The genome sequence of the filamentous fungus Neuro

Nature 422, 859-868 DOI: 10.1038/nature01554

Citation Report

#	Article	IF	CITATIONS
1	Blueprint of a red mould: Unusual and unexpected findings in the Neurospora genome sequence. Journal of Biosciences, 2003, 28, 361-362.	0.5	0
2	Identification and quantitative expression analysis of genes that are differentially expressed during conidial germination in Pyrenophora teres. Molecular Genetics and Genomics, 2003, 270, 147-155.	1.0	18
3	Genome Sequencing: The Ripping Yarn of The Frozen Genome. Current Biology, 2003, 13, R552-R553.	1.8	8
4	Neurospora Crassa has Twice the Genes of Schizosaccharomyces Pombe. Mycological Research, 2003, 107, 1011.	2.5	0
5	Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC Bioinformatics, 2003, 4, 42.	1.2	142
6	Current Awareness on Comparative and Functional Genomics. Comparative and Functional Genomics, 2003, 4, 560-567.	2.0	0
7	Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology, 2003, 50, 1451-1465.	1.2	126
8	Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology, 2003, 50, 1241-1255.	1.2	363
9	Ectomycorrhizal development and function $\hat{a} \in$ '' transcriptome analysis. New Phytologist, 2003, 159, 5-7.	3.5	14
10	Functional genomics of plant–pathogen interactions. New Phytologist, 2003, 159, 1-4.	3.5	69
11	Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytologist, 2003, 159, 7-10.	3.5	167
12	Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003, 422, 897-901.	13.7	1,537
13	The methylated component of the Neurospora crassa genome. Nature, 2003, 422, 893-897.	13.7	214
14	Revelations from a bread mould. Nature, 2003, 422, 821-822.	13.7	13
16	A MULTILOCUS GENEALOGICAL APPROACH TO PHYLOGENETIC SPECIES RECOGNITION IN THE MODEL EUKARYOTE NEUROSPORA. Evolution; International Journal of Organic Evolution, 2003, 57, 2703-2720.	1.1	385
17	REPRODUCTIVE ISOLATION AND PHYLOGENETIC DIVERGENCE IN NEUROSPORA: COMPARING METHODS OF SPECIES RECOGNITION IN A MODEL EUKARYOTE. Evolution; International Journal of Organic Evolution, 2003, 57, 2721-2741.	1.1	215
18	The Mycosome Hypothesis. Mycological Research, 2003, 107, 1010-1011.	2.5	0
19	Eukaryotic domain evolution inferred from genome comparisons. Current Opinion in Genetics and Development, 2003, 13, 623-628.	1.5	33

#	Article	IF	CITATIONS
20	Interaction of mutations affecting tip growth and branching in Neurospora. Fungal Genetics and Biology, 2003, 40, 261-270.	0.9	7
21	Septation and cytokinesis in fungi. Fungal Genetics and Biology, 2003, 40, 187-196.	0.9	61
22	The mitochondrial genome of the thermal dimorphic fungusPenicillium marneffeiis more closely related to those of molds than yeasts. FEBS Letters, 2003, 555, 469-477.	1.3	56
23	Does endocytosis occur in fungal hyphae?. Fungal Genetics and Biology, 2003, 39, 199-203.	0.9	69
24	Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 2003, 40, 126-137.	0.9	59
25	Analysis of nutrient-dependent transcript variations in Neurospora crassa. Fungal Genetics and Biology, 2003, 40, 225-233.	0.9	16
26	Diversity of polyketide synthase gene sequences in Aspergillus species. Research in Microbiology, 2003, 154, 593-600.	1.0	43
27	The Neurospora crassa genome opens up the world of filamentous fungi. Genome Biology, 2003, 4, 217.	13.9	10
28	Multiple oscillators regulate circadian gene expression in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13597-13602.	3.3	132
29	Asexual Development Is Increased in Neurospora crassa cat - 3 -Null Mutant Strains. Eukaryotic Cell, 2003, 2, 798-808.	3.4	86
30	The Genetic Basis of Cellular Morphogenesis in the Filamentous FungusNeurospora crassa. Molecular Biology of the Cell, 2003, 14, 4352-4364.	0.9	179
31	MOLECULAR BIOLOGY: A Self-Help Guide for a Trim Genome. Science, 2003, 300, 1517-1518.	6.0	9
32	REPRODUCTIVE ISOLATION AND PHYLOGENETIC DIVERGENCE IN NEUROSPORA: COMPARING METHODS OF SPECIES RECOGNITION IN A MODEL EUKARYOTE. Evolution; International Journal of Organic Evolution, 2003, 57, 2721.	1.1	29
33	A MULTILOCUS GENEALOGICAL APPROACH TO PHYLOGENETIC SPECIES RECOGNITION IN THE MODEL EUKARYOTE NEUROSPORA. Evolution; International Journal of Organic Evolution, 2003, 57, 2703.	1.1	25
34	An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology (United Kingdom), 2003, 149, 2373-2384.	0.7	44
35	Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens. Eukaryotic Cell, 2003, 2, 1151-1161.	3.4	267
36	Environmental Suppression of Neurospora crassa cot-1 Hyperbranching: a Link between COT1 Kinase and Stress Sensing. Eukaryotic Cell, 2003, 2, 699-707.	3.4	42
37	Use of cDNA Microarrays To Monitor Transcriptional Responses of the Chestnut Blight Fungus Cryphonectria parasitica to Infection by Virulence-Attenuating Hypoviruses. Eukaryotic Cell, 2003, 2, 1253-1265.	3.4	116

#	Article	IF	CITATIONS
38	Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15670-15675.	3.3	485
40	Fungal Biology and Agriculture: Revisiting the Field. Molecular Plant-Microbe Interactions, 2003, 16, 859-866.	1.4	12
42	RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucleic Acids Research, 2004, 32, 4237-4243.	6.5	54
43	Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Research, 2004, 32, 6605-6616.	6.5	74
44	FoSTUA , Encoding a Basic Helix-Loop-Helix Protein, Differentially Regulates Development of Three Kinds of Asexual Spores, Macroconidia, Microconidia, and Chlamydospores, in the Fungal Plant Pathogen Fusarium oxysporum. Eukaryotic Cell, 2004, 3, 1412-1422.	3.4	94
45	The fluffy Gene of Neurospora crassa Is Necessary and Sufficient to Induce Conidiophore Development. Genetics, 2004, 166, 1741-1749.	1.2	46
46	ESSENTIAL EUKARYOTIC CORE. Evolution; International Journal of Organic Evolution, 2004, 58, 441.	1.1	0
47	The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 5539-5545.	6.5	988
48	Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology (United Kingdom), 2004, 150, 311-319.	0.7	46
49	Identification of Serpula lacrymans and other decay fungi in construction timber by sequencing of ribosomal DNA – A practical approach. Holzforschung, 2004, 58, 199-204.	0.9	19
50	ADAM Family Protein Mde10 Is Essential for Development of Spore Envelopes in the Fission Yeast Schizosaccharomyces pombe. Eukaryotic Cell, 2004, 3, 27-39.	3.4	36
51	DNA Methylation Affects Meiotic trans-sensing, Not Meiotic Silencing, in Neurospora. Genetics, 2004, 168, 1925-1935.	1.2	29
52	REN1 Is Required for Development of Microconidia and Macroconidia, but Not of Chlamydospores, in the Plant Pathogenic Fungus Fusarium oxysporum. Genetics, 2004, 166, 113-124.	1.2	74
53	Role of a Mitogen-Activated Protein Kinase Pathway during Conidial Germination and Hyphal Fusion in Neurospora crassa. Eukaryotic Cell, 2004, 3, 348-358.	3.4	157
54	Merlin, a New Superfamily of DNA Transposons Identified in Diverse Animal Genomes and Related to Bacterial IS1016 Insertion Sequences. Molecular Biology and Evolution, 2004, 21, 1769-1780.	3.5	58
55	Evolution of the MAT locus and its Ho endonuclease in yeast species. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1632-1637.	3.3	217
56	MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 2004, 32, 41D-44.	6.5	522
57	Neurospora in Temperate Forests of Western North America. Mycologia, 2004, 96, 66.	0.8	34

#	Article	IF	CITATIONS
58	The PEDANT genome database in 2005. Nucleic Acids Research, 2004, 33, D308-D310.	6.5	50
59	MAPping the Eukaryotic Tree of Life: Structure, Function, and Evolution of the MAP215â§,Dis1 Family of Microtubule-Associated Proteins. International Review of Cytology, 2004, 239, 179-272.	6.2	77
60	Gap statistics for whole genome shotgun DNA sequencing projects. Bioinformatics, 2004, 20, 1527-1534.	1.8	12
61	Identification of Cryptococcus neoformans Temperature-Regulated Genes with a Genomic-DNA Microarray. Eukaryotic Cell, 2004, 3, 1249-1260.	3.4	102
62	G-Protein β Subunit of Cochliobolus heterostrophus Involved in Virulence, Asexual and Sexual Reproductive Ability, and Morphogenesis. Eukaryotic Cell, 2004, 3, 1653-1663.	3.4	44
63	The Complete Genome and Proteome of Mycoplasma mobile. Genome Research, 2004, 14, 1447-1461.	2.4	224
64	Altering a Gene Involved in Nuclear Distribution Increases the Repeat-Induced Point Mutation Process in the Fungus Podospora anserina. Genetics, 2004, 167, 151-159.	1.2	29
65	Introns and Splicing Elements of Five Diverse Fungi. Eukaryotic Cell, 2004, 3, 1088-1100.	3.4	246
67	GeneWise and Genomewise. Genome Research, 2004, 14, 988-995.	2.4	2,128
68	The Ashbya gossypii Genome as a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome. Science, 2004, 304, 304-307.	6.0	599
69	Phylogenetic Analysis of Sec7-Domain–containing Arf Nucleotide Exchangers. Molecular Biology of the Cell, 2004, 15, 1487-1505.	0.9	134
70	Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi. PLoS Biology, 2004, 2, e398.	2.6	207
71	A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. Journal of Evolutionary Biology, 2004, 17, 1204-1214.	0.8	71
72	Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases. FEBS Journal, 2004, 271, 3297-3309.	0.2	37
73	Identification of cryptochrome DASH from vertebrates. Genes To Cells, 2004, 9, 479-495.	0.5	98
74	The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Molecular Plant Pathology, 2004, 5, 353-359.	2.0	153
75	A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Molecular Microbiology, 2004, 51, 1333-1345.	1.2	97
76	Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Molecular Microbiology, 2004, 52, 1437-1450.	1.2	102

# 77	ARTICLE Yeast genome sequencing: the power of comparative genomics. Molecular Microbiology, 2004, 53,	IF 1.2	CITATIONS
78	Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E) by secretion of a stable avr4E isoform. Molecular Microbiology, 2004, 54, 533-545.	1.2	98
79	The Neurospora crassa gene responsible for the cut and ovc phenotypes encodes a protein of the haloacid dehalogenase family. Molecular Microbiology, 2004, 55, 828-838.	1.2	22
80	Hebeloma cylindrosporum – a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytologist, 2004, 163, 481-498.	3.5	43
81	Largeâ€scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytologist, 2004, 164, 505-513.	3.5	40
82	ESSENTIAL EUKARYOTIC CORE. Evolution; International Journal of Organic Evolution, 2004, 58, 441-446.	1.1	8
83	Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology, 2004, 22, 695-700.	9.4	805
84	The age of model organisms. Nature Reviews Genetics, 2004, 5, 69-76.	7.7	74
85	Genomes beyond compare. Nature Reviews Microbiology, 2004, 2, 616-617.	13.6	19
86	Genome evolution in yeasts. Nature, 2004, 430, 35-44.	13.7	1,498
86 87	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411.	13.7 1.2	1,498 94
86 87 88	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798.	13.7 1.2 1.2	1,498 94 134
86 87 88 89	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798. Survival, surfaces and susceptibility - the sensory biology of pathogens. Plant Pathology, 2004, 53, 679-691.	13.7 1.2 1.2 1.2	1,498 94 134 8
86 87 88 89 90	Genome evolution in yeasts. Nature, 2004, 430, 35-44.Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411.A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798.Survival, surfaces and susceptibility - the sensory biology of pathogens. Plant Pathology, 2004, 53, 679-691.Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the î±/î² Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687.	13.7 1.2 1.2 1.2 1.2	1,498 94 134 8 29
86 87 88 89 90 91	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798. Survival, surfaces and susceptibility - the sensory biology of pathogens. Plant Pathology, 2004, 53, 679-691. Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the 1±/1² Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687. Conservation of protein–protein interactions – lessons from ascomycota. Trends in Genetics, 2004, 20, 72-76.	13.7 1.2 1.2 1.2 1.6 2.9	1,498 94 134 8 29 41
86 87 88 89 90 91 91	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798. Survival, surfaces and susceptibility - the sensory biology of pathogens. Plant Pathology, 2004, 53, 679-691. Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the 1±/1² Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687. Conservation of proteinã€ ^e protein interactions â€ ^e lessons from ascomycota. Trends in Genetics, 2004, 20, 72-76. RIP: the evolutionary cost of genome defense. Trends in Genetics, 2004, 20, 417-423.	13.7 1.2 1.2 1.2 1.6 2.9	1,498 94 134 8 29 41 392
86 87 88 89 90 91 91 92 93	Genome evolution in yeasts. Nature, 2004, 430, 35-44. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Molecular Microbiology, 2004, 52, 399-411. A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Molecular Microbiology, 2004, 52, 1781-1798. Survival, surfaces and susceptibility - the sensory biology of pathogens. Plant Pathology, 2004, 53, 679-691. Aspergillus niger Protein EstA Defines a New Class of Fungal Esterases within the α/β Hydrolase Fold Superfamily of Proteins. Structure, 2004, 12, 677-687. Conservation of protein–protein interactions – lessons from ascomycota. Trends in Genetics, 2004, 20, 72-76. RIP: the evolutionary cost of genome defense. Trends in Genetics, 2004, 20, 417-423. Bioremediation of 60Co from simulated spent decontamination solutions. Science of the Total Environment, 2004, 328, 1-14.	13.7 1.2 1.2 1.2 1.6 2.9 2.9 3.9	1,498 94 134 8 29 41 392 21

#	Article	IF	CITATIONS
95	Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 205-216.	0.8	42
96	Effect of 5-Azacytidine on the Light-Sensitive Formation of Sexual and Asexual Reproductive Structures in wc-1 and wc-2 Mutants of Neurospora crassa. Applied Biochemistry and Microbiology, 2004, 40, 398-403.	0.3	10
97	Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiology Letters, 2004, 239, 95-101.	0.7	42
98	Chromosome rearrangements in isolates that escape from het-c heterokaryon incompatibility in Neurospora crassa. Current Genetics, 2004, 44, 329-338.	0.8	12
99	The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair. Current Genetics, 2004, 45, 37-44.	0.8	31
100	Alternative splicing of transcripts of the transposon Restless is maintained in the foreign host Neurospora crassa and can be modified by introducing mutations at the 5? and 3? splice sites. Current Genetics, 2004, 46, 59-65.	0.8	6
101	Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Current Genetics, 2004, 46, 240-246.	0.8	73
102	Characterization of pco-1, a newly identified gene which regulates purine catabolism in Neurospora. Current Genetics, 2004, 46, 213-227.	0.8	8
103	Repeat-Modulated Population Genetic Effects in Fungal Proteins. Journal of Molecular Evolution, 2004, 59, 97-102.	0.8	5
104	Identification of a type-D feruloyl esterase from Neurospora crassa. Applied Microbiology and Biotechnology, 2004, 63, 567-570.	1.7	47
105	Characterization of the protein processing and secretion pathways in a comprehensive set of expressed sequence tags fromTrichoderma reesei. FEMS Microbiology Letters, 2004, 230, 275-282.	0.7	20
106	Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics, 2004, 4, 3579-3587.	1.3	63
107	Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochemical and Photobiological Sciences, 2004, 3, 555.	1.6	86
108	DNA Methylation Is Independent of RNA Interference in Neurospora. Science, 2004, 304, 1939-1939.	6.0	116
109	Recent progress, developments, and issues in comparative fungal genomics. Canadian Journal of Plant Pathology, 2004, 26, 19-30.	0.8	7
110	Lessons from the Genome Sequence of Neurospora crassa : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	2.9	572
111	Emission of ent-Kaurene, a Diterpenoid Hydrocarbon Precursor for Gibberellins, into the Headspace from Plants. Plant and Cell Physiology, 2004, 45, 1129-1138.	1.5	56
119	From The Cover: Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proceedings of the National Academy of Sciences of the United States of	33	531

America, 2004, 101, 12248-12253.

#	Article	IF	CITATIONS
113	Nucleotide composition in protein-coding and non-coding DNA in the zygomycete Phycomyces blakesleeanus. Mycological Research, 2004, 108, 858-863.	2.5	3
114	2004 Snapshots of AM Fungi: Still an Endless Tale…. Mycological Research, 2004, 108, 338-339.	2.5	3
115	Viruses of the Chestnut Blight Fungus, Cryphonectria parasitica. Advances in Virus Research, 2004, 63, 423-472.	0.9	169
116	Glutathione, Altruistic Metabolite in Fungi. Advances in Microbial Physiology, 2004, 49, 1-76.	1.0	241
117	Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. , 2004, , .		40
118	Metabolic Highways of Neurospora crassa Revisited. Advances in Genetics, 2004, 52, 165-207.	0.8	25
119	Biochemistry and Molecular Biology. , 2004, , .		4
120	Circadian Rhythms in Microorganisms: New Complexities. Annual Review of Microbiology, 2004, 58, 489-519.	2.9	82
121	AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Gene, 2004, 342, 269-281.	1.0	43
122	Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genetics and Biology, 2004, 41, 285-292.	0.9	51
123	A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genetics and Biology, 2004, 41, 148-156.	0.9	60
124	Insight into the genome of Aspergillus fumigatus: analysis of a 922kb region encompassing the nitrate assimilation gene cluster. Fungal Genetics and Biology, 2004, 41, 443-453.	0.9	55
125	The influence of genotypic variation on metabolite diversity in populations of two endophytic fungal species. Fungal Genetics and Biology, 2004, 41, 721-734.	0.9	22
126	A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 2004, 41, 827-841.	0.9	128
127	GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 897-910.	0.9	306
128	A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genetics and Biology, 2004, 41, 1025-1036.	0.9	117
129	Insight into Trichoderma reesei's genome content, organization and evolution revealed through BAC library characterization. Fungal Genetics and Biology, 2004, 41, 1077-1087.	0.9	22
130	Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 1104-1119.	0.9	66

	CHATION RE	PORI	
# 131	ARTICLE Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 2004, 12, 135-141.	IF 3.5	CITATIONS
132	From genomics to post-genomics in Aspergillus. Current Opinion in Microbiology, 2004, 7, 499-504.	2.3	56
133	A study for minisatellitic markers of Conidiobolus coronatus' pathogenicity to Galleria mellonella Iarvae. Journal of Invertebrate Pathology, 2004, 85, 63-69.	1.5	7
134	Unusual Cys-Tyr Covalent Bond in a Large Catalase. Journal of Molecular Biology, 2004, 342, 971-985.	2.0	64
135	Phylogenomics of Eukaryotes: Impact of Missing Data on Large Alignments. Molecular Biology and Evolution, 2004, 21, 1740-1752.	3.5	371
136	Proteomics and data standardisation. Drug Discovery Today Biosilico, 2004, 2, 91-93.	0.7	2
137	Identification of a novel class of annexin genes. FEBS Letters, 2004, 562, 79-86.	1.3	15
138	New Insights into Type II NAD(P)H:Quinone Oxidoreductases. Microbiology and Molecular Biology Reviews, 2004, 68, 603-616.	2.9	224
139	An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology (United Kingdom), 2004, 150, 2475-2489.	0.7	72
140	Role of chitin synthase genes in Fusarium oxysporum. Microbiology (United Kingdom), 2004, 150, 3175-3187.	0.7	70
141	Differential Antifungal and Calcium Channel-Blocking Activity among Structurally Related Plant Defensins. Plant Physiology, 2004, 135, 2055-2067.	2.3	205
142	Properties of Unpaired DNA Required For Efficient Silencing in Neurospora crassa. Genetics, 2004, 167, 131-150.	1.2	42
143	Genome Defense and DNA Methylation in Neurospora. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 119-124.	2.0	25
144	Molecular analysis of muskelin identifies a conserved discoidin-like domain that contributes to protein self-association. Biochemical Journal, 2004, 381, 547-559.	1.7	18
145	Génomique des champignons ophiostomatoÃ⁻des : un gène, c'est bien; deux, c'est mieux; deux mille, o encore mieux!. Phytoprotection, 2004, 85, 39-43.	c'est 0.3	2
146	Gene Discovery and Gene Expression in the Rice Blast Fungus, Magnaporthe grisea: Analysis of Expressed Sequence Tags. Molecular Plant-Microbe Interactions, 2004, 17, 1337-1347.	1.4	83
147	MAPK Regulation of Sclerotial Development in Sclerotinia sclerotiorum Is Linked with pH and cAMP Sensing. Molecular Plant-Microbe Interactions, 2004, 17, 404-413.	1.4	100
149	Genomics in Neurospora crassa: From One-Gene-One-Enzyme to 10,000 Genes. Applied Mycology and Biotechnology, 2004, , 295-313.	0.3	0

	CITATION	Report	
#	Article	IF	CITATIONS
150	Neurosporain temperate forests of western North America. Mycologia, 2004, 96, 66-74.	0.8	58
151	Fungal Genetics. , 2005, , 35-63.		0
152	The cfp Genes (cfp-1 and cfp-2) of Neurospora crassa: A Tale of a Bunch of Filaments, One Enzyme, and Two Genes. Applied Mycology and Biotechnology, 2005, , 141-168.	0.3	0
153	A Search for Developmental Gene Sequences in the Genomes of Filamentous Fungi. Applied Mycology and Biotechnology, 2005, , 169-188.	0.3	1
154	Sordaria macrospora. , 2005, , 215-231.		1
155	Gene Silencing as a Tool for the Identification of Gene Function in Fungi. Applied Mycology and Biotechnology, 2005, , 93-116.	0.3	Ο
156	Phanerochaete chrysosporium Genomics. Applied Mycology and Biotechnology, 2005, 5, 315-352.	0.3	10
157	Nonribosomal peptide synthetase genes in the genome ofFusarium graminearum, causative agent of wheat head blight. Acta Biologica Hungarica, 2005, 56, 375-388.	0.7	22
158	Changes in Protein Kinase A Activity Accompany Sclerotial Development in Sclerotinia sclerotiorum. Phytopathology, 2005, 95, 397-404.	1.1	27
159	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	1.4	160
160	Development of a sample preparation method for fungal proteomics. FEMS Microbiology Letters, 2005, 247, 17-22.	0.7	35
161	An Iterative Type I Polyketide Synthase PKSN Catalyzes Synthesis of the Decaketide Alternapyrone with Regio-Specific Octa-Methylation. Chemistry and Biology, 2005, 12, 1301-1309.	6.2	100
162	Cross-talk between cAMP and calcium signalling in Aspergillus niger. Molecular Microbiology, 2005, 56, 268-281.	1.2	35
163	Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Molecular Microbiology, 2005, 56, 282-297.	1.2	31
164	Synergy between sequence and size in Large-scale genomics. Nature Reviews Genetics, 2005, 6, 699-708.	7.7	281
165	Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans. Nature Reviews Microbiology, 2005, 3, 753-764.	13.6	308
166	Fungi behaving badly. Nature Reviews Microbiology, 2005, 3, 832-833.	13.6	0
167	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	13.7	1,447

