	CITATIONS
277	Design principles of the paradoxical feedback between pancreatic alpha and beta cells. Scientific Reports, 2018, 8, 10694.	1.6	11
278	Common variants in the hERG (KCNH2) voltage-gated potassium channel are associated with altered fasting and glucose-stimulated plasma incretin and glucagon responses. BMC Genetics, 2018, 19, 15.	2.7	12
279	CPT1a-Dependent Long-Chain Fatty Acid Oxidation Contributes to Maintaining Glucagon Secretion from Pancreatic Islets. Cell Reports, 2018, 23, 3300-3311.	2.9	71
280	Impaired glucose tolerance, glucagon, and insulin responses in mice lacking the loop diuretic-sensitive <i>Nkcc2a</i> transporter. American Journal of Physiology - Cell Physiology, 2019, 317, C843-C856.	2.1	7
281	Glucagon Receptor Signaling and Glucagon Resistance. International Journal of Molecular Sciences, 2019, 20, 3314.	1.8	113
282	Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic $\hat{l}\pm$ Cells. International Journal of Molecular Sciences, 2019, 20, 3699.	1.8	15
283	Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130.	3.0	850
284	Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics, 2019, 11, 85-110.	1.0	28
285	Tripartite cell networks for glucose homeostasis. Physical Biology, 2019, 16, 051001.	0.8	4
286	Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocrine Journal, 2019, 66, 663-675.	0.7	33
287	Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia, 2019, 62, 1212-1224.	2.9	65
288	Zinc and its regulators in pancreas. Inflammopharmacology, 2019, 27, 453-464.	1.9	22
289	Integrating the inputs that shape pancreatic islet hormone release. Nature Metabolism, 2019, 1, 1189-1201.	5.1	82
290	Cellular stress is a prerequisite for glucose-induced mitochondrial matrix alkalinization in pancreatic \hat{l}^2 -cells. Molecular and Cellular Endocrinology, 2019, 481, 71-83.	1.6	5
291	Embryonic development of the endocrine pancreas. , 2020, , 171-182.		1
292	Pancreas and islet preservation. , 2020, , 503-527.		0
293	The role of GIP in α-cells and glucagon secretion. Peptides, 2020, 125, 170213.	1.2	49
294	Ca _v 2.3 channel function and Zn ²⁺ -induced modulation: potential mechanisms and (patho)physiological relevance. Channels, 2020, 14, 362-379.	1.5	6

#	Article	IF	CITATIONS
295	Lactate activation of \hat{l}_{\pm} -cell KATP channels inhibits glucagon secretion by hyperpolarizing the membrane potential and reducing Ca2+ entry. Molecular Metabolism, 2020, 42, 101056.	3.0	15
296	The efficiency of insulin production and its content in insulin-expressing model \hat{l}^2 -cells correlate with their Zn ²⁺ levels. Open Biology, 2020, 10, 200137.	1.5	5
297	The RNA-binding protein, HuD regulates proglucagon biosynthesis in pancreatic $\hat{l}\pm$ cells. Biochemical and Biophysical Research Communications, 2020, 530, 266-272.	1.0	6
298	Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Scientific Reports, 2020, 10, 20145.	1.6	19
299	Hypoglycaemia. Advances in Experimental Medicine and Biology, 2020, 1307, 43-69.	0.8	14
300	Decellularized Tissue Matrix Enhances Self-Assembly of Islet Organoids from Pluripotent Stem Cell Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4155-4165.	2.6	37
301	Glucagonâ€Like Peptideâ€1: Actions and Influence on Pancreatic Hormone Function. , 2020, 10, 577-595.		16
302	The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. Journal of Molecular Biology, 2020, 432, 1367-1394.	2.0	53
303	Intestinal <i>Cetobacterium</i> and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes, 2021, 13, 1-15.	4.3	179
304	The Human Islet: Mini-Organ With Mega-Impact. Endocrine Reviews, 2021, 42, 605-657.	8.9	44
305	Hyperglucagonemia Does Not Explain the \hat{I}^2 -Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study. Diabetes Care, 2021, 44, 1961-1969.	4.3	9
306	Angiopoietins stimulateÂpancreatic islet development from stem cells. Scientific Reports, 2021, 11, 13558.	1.6	10
307	Intercellular Communication in the Islet of Langerhans in Health and Disease., 2021, 11, 2191-2225.		15
308	Effect of Medical and Surgical Interventions on α-Cell Function in Dysglycemic Youth and Adults in the RISE Study. Diabetes Care, 2021, 44, 1948-1960.	4.3	2
309	Diversity of pathophysiology in type 2 diabetes shown by islet pathology. Journal of Diabetes Investigation, 2022, 13, 6-13.	1.1	12
310	Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice. Journal of Biological Chemistry, 2021, 296, 100646.	1.6	9
311	Impact of glucagon response on early postprandial glucose excursions irrespective of residual $\hat{l}^2 \hat{a} \in ell$ function in type 1 diabetes: A crossâ esectional study using a mixed meal tolerance test. Journal of Diabetes Investigation, 2021, 12, 1367-1376.	1.1	9
312	4 Nutrients as regulators of endocrine and neuroendocrine secretion. Topics in Current Genetics, 2004, , 79-111.	0.7	7