#	Article	IF	CITATIONS
168	Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycological Research, 2005, 109, 377-382.	2.5	31
169	Manifestations of multicellularity: Dictyostelium reports in. Trends in Genetics, 2005, 21, 392-398.	2.9	34
170	Evolutionary sequence analysis of complete eukaryote genomes. BMC Bioinformatics, 2005, 6, 53.	1.2	48
171	The gene for a lectin-like protein is transcriptionally activated during sexual development, but is not essential for fruiting body formation in the filamentous fungus Sordaria macrospora. BMC Microbiology, 2005, 5, 64.	1.3	61
172	The Impact of Bacterial Genomics on Natural Product Research. Angewandte Chemie - International Edition, 2005, 44, 6828-6846.	7.2	221
174	Neurospora Photoreceptors. , 2005, , 371-389.		14
175	Comparison of the Yeast Proteome to Other Fungal Genomes to Find Core Fungal Genes. Journal of Molecular Evolution, 2005, 60, 475-483.	0.8	53
176	Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Current Genetics, 2005, 48, 366-379.	0.8	128
177	Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Current Genetics, 2005, 48, 69-74.	0.8	51
178	Electrophoretic karyotype and gene mapping of the vascular wilt fungus Verticillium dahliae. FEMS Microbiology Letters, 2005, 245, 213-220.	0.7	22
179	Identification of novelTrichoderma hamatumgenes expressed during mycoparasitism using subtractive hybridisation. FEMS Microbiology Letters, 2005, 251, 105-112.	0.7	52
180	Diversity of type I polyketide synthase genes in the wood-decay fungusXylariasp. BCC 1067. FEMS Microbiology Letters, 2005, 251, 125-136.	0.7	61
181	Identification and functional characterisation of ctr1, a Pleurotus ostreatus gene coding for a copper transporter. Molecular Genetics and Genomics, 2005, 274, 402-409.	1.0	10
182	Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Molecular Genetics and Genomics, 2005, 273, 137-149.	1.0	94
183	Molecular cloning of a novel Gα subunit gene and a Gβ subunit gene from the gray mold fungus Botrytis cinerea. Journal of General Plant Pathology, 2005, 71, 408-413.	0.6	2
184	Collateral damage: Spread of repeat-induced point mutation from a duplicated DNA sequence into an adjoining single-copy gene inNeurospora crassa. Journal of Biosciences, 2005, 30, 15-20.	0.5	4
185	Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. European Journal of Plant Pathology, 2005, 111, 139-146.	0.8	20
186	Impaired purine biosynthesis affects pathogenicity of Fusarium oxysporum f. sp. melonis. European Journal of Plant Pathology, 2005, 112, 293-297.	0.8	8

	CITATION	REPORT	
#	Article	IF	CITATIONS
187	Photoreceptor Apparatus of the Fungus Neurospora crassa. Molecular Biology, 2005, 39, 514-528.	0.4	11
188	The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes. Proteins: Structure, Function and Bioinformatics, 2005, 60, 670-678.	1.5	62
189	A systematic nomenclature of chromosomal elements for hemiascomycete yeasts. Yeast, 2005, 22, 337-342.	0.8	15
190	Two new fungal inteins. Yeast, 2005, 22, 493-501.	0.8	12
191	Mass spectrometry and database search in the analysis of proteins from the fungusPleurotus ostreatus. Proteomics, 2005, 5, 67-75.	1.3	14
192	Evolutionary change - patterns and processes. Anais Da Academia Brasileira De Ciencias, 2005, 77, 627-650.	0.3	5
194	Eukaryotic genomics. , 2005, , .		0
195	Guanylyl cyclases across the tree of life. Frontiers in Bioscience - Landmark, 2005, 10, 1485.	3.0	68
196	Modellorganismen. , 2005, , 1-87.		0
197	A Mitogen-Activated Protein Kinase Pathway Essential for Mating and Contributing to Vegetative Growth in Neurospora crassa. Genetics, 2005, 170, 1091-1104.	1.2	158
198	Comparative Genomics and Disorder Prediction Identify Biologically Relevant SH3 Protein Interactions. PLoS Computational Biology, 2005, 1, e26.	1.5	40
199	A Human-Curated Annotation of the Candida albicans Genome. PLoS Genetics, 2005, 1, e1.	1.5	293
200	Functions of the Small Proteins in the TOM Complex of Neurospora crasssa. Molecular Biology of the Cell, 2005, 16, 4172-4182.	0.9	59
201	Optimization of cDNA-AFLP experiments using genomic sequence data. Bioinformatics, 2005, 21, 2573-2579.	1.8	17
202	The Heterotrimeric G-Protein Subunits GNG-1 and GNB-1 Form a Gβγ Dimer Required for Normal Female Fertility, Asexual Development, and Gα Protein Levels in Neurospora crassa. Eukaryotic Cell, 2005, 4, 365-378.	3.4	78
203	Sequence and Comparative Genomic Analysis of Actin-related Proteins. Molecular Biology of the Cell, 2005, 16, 5736-5748.	0.9	99
204	mRNA-Mediated Intron Losses: Evidence from Extraordinarily Large Exons. Molecular Biology and Evolution, 2005, 22, 1475-1481.	3.5	44
205	Biology and Detection of Fungal Pathogens of Humans and Plants. , 2005, , 109-130.		0

#	Article	IF	CITATIONS
206	Deletion and Allelic Exchange of the Aspergillus fumigatus veA Locus via a Novel Recyclable Marker Module. Eukaryotic Cell, 2005, 4, 1298-1307.	3.4	118
207	Group III Histidine Kinase Is a Positive Regulator of Hog1-Type Mitogen-Activated Protein Kinase in Filamentous Fungi. Eukaryotic Cell, 2005, 4, 1820-1828.	3.4	118
208	Sequence Finishing and Gene Mapping for Candida albicans Chromosome 7 and Syntenic Analysis Against the Saccharomyces cerevisiae GenomeThe entire chromosome 7 sequence has been deposited at DDBJ/EMBL/GenBank under the project accession no. AP006852 Genetics, 2005, 170, 1525-1537.	1.2	23
209	Evolutionary Diversification of DNA Methyltransferases in Eukaryotic Genomes. Molecular Biology and Evolution, 2005, 22, 1119-1128.	3.5	153
210	Long-oligomer microarray profiling in Neurospora crassa reveals the transcriptional program underlying biochemical and physiological events of conidial germination. Nucleic Acids Research, 2005, 33, 6469-6485.	6.5	95
211	Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. Advances in Applied Microbiology, 2005, 57, 177-215.	1.3	18
212	Measuring fungal growth forces with optical tweezers. , 2005, , .		1
213	Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Research, 2005, 15, 1620-1631.	2.4	269
215	Light Signal Transduction Coupled with Reactive Oxygen Species in Neurospora crassa. , 2005, , 315-321.		0
216	Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae. Eukaryotic Cell, 2005, 4, 1102-1115.	3.4	224
217	Gene Discovery and Expression Profile Analysis through Sequencing of Expressed Sequence Tags from Different Developmental Stages of the Chytridiomycete Blastocladiella emersonii. Eukaryotic Cell, 2005, 4, 455-464.	3.4	21
218	Heterologous Expression, Purification, and Characterization of a Highly Active Xylose Reductase from Neurospora crassa. Applied and Environmental Microbiology, 2005, 71, 1642-1647.	1.4	81
219	Role of Unc104/KIF1-related Motor Proteins in Mitochondrial Transport in Neurospora crassa. Molecular Biology of the Cell, 2005, 16, 153-161.	0.9	34
220	Echoes from the past – are we still in an RNP world?. Cytogenetic and Genome Research, 2005, 110, 8-24.	0.6	44
221	RNA Silencing in Aspergillus nidulans Is Independent of RNA-Dependent RNA Polymerases. Genetics, 2005, 169, 607-617.	1.2	111
222	Cell Biology of Conidial Anastomosis Tubes in Neurospora crassa. Eukaryotic Cell, 2005, 4, 911-919.	3.4	157
223	Recombination in Filamentous Fungi. Applied Mycology and Biotechnology, 2005, , 1-32.	0.3	1
224	The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Research, 2005, 33, 1564-1573.	6.5	97

#	Article	IF	CITATIONS
225	Srs2 and RecQ homologs cooperate in mei-3-mediated homologous recombination repair of Neurospora crassa. Nucleic Acids Research, 2005, 33, 1848-1858.	6.5	13
226	Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes. Nucleic Acids Research, 2005, 33, 5034-5044.	6.5	22
227	EST Data Mining and Applications in Fungal Genomics. Applied Mycology and Biotechnology, 2005, 5, 33-70.	0.3	0
228	Genetic and Molecular Analysis of Phytochromes from the Filamentous Fungus Neurospora crassa. Eukaryotic Cell, 2005, 4, 2140-2152.	3.4	142
229	EUKARYOTIC CYTOSINE METHYLTRANSFERASES. Annual Review of Biochemistry, 2005, 74, 481-514.	5.0	1,846
230	Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes. PLoS Computational Biology, 2005, 1, e27.	1.5	141
231	Neutral glycolipids of the filamentous fungus Neurospora crassa:altered expression in plant defensin-resistant mutants. Journal of Lipid Research, 2005, 46, 759-768.	2.0	27
232	Analysis of Circadian Rhythms in Neurospora: Overview of Assays and Genetic and Molecular Biological Manipulation. Methods in Enzymology, 2005, 393, 3-22.	0.4	30
233	Multiple non-ribosomal peptide synthetase genes determine peptaibol synthesis in Trichoderma virens. Canadian Journal of Microbiology, 2005, 51, 423-429.	0.8	34
234	The DNA Damage Response of Filamentous Fungi: Novel Features Associated with a Multicellular Lifestyle. Applied Mycology and Biotechnology, 2005, 5, 117-139.	0.3	1
235	Fungal Intervening Sequences. Applied Mycology and Biotechnology, 2005, , 71-92.	0.3	3
236	Protein Interactions and Fluctuations in a Proteomic Network using an Elastic Network Model. Journal of Biomolecular Structure and Dynamics, 2005, 22, 381-386.	2.0	18
237	Probable Proterozoic fungi. Paleobiology, 2005, 31, 165-182.	1.3	193
238	Effect of pH on the Pore Forming Activity and Conformational Stability of Ostreolysin, a Lipid Raft-Binding Protein from the Edible MushroomPleurotus ostreatusâ€,‡. Biochemistry, 2005, 44, 11137-11147.	1.2	56
239	Mitochondrial trans-2-Enoyl-CoA Reductase of Wax Ester Fermentation from Euglena gracilis Defines a New Family of Enzymes Involved in Lipid Synthesis. Journal of Biological Chemistry, 2005, 280, 4329-4338.	1.6	80
240	Economy, Speed and Size Matter: Evolutionary Forces Driving Nuclear Genome Miniaturization and Expansion. Annals of Botany, 2005, 95, 147-175.	1.4	335
241	Domain Graph ofArabidopsisProteome by Comparative Analysis. Journal of Proteome Research, 2005, 4, 435-444.	1.8	10
242	The Three-dimensional Structure of the Bifunctional 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase/Dihydropteroate Synthase of Saccharomyces cerevisiae. Journal of Molecular Biology, 2005, 348, 655-670.	2.0	56

#	Article	IF	CITATIONS
243	How genomics has affected the concept of microbiology. Current Opinion in Microbiology, 2005, 8, 564-571.	2.3	40
244	Genes of the thymidine salvage pathway: Thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 256-264.	1.1	54
245	RNA silencing in fungi: Mechanisms and applications. FEBS Letters, 2005, 579, 5950-5957.	1.3	167
246	Truncated and RIP-degenerated copies of the LTR retrotransposon are clustered in a pericentromeric region of the genome. Fungal Genetics and Biology, 2005, 42, 30-41.	0.9	26
247	Genetics and kinetics. Fungal Genetics and Biology, 2005, 42, 81-96.	0.9	1
248	Expression of agsA, one of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress. Fungal Genetics and Biology, 2005, 42, 165-177.	0.9	81
249	RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genetics and Biology, 2005, 42, 275-283.	0.9	287
250	A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 2005, 42, 483-492.	0.9	129
251	Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genetics and Biology, 2005, 42, 963-975.	0.9	194
252	Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host–pathogen interaction. Research in Microbiology, 2005, 156, 822-829.	1.0	10
253	Comparative Genomics in Eukaryotes. , 2005, , 521-583.		9
254	Composition of complex I from Neurospora crassa and disruption of two "accessory―subunits. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 211-220.	0.5	49
255	BioCloneDB. Applied Bioinformatics, 2005, 4, 277-280.	1.7	2
256	Transposable Elements. , 2005, , 165-221.		45
257	The rarity of gene shuffling in conserved genes. Genome Biology, 2005, 6, R50.	13.9	16
258	Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biology, 2005, 6, R24.	13.9	182
259	Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biology, 2006, 7, R96.	13.9	80
260	The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biology, 2006, 7, R16.	13.9	81

		15	0
#	ARTICLE	IF	CITATIONS
263	Investigating the Evolution of Fungal Virulence by Functional Genomics. , 2006, , 35-49.		2
264	Genomics of Protein Secretion and Hyphal Growth in Aspergillus. , 2006, , 75-96.		8
265	Biochemical and Molecular Analyses of Gibberellin Biosynthesis in Fungi. Bioscience, Biotechnology and Biochemistry, 2006, 70, 583-590.	0.6	126
266	Fruiting-Body Development in Ascomycetes. , 2006, , 325-355.		67
267	Entrainment of theNeurosporaCircadian Clock. Chronobiology International, 2006, 23, 71-80.	0.9	24
268	Oxygen- and Glucose-Dependent Expression ofTrhxt1, a Putative Glucose Transporter Gene ofTrichoderma reeseiâ€,â€j. Biochemistry, 2006, 45, 8184-8192.	1.2	22
269	Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. Journal of Biotechnology, 2006, 124, 690-703.	1.9	156
270	Photomorphogenesis and Gravitropism in Fungi. , 2006, , 233-259.		19
271	An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome. BMC Genomics, 2006, 7, 282.	1.2	16
272	The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology, 2006, 123, 413-433.	1.9	150
273	Structural features of fungal genomes. , 0, , 47-77.		2
274	The Dawn of Fungal Pathogen Genomics. Annual Review of Phytopathology, 2006, 44, 337-366.	3.5	95
275	Rapid identification of Trichophyton tonsurans by specific PCR based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) 1 region. Journal of Dermatological Science, 2006, 42, 225-230.	1.0	21
276	The transition metal chelator nicotianamine is synthesized by filamentous fungi. FEBS Letters, 2006, 580, 3173-3178.	1.3	25
277	Transcriptome analysis of Neotyphodium and Epichloë grass endophytes. Fungal Genetics and Biology, 2006, 43, 465-475.	0.9	33
278	G-protein and cAMP-mediated signaling in aspergilli: A genomic perspective. Fungal Genetics and Biology, 2006, 43, 490-502.	0.9	131
279	Phase-specific gene expression underlying morphological adaptations of the dimorphic human pathogenic fungus, Coccidioides posadasii. Fungal Genetics and Biology, 2006, 43, 545-559.	0.9	26
280	Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomycete Tuber borchii. Fungal Genetics and Biology, 2006, 43, 630-641.	0.9	28

#	Article	IF	CITATIONS
281	Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genetics and Biology, 2006, 43, 764-774.	0.9	33
282	The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction. Genomics, 2006, 87, 338-347.	1.3	23
283	Conflicting phylogenetic position of Schizosaccharomyces pombe. Genomics, 2006, 88, 387-393.	1.3	22
284	The genome of the filamentous fungus Ashbya gossypii: annotation and evolutionary implications. , 0, , 197-232.		2
285	Generation and analysis of expressed sequence tags from Botrytis cinerea. Biological Research, 2006, 39, 367-76.	1.5	14
286	A High Throughput Targeted Gene Disruption Method for Alternaria brassicicola Functional Genomics Using Linear Minimal Element (LME) Constructs. Molecular Plant-Microbe Interactions, 2006, 19, 7-15.	1.4	67
287	The Pathogen-Host Interactions Database (PHI-base) Provides Insights into Generic and Novel Themes of Pathogenicity. Molecular Plant-Microbe Interactions, 2006, 19, 1451-1462.	1.4	68
288	Genome Project and Post Genomics of Aspergillus oryzae. Journal of the Brewing Society of Japan, 2006, 101, 536-548.	0.1	0
290	Proteome analysis of mitochondrial outer membrane fromNeurospora crassa. Proteomics, 2006, 6, 72-80.	1.3	74
291	Identification and comparative analysis of the large subunit mitochondrial ribosomal proteins ofNeurospora crassa. FEMS Microbiology Letters, 2006, 254, 157-164.	0.7	9
292	Homology effects inNeurospora crassa. FEMS Microbiology Letters, 2006, 254, 182-189.	0.7	34
293	Comparative gene expression analysis of fruiting body development in two filamentous fungi. FEMS Microbiology Letters, 2006, 257, 328-335.	0.7	22
294	Biochemical properties of a thermostable phytase from Neurospora crassa. FEMS Microbiology Letters, 2006, 258, 61-66.	0.7	9
295	Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Molecular Plant Pathology, 2006, 7, 61-70.	2.0	36
296	Kinase Cak1 functionally interacts with the PAF1 complex and phosphatase Ssu72 via kinases Ctk1 and Bur1. Molecular Genetics and Genomics, 2006, 275, 136-147.	1.0	8
297	Accelerated Evolutionary Rate May Be Responsible for the Emergence of Lineage-Specific Genes in Ascomycota. Journal of Molecular Evolution, 2006, 63, 1-11.	0.8	64
298	Evolution and Diversification of RNA Silencing Proteins in Fungi. Journal of Molecular Evolution, 2006, 63, 127-135.	0.8	141
299	Comparative genomics of the HOG-signalling system in fungi. Current Genetics, 2006, 49, 137-151.	0.8	73

#	Article	IF	CITATIONS
300	The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Current Genetics, 2006, 50, 45-60.	0.8	125
301	Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77Âkb deletion. Current Genetics, 2006, 51, 19-30.	0.8	12
302	Occupancy Modeling of Coverage Distribution for Whole Genome Shotgun Dna Sequencing. Bulletin of Mathematical Biology, 2006, 68, 179-196.	0.9	12
303	Translesion DNA polymerases Pol ζ, Pol Î∙, Pol ι, Pol Ϊ and Rev1 are not essential for repeat-induced point mutation inNeurospora crassa. Journal of Biosciences, 2006, 31, 557-564.	0.5	6
304	The Dictyostelium repertoire of seven transmembrane domain receptors. European Journal of Cell Biology, 2006, 85, 937-946.	1.6	81
305	Yeast and filamentous fungi as model organisms in microbody research. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1364-1373.	1.9	55
306	Intron-rich ancestors. Trends in Genetics, 2006, 22, 468-471.	2.9	58
307	Genomics of the filamentous fungi – moving from the shadow of the bakers yeast. The Mycologist, 2006, 20, 10-14.	0.5	7
308	Comparative assessment of performance and genome dependence among phylogenetic profiling methods. BMC Bioinformatics, 2006, 7, 420.	1.2	43
309	A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology, 2006, 6, 99.	3.2	428
310	Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii. BMC Genomics, 2006, 7, 177.	1.2	10
311	Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires. BMC Genomics, 2006, 7, 244.	1.2	41
312	Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics, 2006, 7, 255.	1.2	43
313	Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics, 2006, 7, 32.	1.2	80
314	Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics, 2006, 7, 40.	1.2	327
315	Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiology, 2006, 6, 7.	1.3	34
316	Relative reactivity of Aspergillusallergens used in serological tests. Medical Mycology, 2006, 44, 23-28.	0.3	18
317	Fungal Genomic Annotation. Applied Mycology and Biotechnology, 2006, , 123-142.	0.3	21

#	Article	IF	Citations
318	Structure and Function of Cholinesterases. , 2006, , 161-186.		23
319	Issues in Comparative Fungal Genomics. Applied Mycology and Biotechnology, 2006, , 99-122.	0.3	0
320	Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote. PLoS Biology, 2006, 4, e286.	2.6	657
321	Chromosome Segment Duplications in Neurospora crassa and Their Effects on Repeat-Induced Point Mutation and Meiotic Silencing by Unpaired DNA. Genetics, 2006, 172, 1511-1519.	1.2	14
322	Comparative genomics and genome evolution in yeasts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 403-412.	1.8	60
323	The Predicted G-Protein-Coupled Receptor GPR-1 Is Required for Female Sexual Development inthe Multicellular Fungus Neurospora crassa. Eukaryotic Cell, 2006, 5, 1503-1516.	3.4	37
324	Analysis of Strains with Mutations in Six Genes Encoding Subunits of the V-ATPase. Journal of Biological Chemistry, 2006, 281, 27052-27062.	1.6	17
325	The STE20/Germinal Center Kinase POD6 Interacts with the NDR Kinase COT1 and Is Involved in Polar Tip Extension inNeurospora crassa. Molecular Biology of the Cell, 2006, 17, 4080-4092.	0.9	65
326	The Neurospora Checkpoint Kinase 2: A Regulatory Link Between the Circadian and Cell Cycles. Science, 2006, 313, 644-649.	6.0	132
327	A Nonself Recognition Gene Complex in Neurospora crassa. Genetics, 2006, 173, 1991-2004.	1.2	30
328	Telomeres in fungi. , 0, , 101-130.		10
329	GPR-4 Is a Predicted G-Protein-Coupled Receptor Required for Carbon Source-Dependent Asexual Growth and Development in Neurospora crassa. Eukaryotic Cell, 2006, 5, 1287-1300.	3.4	81
330	The RNA polymerase III-dependent family of genes in hemiascomycetes: comparative RNomics, decoding strategies, transcription and evolutionary implications. Nucleic Acids Research, 2006, 34, 1816-1835.	6.5	86
331	A Eukaryote without Catalase-Containing Microbodies: Neurosporacrassa Exhibits a Unique Cellular Distributionof Its Four Catalases. Eukaryotic Cell, 2006, 5, 1490-1502.	3.4	44
332	MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research, 2006, 34, D436-D441.	6.5	305
334	Duplication of genes and genomes in yeasts. , 0, , 79-99.		4
335	Machine learning methods for transcription data integration. IBM Journal of Research and Development, 2006, 50, 631-643.	3.2	9
336	A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10352-10357.	3.3	1,060

#	Article	IF	CITATIONS
337	Re-Wiring the Network: Understanding the Mechanism and Function of Anastomosis in Filamentous Ascomycete Fungi. , 2006, , 123-139.		19
338	Kinetic and Mechanistic Basis of the Nonprocessive Kinesin-3 Motor NcKin3. Journal of Biological Chemistry, 2006, 281, 37782-37793.	1.6	27
339	Genomic analysis of host–pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Microbiology (United Kingdom), 2006, 152, 1877-1890.	0.7	44
341	Codon Signature Extremes In Eukaryote genomes. Israel Journal of Ecology and Evolution, 2006, 52, 281-297.	0.2	2
342	Two Circadian Timing Circuits in Neurospora crassa Cells Share Components and Regulate Distinct Rhythmic Processes. Journal of Biological Rhythms, 2006, 21, 159-168.	1.4	53
343	The Neurospora crassa White Collar-1 dependent Blue Light Response Requires Acetylation of Histone H3 Lysine 14 by NGF-1. Molecular Biology of the Cell, 2006, 17, 4576-4583.	0.9	85
344	G Protein-coupled Receptor Gpr4 Senses Amino Acids and Activates the cAMP-PKA Pathway inCryptococcus neoformans. Molecular Biology of the Cell, 2006, 17, 667-679.	0.9	144
345	Analysis of theTrypanosoma cruzicyclophilin gene family and identification of Cyclosporin A binding proteins. Parasitology, 2006, 132, 867-882.	0.7	21
346	The Cryptococcus neoformans Catalase Gene Family and ItsRole in Antioxidant Defense. Eukaryotic Cell, 2006, 5, 1447-1459.	3.4	85
347	Emergence of Species-Specific Transporters During Evolution of the Hemiascomycete Phylum. Genetics, 2006, 172, 771-781.	1.2	42
348	Mutational Analysis of the Glycosylphosphatidylinositol (GPI) Anchor Pathway Demonstrates that GPI-Anchored Proteins Are Required for Cell Wall Biogenesis and Normal Hyphal Growth in Neurospora crassa. Eukaryotic Cell, 2006, 5, 587-600.	3.4	70
349	The Fungus-Specific HET Domain Mediates Programmed Cell Death in <i>Podospora anserina</i> . Eukaryotic Cell, 2007, 6, 2001-2008.	3.4	74
350	Silencing of the Aflatoxin Gene Cluster in a Diploid Strain of Aspergillus flavus Is Suppressed by Ectopic aflR Expression. Genetics, 2007, 176, 2077-2086.	1.2	27
351	Molecular and Functional Analyses of a Novel Class I Secretory Nuclease from the Human Pathogen, Leishmania donovani. Journal of Biological Chemistry, 2007, 282, 10079-10095.	1.6	22
352	Biochemical Characterization of an l-Xylulose Reductase from Neurospora crassa. Applied and Environmental Microbiology, 2007, 73, 2001-2004.	1.4	11
353	Recurrent Locus-Specific Mutation Resulting From a Cryptic Ectopic Insertion in Neurospora. Genetics, 2007, 175, 527-544.	1.2	11
354	Two Zinc-Cluster Transcription Factors Control Induction of Alternative Oxidase in Neurospora crassa. Genetics, 2007, 177, 1997-2006.	1.2	19
355	Trichoderma atroviride PHR1, a Fungal Photolyase Responsible for DNA Repair, Autoregulates Its Own Photoinduction. Eukaryotic Cell, 2007, 6, 1682-1692.	3.4	79

#	Article	IF	CITATIONS
356	Quantitative Trait Loci for the Circadian Clock in <i>Neurospora crassa</i> . Genetics, 2007, 177, 2335-2347.	1.2	13
357	Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics, 2007, 23, 815-824.	1.8	87
358	MIPS: analysis and annotation of genome information in 2007. Nucleic Acids Research, 2007, 36, D196-D201.	6.5	156
359	The Response Regulator RRG-1 Functions Upstream of a Mitogen-activated Protein Kinase Pathway Impacting Asexual Development, Female Fertility, Osmotic Stress, and Fungicide Resistance inNeurospora crassa. Molecular Biology of the Cell, 2007, 18, 2123-2136.	0.9	103
360	The transcription of the gene for iso-orotate decarboxylase (IDCase), an enzyme of the thymidine salvage pathway, is downregulated in the <i>preg^c</i> mutant strain of Neurospora crassa grown under phosphate starvation. Canadian Journal of Microbiology, 2007, 53, 1011-1015.	0.8	12
361	Genomics of Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2007, 71, 646-670.	0.6	163
362	Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. Journal of Optics, 2007, 9, S172-S179.	1.5	13
363	Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Advances in Genetics, 2007, 57, 49-96.	0.8	191
364	Pentaketide Resorcylic Acid Synthesis by Type III Polyketide Synthase from Neurospora crassa. Journal of Biological Chemistry, 2007, 282, 14476-14481.	1.6	128
365	The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes and Development, 2007, 21, 1494-1505.	2.7	158
366	Identification of an Alternative Oxidase Induction Motif in the Promoter Region of the aod-1 Gene in Neurospora crassa. Genetics, 2007, 175, 1597-1606.	1.2	15
367	Insights from Sequencing Fungal and Oomycete Genomes: What Can We Learn about Plant Disease and the Evolution of Pathogenicity?. Plant Cell, 2007, 19, 3318-3326.	3.1	110
368	From Genes to Genomes: A New Paradigm for Studying Fungal Pathogenesis in Magnaporthe oryzae. Advances in Genetics, 2007, 57, 175-218.	0.8	47
369	Transposition of a Fungal Miniature Inverted-Repeat Transposable Element Through the Action of a Tc1-Like Transposase. Genetics, 2007, 175, 441-452.	1.2	47
370	Alternative Splicing Gives Rise to Different Isoforms of the <i>Neurospora crassa</i> Tob55 Protein That Vary in Their Ability to Insert β-Barrel Proteins Into the Outer Mitochondrial Membrane. Genetics, 2007, 177, 137-149.	1.2	18
371	Electrophoretic and cytological karyotyping of the foliar wheat pathogen Mycosphaerella graminicola reveals many chromosomes with a large size range. Mycologia, 2007, 99, 868-876.	0.8	36
372	Supramolecular Organization of the Respiratory Chain in <i>Neurospora crassa</i> Mitochondria. Eukaryotic Cell, 2007, 6, 2391-2405.	3.4	88
373	Endocytosis in the Shiitake Mushroom <i>Lentinula edodes</i> and Involvement of GTPase LeRAB7. Eukaryotic Cell, 2007, 6, 2406-2418.	3.4	7

#	Article	IF	CITATIONS
374	Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes and Genetic Systems, 2007, 82, 301-310.	0.2	26
375	Electrophoretic and cytological karyotyping of the foliar wheat pathogen <i>Mycosphaerella graminicola</i> reveals many chromosomes with a large size range. Mycologia, 2007, 99, 868-876.	0.8	32
376	Fungicides Acting on Signal Transduction. , 0, , 561-580.		0
377	Tending Neurospora: David Perkins, 1919–2007, and Dorothy Newmeyer Perkins, 1922–2007. Genetics, 2007, 175, 1543-1548.	1.2	6
378	Circadian Entrainment of <i>Neurospora crassa</i> . Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 279-285.	2.0	12
379	Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Progress in Lipid Research, 2007, 46, 171-199.	5.3	83
380	H+-mediated coupling of transmembrane Ca2+ fluxes in vegetative Trichoderma viride mycelia suggested by the study of ageing and adaptation to extreme Ca2+ concentrations. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 99-105.	1.1	2
381	Construction of a contig of BAC clones spanning the region of the apple scab avirulence gene AvrVg. Fungal Genetics and Biology, 2007, 44, 44-51.	0.9	17
382	Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 2007, 44, 1-13.	0.9	38
383	Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genetics and Biology, 2007, 44, 52-63.	0.9	104
384	A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans. Fungal Genetics and Biology, 2007, 44, 123-138.	0.9	77
385	Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genetics and Biology, 2007, 44, 187-198.	0.9	51
386	Rapid genetic mapping in Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 455-465.	0.9	15
387	A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 2007, 44, 648-658.	0.9	63
388	Multiple layers of temporal and spatial control regulate accumulation of the fruiting body-specific protein APP in Sordaria macrospora and Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 602-614.	0.9	33
389	Mutation and divergence of the phospholipase C gene in Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 242-249.	0.9	25
390	Separation of sequences from host–pathogen interface using triplet nucleotide frequencies. Fungal Genetics and Biology, 2007, 44, 231-241.	0.9	16
391	Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genetics and Biology, 2007, 44, 886-895.	0.9	51

#	Article	IF	CITATIONS
392	Cyclosporin A-resistance based gene placement system for Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 307-314.	0.9	76
393	Arginine catabolism in Aspergillus nidulans is regulated by the rrmA gene coding for the RNA-binding protein. Fungal Genetics and Biology, 2007, 44, 1285-1297.	0.9	11
394	Mighty Piwis Defend the Germline against Genome Intruders. Cell, 2007, 129, 37-44.	13.5	265
395	Neurospora crassa FKBP22 Is a Novel ER Chaperone and Functionally Cooperates with BiP. Journal of Molecular Biology, 2007, 369, 55-68.	2.0	14
396	Structural Basis for the Carbohydrate Recognition of the Sclerotium rolfsii Lectin. Journal of Molecular Biology, 2007, 368, 1145-1161.	2.0	40
397	Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Current Opinion in Microbiology, 2007, 10, 199-203.	2.3	119
398	FKBP22 is part of chaperone/folding catalyst complexes in the endoplasmic reticulum ofNeurospora crassa. FEBS Letters, 2007, 581, 2036-2040.	1.3	13
399	Genomics of the Plant Pathogenic Oomycete Phytophthora: Insights into Biology and Evolution. Advances in Genetics, 2007, 57, 97-141.	0.8	17
400	Systems biology of the Neurospora biological clock. IET Systems Biology, 2007, 1, 257-265.	0.8	6
401	The Neurospora crassa Circadian Clock. Advances in Genetics, 2007, 58, 25-66.	0.8	129
402	Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biology, 2007, 8, R223.	13.9	115
403	Mitochondria. Methods in Molecular Biology, 2007, , .	0.4	5
404	Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology (United Kingdom), 2007, 153, 2013-2025.	0.7	248
405	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	3.1	235
406	The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network ofAspergillus nidulans. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1003-1014.	0.6	75
407	Genome Assembly, Rearrangement, and Repeats. Chemical Reviews, 2007, 107, 3391-3406.	23.0	23
408	High-Density Detection of Restriction-Site-Associated DNA Markers for Rapid Mapping of Mutated Loci in Neurospora. Genetics, 2007, 177, 1163-1171.	1.2	42

	CITATION RE	PORT	
#	Article	IF	Citations
410	Sexual and vegetative compatibility genes in the aspergilli. Studies in Mycology, 2007, 59, 19-30.	4.5	33
411	Heterotrimeric G Protein Signaling in Filamentous Fungi. Annual Review of Microbiology, 2007, 61, 423-452.	2.9	317
412	Functional genomics of plant infection by the rice blast fungus Magnaporthe grisea. , 0, , 227-254.		0
413	Environmental sensing and the filamentous fungal lifestyle. , 2007, , 38-57.		6
414	The rice blast story: from genome sequence to function. , 0, , 10-22.		0
415	What can genomics tell us about secondary metabolism in Aspergillus?. , 0, , 78-92.		0
416	Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. BMC Biology, 2007, 5, 25.	1.7	32
417	Classification and functional annotation of eukaryotic protein kinases. Proteins: Structure, Function and Bioinformatics, 2007, 68, 893-914.	1.5	154
418	Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environmental Microbiology, 2007, 9, 846-858.	1.8	87
419	The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Molecular Microbiology, 2007, 64, 923-937.	1.2	81
420	Transcriptional control of <i>nmrA</i> by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2007, 66, 534-551.	1.2	86
421	Functional analysis of the Alternaria brassicicola non-ribosomal peptide synthetase gene AbNPS2 reveals a role in conidial cell wall construction. Molecular Plant Pathology, 2007, 8, 23-39.	2.0	46
422	The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology, 2007, 8, 173-184.	2.0	146
423	IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOMTHALASSIOSIRA PSEUDONANA. Journal of Phycology, 2007, 43, 585-604.	1.0	87
424	The Peroxin PEX14 of Neurospora crassa is Essential for the Biogenesis of Both Clyoxysomes and Woronin Bodies. Traffic, 2007, 8, 687-701.	1.3	50
425	Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Research, 2007, 7, 646-656.	1.1	22
426	Identification of genes displaying differential expression in the nuc-2 mutant strain of the mold Neurospora crassa grown under phosphate starvation. FEMS Microbiology Letters, 2007, 269, 196-200.	0.7	22
427	Detecting microsatellites within genomes: significant variation among algorithms. BMC Bioinformatics, 2007, 8, 125.	1.2	81

#	Article	IF	CITATIONS
428	Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evolutionary Biology, 2007, 7, 174.	3.2	151
429	The evolutionary history of Cytochrome P450 genes in four filamentous Ascomycetes. BMC Evolutionary Biology, 2007, 7, 30.	3.2	75
430	Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics, 2007, 8, 325.	1.2	44
431	Proteomics of filamentous fungi. Trends in Biotechnology, 2007, 25, 395-400.	4.9	133
432	Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycological Research, 2007, 111, 443-455.	2.5	86
433	Molecular cloning and expression analysis of two distinct β-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii. Mycological Research, 2007, 111, 840-849.	2.5	34
434	Model systems for studying the biology of filamentous fungi: Rumors of their death should be postponed. Phytoparasitica, 2007, 35, 111-115.	0.6	1
435	A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Analytical and Bioanalytical Chemistry, 2007, 387, 1779-1789.	1.9	92
436	Genomic Evolution of the Proteasome System Among Hemiascomycetous Yeasts. Journal of Molecular Evolution, 2007, 65, 529-540.	0.8	19
437	Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Applied Microbiology and Biotechnology, 2007, 75, 267-277.	1.7	129
438	Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Applied Microbiology and Biotechnology, 2007, 76, 349-356.	1.7	18
439	Cloning, characterization, and mutational analysis of a highly active and stable l-arabinitol 4-dehydrogenase from Neurospora crassa. Applied Microbiology and Biotechnology, 2007, 77, 845-852.	1.7	19
440	tRNase Z: the end is not in sight. Cellular and Molecular Life Sciences, 2007, 64, 2404-2412.	2.4	37
441	Meiotic silencing and the epigenetics of sex. Chromosome Research, 2007, 15, 633-651.	1.0	92
442	Small RNAs and RNAi pathways in meiotic prophase I. Chromosome Research, 2007, 15, 653-665.	1.0	11
443	Activity-based identification of secreted serine proteases of the filamentous fungus, Ophiostoma. Biotechnology Letters, 2007, 29, 937-943.	1.1	1
444	Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnology Letters, 2007, 29, 1195-1201.	1.1	25
445	The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements. Evolutionary Biology, 2007, 34, 121-129.	0.5	26

#	Article	IF	CITATIONS
446	Machine learning for regulatory analysis and transcription factor target prediction in yeast. Systems and Synthetic Biology, 2007, 1, 25-46.	1.0	21
447	Comparison between gene expression of conidia and germinating phase in Trichophyton rubrum. Science in China Series C: Life Sciences, 2007, 50, 377-384.	1.3	5
448	Functional analysis of a fungal endophyte stress-activated MAP kinase. Current Genetics, 2008, 53, 163-174.	0.8	61
449	Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Current Genetics, 2008, 53, 287-297.	0.8	59
450	Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Current Genetics, 2008, 54, 283-299.	0.8	64
451	A systematic approach to identify STREâ€binding proteins of the <i>gsn</i> glycogen synthase gene promoter in <i>Neurospora crassa</i> . Proteomics, 2008, 8, 2052-2061.	1.3	12
452	Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a "Dormant― structure. Fungal Biology Reviews, 2008, 22, 6-16.	1.9	94
453	Fungal genome sequencing and bioenergy. Fungal Biology Reviews, 2008, 22, 1-5.	1.9	27
454	Advances in understanding hyphal morphogenesis: Ontogeny, phylogeny and cellular localization of chitin synthases. Fungal Biology Reviews, 2008, 22, 56-70.	1.9	38
455	The Ypt/Rab Family and the Evolution of Trafficking in Fungi. Traffic, 2008, 9, 27-38.	1.3	67
456	Fungal symbiosis unearthed. Nature, 2008, 452, 42-43.	13.7	11
457	How does your quasicrystal grow?. Nature, 2008, 452, 43-44.	13.7	33
458	Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea) Tj ETQqO	0	Overlock 10 1,116
459	Genomic adaptation: a fungal perspective. Nature Reviews Microbiology, 2008, 6, 572-573.	13.6	6
460	Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in <i>Magnaporthe grisea</i> shows evidence of sub―and neoâ€functionalization. New Phytologist, 2008, 180, 711-721.	3.5	41
461	Effect of sundiversifolide on microbial germination and its distribution and occurrence in the achenes of sunflower (Helianthus annuus). Weed Biology and Management, 2008, 8, 124-128.	0.6	4
462	The Gα subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase coâ€ordinately regulate gene expression in the grey mould fungus <i>Botrytis cinerea</i> . Molecular Microbiology, 2008, 67, 1027-1050.	1.2	99

463Efficient computation of absent words in genomic sequences. BMC Bioinformatics, 2008, 9, 167.1.262

#	Article	IF	CITATIONS
464	RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics, 2008, 9, 478.	1.2	151
465	Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evolutionary Biology, 2008, 8, 190.	3.2	39
466	Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics, 2008, 9, 147.	1.2	59
467	Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference. BMC Genomics, 2008, 9, 31.	1.2	74
468	The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina. BMC Genomics, 2008, 9, 430.	1.2	82
469	SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics, 2008, 9, 586.	1.2	17
470	The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycological Research, 2008, 112, 231-240.	2.5	294
471	Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. Mycological Research, 2008, 112, 200-206.	2.5	37
472	The genome sequence of Podospora anserina, a classic model fungus. Genome Biology, 2008, 9, 223.	13.9	9
473	The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biology, 2008, 9, R77.	13.9	301
474	Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biology, 2008, 9, R50.	13.9	126
475	The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa. Genetics, 2008, 179, 1313-1325.	1.2	91
476	Epigenetic remodeling of the fungal secondary metabolome. Organic and Biomolecular Chemistry, 2008, 6, 1895.	1.5	319
477	Distinct and Combined Roles of the MAP Kinases of <i>Cochliobolus heterostrophus</i> in Virulence and Stress Responses. Molecular Plant-Microbe Interactions, 2008, 21, 769-780.	1.4	64
478	Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurospora crassa. Journal of Structural Biology, 2008, 162, 411-421.	1.3	37
479	Neurospora crassa ve-1 affects asexual conidiation. Fungal Genetics and Biology, 2008, 45, 127-138.	0.9	107
480	Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45, 165-170.	0.9	64
481	Characterisation of Aft1 a Fot1/Pogo type transposon of Aspergillus fumigatus. Fungal Genetics and Biology, 2008, 45, 117-126.	0.9	24

#	Article	IF	CITATIONS
482	Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. Fungal Genetics and Biology, 2008, 45, 319-327.	0.9	27
483	DNA-binding specificity of the CYS3 transcription factor of Neurospora crassa defined by binding-site selection. Fungal Genetics and Biology, 2008, 45, 1166-1171.	0.9	11
485	Random Covering of Multiple One-Dimensional Domains with an Application to DNA Sequencing. SIAM Journal on Applied Mathematics, 2008, 68, 890-905.	0.8	3
486	Cell Fusion in the Filamentous Fungus, Neurospora crassa. Methods in Molecular Biology, 2008, 475, 21-38.	0.4	64
487	Functional Drift of Sequence Attributes in the FK506-Binding Proteins (FKBPs). Journal of Chemical Information and Modeling, 2008, 48, 1118-1130.	2.5	39
488	Large-Scale Gene Discovery in the Septoria Tritici Blotch Fungus Mycosphaerella graminicola with a Focus on In Planta Expression. Molecular Plant-Microbe Interactions, 2008, 21, 1249-1260.	1.4	50
489	RNA Silencing Gene Truncation in the Filamentous Fungus <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2008, 7, 339-349.	3.4	52
490	LIKELIHOOD OF A PARTICULAR ORDER OF GENETIC MARKERS AND THE CONSTRUCTION OF GENETIC MAPS. Journal of Bioinformatics and Computational Biology, 2008, 06, 125-162.	0.3	1
491	Dominant Suppression of Repeat-Induced Point Mutation in Neurospora crassa by a Variant Catalytic Subunit of DNA Polymerase-I¶. Genetics, 2008, 178, 1169-1176.	1.2	6
492	NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in <i>Neurospora crassa</i> . Eukaryotic Cell, 2008, 7, 1352-1361.	3.4	193
493	Genomics of industrialAspergilliand comparison with toxigenic relatives. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 1147-1151.	1.1	13
494	Dissecting Colony Development of <i>Neurospora crassa</i> Using mRNA Profiling and Comparative Genomics Approaches. Eukaryotic Cell, 2008, 7, 1549-1564.	3.4	62
495	Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Nucleic Acids Research, 2008, 36, 6333-6342.	6.5	53
496	The function of two closely related Rho proteins is determined by an atypical switch I region. Journal of Cell Science, 2008, 121, 1065-1075.	1.2	21
497	Protein phosphatase PP1 is required for normal DNA methylation in <i>Neurospora</i> . Genes and Development, 2008, 22, 3391-3396.	2.7	32
498	Transcriptional Control and Protein Specialization Have Roles in the Functional Diversification of Two Dicer-Like Proteins in <i>Magnaporthe oryzae</i> . Genetics, 2008, 180, 1245-1249.	1.2	11
499	Increased Resistance of Complex I Mutants to Phytosphingosine-induced Programmed Cell Death. Journal of Biological Chemistry, 2008, 283, 19314-19321.	1.6	38
500	Scientific Advances with Aspergillus Species that Are Used for Food and Biotech Applications. Microbes and Environments, 2008, 23, 177-181.	0.7	11