#	ARTICLE	IF	CITATIONS
313	The supply chain of human pancreatic \hat{l}^2 cell lines. Journal of Clinical Investigation, 2019, 129, 3511-3520.	3.9	35
314	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	153
315	Foxa2 regulates multiple pathways of insulin secretion. Journal of Clinical Investigation, 2004, 114, 512-520.	3.9	149
316	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	81
317	Longitudinal noninvasive PET-based \hat{A} cell mass estimates in a spontaneous diabetes rat model. Journal of Clinical Investigation, 2006, 116, 1506-1513.	3.9	133
318	The Regulatory and Signaling Functions of Zinc Ions in Human Cellular Physiology. , 2010, , 181-212.		4
319	SLC30A3 Responds to Glucose- and Zinc Variations in ß-Cells and Is Critical for Insulin Production and In Vivo Glucose-Metabolism During ß-Cell Stress. PLoS ONE, 2009, 4, e5684.	1.1	75
320	Insulin-like growth factor-1 is a negative modulator of glucagon secretion. Oncotarget, 2017, 8, 51719-51732.	0.8	11
321	Alpha- and Beta-Cell Proliferation and Extracellular Signaling - A Hypothesis. International Journal of Diabetes and Clinical Research, 2015, 2, .	0.1	1
322	A Novel Role for Somatostatin in the Survival of Mouse Pancreatic Beta Cells. Cellular Physiology and Biochemistry, 2019, 52, 486-502.	1.1	12
323	Glucagon-like Peptides and Insulin Sensitivity., 2008,, 233-254.		0
324	Glucagon and the Glucagon-Like Peptides. , 2010, , 660-672.		O
325	2 型糖尿ç−発ç−‡ã«ãŠã'ã,‹è†μ β ç´°è∫žéšœå®³ã®åˆ†å機構. Journal of the Nihon University Medical As	ssæ ie tion,	, 2 0 10, 69, 10
326	12 Lichaamsmetabolisme. , 2010, , 415-458.		0
327	The Regulatory and Signaling Functions of Zinc Ions in Human Cellular Physiology. , 2010, , 191-222.		1
328	ABCC8: Physiology and Pathology. , 2011, , 311-345.		O
330	Molecular Mechanism Underlying the Intra-Islet Regulation of Glucagon Secretion., 0,,.		0
331	Protein Kinases and Pancreatic Islet Function. , 0, , .		0

#	Article	IF	CITATIONS
332	Instant Gruel from Colored Barley and Oats for Improving Diabetic Conditions. Journal of the Korean Society of Food Science and Nutrition, 2013, 42, 885-891.	0.2	9
334	Physiological and Pathophysiological Control of Glucagon Secretion by Pancreatic \hat{l} ±-Cells. , 2014, , 1-69.		2
335	Zinc and Its Role in the Pathogenesis of Type 2 Diabetes. , 2014, , 269-283.		1
337	Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes, 2021, 70, 17-26.	0.3	21
338	<scp>ZT</scp> â€01: A novel somatostatin receptor 2 antagonist for restoring the glucagon response to hypoglycaemia in type 1 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 908-917.	2.2	9
339	Reduced mitochondria membrane potential and lysosomal acidification are associated with decreased oligomeric AÎ ² degradation induced by hyperglycemia: A study of mixed glia cultures. PLoS ONE, 2022, 17, e0260966.	1.1	9
340	GLP-1 and GIP receptor signaling in beta cells – A review of receptor interactions and co-stimulation. Peptides, 2022, 151, 170749.	1.2	29
341	The role of the liver in glucose and lipid metabolism in obesity. , 2018, 52, 1-6.		0
342	Importance of multiple endocrine cell types in islet organoids for type 1 diabetes treatment. Translational Research, 2022, 250, 68-83.	2.2	10
343	The relationship between insulin and glucagon concentrations in <scp>nonâ€diabetic</scp> humans. Physiological Reports, 2022, 10, .	0.7	1
344	New Developments in Glucagon Treatment for Hypoglycemia. Drugs, 2022, 82, 1179-1191.	4.9	4
345	Cross-sectional and longitudinal associations of urinary zinc with glucose-insulin homeostasis traits and type 2 diabetes: Exploring the potential roles of systemic inflammation and oxidative damage in Chinese urban adults. Environmental Pollution, 2022, 314, 120331.	3.7	5
346	The past, present, and future physiology and pharmacology of glucagon. Cell Metabolism, 2022, 34, 1654-1674.	7.2	26
347	The relationship between glucose and the liver-alpha cell axis $\hat{a} \in \text{``A}$ systematic review. Frontiers in Endocrinology, 0, 13, .	1.5	2
348	Chronic physiologic hyperglycemia impairs insulin-mediated suppression of plasma glucagon concentration in healthy humans. Metabolism: Clinical and Experimental, 2023, 142, 155512.	1.5	2
349	Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nature Reviews Endocrinology, 2023, 19, 321-335.	4.3	28
350	Pancreatic \hat{l}^2 -cell heterogeneity in adult human islets and stem cell-derived islets. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	1