#	Article	IF	CITATIONS
501	Genetic analysis of the Neurospora crassa RAD14 homolog mus-43 and the RAD10 homolog mus-44 reveals that they belong to the mus-38 pathway of two nucleotide excision repair systems. Genes and Genetic Systems, 2008, 83, 1-11.	0.2	5
502	Comparative Evolutionary Histories of the Fungal Chitinase Gene Family Reveal Non-Random Size Expansions and Contractions due to Adaptive Natural Selection. Evolutionary Bioinformatics, 2008, 4, EBO.S604.	0.6	67
504	Fusion and Fission of Genes Define a Metric between Fungal Genomes. PLoS Computational Biology, 2008, 4, e1000200.	1.5	22
505	Relationship between Phylogenetic Distribution and Genomic Features in Neurospora crassa. PLoS ONE, 2009, 4, e5286.	1.1	42
506	Molecular Cloning and Expression in <i>Pichia pastoris</i> of a <i>Irpex lacteus</i> Exo-β-(1→3)-galactanase Gene. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2303-2309.	0.6	33
507	Fungal Functional Genomics: Tunable Knockout-Knock-in Expression and Tagging Strategies. Eukaryotic Cell, 2009, 8, 800-804.	3.4	31
508	A High-Density Single Nucleotide Polymorphism Map for <i>Neurospora crassa</i> . Genetics, 2009, 181, 767-781.	1.2	54
509	Neurospora sees the light: Light signaling components in a model system. Communicative and Integrative Biology, 2009, 2, 448-451.	0.6	38
510	Comparative genomic analyses of the human fungal pathogens <i>Coccidioides</i> and their relatives. Genome Research, 2009, 19, 1722-1731.	2.4	295
511	Characterization of Chromosome Ends in the Filamentous Fungus <i>Neurospora crassa</i> . Genetics, 2009, 181, 1129-1145.	1.2	52
512	The Genome of Nectria haematococca: Contribution of Supernumerary Chromosomes to Gene Expansion. PLoS Genetics, 2009, 5, e1000618.	1.5	402
513	Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Research, 2009, 37, D244-D250.	6.5	83
514	TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant and an Animal Fungal Pathogen. PLoS Pathogens, 2009, 5, e1000653.	2.1	62
515	TB database: an integrated platform for tuberculosis research. Nucleic Acids Research, 2009, 37, D499-D508.	6.5	201
516	Transcriptional analysis of the response of Neurospora crassa to phytosphingosine reveals links to mitochondrial function. Microbiology (United Kingdom), 2009, 155, 3134-3141.	0.7	23
517	Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage. Microbiological Research, 2009, 164, 658-664.	2.5	11
518	Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins. Mycological Research, 2009, 113, 61-72.	2.5	41
519	Identification, expression and functional analysis of U3 snoRNA genes from Neurospora crassa. Progress in Natural Science: Materials International, 2009, 19, 167-172.	1.8	2

		CITATION REPORT		
#	Article		IF	CITATIONS
520	Phylogenetic diversity of stress signalling pathways in fungi. BMC Evolutionary Biology	, 2009, 9, 44.	3.2	177
521	SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evinsights. BMC Genomics, 2009, 10, 515.	olutionary	1.2	15
522	Exploring and dissecting genome-wide gene expression responses of Penicillium chrysc phenylacetic acid consumption and penicillinG production. BMC Genomics, 2009, 10, 7	igenum to 75.	1.2	70
523	Environmental stresses inhibit splicing in the aquatic fungus Blastocladiella emersonii. Microbiology, 2009, 9, 231.	ВМС	1.3	13
524	Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Mici 2009, 9, 44.	robiology,	1.3	25
525	Fungal nitrilases as biocatalysts: Recent developments. Biotechnology Advances, 2009	, 27, 661-670.	6.0	55
526	A splice variant of the <i>Neurospora crassa hexâ€1</i> transcript, which encodes the n the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett 180-184.	ajor protein of ers, 2009, 583,	1.3	37
527	Enzymatic characteristics of a Ser/Thr protein kinase, SpkA, from Myxococcus xanthus. Bioscience and Bioengineering, 2009, 107, 10-15.	Journal of	1.1	1
528	Structure—function relationships in telomerase genes. Biology of the Cell, 2009, 101	, 375-406.	0.7	51
529	Transposable elements: powerful facilitators of evolution. BioEssays, 2009, 31, 703-71	4.	1.2	242
530	Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. Jou Industrial Microbiology and Biotechnology, 2009, 36, 1199-1213.	ırnal of	1.4	148
531	Functional characterization of tzn1 and tzn2-zinc transporter genes in Neurospora cras 2009, 22, 411-420.	ssa. BioMetals,	1.8	13
532	Fungal glycoside hydrolases for saccharification of lignocellulose: outlook for new disconduced fueled by genomics and functional studies. Cellulose, 2009, 16, 687-697.	overies	2.4	32
533	Neurospora as a model fungus for studies in cytogenetics and sexual biology at Stanfo Biosciences, 2009, 34, 139-159.	rd. Journal of	0.5	26
534	Neurospora crassa fmf-1 encodes the homologue of the Schizosaccharomyces pombe of sexual development. Journal of Genetics, 2009, 88, 33-39.	Stellp regulator	0.4	15
535	Genome-wide analysis of microsatellite sequence in seven filamentous fungi. Interdisci Sciences, Computational Life Sciences, 2009, 1, 141-150.	plinary	2.2	26
536	The BEM46-like protein appears to be essential for hyphal development upon ascospor Neurospora crassa and is targeted to the endoplasmic reticulum. Current Genetics, 200	e germination in 09, 55, 151-161.	0.8	18
537	A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis filamentous fungi Sordaria macrospora and Neurospora crassa. Current Genetics, 2009	s in the 55, 185-198.	0.8	26

		CITATION	Report	
#	Article		IF	CITATIONS
538	Aegerolysins: Structure, function, and putative biological role. Protein Science, 2009, 18	, 694-706.	3.1	70
539	The <i>Magnaporthe grisea</i> class VII chitin synthase is required for normal appressoria development and function. Molecular Plant Pathology, 2009, 10, 81-94.	NI .	2.0	29
540	Two NDR kinase–MOB complexes function as distinct modules during septum formati extension in <i>Neurospora crassa</i> . Molecular Microbiology, 2009, 74, 707-723.	on and tip	1.2	56
541	Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO Journal, 2009, 28, 1029-1042.		3.5	249
542	Dancing genomes: fungal nuclear positioning. Nature Reviews Microbiology, 2009, 7, 87	'5-886.	13.6	65
543	Study of mRNA Expression by Real Time PCR of Cpkk1, Cpkk2 and Cpkk3, three MEKs of parasitica, in Virus-free and Virus-infected Isogenic Isolates. Journal of Phytopathology, 2 409-416.	Cryphonectria 010, 158,	0.5	10
544	Investigation of regulatory factors required for alternative oxidase production in <i>Neu crassa</i> . Physiologia Plantarum, 2009, 137, 407-418.	rospora	2.6	15
545	A cultureâ€independent study of freeâ€iving fungi in biological soil crusts of the Colora their diversity and relative contribution to microbial biomass. Environmental Microbiolog 56-67.	do Plateau: y, 2009, 11,	1.8	113
546	Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus < cinerea: from plant hexoses to mannitol. New Phytologist, 2009, 183, 1149-1162.	.i>Botrytis	3.5	61
547	Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi comp plants and bacteria. Phytochemistry, 2009, 70, 1876-1893.	bared to	1.4	285
548	Tools for Fungal Proteomics: Multifunctional Neurospora Vectors for Gene Replacement, Expression and Protein Purification. Genetics, 2009, 182, 11-23.	, Protein	1.2	114
549	Cloning and Characterization of <i>Rhodotorula glutinis</i> Thymine Hydroxylase. Chem Research in Toxicology, 2009, 22, 885-893.	nical	1.7	15
550	Current status of systems biology in Aspergilli. Fungal Genetics and Biology, 2009, 46, S	180-S190.	0.9	43
551	Annotation of stress–response proteins in the aspergilli. Fungal Genetics and Biology, S105-S120.	2009, 46,	0.9	76
552	A comparative genomic analysis of calcium and proton signaling/homeostasis in Aspergil Fungal Genetics and Biology, 2009, 46, S93-S104.	llus species.	0.9	36
553	Structure–Function Relationships in Fungal Large-Subunit Catalases. Journal of Molecu 2009, 386, 218-232.	ular Biology,	2.0	34
554	Chapter 3 Genome Evolution in Plant Pathogenic and Symbiotic Fungi. Advances in Bota 2009, , 151-193.	nical Research,	0.5	21
556	ALLPATHS 2: small genomes assembled accurately and with high continuity from short p Genome Biology, 2009, 10, R103.	aired reads.	13.9	151

#	Article	IF	CITATIONS
557	De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 2009, 10, R94.	13.9	130
558	The <i>Saccharomyces cerevisiae PRM1</i> Homolog in <i>Neurospora crassa</i> Is Involved in Vegetative and Sexual Cell Fusion Events but Also Has Postfertilization Functions. Genetics, 2009, 181, 497-510.	1.2	62
560	Repeat-Induced Point Mutation (RIP) as an Alternative Mechanism of Evolution Toward Virulence in <i>Leptosphaeria maculans</i> . Molecular Plant-Microbe Interactions, 2009, 22, 932-941.	1.4	153
561	Phylogenetic Analyses Reveal Monophyletic Origin of the Ergot Alkaloid Gene <i>dmaW</i> in Fungi. Evolutionary Bioinformatics, 2009, 5, EBO.S2633.	0.6	18
562	DNA Slippage Occurs at Microsatellite Loci without Minimal Threshold Length in Humans: A Comparative Genomic Approach. Genome Biology and Evolution, 2010, 2, 325-335.	1.1	68
563	Temporal and spatial in vivo optical analysis of microtubules in Neurospora crassa. , 2010, , .		6
564	Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences, 2010, 67, 2511-2532.	2.4	215
565	RNA interference pathways in filamentous fungi. Cellular and Molecular Life Sciences, 2010, 67, 3849-3863.	2.4	86
566	Molecular characterization and isolation of cytochrome P450 genes from the filamentous fungus Aspergillus oryzae. Archives of Microbiology, 2010, 192, 395-408.	1.0	41
567	Expression of ribonuclease A and ribonuclease N1 in the filamentous fungus Neurospora crassa. Applied Microbiology and Biotechnology, 2010, 85, 1041-1049.	1.7	9
568	Geranylgeranyl diphosphate synthase genes in entomopathogenic fungi. Applied Microbiology and Biotechnology, 2010, 85, 1463-1472.	1.7	15
569	Characterization of the family GH54 α-l-arabinofuranosidases in Penicillium funiculosum, including a novel protein bearing a cellulose-binding domain. Applied Microbiology and Biotechnology, 2010, 87, 1007-1021.	1.7	25
570	Genome research profile of two Cordyceps sinensis cDNA libraries. Science Bulletin, 2010, 55, 1403-1411.	1.7	5
571	Purification and Characterization of a Low Molecular Weight Endo-xylanase from Mushroom Termitomyces clypeatus. Applied Biochemistry and Biotechnology, 2010, 162, 373-389.	1.4	7
572	The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research. Journal of Biosciences, 2010, 35, 119-126.	0.5	312
573	Transcription of the Neurospora crassa 70-kDa class heat shock protein genes is modulated in response to extracellular pH changes. Cell Stress and Chaperones, 2010, 15, 225-231.	1.2	15
574	Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evolutionary Biology, 2010, 10, 26.	3.2	184
575	Fungal Secretome Database: Integrated platform for annotation of fungal secretomes. BMC Genomics, 2010, 11, 105.	1.2	160

		CITATION REPORT	
#	Article	IF	CITATIONS
576	Comparative analysis of fungal protein kinases and associated domains. BMC Genomics, 2010, 11,	133. 1.2	43
577	Multi-targeted priming for genome-wide gene expression assays. BMC Genomics, 2010, 11, 477.	1.2	14
578	In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics, 2010, 11, 655.	1.2	41
579	Systematic overrepresentation of DNA termini and underrepresentation of subterminal regions am sequencing templates prepared from hydrodynamically sheared linear DNA molecules. BMC Genon 2010, 11, 87.	ong hics, 1.2	5
580	Sordaria macrospora, a model organism to study fungal cellular development. European Journal of Cell Biology, 2010, 89, 864-872.	1.6	51
581	Characterization of two different acyl carrier proteins in complex I from Yarrowia lipolytica. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 152-159.	0.5	31
582	Model organisms — A historical perspective. Journal of Proteomics, 2010, 73, 2054-2063.	1.2	76
583	Characterization and reconstitution of a new fungal type III polyketide synthase from Aspergillus oryzae. Enzyme and Microbial Technology, 2010, 46, 575-580.	1.6	34
584	Degradation of carbohydrate moieties of arabinogalactan-proteins by glycoside hydrolases from Neurospora crassa. Carbohydrate Research, 2010, 345, 2516-2522.	1.1	36
585	Neurospora, a potential fungal organism for experimental and evolutionary ecology. Fungal Biology Reviews, 2010, 24, 85-89.	1.9	6
586	Detection and response of the Neurospora crassa circadian clock to light and temperature. Fungal Biology Reviews, 2010, 24, 114-122.	1.9	7
587	Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Molecular Microbiology, 2010, 78, 1058-10	on 1.2 76. 1.2	51
588	Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity, 201 105, 113-121.	0, 1.2	101
589	DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity, 2010, 105 38-44.	, 1.2	81
590	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464 367-373.	^{r,} 13.7	1,442
591	Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 2010 957-963.	, 28, 9.4	490
592	Mapping of genes abundantly expressed during fruiting body formation of Lentinula edodes. Breed Science, 2010, 60, 81-86.	ing 0.9	2
593	Characterization of the Temperature-Sensitive Mutations un-7 and png-1 in Neurospora crassa. PLo ONE, 2010, 5, e10703.	S 1.1	11

		CITATION REPORT		
#	Article		IF	CITATIONS
594	Evolution and Diversity of a Fungal Self/Nonself Recognition Locus. PLoS ONE, 2010, 5	,e14055.	1.1	52
595	Transcription Factors in Light and Circadian Clock Signaling Networks Revealed by Gen Mapping of Direct Targets for Neurospora White Collar Complex. Eukaryotic Cell, 2010	omewide , 9, 1549-1556.	3.4	187
596	Genetic and Molecular Characterization of a Cryptochrome from the Filamentous Fung crassa. Eukaryotic Cell, 2010, 9, 738-750.	us Neurospora	3.4	69
597	Deletion of a Novel F-Box Protein, MUS-10, in Neurospora crassa Leads to Altered Mito Morphology, Instability of mtDNA and Senescence. Genetics, 2010, 185, 1257-1269.	chondrial	1.2	19
598	Heptahelical Receptors GprC and GprD of <i>Aspergillus fumigatus</i> Are Essential Re Colony Growth, Hyphal Morphogenesis, and Virulence. Applied and Environmental Mice 76, 3989-3998.	gulators of obiology, 2010,	1.4	46
599	QIP, a Component of the Vegetative RNA Silencing Pathway, Is Essential for Meiosis an Meiotic Silencing in <i>Neurospora crassa</i> . Genetics, 2010, 186, 127-133.	d Suppresses	1.2	21
600	Confining euchromatin/heterochromatin territory: <i>jumonji</i> crosses the line. Gen Development, 2010, 24, 1465-1478.	es and	2.7	82
601	GPR11, a Putative Seven-Transmembrane G Protein-Coupled Receptor, Controls Zoosp and Virulence of Phytophthora sojae. Eukaryotic Cell, 2010, 9, 242-250.	bre Development	3.4	28
602	Accidental Amplification and Inactivation of a Methyltransferase Gene Eliminates Cytos Methylation in <i>Mycosphaerella graminicola</i> . Genetics, 2010, 186, 67-77.	ine	1.2	34
603	The Fungal Genome Initiative and Lessons Learned from Genome Sequencing. Methods 2010, 470, 833-855.	in Enzymology,	0.4	58
604	Mushrooms: Morphological complexity in the fungi. Proceedings of the National Acade of the United States of America, 2010, 107, 11655-11656.	my of Sciences	3.3	27
605	Roles of the Mdm10, Tom7, Mdm12, and Mmm1 Proteins in the Assembly of Mitochor Membrane Proteins in Neurospora crassa. Molecular Biology of the Cell, 2010, 21, 172	drial Outer 5-1736.	0.9	57
606	CUCU Modification of mRNA Promotes Decapping and Transcript Degradation in <i>As nidulans</i> . Molecular and Cellular Biology, 2010, 30, 460-469.	pergillus	1.1	48
607	Rotenone Enhances the Antifungal Properties of Staurosporine. Eukaryotic Cell, 2010,	9, 906-914.	3.4	28
608	The Next Generation Becomes the Now Generation. PLoS Genetics, 2010, 6, e1000906		1.5	30
609	De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordari Model Organism for Fungal Morphogenesis. PLoS Genetics, 2010, 6, e1000891.	a macrospora, a	1.5	169
610	The NDR Kinase DBF-2 Is Involved in Regulation of Mitosis, Conidial Development, and Metabolism in Neurospora crassa. Eukaryotic Cell, 2010, 9, 502-513.	Glycogen	3.4	22
611	Analysis of Mitogen-Activated Protein Kinase Phosphorylation in Response to Stimulati Kinase Signaling Pathways in Neurospora. Methods in Enzymology, 2010, 471, 319-33 –	on of Histidine 4.	0.4	4

ARTICLE IF CITATIONS # Interaction of Nerve Agent Antidotes with Cholinergic Systems. Current Medicinal Chemistry, 2010, 17, 612 1.2 28 1708-1718. Species concepts in Calonectria (Cylindrocladium). Studies in Mycology, 2010, 66, 1-13. 614 4.5 615 Systems Biology of Industrial Microorganisms., 2010, 120, 51-99. 14 Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom <i>Coprinopsis cinerea</i> (<i>Coprinus cinereus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11889-11894. 389 China's fungal genomics initiative: a whitepaper. Mycology, 2010, 1, 1-8. 617 2.0 14 Fungal communities of lichen-dominated biological soil crusts: Diversity, relative microbial biomass, and their relationship to disturbance and crust cover. Journal of Arid Environments, 2010, 74, 1.2 99 1192-1199. Genome-wide prediction of G protein-coupled receptors in Verticillium spp.. Fungal Biology, 2010, 114, 619 1.1 21 359-368. A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genetics and Biology, 2010, 47, 352-363. The filamentous fungal gene expression database (FFGED). Fungal Genetics and Biology, 2010, 47, 621 0.9 32 199-204. SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology, 2010, 698 47,736-741. High density analysis of randomly selected Neurospora octads reveals conversion associated with 623 0.9 6 crossovers located between cog and his-3. Fungal Genetics and Biology, 2010, 47, 847-854. Neurospora illuminates fungal photoreception. Fungal Genetics and Biology, 2010, 47, 922-929. 624 0.9 101 A role in the regulation of transcription by light for RCO-1 and RCM-1, the Neurospora homologs of 625 0.9 30 the yeast Tup1â€"Ssn6 repressor. Fungal Genetics and Biology, 2010, 47, 939-952. Fungal secondary metabolite biosynthesis – a chemical defence strategy against antagonistic animals?. Fungal Ecology, 2010, 3, 107-114. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Natural 627 5.2266 Product Reports, 2010, 27, 11-22. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity 391 mechanisms and effector repertoire. Genome Biology, 2010, 11, R73. Mapping of Lysine Methylation and Acetylation in Core Histones of Neurospora crassa. Biochemistry, 631 1.2 21 2010, 49, 5236-5243. A predicted protein–protein interaction network of the filamentous fungus Neurospora crassa. Molecular BioSystems, 2011, 7, 2278.

#	Article	IF	Citations
633	Neurosporaside, a Tetraglycosylated Sphingolipid from <i>Neurospora crassa</i> . Journal of Natural Products, 2011, 74, 554-558.	1.5	9
634	Yeast water channels: an overview of orthodox aquaporins. Biology of the Cell, 2011, 103, 35-54.	0.7	29
635	6 Mating Type in Basidiomycetes: Unipolar, Bipolar, and Tetrapolar Patterns of Sexuality. , 2011, , 97-160.		81
636	Sex in Fungi. Annual Review of Genetics, 2011, 45, 405-430.	3.2	257
637	9 Genomic and Comparative Analysis of the Class Dothideomycetes. , 2011, , 205-229.		5
638	10 Evolution of Genes for Secondary Metabolism in Fungi. , 2011, , 231-255.		6
639	Enzymatic hydrolysis of cellulosic biomass. Biofuels, 2011, 2, 421-449.	1.4	450
640	Identification and Annotation of Repetitive Sequences in Fungal Genomes. Methods in Molecular Biology, 2011, 722, 33-50.	0.4	2
641	Poly(ADP-ribose) Polymerase. Methods in Molecular Biology, 2011, , .	0.4	1
642	Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology, 2011, 12, R116.	13.9	359
643	Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by <i>Neurospora crassa</i> . ACS Chemical Biology, 2011, 6, 1399-1406.	1.6	568
644	Industrial Applications. , 2011, , .		9
646	Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile. Cell, 2011, 146, 277-289.	13.5	232
647	Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biology, 2011, 115, 446-474.	1.1	124
648	Meiotic silencing in the homothallic fungus Gibberella zeae. Fungal Biology, 2011, 115, 1290-1302.	1.1	61
649	Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genetics and Biology, 2011, 48, 306-326.	0.9	115
650	Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora. Fungal Genetics and Biology, 2011, 48, 526-536.	0.9	18
651	Differential roles of the phospholipase C genes in fungal development and pathogenicity of Magnaporthe oryzae. Fungal Genetics and Biology, 2011, 48, 445-455.	0.9	37
#	Article	IF	CITATIONS
-----	--	-----	-----------
652	Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii. Fungal Genetics and Biology, 2011, 48, 475-484.	0.9	14
653	Carrefour Mme. Gras: A wild-isolated Neurospora crassa strain that suppresses meiotic silencing by unpaired DNA and uncovers a novel ascospore stability defect. Fungal Genetics and Biology, 2011, 48, 612-620.	0.9	7
654	Modulation of fungal sensitivity to staurosporine by targeting proteins identified by transcriptional profiling. Fungal Genetics and Biology, 2011, 48, 1130-1138.	0.9	19
656	Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization. Protein Expression and Purification, 2011, 75, 63-69.	0.6	38
657	Genomeâ€wide analysis of fungal manganese transporters, with an emphasis on <i>Phanerochaete chrysosporium</i> . Environmental Microbiology Reports, 2011, 3, 367-382.	1.0	12
658	The Genetics of Circadian Rhythms in Neurospora. Advances in Genetics, 2011, 74, 55-103.	0.8	30
659	Basidiomycetes Telomeres â \in " A Bioinformatics Approach. , O, , .		4
660	Methodology Identification of 18 genes encoding necrosis-inducing proteins from the plant pathogen Phytophthora capsici (Pythiaceae: Oomycetes). Genetics and Molecular Research, 2011, 10, 910-922.	0.3	16
661	Epigenetics of Eukaryotic Microbes. , 2011, , 185-201.		1
662	Genome Characterization of the Oleaginous Fungus Mortierella alpina. PLoS ONE, 2011, 6, e28319.	1.1	133
663	Functional Characterization and Cellular Dynamics of the CDC-42 – RAC – CDC-24 Module in Neurospora crassa. PLoS ONE, 2011, 6, e27148.	1.1	58
664	Evolution of Multicopper Oxidase Genes in Coprophilous and Non-Coprophilous Members of the Order Sordariales. Current Genomics, 2011, 12, 95-103.	0.7	23
666	Strategies for DNA methylation analysis in developmental studies. Development Growth and Differentiation, 2011, 53, 287-299.	0.6	4
667	Role of cell wall bound calcium in Neurospora crassa. Microbiological Research, 2011, 166, 419-429.	2.5	7
668	Exploring the processes of DNA repair and homologous integration in Neurospora. Mutation Research - Reviews in Mutation Research, 2011, 728, 1-11.	2.4	14
669	Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics, 2011, 12, 431.	1.2	11
670	Neurospora. Current Biology, 2011, 21, R139-R140.	1.8	15
671	Light input and processing in the circadian clock of <i>Neurospora</i> . FEBS Letters, 2011, 585, 1467-1473.	1.3	56

#	Article	IF	CITATIONS
672	Exploring the bZIP transcription factor regulatory network in Neurospora crassa. Microbiology (United Kingdom), 2011, 157, 747-759.	0.7	58
673	A factor in a wild isolated Neurospora crassa strain enables a chromosome segment duplication to suppress repeat-induced point mutation. Journal of Biosciences, 2011, 36, 817-821.	0.5	2
674	Dynamics of mitochondria during the Neurospora crassa tip growth. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 316-323.	0.3	0
675	Cloning and characterization of a type III polyketide synthase from Aspergillus niger. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6085-6089.	1.0	42
676	Neurospora crassa homologue of Neuronal Calcium Sensor-1 has a role in growth, calcium stress tolerance, and ultraviolet survival. Genetica, 2011, 139, 885-894.	0.5	19
677	Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Current Genetics, 2011, 57, 75-88.	0.8	38
678	Exo-metabolome of some fungal isolates growing on cork-based medium. European Food Research and Technology, 2011, 232, 575-582.	1.6	6
679	Genome-Wide Comparative Analysis of pogo-Like Transposable Elements in Different Fusarium Species. Journal of Molecular Evolution, 2011, 73, 230-243.	0.8	20
680	Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 2011, 91, 1477-1492.	1.7	563
681	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19.	1.9	198
681 682	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447.	1.9 1.2	198 11
681 682 683	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456.	1.9 1.2 1.2	198 11 4
681 682 683 684	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme and Microbial Technology, 2011, 49, 312-320.	1.9 1.2 1.2 1.6	198 11 4 39
681 682 683 684	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme and Microbial Technology, 2011, 49, 312-320. Expression of Fungal <i>diacylglycerol acyltransferase2 Plant Physiology, 2011, 155, 1146-1157.</i>	1.9 1.2 1.2 1.6 2.3	198 11 4 39 55
 681 682 683 684 685 686 	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme and Microbial Technology, 2011, 49, 312-320. Expression of Fungal <i>diacylglycerol acyltransferase2 Plant Physiology, 2011, 155, 1146-1157. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes. Applied and Environmental Microbiology, 2011, 77, 1804-1815.</i>	1.9 1.2 1.2 1.6 2.3 1.4	198 11 4 39 55 122
 681 682 683 684 685 686 687 	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme and Microbial Technology, 2011, 49, 312-320. Expression of Fungal <i>diacylglycerol acyltransferase2</i> Genes to Increase Kernel Oil in Maize. Plant Physiology, 2011, 155, 1146-1157. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes. Applied and Environmental Microbiology, 2011, 77, 1804-1815. Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa. Eukaryotic Cell, 2011, 10, 1553-1564.	1.9 1.2 1.2 1.6 2.3 1.4 3.4	198 11 4 39 55 122 89
 681 682 683 684 685 686 687 688 	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19. OmniMapFree: A unified tool to visualise and explore sequenced genomes. BMC Bioinformatics, 2011, 12, 447. Array Comparative Genomic Hybridizations: Assessing the ability to recapture evolutionary relationships using an in silico approach. BMC Genomics, 2011, 12, 456. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme and Microbial Technology, 2011, 49, 312-320. Expression of Fungal <i>diacylglycerol acyltransferase2</i> Genes to Increase Kernel Oil in Maize. Plant Physiology, 2011, 155, 1146-1157. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes. Applied and Environmental Microbiology, 2011, 77, 1804-1815. Global Analysis of Serine-Threonine Protein Kinase Genes in Neurospora crassa. Eukaryotic Cell, 2011, 10, 1553-1564. A Pmk1-Interacting Gene Is Involved in Appressorium Differentiation and Plant Infection in <i><i><i><i>Magnaporthe oryzae</i></i></i></i>	1.9 1.2 1.2 1.6 2.3 1.4 3.4	198 11 4 39 55 122 89 31

	CITATION	I REPORT	
#	Article	IF	Citations
690	A new diet for yeast to improve biofuel production. Bioengineered Bugs, 2011, 2, 199-202.	2.0	3
691	Post-genomic approaches to understanding interactions between fungi and their environment. IMA Fungus, 2011, 2, 81-86.	1.7	11
692	Heterochromatin Is Required for Normal Distribution of Neurospora crassa CenH3. Molecular and Cellular Biology, 2011, 31, 2528-2542.	1.1	107
693	Myosin concentration underlies cell size–dependent scalability of actomyosin ring constriction. Journal of Cell Biology, 2011, 195, 799-813.	2.3	50
694	Bulk Segregant Analysis Followed by High-Throughput Sequencing Reveals the Neurospora Cell Cycle Gene, <i>ndc-1</i> , To Be Allelic with the Gene for Ornithine Decarboxylase, <i>spe-1</i> . Eukaryotic Cell, 2011, 10, 724-733.	3.4	67
695	RIC8 Is a Guanine-Nucleotide Exchange Factor for Cα Subunits That Regulates Growth and Development in Neurospora crassa. Genetics, 2011, 189, 165-176.	1.2	34
696	Traffic of Chitin Synthase 1 (CHS-1) to the Spitzenkörper and Developing Septa in Hyphae of Neurospora crassa: Actin Dependence and Evidence of Distinct Microvesicle Populations. Eukaryotic Cell, 2011, 10, 683-695.	3.4	85
697	Fungal photobiology: a synopsis. IMA Fungus, 2011, 2, 25-28.	1.7	26
698	Evolutionary Origins of the Fumonisin Secondary Metabolite Gene Cluster in <i>Fusarium verticillioides</i> and <i>Aspergillus niger</i> . International Journal of Evolutionary Biology, 2011, 2011, 1-7.	1.0	80
699	Evolution of the Insect Yellow Gene Family. Molecular Biology and Evolution, 2011, 28, 257-272.	3.5	114
700	A Genome-wide Screen for Neurospora crassa Transcription Factors Regulating Glycogen Metabolism. Molecular and Cellular Proteomics, 2011, 10, M111.007963.	2.5	27
701	Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2831-2836.	3.3	238
702	Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 2011, 7, e1001264.	1.5	542
703	Dehydrogenase GRD1 Represents a Novel Component of the Cellulase Regulon in Trichoderma reesei (Hypocrea jecorina). Applied and Environmental Microbiology, 2011, 77, 4553-4563.	1.4	28
704	Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation. PLoS Pathogens, 2011, 7, e1002179.	2.1	239
705	Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2011, 1, 303-316.	0.8	68
706	Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology (United) Tj ETQc	0 0 0 rgBT /0	verlock 10 Tf
	Large-Scale Introgression Shapes the Evolution of the Mating-Type Chromosomes of the Filamentous		

7	24.60004.0	5					۳.
	Accomucat	o Nourochor	a totrachorma	DIOS Constice	2012 Q	~1002820	
	ASCOMPCE	e neurospor	a tettasperna.	, FLUS UPHELIUS	, 2012, 0,	, e1002020.	

#	Article	IF	CITATIONS
708	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
709	Cooperation among germinating spores facilitates the growth of the fungus, <i>Neurospora crassa</i> . Biology Letters, 2012, 8, 419-422.	1.0	48
710	FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Research, 2012, 40, D675-D681.	6.5	321
711	Genome-Wide Selection on Codon Usage at the Population Level in the Fungal Model Organism Neurospora crassa. Molecular Biology and Evolution, 2012, 29, 1975-1986.	3.5	21
712	The translin–TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nature Structural and Molecular Biology, 2012, 19, 824-830.	3.6	30
713	Electrical Phenotypes of Calcium Transport Mutant Strains of a Filamentous Fungus, Neurospora crassa. Eukaryotic Cell, 2012, 11, 694-702.	3.4	8
714	Quantitative Secretomic Analysis of Trichoderma reesei Strains Reveals Enzymatic Composition for Lignocellulosic Biomass Degradation. Molecular and Cellular Proteomics, 2012, 11, M111.012419-1-M111.012419-15.	2.5	126
715	<i>Neurospora crassa</i> Light Signal Transduction Is Affected by ROS. Journal of Signal Transduction, 2012, 2012, 1-13.	2.0	28
716	Role of theAFRD1-encoded fumarate reductase in hypoxia and osmotolerance inArxula adeninivorans. FEMS Yeast Research, 2012, 12, 924-937.	1.1	4
717	Genomic tillage and the harvest of fungal phytopathogens. New Phytologist, 2012, 196, 1015-1023.	3.5	34
718	The Plant Host <i>Brassica napus</i> Induces in the Pathogen <i>Verticillium longisporum</i> the Expression of Functional Catalase Peroxidase Which Is Required for the Late Phase of Disease. Molecular Plant-Microbe Interactions, 2012, 25, 569-581.	1.4	55
719	Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews Microbiology, 2012, 10, 417-430.	13.6	735
720	The Neurospora crassa chr-1 gene is up-regulated by chromate and its encoded CHR-1 protein causes chromate sensitivity and chromium accumulation. Current Genetics, 2012, 58, 281-290.	0.8	23
721	Centromeres of filamentous fungi. Chromosome Research, 2012, 20, 635-656.	1.0	79
722	The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biology Reviews, 2012, 26, 1-11.	1.9	71
723	Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 717-730.	0.9	73
724	SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 3278-3295.	3.1	198
725	The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs. Molecular BioSystems, 2012, 8, 2864.	2.9	40

#	Article	IF	CITATIONS
726	Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports, 2012, 2, 483.	1.6	512
727	On-Target Labeling of Intracellular Metabolites Combined with Chemical Mapping of Individual Hyphae Revealing Cytoplasmic Relocation of Isotopologues. Analytical Chemistry, 2012, 84, 5110-5116.	3.2	14
728	A Role for Small RNAs in DNA Double-Strand Break Repair. Cell, 2012, 149, 101-112.	13.5	537
729	GiFRD encodes a protein involved in anaerobic growth in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 2012, 49, 313-321.	0.9	1
730	Use of fluorescent protein to analyse recombination at three loci in Neurospora crassa. Fungal Genetics and Biology, 2012, 49, 619-625.	0.9	5
731	Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biology, 2012, 116, 261-275.	1.1	34
732	Neurospora as a model to empirically test central hypotheses in eukaryotic genome evolution. BioEssays, 2012, 34, 934-937.	1.2	3
733	Cloning, purification, and characterization of galactomannan-degrading enzymes from Myceliophthora thermophila. Biochemistry (Moscow), 2012, 77, 1303-1311.	0.7	21
734	Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis. BMC Genomics, 2012, 13, 285.	1.2	36
735	The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes. BMC Genomics, 2012, 13, 546.	1.2	42
736	Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics, 2012, 13, 57.	1.2	135
738	Regulation of expression, activity and localization of fungal chitin synthases. Medical Mycology, 2012, 50, 2-17.	0.3	41
739	Graphite electrodes modified with Neurospora crassa cellobiose dehydrogenase: Comparative electrochemical characterization under direct and mediated electron transfer. Bioelectrochemistry, 2012, 88, 84-91.	2.4	15
740	Production of recombinant proteins by filamentous fungi. Biotechnology Advances, 2012, 30, 1119-1139.	6.0	198
741	Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biology, 2012, 116, 910-918.	1.1	23
742	RNA Interference and Functional Genomics in Fungi. , 2012, , 773-792.		1
743	Molecular analysis of mutants of the Neurospora adenylosuccinate synthetase locus. Journal of Genetics, 2012, 91, 199-204.	0.4	6
744	Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of <i>Aspergillus niger</i> Using Hydrazide Chemistry and Mass Spectrometry. Journal of Proteome Research, 2012, 11, 143-156.	1.8	62

#	Article	IF	CITATIONS
745	Neurofibromatosis Type 1., 2012, , .		23
746	Signaling and Communication in Plant Symbiosis. Signaling and Communication in Plants, 2012, , .	0.5	20
747	RNA Abundance Analysis. Methods in Molecular Biology, 2012, , .	0.4	3
748	Biocommunication of Fungi. , 2012, , .		22
749	WSC-1 and HAM-7 Are MAK-1 MAP Kinase Pathway Sensors Required for Cell Wall Integrity and Hyphal Fusion in Neurospora crassa. PLoS ONE, 2012, 7, e42374.	1.1	60
750	Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway. PLoS ONE, 2012, 7, e44258.	1.1	29
751	The Essential Phosphoinositide Kinase MSS-4 Is Required for Polar Hyphal Morphogenesis, Localizing to Sites of Growth and Cell Fusion in Neurospora crassa. PLoS ONE, 2012, 7, e51454.	1.1	30
752	Activation of the Dormant Secondary Metabolite Production by Introducing Gentamicin-Resistance in a Marine-Derived Penicillium purpurogenum G59. Marine Drugs, 2012, 10, 559-582.	2.2	69
753	Effect of Environmental Change on Secondary Metabolite Production in Lichen-Forming Fungi. , 0, , .		18
754	Evolutionary Analysis of Sequence Divergence and Diversity of Duplicate Genes in <i>Aspergillus fumigatus</i> . Evolutionary Bioinformatics, 2012, 8, EBO.S10372.	0.6	10
755	Unidirectional Evolutionary Transitions in Fungal Mating Systems and the Role of Transposable Elements. Molecular Biology and Evolution, 2012, 29, 3215-3226.	3.5	96
756	In Silico Characterization and Molecular Evolutionary Analysis of a Novel Superfamily of Fungal Effector Proteins. Molecular Biology and Evolution, 2012, 29, 3371-3384.	3.5	90
757	Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7397-7402.	3.3	326
758	Expression of mitochondrial malate dehydrogenase in Escherichia coli improves phosphate solubilization. Annals of Microbiology, 2012, 62, 607-614.	1.1	14
759	Overexpression and characterization of recombinant glutamate decarboxylase from Thermococcus kodakaraensis KOD1. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55, 213-218.	0.9	7
760	Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnology for Biofuels, 2013, 6, 6.	6.2	70
761	Toward genome-enabled mycology. Mycologia, 2013, 105, 1339-1349.	0.8	38
762	Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes. Applied Microbiology and Biotechnology, 2013, 97, 269-281.	1.7	67

		CITATION REPORT		
#	Article		IF	Citations
763	Recent Advances in Septum Biogenesis in Neurospora crassa. Advances in Genetics, 2013, 83	, 99-134.	0.8	36
764	The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics, 2013, 14, 373.	with the	1.2	72
765	Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome. BMC Genomics, 2013, 14, 91.		1.2	17
766	Genomics of Soil- and Plant-Associated Fungi. Soil Biology, 2013, , .		0.6	8
767	Characterizations and functions of regulator of G protein signaling (RGS) in fungi. Applied Microbiology and Biotechnology, 2013, 97, 7977-7987.		1.7	32
768	Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Current Opinion in Microbiology, 2013, 16, 549-565.		2.3	65
769	Regulation of transcription by light in Neurospora crassa: AÂmodel for fungal photobiology?. I Biology Reviews, 2013, 27, 10-18.	Fungal	1.9	25
770	Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sour and possible post-translational modifications. Fungal Genetics and Biology, 2013, 60, 110-12	ces 1.	0.9	7
771	Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme and Microbial Technology, 2013, 52, 184-189.		1.6	23
772	Neurospora crassa, a Model System for Epigenetics Research. Cold Spring Harbor Perspective Biology, 2013, 5, a017921-a017921.	s in	2.3	131
773	Neurospora crassa ncs-1, mid-1 and nca-2 double-mutant phenotypes suggest diverse interac three Ca2 + -regulating gene products. Journal of Genetics, 2013, 92, 559-563.	tion among	0.4	16
774	Return of the Fungi. Industrial Biotechnology, 2013, 9, 328-330.		0.5	0
775	Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for 6 GABA production. Biotechnology and Bioprocess Engineering, 2013, 18, 1062-1066.	?fficient	1.4	12
776	Analysis of a conserved cellulase transcriptional regulator reveals inducerâ€independent prod of cellulolytic enzymes in <i>Neurospora crassa</i> . MicrobiologyOpen, 2013, 2, 595-609.	uction	1.2	125
777	Transcriptional, biochemical and histochemical investigation on laccase expression during Tub melanosporum Vittad. development. Phytochemistry, 2013, 87, 23-29.)er	1.4	13
779	Regulated gene silencing in the fungal pathogen Ophiostoma novo-ulmi. Physiological and Mo Plant Pathology, 2013, 82, 28-34.	blecular	1.3	4
780	Crystal structure of the Nâ€ŧerminal domain of a glycoside hydrolase family 131 protein from <i>Coprinopsis cinerea</i> . FEBS Letters, 2013, 587, 2193-2198.		1.3	6
781	Characterization of two cellobiose dehydrogenases and comparison of their contributions to activity in Neurospora crassa. International Biodeterioration and Biodegradation, 2013, 82, 24	total 1-32.	1.9	9

	CITATION	REPORT	
#	ARTICLE	IF	CITATIONS
782	Sequencing and annotation of the Ophiostoma ulmigenome. BMC Genomics, 2013, 14, 162.	1.2	40
784	Bioremediation and Genetically Modified Organisms. Soil Biology, 2013, , 433-451.	0.6	11
785	Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?. Applied Microbiology and Biotechnology, 2013, 97, 1457-1473.	1.7	46
786	Staining Techniques and Biochemical Methods for the Identification of Fungi. , 2013, , 237-257.		5
787	Toward systems metabolic engineering of <i>Aspergillus</i> and <i>Pichia</i> species for the production of chemicals and biofuels. Biotechnology Journal, 2013, 8, 534-544.	1.8	18
788	The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genetics and Biology, 2013, 56, 135-146.	0.9	22
789	Genetics of Cordyceps and related fungi. Applied Microbiology and Biotechnology, 2013, 97, 2797-2804.	1.7	54
790	Transcriptional profiling of Neurospora crassa Δmak-2 reveals that mitogen-activated protein kinase MAK-2 participates in the phosphate signaling pathway. Fungal Genetics and Biology, 2013, 60, 140-149.	0.9	33
791	Plant Cell Wall Deconstruction by Ascomycete Fungi. Annual Review of Microbiology, 2013, 67, 477-498.	2.9	328
793	Biochemical Characterization of Molybdenum Cofactor-free Nitrate Reductase from Neurospora crassa. Journal of Biological Chemistry, 2013, 288, 14657-14671.	1.6	20
794	Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity. Archives of Microbiology, 2013, 195, 823-829.	1.0	13
795	Suppression subtractive hybridization and comparative expression analysis to identify developmentally regulated genes in filamentous fungi. Journal of Basic Microbiology, 2013, 53, 742-751.	1.8	10
796	A <i>uvs-5</i> Strain Is Deficient for a Mitofusin Gene Homologue, <i>fzo1</i> , Involved in Maintenance of Long Life Span in Neurospora crassa. Eukaryotic Cell, 2013, 12, 233-243.	3.4	14
797	Do TE activity and counteracting genome defenses, RNAi and methylation, shape the sex lives of smut fungi?. Plant Signaling and Behavior, 2013, 8, e23853.	1.2	9
798	Fungal Genetics. , 2013, , 129-130.		0
799	A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina. PLoS Genetics, 2013, 9, e1003642.	1.5	58
800	Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi. PLoS Genetics, 2013, 9, e1003909.	1.5	97

#	Article	IF	CITATIONS
801	Evolutionary Dynamics of Sex-Biased Genes in a Hermaphrodite Fungus. Molecular Biology and Evolution, 2013, 30, 2435-2446.	3.5	27
802	The Repertoires of Ubiquitinating and Deubiquitinating Enzymes in Eukaryotic Genomes. Molecular Biology and Evolution, 2013, 30, 1172-1187.	3.5	70
803	Draft nuclear genome sequence for the plant pathogen, Ceratocystis fimbriata. IMA Fungus, 2013, 4, 357-358.	1.7	42
804	The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution. PLoS Genetics, 2013, 9, e1003820.	1.5	85
805	Genome Wide Association Identifies Novel Loci Involved in Fungal Communication. PLoS Genetics, 2013, 9, e1003669.	1.5	92
806	Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM. PLoS Computational Biology, 2013, 9, e1003126.	1.5	70
807	Regulation of Gene Expression in <i>Neurospora crassa</i> with a Copper Responsive Promoter. G3: Genes, Genomes, Genetics, 2013, 3, 2273-2280.	0.8	34
808	Novel Proteins Required for Meiotic Silencing by Unpaired DNA and siRNA Generation in <i>Neurospora crassa</i> . Genetics, 2013, 194, 91-100.	1.2	34
809	Systems biology methods and developments of filamentous fungi in relation to the production of food ingredients. , 2013, , 19-41.		0
810	Coordination of K ⁺ Transporters in Neurospora: TRK1 Is Scarce and Constitutive, while HAK1 Is Abundant and Highly Regulated. Eukaryotic Cell, 2013, 12, 684-696.	3.4	17
811	Genomic Contributions to the Study of Soil and Plant-Interacting Fungi. Soil Biology, 2013, , 1-9.	0.6	0
812	Sex-Induced Silencing Operates During Opposite-Sex and Unisexual Reproduction in <i>Cryptococcus neoformans</i> . Genetics, 2013, 193, 1163-1174.	1.2	28
813	Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Research, 2013, 41, 3022-3031.	6.5	96
814	Integrated Approaches for Assessment of Cellular Performance in Industrially Relevant Filamentous Fungi. Industrial Biotechnology, 2013, 9, 337-344.	0.5	15
815	Regional control of histone H3 lysine 27 methylation in <i>Neurospora</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6027-6032.	3.3	147
816	Gambogic Acid: A Caged Prenylated Garcinia Xanthone: Potent Anticancer Agent of Pharmaceutical Promise. , 2013, , 415-438.		1
817	<i>NEUROSPORA</i> AND THE DEAD-END HYPOTHESIS: GENOMIC CONSEQUENCES OF SELFING IN THE MODEL GENUS. Evolution; International Journal of Organic Evolution, 2013, 67, 3600-3616.	1.1	30
819	Neurospora crassa. , 2013, , 61-63.		1

		CITATION REPOR	Γ	
#	Article	IF	Сіт,	ATIONS
820	Splicing-Related Features of Introns Serve to Propel Evolution. PLoS ONE, 2013, 8, e58547.	1.1	4	
821	Composition and Expression of Genes Encoding Carbohydrate-Active Enzymes in the Straw-Degrad Mushroom Volvariella volvacea. PLoS ONE, 2013, 8, e58780.	ling 1.1	24	
822	Phospho-Regulation of the Neurospora crassa Septation Initiation Network. PLoS ONE, 2013, 8, e7	'9464. 1.1	36	
823	Repeat Induced Point Mutation. , 2013, , 148-149.		0	
824	Maintenance of Sex-Related Genes and the Co-Occurrence of Both Mating Types in Verticillium dal PLoS ONE, 2014, 9, e112145.	ıliae. 1.1	62	
825	Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipe Reveal a High Capacity for Lignocellulose Degradation. PLoS ONE, 2014, 9, e93560.	'S 1.1	107	7
826	De novo Genome Assembly of the Fungal Plant Pathogen Pyrenophora semeniperda. PLoS ONE, 20 e87045.)14, 9, 1.1	25	
827	Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa. PLoS ONE, 2014, 9 e91353.	, 1.1	42	
828	Gene Expression Differences among Three Neurospora Species Reveal Genes Required for Sexual Reproduction in Neurospora crassa. PLoS ONE, 2014, 9, e110398.	1.1	39	
829	Neurospora crassa Female Development Requires the PACC and Other Signal Transduction Pathwa Transcription Factors, Chromatin Remodeling, Cell-To-Cell Fusion, and Autophagy. PLoS ONE, 2014 e110603.	ys, +, 9, 1.1	52	
830	Programmed Cell Death in Neurospora crassa. New Journal of Science, 2014, 2014, 1-7.	1.0	6	
831	Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein. Marine Drugs, 2014, 12, 4713-4731.	2.2	30	
832	Strategies for Accessing Microbial Secondary Metabolites from Silent Biosynthetic Pathways. , 0, , 78-95.		1	
833	Signal Transduction Pathways. , 2014, , 50-59.		11	
834	Mitotic Cell Cycle Control. , 0, , 61-80.		2	
835	DNA Repair and Recombination. , 2014, , 96-112.		0	
837	A 2-component system is involved in the early stages of thePisolithus tinctorius-Pinus greggiisymbiosis. Plant Signaling and Behavior, 2014, 9, e28604.	1.2	6	
838	Fungal Genomics. Advances in Botanical Research, 2014, , 1-52.	0.5	25	

#	Article	IF	CITATIONS
839	Evolutionary and Adaptive Role of Transposable Elements in Fungal Genomes. Advances in Botanical Research, 2014, , 79-107.	0.5	17
840	Genome-Wide Characterization of Light-Regulated Genes in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1731-1745.	0.8	82
841	Circadian rhythms synchronize mitosis in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1397-1402.	3.3	63
842	Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics, 2014, 15, 891.	1.2	189
843	CZT-1 Is a Novel Transcription Factor Controlling Cell Death and Natural Drug Resistance in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1091-1102.	0.8	16
844	Fungal Communication Requires the MAK-2 Pathway Elements STE-20 and RAS-2, the NRC-1 Adapter STE-50 and the MAP Kinase Scaffold HAM-5. PLoS Genetics, 2014, 10, e1004762.	1.5	68
845	Long-read, whole-genome shotgun sequence data for five model organisms. Scientific Data, 2014, 1, 140045.	2.4	138
846	Gene Expansion Shapes Genome Architecture in the Human Pathogen Lichtheimia corymbifera: An Evolutionary Genomics Analysis in the Ancient Terrestrial Mucorales (Mucoromycotina). PLoS Genetics, 2014, 10, e1004496.	1.5	80
847	PRO40 Is a Scaffold Protein of the Cell Wall Integrity Pathway, Linking the MAP Kinase Module to the Upstream Activator Protein Kinase C. PLoS Genetics, 2014, 10, e1004582.	1.5	64
848	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	1.5	238
849	VIB1, a Link between Glucose Signaling and Carbon Catabolite Repression, Is Essential for Plant Cell Wall Degradation by Neurospora crassa. PLoS Genetics, 2014, 10, e1004500.	1.5	109
850	Global Analysis of Serine/Threonine and Tyrosine Protein Phosphatase Catalytic Subunit Genes in Neurospora crassa Reveals Interplay Between Phosphatases and the p38 Mitogen-Activated Protein Kinase. G3: Genes, Genomes, Genetics, 2014, 4, 349-365.	0.8	39
851	On the current status of Phakopsora pachyrhizi genome sequencing. Frontiers in Plant Science, 2014, 5, 377.	1.7	21
852	Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa. Microbial Cell, 2014, 1, 289-302.	1.4	8
853	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	1.2	262
854	A comparative systems analysis of polysaccharideâ€elicited responses in <i><scp>N</scp>eurospora crassa</i> reveals carbon sourceâ€specific cellular adaptations. Molecular Microbiology, 2014, 91, 275-299.	1.2	95
855	The Filamentous Fungus Sordaria macrospora as a Genetic Model to Study Fruiting Body Development. Advances in Genetics, 2014, 87, 199-244.	0.8	54
856	11 Application of Genomics to the Study of Pathogenicity and Development in Fusarium. , 2014, , 267-300.		9

#	Article	IF	CITATIONS
857	Molecular Mechanism of Nematophagous Fungi Infection of Nematodes. Fungal Diversity Research Series, 2014, , 263-311.	0.6	1
858	A Critical Component of Meiotic Drive in <i>Neurospora</i> Is Located Near a Chromosome Rearrangement. Genetics, 2014, 197, 1165-1174.	1.2	37
859	Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics, 2014, 15, 943.	1.2	121
860	The <i>Neurospora crassa</i> exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 2014, 25, 1312-1326.	0.9	80
861	A protein kinase screen of Neurospora crassa mutant strains reveals that the SNF1 protein kinase promotes glycogen synthase phosphorylation. Biochemical Journal, 2014, 464, 323-334.	1.7	3
862	Global Gene Expression and Focused Knockout Analysis Reveals Genes Associated with Fungal Fruiting Body Development in Neurospora crassa. Eukaryotic Cell, 2014, 13, 154-169.	3.4	66
863	Facilitating the Fungus: Insights from the Genome of the Rice Blast Fungus, Magnaporthe Oryzae. , 2014, , 141-160.		6
865	Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates. MBio, 2014, 5, e01046-13.	1.8	25
866	8 Degradation and Modification of Plant Biomass by Fungi. , 2014, , 175-208.		26
867	<i>Neurospora crassa</i> : Looking back and looking forward at a model microbe. American Journal of Botany, 2014, 101, 2022-2035.	0.8	68
868	Involvement of hydrophobic amino acid residues in C7–C8 loop of <i>Aspergillus oryzae</i> hydrophobin RolA in hydrophobic interaction between RolA and a polyester. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1693-1699.	0.6	6
869	Gene cloning, expression and biochemical characterization of a glucose- and xylose-stimulated β-glucosidase from Humicola insolens RP86. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 1-10.	1.8	33
870	Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis. Fungal Genetics and Biology, 2014, 66, 69-78.	0.9	16
871	Physical methods for genetic transformation of fungi and yeast. Physics of Life Reviews, 2014, 11, 184-203.	1.5	50
872	Fungal Genomics. , 2014, , .		2
873	Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes. Biotechnology for Biofuels, 2014, 7, 20.	6.2	54
874	The evolving fungal genome. Fungal Biology Reviews, 2014, 28, 1-12.	1.9	81
875	Nematode-Trapping Fungi. Fungal Diversity Research Series, 2014, , .	0.6	42

#	Article	IF	Citations
877	Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6287-6292.	3.3	358
878	ldentification and characterization of <scp>LFD</scp> 1, a novel protein involved in membrane merger during cell fusion in <scp><i>N</i></scp> <i>eurospora crassa</i> . Molecular Microbiology, 2014, 92, 164-182.	1.2	24
879	Solution structure and interfaceâ€driven selfâ€assembly of NC2, a new member of the Class II hydrophobin proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 990-1003.	1.5	24
880	Analysis of clock-regulated genes in <i>Neurospora</i> reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	3.3	131
881	Verticillium alfalfae and V . dahliae, Agents of Verticillium Wilt Diseases. , 2014, , 65-97.		7
882	Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Advances, 2014, 4, 18329-18335.	1.7	25
883	Neurospora crassa as a model organism to explore the interconnected network of the cell cycle and the circadian clock. Fungal Genetics and Biology, 2014, 71, 52-57.	0.9	18
884	Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus <i>Neurospora crassa</i> Ergothioneine Biosynthetic Pathway. Organic Letters, 2014, 16, 5382-5385.	2.4	74
885	Neurospora crassa 1,3-α-glucan synthase, AGS-1, is required for cell wall biosynthesis during macroconidia development. Microbiology (United Kingdom), 2014, 160, 1618-1627.	0.7	17
886	Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 2014, 98, 8835-8851.	1.7	55
887	Genomics of Plant-Associated Fungi: Monocot Pathogens. , 2014, , .		3
889	Investigating the Path of Plastid Genome Degradation in an Early-Transitional Clade of Heterotrophic Orchids, and Implications for Heterotrophic Angiosperms. Molecular Biology and Evolution, 2014, 31, 3095-3112.	3.5	156
890	Fungal type III polyketide synthases. Natural Product Reports, 2014, 31, 1306-1317.	5.2	72
891	SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models. BMC Bioinformatics, 2014, 15, 229.	1.2	30
892	Structural and functional organization of growing tips of Neurospora crassa hyphae. Biochemistry (Moscow), 2014, 79, 593-607.	0.7	6
893	Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 2014, 158, 1431-1443.	13.5	1,515
894	Heterochromatin Controls Î ³ H2A Localization in Neurospora crassa. Eukaryotic Cell, 2014, 13, 990-1000.	3.4	26
895	Study of <i>Phanerochaete chrysosporium</i> Secretome Revealed Protein Glycosylation as a Substrate-Dependent Post-Translational Modification. Journal of Proteome Research, 2014, 13, 4272-4280.	1.8	16

	Сітат	tion Report	
# 896	ARTICLE Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics, 2014, 15, 214.	IF 1.2	CITATIONS
897	Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics, 2014, 15, 294.	1.2	39
898	Transcriptional comparison of the filamentous fungus Neurospora crassagrowing on three major monosaccharides D-glucose, D-xylose and L-arabinose. Biotechnology for Biofuels, 2014, 7, 31.	6.2	80
899	Hyphal Fusion. , 0, , 260-273.		42
900	Transposable Elements and Repeat-Induced Point Mutation. , 0, , 124-131.		0
901	Meiotic trans-Sensing and Silencing in Neurospora. , 2014, , 132-144.		4
902	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675.		1
903	Mitochondria and Respiration. , 2014, , 153-178.		4
904	Mycoparasitism. , 0, , 676-693.		38
906	Light Sensing. , 0, , 415-441.		9
908	Draft Whole-Genome Sequence of the Biocontrol Agent <i>Trichoderma harzianum</i> T6776. Genome Announcements, 2015, 3, .	0.8	47
909	The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Scientific Reports, 2015, 5, 13403.	1.6	18
911	Sequence Analysis and Heterologous Expression of Two Rhamnogalacturonan Acetylesterase Genes (<i>Asrgae1</i> and <i>Asrgae2</i>) from a <i>Shoyu Koji</i> Mold, <i>Aspergillus sojae</i> KBN1340. Food Science and Technology Research, 2015, 21, 665-670.	0.3	1
912	Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata. IMA Fungus, 2015, 6, 233-248.	1.7	46
913	Genome analysis of Daldinia eschscholtzii strains UM 1400 and UM 1020, wood-decaying fungi isolated from human hosts. BMC Genomics, 2015, 16, 966.	1.2	16
914	Cnidaria: fast, reference-free clustering of raw and assembled genome and transcriptome NGS data. BMC Bioinformatics, 2015, 16, 352.	1.2	11
915	Whole genome annotation and comparative genomic analyses of bio-control fungus Purpureocillium lilacinum. BMC Genomics, 2015, 16, 1004.	1.2	47
916	Genome sequence of <i>Valsa</i> canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytologist, 2015, 208, 1202-1216.	3.5	158

#	Article	IF	Citations
917	Gâ€protein coupled receptorâ€mediated nutrient sensing and developmental control in <scp><i>A</i></scp> <i>spergillus nidulans</i> . Molecular Microbiology, 2015, 98, 420-439.	1.2	31
918	Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa. International Journal of Molecular Sciences, 2015, 16, 15347-15383.	1.8	19
919	Evaluation of Secretion Prediction Highlights Differing Approaches Needed for Oomycete and Fungal Effectors. Frontiers in Plant Science, 2015, 6, 1168.	1.7	85
921	A Metagenomics Analysis on B-Carotene Synthesis in Neurospora Crassa. International Journal of Applied Sciences and Biotechnology, 2015, 3, 490-503.	0.4	1
922	The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa. Journal of Biological Chemistry, 2015, 290, 788-796.	1.6	33
923	Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Fungal Biology, 2015, , 55-68.	0.3	49
924	Enhanced lignocellulosic biomass hydrolysis by oxidative lytic polysaccharide monooxygenases (LPMOs) GH61 from Gloeophyllum trabeum. Enzyme and Microbial Technology, 2015, 77, 38-45.	1.6	53
925	Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms. BMC Bioinformatics, 2015, 16, 58.	1.2	7
926	Draft Genome Sequence of the Cellulolytic Fungus Chaetomium globosum. Genome Announcements, 2015, 3, .	0.8	47
927	Endogenous Small RNA Mediates Meiotic Silencing of a Novel DNA Transposon. G3: Genes, Genomes, Genetics, 2015, 5, 1949-1960.	0.8	34
928	A Tool Set for the Genome-Wide Analysis of Neurospora crassa by RT-PCR. G3: Genes, Genomes, Genetics, 2015, 5, 2043-2049.	0.8	14
929	<i>Tricholoma vaccinum</i> host communication during ectomycorrhiza formation. FEMS Microbiology Ecology, 2015, 91, fiv120.	1.3	15
930	Draft genome sequences of Ceratocystis eucalypticola, Chrysoporthe cubensis, C. deuterocubensis, Davidsoniella virescens, Fusarium temperatum, Graphilbum fragrans, Penicillium nordicum, and Thielaviopsis musarum. IMA Fungus, 2015, 6, 493-506.	1.7	57
931	Around the Fungal Clock. Advances in Genetics, 2015, 92, 107-184.	0.8	45
932	Global Analysis of Predicted G Proteinâ^'Coupled Receptor Genes in the Filamentous Fungus, Neurospora crassa. G3: Genes, Genomes, Genetics, 2015, 5, 2729-2743.	0.8	44
933	<i>period</i> -1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the <i>Neurospora</i> circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15707-15712.	3.3	37
935	Dissecting the Mechanisms of the Clock in Neurospora. Methods in Enzymology, 2015, 551, 29-52.	0.4	38
936	Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. Journal of Microbiology 2015, 53, 226-235	1.3	22

#	Article	IF	CITATIONS
937	Functional Characterization and Low-Resolution Structure of an Endoglucanase Cel45A from the Filamentous Fungus Neurospora crassa OR74A: Thermostable Enzyme with High Activity Toward Lichenan and β-Glucan. Molecular Biotechnology, 2015, 57, 574-588.	1.3	12
938	Current state of genome-scale modeling in filamentous fungi. Biotechnology Letters, 2015, 37, 1131-1139.	1.1	25
939	Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Scientific Reports, 2015, 5, 8567.	1.6	115
940	MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome. Current Genetics, 2015, 61, 185-202.	0.8	5
941	Functional Annotation of the Ophiostoma novo-ulmi Genome: Insights into the Phytopathogenicity of the Fungal Agent of Dutch Elm Disease. Genome Biology and Evolution, 2015, 7, 410-430.	1.1	56
942	Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense. Scientific Reports, 2015, 5, 11087.	1.6	76
943	Unisexual reproduction in Huntiella moniliformis. Fungal Genetics and Biology, 2015, 80, 1-9.	0.9	46
944	Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in <i>Neurospora crassa</i> . Journal of Proteome Research, 2015, 14, 3900-3911.	1.8	6
945	Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics, 2015, 16, 28.	1.2	102
946	A transcriptomic analysis of Neurospora crassa using five major crop residues and the novel role of the sporulation regulator rca-1 in lignocellulase production. Biotechnology for Biofuels, 2015, 8, 21.	6.2	25
947	Genome-wide analysis of the endoplasmic reticulum stress response during lignocellulase production in Neurospora crassa. Biotechnology for Biofuels, 2015, 8, 66.	6.2	60
948	Fungal Transposable Elements. Fungal Biology, 2015, , 79-96.	0.3	1
949	3 Pezizomycotina: Sordariomycetes and Leotiomycetes. , 2015, , 57-88.		19
950	Genome Sequence, Comparative Analysis, and Evolutionary Insights into Chitinases of Entomopathogenic Fungus Hirsutella thompsonii. Genome Biology and Evolution, 2015, 7, 916-930.	1.1	39
951	Motif-independent de novo detection of secondary metabolite gene clusters—toward identification from filamentous fungi. Frontiers in Microbiology, 2015, 6, 371.	1.5	24
952	The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans. Eukaryotic Cell, 2015, 14, 495-510.	3.4	66
953	Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6339-48.	3.3	84
954	Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. BMC Genomics, 2015, 16, 459.	1.2	52

#	Article	IF	CITATIONS
955	Genome and physiology of the ascomycete filamentous fungus <scp><i>X</i></scp> <i>eromyces bisporus</i> , the most xerophilic organism isolated to date. Environmental Microbiology, 2015, 17, 496-513.	1.8	34
956	Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus, 2015, 6, 215-231.	1.7	9
957	Identification of Allorecognition Loci in <i>Neurospora crassa</i> by Genomics and Evolutionary Approaches. Molecular Biology and Evolution, 2015, 32, 2417-2432.	3.5	52
958	Draft Genome Sequence of Neurospora crassa Strain FGSC 73. Genome Announcements, 2015, 3, .	0.8	17
959	Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics, 2015, 16, 620.	1.2	107
960	Two microtubule-plus-end binding proteins LIS1-1 and LIS1-2, homologues of human LIS1 in Neurospora crassa. Fungal Genetics and Biology, 2015, 82, 213-227.	0.9	9
961	Intron evolution in <i>Neurospora</i> : the role of mutational bias and selection. Genome Research, 2015, 25, 100-110.	2.4	9
963	The Cullin-4 Complex DCDC Does Not Require E3 Ubiquitin Ligase Elements To Control Heterochromatin in Neurospora crassa. Eukaryotic Cell, 2015, 14, 25-28.	3.4	11
964	Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology, 2015, , .	0.3	7
965	Engineering Neurospora crassa for Improved Cellobiose and Cellobionate Production. Applied and Environmental Microbiology, 2015, 81, 597-603.	1.4	35
966	The chestnut blight fungus for studies on virus/host and virus/virus interactions: From a natural to a model host. Virology, 2015, 477, 164-175.	1.1	75
967	Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecology, 2015, 13, 10-22.	0.7	108
968	Deciphering the uniqueness of <scp>M</scp> ucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environmental Microbiology, 2015, 17, 1649-1662.	1.8	51
969	Hyphal ontogeny in Neurospora crassa: a model organism for all seasons. F1000Research, 2016, 5, 2801.	0.8	22
970	Roles of Rack1 Proteins in Fungal Pathogenesis. BioMed Research International, 2016, 2016, 1-8.	0.9	12
971	Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics, 2016, 17, 555.	1.2	151
972	A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology, 2016, 7, 233.	1.5	113
973	Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpure cillium lilacinum 36-1. Frontiers in Microbiology, 2016, 7, 1084	1.5	33

#	Article	IF	CITATIONS
974	RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnology for Biofuels, 2016, 9, 145.	6.2	43
975	Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development. MBio, 2016, 7, .	1.8	26
976	Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews. Frontiers in Plant Science, 2016, 7, 123.	1.7	77
977	Analysis of Magnaporthe oryzae Genome Reveals a Fungal Effector, Which Is Able to Induce Resistance Response in Transgenic Rice Line Containing Resistance Gene, Pi54. Frontiers in Plant Science, 2016, 7, 1140.	1.7	90
978	OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes. Genome Biology and Evolution, 2016, 8, 2044-2064.	1.1	123
979	Draft Whole-Genome Sequence of <i>Trichoderma gamsii</i> T6085, a Promising Biocontrol Agent of <i>Fusarium</i> Head Blight on Wheat. Genome Announcements, 2016, 4, .	0.8	34
980	Experimental evolution in fungi: An untapped resource. Fungal Genetics and Biology, 2016, 94, 88-94.	0.9	29
981	The Post-genomic Era of Trichoderma reesei : What's Next?. Trends in Biotechnology, 2016, 34, 970-982.	4.9	106
982	Preâ€ <scp>mRNA</scp> splicing is modulated by antifungal drugs in the filamentous fungus <i>Neurospora crassa</i> . FEBS Open Bio, 2016, 6, 358-368.	1.0	18
983	Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Scientific Reports, 2016, 6, 31341.	1.6	32
984	Draft whole-genome sequence of the Diaporthe helianthi 7/96 strain, causal agent of sunflower stem canker. Genomics Data, 2016, 10, 151-152.	1.3	16
985	Molecular Mycology: An Introduction. , 2016, , 1-13.		0
986	The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biology, 2016, , 59-96.	0.3	11
988	Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environmental Microbiology, 2016, 18, 5-20.	1.8	56
989	Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. Journal of Antibiotics, 2016, 69, 541-548.	1.0	46
990	Boosting Research and Industry by Providing Extensive Resources for Fungal Research. Fungal Biology, 2016, , 361-384.	0.3	0
991	High-Throughput Construction of Genetically Modified Fungi. Fungal Biology, 2016, , 241-252.	0.3	1
992	Molecular cloning and comparative sequence analysis of fungal β-Xylosidases. AMB Express, 2016, 6, 30.	1.4	10

#	Article	IF	CITATIONS
993	Extracellular electron transfer systems fuel cellulose oxidative degradation. Science, 2016, 352, 1098-1101.	6.0	368
994	A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108, 1028-1046.	0.8	1,092
995	CAZyme content of <i>Pochonia chlamydosporia</i> reflects that chitin and chitosan modification are involved in nematode parasitism. Environmental Microbiology, 2016, 18, 4200-4215.	1.8	41
996	Advances in Genomics of Entomopathogenic Fungi. Advances in Genetics, 2016, 94, 67-105.	0.8	78
997	Compression tests of Fusarium graminearum ascocarps provide insights into the strength of the perithecial wall and the quantity of ascospores. Fungal Genetics and Biology, 2016, 96, 25-32.	0.9	0
998	True Truffle (Tuber spp.) in the World. Soil Biology, 2016, , .	0.6	42
999	Truffle Genomics: Investigating an Early Diverging Lineage of Pezizomycotina. Soil Biology, 2016, , 137-149.	0.6	2
1000	Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics, 2016, 17, 670.	1.2	53
1001	Histone H1 Limits DNA Methylation in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1879-1889.	0.8	19
1002	Fungal Sex: The <i>Ascomycota</i> . Microbiology Spectrum, 2016, 4, .	1.2	50
1003	Metaproteomic analysis of atmospheric aerosol samples. Analytical and Bioanalytical Chemistry, 2016, 408, 6337-6348.	1.9	16
1004	Marine Fungi. , 2016, , 99-153.		8
1005	De novo genome assembly and annotation of rice sheath rot fungus Sarocladium orvzae reveals genes		
	involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics, 2016, 17, 271.	1.2	33
1006	Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in <i>Neurospora crassa</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1843-1852.	1.2 0.6	33 10
1006 1007	Involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics, 2016, 17, 271. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in <i>Neurospora crassa</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1843-1852. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiology and Biochemistry, 2016, 107, 354-363.	1.2 0.6 2.8	33 10 36
1006 1007 1008	Involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics, 2016, 17, 271. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in <i>Neurospora crassa</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1843-1852. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiology and Biochemistry, 2016, 107, 354-363. <i>Neurospora</i> chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Research, 2016, 26, 1069-1080.	1.2 0.6 2.8 2.4	33 10 36 64
1006 1007 1008 1009	Involved in Helvolic acid and Cerulenin biosynthesis pathways. BMC Genomics, 2016, 17, 271. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in <i>Neurospora crassa</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1843-1852. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiology and Biochemistry, 2016, 107, 354-363. <i>Neurospora</i> chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Research, 2016, 26, 1069-1080. Comparative Phylogenomics of Pathogenic and Nonpathogenic Species. G3: Genes, Genomes, Genetics, 2016, 6, 235-244.	1.2 0.6 2.8 2.4 0.8	 33 10 36 64 38

#	Article	IF	CITATIONS
1011	Fungal genome sequencing: basic biology to biotechnology. Critical Reviews in Biotechnology, 2016, 36, 743-759.	5.1	47
1012	Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genetics and Biology, 2016, 88, 24-34.	0.9	12
1013	16 Sexual Development in Fungi. , 2016, , 407-455.		12
1014	The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biology and Biochemistry, 2016, 94, 10-18.	4.2	175
1015	Small genome of the fungus <i>Escovopsis weberi</i> , a specialized disease agent of ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3567-3572.	3.3	71
1016	7 Heterotrimeric G Proteins. , 2016, , 119-144.		2
1017	Transport Systems in Halophilic Fungi. Advances in Experimental Medicine and Biology, 2016, 892, 307-325.	0.8	21
1018	Yeast Membrane Transport. Advances in Experimental Medicine and Biology, 2016, , .	0.8	11
1019	Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages. ISME Journal, 2016, 10, 1134-1146.	4.4	35
1020	The circadian system as an organizer of metabolism. Fungal Genetics and Biology, 2016, 90, 39-43.	0.9	45
1021	Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genetics and Biology, 2016, 90, 24-30.	0.9	108
1022	Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Applied Microbiology and Biotechnology, 2017, 101, 2603-2618.	1.7	53
1023	Exploring the genomic diversity of black yeasts and relatives (<i>Chaetothyriales</i> , <i>Ascomycota</i>). Studies in Mycology, 2017, 86, 1-28.	4.5	144
1024	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
1025	Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology, 2017, 8, 67-83.	2.0	13
1026	Genomic signatures of adaptation to wine biological ageing conditions in biofilmâ€ f orming flor yeasts. Molecular Ecology, 2017, 26, 2150-2166.	2.0	68
1027	Identification and characterization of the glucose dual-affinity transport system in Neurospora crassa: pleiotropic roles in nutrient transport, signaling, and carbon catabolite repression. Biotechnology for Biofuels, 2017, 10, 17.	6.2	73
1028	The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3: Genes, Genomes, Genetics, 2017, 7, 129-142.	0.8	47

#	Article	IF	CITATIONS
1029	The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Current Genetics, 2017, 63, 861-875.	0.8	15
1030	Future insights in fungal metabolic engineering. Bioresource Technology, 2017, 245, 1314-1326.	4.8	54
1031	Fungal Genetic Resources for Biotechnology. , 2017, , 219-235.		0
1032	The next generation fungal diversity researcher. Fungal Biology Reviews, 2017, 31, 124-130.	1.9	10
1033	Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Scientific Reports, 2017, 7, 45456.	1.6	48
1034	Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nature Communications, 2017, 8, 1140.	5.8	50
1035	The importance of sourcing enzymes from non-conventional fungi for metabolic engineering and biomass breakdown. Metabolic Engineering, 2017, 44, 45-59.	3.6	43
1036	Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiology Spectrum, 2017, 5, .	1.2	76
1037	Aspergilli: Models for systems biology in filamentous fungi. Current Opinion in Systems Biology, 2017, 6, 67-73.	1.3	20
1038	Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Scientific Reports, 2017, 7, 12508.	1.6	52
1039	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiology Spectrum, 2017, 5, .	1.2	33
1040	Network of nutrient-sensing pathways and a conserved kinase cascade integrate osmolarity and carbon sensing in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8665-E8674.	3.3	58
1041	Taxonomic Resolution of the Nematophagous Fungal Isolate ARF18 via Genome Sequencing. Genome Announcements, 2017, 5, .	0.8	1
1042	Centrochromatin of Fungi. Progress in Molecular and Subcellular Biology, 2017, 56, 85-109.	0.9	13
1043	Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Fungal Biology, 2017, 121, 966-983.	1.1	8
1044	Sixteen Years of Meiotic Silencing by Unpaired DNA. Advances in Genetics, 2017, 97, 1-42.	0.8	41
1045	A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. , 2017, 5, 571-597.		18
1046	Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nature Communications, 2017, 8, 1843.	5.8	85

#	Article	IF	CITATIONS
1047	Multiple Approaches to Phylogenomic Reconstruction of the Fungal Kingdom. Advances in Genetics, 2017, 100, 211-266.	0.8	19
1048	Functional Profiling of Transcription Factor Genes in Neurospora crassa. G3: Genes, Genomes, Genetics, 2017, 7, 2945-2956.	0.8	60
1049	rRNA Pseudogenes in Filamentous Ascomycetes as Revealed by Genome Data. G3: Genes, Genomes, Genetics, 2017, 7, 2695-2703.	0.8	17
1050	An RNA Recognition Motif-Containing Protein Functions in Meiotic Silencing by Unpaired DNA. G3: Genes, Genomes, Genetics, 2017, 7, 2871-2882.	0.8	13
1051	Discovery of McrA, a master regulator of <i>Aspergillus</i> secondary metabolism. Molecular Microbiology, 2017, 103, 347-365.	1.2	73
1052	Advances in Fungal Phylogenomics and Their Impact on Fungal Systematics. Advances in Genetics, 2017, 100, 309-328.	0.8	21
1053	Fusarium oxysporum: Genomics, Diversity and Plant–Host Interaction. , 2017, , 159-199.		22
1054	Comparative Genomics of Pathogenic and Nonpathogenic Beetle-Vectored Fungi in the Genus Geosmithia. Genome Biology and Evolution, 2017, 9, 3312-3327.	1.1	18
1055	The coding and noncoding transcriptome of Neurospora crassa. BMC Genomics, 2017, 18, 978.	1.2	26
1056	Comparative Genome Analysis Reveals Adaptation to the Ectophytic Lifestyle of Sooty Blotch and Flyspeck Fungi. Genome Biology and Evolution, 2017, 9, 3137-3151.	1.1	11
1057	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4
1058	Fungal Genomes and Insights into the Evolution of the Kingdom. , 0, , 619-633.		29
1059	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
1060	The Neurospora crassa PP2A Regulatory Subunits RGB1 and B56 Are Required for Proper Growth and Development and Interact with the NDR Kinase COT1. Frontiers in Microbiology, 2017, 8, 1694.	1.5	9
1061	Neurospora crassa â~†., 2017,,.		1
1062	Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa. PLoS ONE, 2017, 12, e0169796.	1.1	20
1063	Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS ONE, 2017, 12, e0183567.	1.1	54
1064	Daily rhythms and enrichment patterns in the transcriptome of the behavior-manipulating parasite Ophiocordyceps kimflemingiae. PLoS ONE, 2017, 12, e0187170.	1.1	24

#	Article	IF	CITATIONS
1065	Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evolutionary Biology, 2017, 17, 223.	3.2	52
1066	Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microbial Cell Factories, 2017, 16, 128.	1.9	23
1067	Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnology for Biofuels, 2017, 10, 170.	6.2	88
1068	Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa. Biotechnology for Biofuels, 2017, 10, 225.	6.2	42
1069	Reconstructing the Evolutionary History of Powdery Mildew Lineages (Blumeria graminis) at Different Evolutionary Time Scales with NGS Data. Genome Biology and Evolution, 2017, 9, 446-456.	1.1	34
1070	The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Standards in Genomic Sciences, 2017, 12, 71.	1.5	25
1071	Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae. Genes and Environment, 2017, 39, 28.	0.9	8
1072	Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophysical Reviews, 2017, 9, 375-387.	1.5	4
1073	Solid State Fermentation of Carinata (Brassica carinata) Meal Using Various Fungal Strains to Produce a Protein-Rich Product for Feed Application. Journal of Microbial & Biochemical Technology, 2017, 09, .	0.2	3
1074	Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. BMC Genomics, 2017, 18, 785.	1.2	16
1075	Massive Expansion of Gypsy-Like Retrotransposons in Microbotryum Fungi. Genome Biology and Evolution, 2017, 9, 363-371.	1.1	17
1076	Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics, 2017, 18, 912.	1.2	25
1077	Repeat Induced Point Mutation â~†. , 2017, , .		0
1078	NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2292-E2301.	3.3	69
1079	Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Research, 2018, 28, 569-580.	2.4	163
1080	Using evolutionary genomics, transcriptomics, and systems biology to reveal gene networks underlying fungal development. Fungal Biology Reviews, 2018, 32, 249-264.	1.9	22
1081	Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiological Research, 2018, 209, 55-69.	2.5	54
1082	The mycoparasitic fungus <i>Clonostachys rosea</i> responds with both common and specific gene expression during interspecific interactions with fungal prey. Evolutionary Applications, 2018, 11, 931-949.	1.5	96

#	ARTICLE	IF	CITATIONS
1083	Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi. Enzyme and Microbial Technology, 2018, 115, 16-22.	1.6	18
1084	Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Molecular Plant Pathology, 2018, 19, 2094-2110.	2.0	350
1085	Biosynthesis of Fungal Polyketides. , 2018, , 385-412.		12
1086	Efficient computation of shortest absent words in complete genomes. Information Sciences, 2018, 435, 59-68.	4.0	2
1087	Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research, 2018, 25, 87-102.	1.5	60
1088	Structure, kinetics, molecular and redox properties of a cytosolic and developmentally regulated fungal catalase-peroxidase. Archives of Biochemistry and Biophysics, 2018, 640, 17-26.	1.4	8
1089	Inter-genome comparison of the Quorn fungus Fusarium venenatum and the closely related plant infecting pathogen Fusarium graminearum. BMC Genomics, 2018, 19, 269.	1.2	28
1090	Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse. BMC Genomics, 2018, 19, 232.	1.2	60
1091	Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnology Journal, 2018, 13, 1700620.	1.8	19
1092	Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology, 2018, 9, 93-105.	2.0	116
1094	Reference Assembly and Annotation of the <i>Pyrenophora teres</i> f. <i>teres</i> Isolate 0-1. G3: Genes, Genomes, Genetics, 2018, 8, 1-8.	0.8	32
1095	Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Current Genetics, 2018, 64, 529-534.	0.8	7
1096	Molecular evolution and transcriptional profile of GH3 and GH20 Î ² -N-acetylglucosaminidases in the entomopathogenic fungus Metarhizium anisopliae. Genetics and Molecular Biology, 2018, 41, 843-857.	0.6	7
1098	The gold-standard genome of <i>Aspergillus niger</i> NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Studies in Mycology, 2018, 91, 61-78.	4.5	62
1099	Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiology, 2018, 18, 178.	1.3	29
1100	Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. PLoS Genetics, 2018, 14, e1007467.	1.5	79
1101	Comparative evolutionary histories of fungal proteases reveal gene gains in the mycoparasitic and nematode-parasitic fungus Clonostachys rosea. BMC Evolutionary Biology, 2018, 18, 171.	3.2	31
1102	Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Diversity, 2018, 93, 195-213.	4.7	73

#	Article	IF	CITATIONS
1103	Genome-Wide Comparison of Carbohydrate-Active Enzymes (CAZymes) Repertoire of Flammulina ononidis. Mycobiology, 2018, 46, 349-360.	0.6	14
1104	Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Systems, 2018, 7, 613-626.e5.	2.9	93
1105	Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC Genomics, 2018, 19, 927.	1.2	14
1106	Cellulose-binding activity of a 21-kDa endo-ß-1,4-glucanase lacking cellulose-binding domain and its synergy with other cellulases in the digestive fluid of Aplysia kurodai. PLoS ONE, 2018, 13, e0205915.	1.1	0
1107	Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes. MSphere, 2018, 3, .	1.3	29
1108	Characterizing Time-of-Day Conformational Changes in the Intrinsically Disordered Proteins of the Circadian Clock. Methods in Enzymology, 2018, 611, 503-529.	0.4	10
1109	Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics, 2018, 19, 721.	1.2	15
1110	Genomic overview of closely related fungi with different Protea host ranges. Fungal Biology, 2018, 122, 1201-1214.	1.1	1
1111	New Genomic Approaches to Enhance Biomass Degradation by the Industrial Fungus <i>Trichoderma reesei</i> . International Journal of Genomics, 2018, 2018, 1-17.	0.8	30
1112	Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nature Communications, 2018, 9, 4242.	5.8	40
1113	The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum. Frontiers in Microbiology, 2018, 9, 2367.	1.5	19
1115	Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biology, 2018, 122, 1050-1063.	1.1	41
1116	mus-52 disruption and metabolic regulation in Neurospora crassa: Transcriptional responses to extracellular phosphate availability. PLoS ONE, 2018, 13, e0195871.	1.1	3
1117	The evolution of genomic and epigenomic features in two Pleurotus fungi. Scientific Reports, 2018, 8, 8313.	1.6	30
1118	Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genetics, 2018, 14, e1007322.	1.5	143
1119	How a fungus shapes biotechnology: 100Âyears of Aspergillus niger research. Fungal Biology and Biotechnology, 2018, 5, 13.	2.5	179
1120	The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics, 2018, 19, 465.	1.2	91
1121	Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microbial Cell Factories, 2018, 17, 96.	1.9	22

#	Article	IF	CITATIONS
1122	Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa. PLoS ONE, 2018, 13, e0196435.	1.1	9
1123	Identification of Key Residues for Enzymatic Carboxylate Reduction. Frontiers in Microbiology, 2018, 9, 250.	1.5	29
1124	An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Frontiers in Microbiology, 2018, 9, 503.	1.5	60
1125	Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi. Indian Phytopathology, 2018, 71, 169-182.	0.7	8
1126	Annotation resource of tandem repeat-containing secretory proteins in sixty fungi. Fungal Genetics and Biology, 2018, 119, 7-19.	0.9	2
1127	Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower. BMC Genomics, 2018, 19, 27.	1.2	15
1128	Genome Sequencing and Carbohydrate-Active Enzyme (CAZyme) Repertoire of the White Rot Fungus Flammulina elastica. International Journal of Molecular Sciences, 2018, 19, 2379.	1.8	47
1129	Purification of Fungal High Molecular Weight Genomic DNA from Environmental Samples. Methods in Molecular Biology, 2018, 1775, 21-35.	0.4	7
1130	Introduction: Overview of Fungal Genomics. Methods in Molecular Biology, 2018, 1775, 1-7.	0.4	0
1131	Fungal Genomes and Genotyping. Advances in Applied Microbiology, 2018, 102, 37-81.	1.3	14
1132	Global distribution of mating types shows limited opportunities for mating across populations of fungi causing boxwood blight disease. Fungal Genetics and Biology, 2019, 131, 103246.	0.9	16
1133	Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat. IMA Fungus, 2019, 10, 11.	1.7	21
1134	The pH Signaling Transcription Factor PAC-3 Regulates Metabolic and Developmental Processes in Pathogenic Fungi. Frontiers in Microbiology, 2019, 10, 2076.	1.5	9
1135	Design Principles of Branching Morphogenesis in Filamentous Organisms. Current Biology, 2019, 29, R1149-R1162.	1.8	22
1136	Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics, 2019, 20, 553.	1.2	7
1137	Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungusColletotrichum graminicola. Environmental Microbiology, 2019, 21, 4773-4791.	1.8	9
1138	Genomic Insights into the Fungal Lignocellulolytic Machinery of Flammulina rossica. Microorganisms, 2019, 7, 421.	1.6	5
1139	Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annual Review of Genetics, 2019, 53, 149-170.	3.2	83

#	Article	IF	CITATIONS
1140	Structural insights into the hydrolysis pattern and molecular dynamics simulations of GH45 subfamily a endoglucanase from Neurospora crassa OR74A. Biochimie, 2019, 165, 275-284.	1.3	3
1141	Loss of copy number and expression of transgene during meiosis in Pyropia tenera. Plant Biotechnology Reports, 2019, 13, 653-661.	0.9	5
1142	The Formaldehyde Dehydrogenase SsFdh1 Is Regulated by and Functionally Cooperates with the GATA Transcription Factor SsNsd1 in Sclerotinia sclerotiorum. MSystems, 2019, 4, .	1.7	16
1143	Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. Biotechnology for Biofuels, 2019, 12, 210.	6.2	14
1144	Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule. Microbial Cell Factories, 2019, 18, 14.	1.9	10
1145	Draft Genome Sequence of an Onion Basal Rot Isolate of Fusarium proliferatum. Microbiology Resource Announcements, 2019, 8, .	0.3	10
1147	Suppressors of Meiotic Silencing by Unpaired DNA. Non-coding RNA, 2019, 5, 14.	1.3	6
1148	RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Scientific Reports, 2019, 9, 8651.	1.6	16
1149	Control of Development, Secondary Metabolism and Light-Dependent Carotenoid Biosynthesis by the Velvet Complex of <i>Neurospora crassa</i> . Genetics, 2019, 212, 691-710.	1.2	28
1150	Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci. BMC Genomics, 2019, 20, 350.	1.2	10
1151	Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnology Advances, 2019, 37, 107392.	6.0	34
1152	Cloning and analysis of <i>Ophiocordyceps xuefengensis</i> mating type (<i>MAT</i>) loci. FEMS Microbiology Letters, 2019, 366, .	0.7	3
1153	The role of GYP-3 in cellular morphogenesis of Neurospora crassa: Analyzing its relationship with the polarisome. Fungal Genetics and Biology, 2019, 128, 49-59.	0.9	5
1154	Functional Genomics Approach Towards Dissecting Out Abiotic Stress Tolerance Trait in Plants. Sustainable Development and Biodiversity, 2019, , 1-24.	1.4	3
1155	Genome Mining Reveals <i>Neurospora crassa</i> Can Produce the Salicylaldehyde Sordarial. Journal of Natural Products, 2019, 82, 1029-1033.	1.5	27
1156	Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Frontiers in Microbiology, 2019, 10, 619.	1.5	98
1157	AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	9
1158	Decrease of citric acid produced by <i>Aspergillus niger</i> through disruption of the gene encoding a putative mitochondrial citrate-oxoglutarate shuttle protein. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1538-1546.	0.6	13

#	Article	IF	CITATIONS
1159	Heterologous expression of <i>Neurospora crassa cbh1</i> gene in <i>Pichia pastoris</i> resulted in production of a neutral cellobiohydrolase I. Biotechnology Progress, 2019, 35, e2795.	1.3	7
1160	Diversity of cytosine methylation across the fungal tree of life. Nature Ecology and Evolution, 2019, 3, 479-490.	3.4	98
1161	In silico characterization of microRNAs-like sequences in the genome of Paracoccidioides brasiliensis. Genetics and Molecular Biology, 2019, 42, 95-107.	0.6	6
1162	Combination of Proteogenomics with Peptide <i>De Novo</i> Sequencing Identifies New Genes and Hidden Posttranscriptional Modifications. MBio, 2019, 10, .	1.8	40
1163	Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Frontiers in Microbiology, 2019, 10, 2317.	1.5	25
1164	ENCORE. , 2019, 2019, 5-14.		8
1165	Repeat-Induced Point Mutations Drive Divergence between Fusarium circinatum and Its Close Relatives. Pathogens, 2019, 8, 298.	1.2	11
1166	STK-12 acts as a transcriptional brake to control the expression of cellulase-encoding genes in Neurospora crassa. PLoS Genetics, 2019, 15, e1008510.	1.5	19
1167	The Use of Whole Genome and Next-Generation Sequencing in the Diagnosis of Invasive Fungal Disease. Current Fungal Infection Reports, 2019, 13, 284-291.	0.9	4
1168	The Genetics and Biochemistry of Cell Wall Structure and Synthesis in Neurospora crassa, a Model Filamentous Fungus. Frontiers in Microbiology, 2019, 10, 2294.	1.5	45
1169	Taxonomic Features of Specific Ca2+ Transport Mechanisms in Mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2019, 13, 194-204.	0.3	1
1170	Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genomics, 2019, 20, 1020.	1.2	26
1171	Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics, 2019, 213, 1545-1563.	1.2	14
1172	Programmed Cell Death in <i>Neurospora crassa</i> Is Controlled by the Allorecognition Determinant <i>rcd-1</i> . Genetics, 2019, 213, 1387-1400.	1.2	32
1173	Analysis of Repeat Induced Point (RIP) Mutations in <i>Leptosphaeria maculans</i> Indicates Variability in the RIP Process Between Fungal Species. Genetics, 2019, 211, 89-104.	1.2	20
1174	CLRâ€4, a novel conserved transcription factor for cellulase gene expression in ascomycete fungi. Molecular Microbiology, 2019, 111, 373-394.	1.2	38
1175	Structural dynamics of lytic polysaccharide monoxygenases reveals a highly flexible substrate binding region. Journal of Molecular Graphics and Modelling, 2019, 88, 1-10.	1.3	11
1176	Asexual reproduction and growth rate: independent and plastic life history traits in <i>Neurospora crassa</i> . ISME Journal, 2019, 13, 780-788.	4.4	8

#	Article	IF	CITATIONS
1177	Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics, 2020, 112, 603-614.	1.3	30
1178	Transcriptome analysis and whole genome re-sequencing provide insights on rice kernel smut (Tilletia) Tj ETQq1	1 0,78431 0.6	.4 rgBT /Ove
1179	Pentaerythritol encapsulated with boric acid: An efficient composite crosslinker for guar gum fracturing fluid. Journal of Applied Polymer Science, 2020, 137, 48528.	1.3	7
1180	Evaluating the circadian rhythm and response to glucose addition in dispersed growth cultures of Neurospora crassa. Fungal Biology, 2020, 124, 398-406.	1.1	10
1181	Comparative genome and transcriptome analysis of the nematode-trapping fungus Duddingtonia flagrans reveals high pathogenicity during nematode infection. Biological Control, 2020, 143, 104159.	1.4	6
1182	The Composition and the Structure of MCC/Eisosomes in Neurospora crassa. Frontiers in Microbiology, 2020, 11, 2115.	1.5	3
1183	Comparative Proteomic Analysis of Wild Type and Mutant Lacking an SCF E3 Ligase F-Box Protein in <i>Magnaporthe oryzae</i> . Journal of Proteome Research, 2020, 19, 3761-3768.	1.8	1
1184	Expansion of Adhesion Genes Drives Pathogenic Adaptation of Nematode-Trapping Fungi. IScience, 2020, 23, 101057.	1.9	31
1185	Wild Isolates of Neurospora crassa Reveal Three Conidiophore Architectural Phenotypes. Microorganisms, 2020, 8, 1760.	1.6	2
1186	Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa. BMC Genomics, 2020, 21, 755.	1.2	6
1187	MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. Biology, 2020, 9, 413.	1.3	10
1188	New Opportunities for Modern Fungal Biology. Frontiers in Fungal Biology, 2020, 1, .	0.9	1
1189	Sphingolipidâ€enriched domains in fungi. FEBS Letters, 2020, 594, 3698-3718.	1.3	19
1190	Mining whole genome sequence data to efficiently attribute individuals to source populations. Scientific Reports, 2020, 10, 12124.	1.6	10
1191	The occurrence and function of alternative splicing in fungi. Fungal Biology Reviews, 2020, 34, 178-188.	1.9	16
1192	Genome Sequencing of Paecilomyces Penicillatus Provides Insights into Its Phylogenetic Placement and Mycoparasitism Mechanisms on Morel Mushrooms. Pathogens, 2020, 9, 834.	1.2	19
1193	The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms, 2020, 8, 1252.	1.6	9
1194	Studies on sugar transporter CRT1 reveal new characteristics that are critical for cellulase induction in Trichoderma reesei. Biotechnology for Biofuels, 2020, 13, 158.	6.2	32

#	Article	IF	Citations
1195	Effect of Oligosaccharide Degree of Polymerization on the Induction of Xylan-Degrading Enzymes by Fusarium oxysporum f. sp. Lycopersici. Molecules, 2020, 25, 5849.	1.7	8
1196	Establishment of Neurospora crassa as a model organism for fungal virology. Nature Communications, 2020, 11, 5627.	5.8	26
1197	Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biology, 2020, 21, 142.	3.8	24
1198	Genome Sequence of the Chestnut Blight Fungus <i>Cryphonectria parasitica</i> EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen. Phytopathology, 2020, 110, 1180-1188.	1.1	34
1199	Enabling community-based metrology for wood-degrading fungi. Fungal Biology and Biotechnology, 2020, 7, 2.	2.5	8
1200	Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics, 2020, 15, 972-987.	1.3	10
1201	Sugar transporters from industrial fungi: Key to improving second-generation ethanol production. Renewable and Sustainable Energy Reviews, 2020, 131, 109991.	8.2	35
1202	In silico detection of DNA methylation in fungi Neurospora crassa genes, rid-1 and dim-2. AIP Conference Proceedings, 2020, , .	0.3	2
1203	Whole Genome Sequencing and Comparative Genomics of Two Nematicidal <i>Bacillus</i> Strains Reveals a Wide Range of Possible Virulence Factors. G3: Genes, Genomes, Genetics, 2020, 10, 881-890.	0.8	12
1204	Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms, 2020, 8, 305.	1.6	33
1205	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125
1206	Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Research, 2020, 174, 115630.	5.3	44
1207	Three challenges to contemporaneous taxonomy from a licheno-mycological perspective. Megataxa, 2020, 1, .	1.5	20
1208	WHI-2 Regulates Intercellular Communication via a MAP Kinase Signaling Complex. Frontiers in Microbiology, 2020, 10, 3162.	1.5	4
1209	Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biology Reviews, 2020, 34, 100-113.	1.9	75
1210	Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism. Pathogens, 2020, 9, 232.	1.2	15
1211	Quantification of <i>Neurospora crassa</i> mitochondrial DNA using quantitative realâ€ŧime PCR. Letters in Applied Microbiology, 2020, 71, 171-178.	1.0	2
1212	Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies. Mycologia, 2020, 112, 491-503.	0.8	14

#	Article	IF	Citations
1213	RNA Abundance Analysis. Methods in Molecular Biology, 2021, , .	0.4	1
1215	Functional analyses of xylanolytic enzymes involved in xylan degradation and utilization in Neurospora crassa. International Journal of Biological Macromolecules, 2021, 169, 302-310.	3.6	7
1216	Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in <i>Clonostachys</i> subgenus <i>Bionectria</i> (Fungi, Ascomycota, Hypocreales). Evolutionary Applications, 2021, 14, 476-497.	1.5	19
1217	The rise and shine of yeast optogenetics. Yeast, 2021, 38, 131-146.	0.8	21
1218	Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 2021, 12, 10-24.	2.0	29
1219	Whole-Genome Comparisons of Ergot Fungi Reveals the Divergence and Evolution of Species within the Genus <i>Claviceps</i> Are the Result of Varying Mechanisms Driving Genome Evolution and Host Range Expansion. Genome Biology and Evolution, 2021, 13, .	1.1	17
1220	RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa. Biotechnology for Biofuels, 2021, 14, 33.	6.2	14
1221	Bioinformatics Approaches for Fungal Biotechnology. , 2021, , 536-554.		0
1222	The two-component signal transduction system and its regulation in <i>Candida albicans</i> . Virulence, 2021, 12, 1884-1899.	1.8	13
1223	Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya. PLoS ONE, 2021, 16, e0244755.	1.1	8
1225	Proteomeâ€wide analyses reveal diverse functions of acetylation proteins in <i>Neurospora crassa</i> . Proteomics, 2021, 21, e2000212.	1.3	1
1227	Genome-Wide Analyses of Repeat-Induced Point Mutations in the Ascomycota. Frontiers in Microbiology, 2020, 11, 622368.	1.5	35
1228	Shannon entropy as a metric for conditional gene expression in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	1
1229	Proteomic Analysis of Mycelial Exudates of Ustilaginoidea virens. Pathogens, 2021, 10, 364.	1.2	4
1230	An introgressed gene causes meiotic drive in <i>Neurospora sitophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
1231	Evaluation of multi-color genetically encoded Ca2+ indicators in filamentous fungi. Fungal Genetics and Biology, 2021, 149, 103540.	0.9	2
1232	Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radical Biology and Medicine, 2021, 169, 187-215.	1.3	9
1233	Ago1 Affects the Virulence of the Fungal Plant Pathogen Zymoseptoria tritici. Genes, 2021, 12, 1011.	1.0	8

#	Article	IF	CITATIONS
1234	Secondary metabolite biosynthetic diversity in the fungal family <i>Hypoxylaceae</i> and <i>Xylaria hypoxylon</i> . Studies in Mycology, 2021, 99, 100118-100118.	4.5	27
1235	Rapid and inexpensive preparation of genome-wide nucleosome footprints from model and non-model organisms. STAR Protocols, 2021, 2, 100486.	0.5	7
1237	Coregulation of gene expression by White collar 1 and phytochrome in Ustilago maydis. Fungal Genetics and Biology, 2021, 152, 103570.	0.9	3
1238	Sugar oxidoreductases and LPMOs – two sides of the same polysaccharide degradation story?. Carbohydrate Research, 2021, 505, 108350.	1.1	17
1239	Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms, 2021, 9, 1557.	1.6	9
1240	Revisiting the Neurospora crassa mitochondrial genome. Letters in Applied Microbiology, 2021, 73, 495-505.	1.0	0
1241	A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biology, 2021, 19, 171.	1.7	10
1242	Sensitivity of <i>Colletotrichum nymphaeae</i> to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China. Plant Disease, 2022, 106, 165-173.	0.7	9
1243	Action and inertia in the study of hyphal growth. Fungal Biology Reviews, 2022, 41, 24-30.	1.9	3
1244	FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution. PLoS Computational Biology, 2021, 17, e1009372.	1.5	9
1245	An APSES Transcription Factor Xbp1 Is Required for Sclerotial Development, Appressoria Formation, and Pathogenicity in Ciboria shiraiana. Frontiers in Microbiology, 2021, 12, 739686.	1.5	4
1246	Phylogenetic and phylogenomic analyses reveal two new genera and three new species of ophiostomatalean fungi from termite fungus combs. Mycologia, 2021, 113, 1-19.	0.8	2
1247	Insights into the Lignocellulose-Degrading Enzyme System of <i>Humicola grisea</i> var. <i>thermoidea</i> Based on Genome and Transcriptome Analysis. Microbiology Spectrum, 2021, 9, e0108821.	1.2	12
1248	Cell surface display of Neurospora crassa glutamate decarboxylase on Escherichia coli for extracellular Gamma-aminobutyric acid production from high cell density culture. Biochemical Engineering Journal, 2021, 176, 108196.	1.8	1
1249	Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. Science of the Total Environment, 2022, 806, 150451.	3.9	16
1250	Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics, 2021, 22, 91.	1.2	8
1251	Role of the endogenous fungal metabolites in the plant growth improvement and stress tolerance. , 2021, , 381-401.		8
1252	Functional genomics approaches for combating the effect of abiotic stresses. , 2021, , 119-135.		1

	Сітатіо	n Report	
# 1254	ARTICLE Circadian Rhythms, Photobiology and Functional Genomics in Neurospora. , 2006, , 53-74.	IF	CITATIONS 3
1255	Approaches for Identification of Fungal Genes Essential for Plant Disease. , 2004, 26, 85-103.		3
1256	Neurospora from Natural Populations: Population Genomics Insights into the Life History of a Model Microbial Eukaryote. Methods in Molecular Biology, 2020, 2090, 313-336.	0.4	16
1257	Small RNA Isolation and Library Construction for Expression Profiling of Small RNAs from Neurospora crassa and Fusarium oxysporum and Analysis of Small RNAs in Fusarium oxysporum-Infected Plant Root Tissue. Methods in Molecular Biology, 2021, 2170, 199-212.	0.4	1
1258	Biophysical Analysis of Lipid Domains in Mammalian and Yeast Membranes by Fluorescence Spectroscopy. Methods in Molecular Biology, 2021, 2187, 247-269.	0.4	2
1259	Signalling in Botrytis cinerea. , 2007, , 85-97.		5
1260	Genome Defense: The Neurospora Paradigm. , 2009, , 321-341.		6
1261	Function Annotation in Gene Networks. , 2012, , 49-67.		2
1262	Neurospora crassa as a Model Organism for Mitochondrial Biogenesis. Methods in Molecular Biology, 2007, 372, 107-123.	0.4	14
1263	Gene Silencing for Functional Analysis: Assessing RNAi as a Tool for Manipulation of Gene Expression. Methods in Molecular Biology, 2010, 638, 77-100.	0.4	14
1264	High-Throughput Production of Gene Replacement Mutants in Neurospora crassa. Methods in Molecular Biology, 2011, 722, 179-189.	0.4	55
1265	Small RNA Isolation and Library Construction for Expression Profiling of Small RNAs from Neurospora and Fusarium Using Illumina High-Throughput Deep Sequencing. Methods in Molecular Biology, 2012, 883, 155-164.	0.4	9
1266	4 From Genetics to Molecular Oscillations: The Circadian Clock in Neurospora crassa. , 2020, , 77-103.		2
1267	Small RNA-Mediated Gene Silencing in Neurospora. , 2014, , 269-289.		5
1268	Pochonia chlamydosporia: Multitrophic Lifestyles Explained by a Versatile Genome. , 2017, , 197-207.		7
1269	Sordaria macrospora, a Model System for Fungal Development. , 2009, , 17-39.		28
1270	Comparative Evolutionary Histories of Fungal Chitinases. , 2009, , 323-337.		1
1271	Signalling in the Epichloë festucae: Perennial Ryegrass Mutualistic Symbiotic Interaction. Signaling and Communication in Plants, 2012, , 143-181.	0.5	5

	Сітат	ION REPORT	
#	Article	IF	Citations
1272	Neurofibromin: Protein Domains and Functional Characteristics. , 2012, , 305-326.		8
1273	Podospora anserina: From Laboratory to Biotechnology. Soil Biology, 2013, , 283-309.	0.6	24
1274	Fungal Genomics for Energy and Environment. Soil Biology, 2013, , 11-27.	0.6	4
1275	Advancement of Functional Genomics of a Model Species of Neurospora and Its Use for Ecological Genomics of Soil Fungi. Soil Biology, 2013, , 29-44.	0.6	3
1276	4 Genome Data Drives Change at Culture Collections. , 2014, , 81-96.		8
1277	6 Photobiology and Circadian Clocks in Neurospora. , 2014, , 121-148.		8
1278	7 Genomics and Transcriptomics to Analyze Fruiting Body Development. , 2014, , 149-172.		13
1279	Signal Transduction Pathways Mediated by Heterotrimeric G Proteins. , 2004, , 175-207.		13
1280	Genetics and Molecular Biology of Circadian Rhythms. , 2004, , 209-229.		10
1281	Polysaccharidases. , 2004, , 233-247.		1
1282	Enzymology and Molecular Biology of Lignin Degradation. , 2004, , 249-273.		77
1283	Regulation of Mitochondrial Gene Expression. , 2004, , 129-140.		1
1285	G Protein Signaling Components in Filamentous Fungal Genomes. , 2012, , 21-38.		5
1286	Glycogen Metabolism Regulation in Neurospora crassa. , 2012, , 39-55.		5
1287	Exploring Fungi-Associated Lignocellulose Degradation: Secretomic and Proteomic Approaches. , 2019, , 251-277.		5
1288	The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes and Genomics, 2020, 42, 699-714.	0.5	21
1290	Elements, biochemicals, and structures of microbes. , 2011, , 19-34.		1
1291	Microbial primary production and phototrophy. , 2011, , 55-78.		2

#	Article	IF	CITATIONS
1292	Degradation of organic material. , 2011, , 79-98.		3
1293	Microbial growth, biomass production, and controls. , 2011, , 99-116.		3
1294	Ecology of viruses. , 2011, , 137-156.		1
1295	An Argonaute-Like Protein Is Required for Meiotic Silencing. Genetics, 2003, 164, 821-828.	1.2	120
1296	The PHOA and PHOB Cyclin-Dependent Kinases Perform an Essential Function in <i>Aspergillus nidulans</i> . Genetics, 2003, 165, 1105-1115.	1.2	24
1297	The <i>fluffy</i> Gene of <i>Neurospora crassa</i> Is Necessary and Sufficient to Induce Conidiophore Development. Genetics, 2004, 166, 1741-1749.	1.2	16
1306	MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora. , 0, , 171-188.		6
1308	Comparison of Neurospora crassa and Neurospora sitophila for phytase production at various fermentation temperatures. Biodiversitas, 2016, 17, .	0.2	4
1309	Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote. PLoS Biology, 2016, 14, e1002431.	2.6	49
1310	The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genetics, 2020, 16, e1008819.	1.5	13
1311	Genesis of a Fungal Non-Self Recognition Repertoire. PLoS ONE, 2007, 2, e283.	1.1	74
1312	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	1.1	169
1313	Systems Biology of the Clock in Neurospora crassa. PLoS ONE, 2008, 3, e3105.	1.1	86
1314	Systems Biology of the qa Gene Cluster in Neurospora crassa. PLoS ONE, 2011, 6, e20671.	1.1	24
1315	Bisulfite Sequencing Reveals That Aspergillus flavus Holds a Hollow in DNA Methylation. PLoS ONE, 2012, 7, e30349.	1.1	74
1316	Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa. PLoS ONE, 2012, 7, e42565.	1.1	42
1317	Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger. PLoS ONE, 2012, 7, e50596.	1.1	22
13 <u>18</u>	Functional Analysis of the Aspergillus nidulans Kinome. PLoS ONE, 2013, 8, e58008.	1.1	120

#	Article	IF	CITATIONS
1319	A Sensing Role of the Glutamine Synthetase in the Nitrogen Regulation Network in Fusarium fujikuroi. PLoS ONE, 2013, 8, e80740.	1.1	26
1320	The Genome Sequence of the Fungal Pathogen Fusarium virguliforme That Causes Sudden Death Syndrome in Soybean. PLoS ONE, 2014, 9, e81832.	1.1	50
1321	Structure of Importin-Î \pm from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal. PLoS ONE, 2015, 10, e0128687.	1.1	12
1322	Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant. PLoS ONE, 2016, 11, e0165980.	1.1	5
1323	Identification of new molecular hallmarks for YSAPK MAPKs: application for cloning strategies in different fungal filamentous species. Acta Phytopathologica Et Entomologica Hungarica, 2005, 40, 233-249.	0.1	1
1324	Principles of Mushroom Developmental Biology. International Journal of Medicinal Mushrooms, 2005, 7, 79-102.	0.9	25
1325	Transposable Elements in Fungi: A Genomic Approach. , 0, , 012-016.		14
1326	Overview of gene structure. WormBook, 2006, , 1-10.	5.3	26
1327	Overview of gene structure in C. elegans. WormBook, 2014, , 1-18.	5.3	21
1328	Regulation of Cellulase and Hemicellulase Gene Expression in Fungi. Current Genomics, 2013, 14, 230-249.	0.7	212
1329	Perspectives in Genomics The Future of Fungi in â€~omics' era. Current Genomics, 2016, 17, 82-84.	0.7	4
1330	Chemoattractive Mechanisms in Filamentous Fungi. The Open Mycology Journal, 2014, 8, 28-57.	0.8	24
1331	Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 2016, 3, 505-549.	0.3	23
1332	Phylogenic analysis of additional Neurospora crassa isolates. Fungal Genetics Reports, 2012, 59, 13-20.	0.6	1
1333	Analysis of the DNA sequence of the putative ABC transporter NCU09975 in Neurospora crassa strains carrying acriflavin resistance markers Fungal Genetics Reports, 2012, 59, 26-29.	0.6	1
1334	Evaluation of automated cell disruptor methods for oomycetous and ascomycetous model organisms. Fungal Genetics Reports, 2011, 58, 4-13.	0.6	2
1335	Identification of the Neurospora crassa mutation un-10 as a point mutation in a gene encoding eukaryotic translation initiation factor 3, subunit B Fungal Genetics Reports, 2009, 56, 6-7.	0.6	2
1336	RNA extraction, probe preparation, and competitive hybridization for transcriptional profiling using Neurospora crassa long-oligomer DNA microarrays. Fungal Genetics Reports, 2008, 55, 18-28.	0.6	14
CITATION REPORT

#	Article	IF	CITATIONS
1337	Detection of physical interactions by immunoprecipitation of FLAG- and HA-tagged proteins expressed at the his-3 locus in Neurospora crassa. Fungal Genetics Reports, 2007, 54, 5-8.	0.6	9
1338	Complementation of un-16 and the development of a selectable marker for transformation of Neurospora crassa. Fungal Genetics Reports, 2007, 54, 9-11.	0.6	4
1339	Wild type Neurospora crassa strains preferred for use as standards. Fungal Genetics Reports, 2004, 51, 7-8.	0.6	3
1340	RNAi technology targeting Pb <i>GP</i> 43 and Pb <i>P</i> 27 in <i>Paracoccidioides brasiliensis</i> . Open Journal of Genetics, 2013, 03, 1-8.	0.1	2
1341	The <i> Neurospora crassa cmd, trm-9, and nca-2 </i> Genes Play a Role in Growth, Development, and Survival in Stress conditions. Genomics and Applied Biology, 0, , .	0.0	4
1342	Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in Aspergillus and Neurospora crassa. Plant Pathology Journal, 2013, 29, 234-241.	0.7	3
1343	Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology. Mass Spectrometry Letters, 2013, 4, 1-9.	0.5	8
1344	Novel Approaches to Improve Cellulase Biosynthesis for Biofuel Production – Adjusting Signal Transduction Pathways in the Biotechnological Workhorse Trichoderma reesei. , 0, , .		7
1345	Genome-wide expression analysis of genetic networks in Neurospora crassa. Bioinformation, 2007, 1, 390-395.	0.2	4
1346	Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. ELife, 2015, 4, .	2.8	71
1347	Identification and analyses of the chemical composition of a naturally occurring albino mutant chanterelle. Scientific Reports, 2021, 11, 20590.	1.6	5
1348	Comparative Genomics and Transcriptomics Depict Marine Algicolous Arthrinium Species as Endosymbionts That Help Regulate Oxidative Stress in Brown Algae. Frontiers in Marine Science, 2021, 8, .	1.2	4
1349	CRISPR/Cas9-mediated genome editing directed by a 5S rRNA–tRNAGly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. Biotechnology for Biofuels, 2021, 14, 206.	6.2	4
1350	Assessing the Biodegradation of Vulcanised Rubber Particles by Fungi Using Genetic, Molecular and Surface Analysis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761510.	2.0	3
1351	Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech, 2021, 11, 475.	1.1	3
1353	Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection. Journal of Fungi (Basel, Switzerland), 2021, 7, 864.	1.5	1
1354	Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Applied and Environmental Microbiology, 2021, 87, e0165221.	1.4	15
1355	Functional Genomics in Fungi. , 2004, , 115-128.		0

#	Article	IF	CITATIONS
1356	Genome Defense and DNA Methylation in Neurospora. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 1-6.	2.0	0
1357	Genomics of Filamentous Fungi. , 2004, , 15-29.		0
1358	Another inconsistency in the pedigree of the Oak Ridge wild types of Neurospora crassa. Fungal Genetics Reports, 2004, 51, 9-11.	0.6	1
1359	Comparative genomics and disorder prediction identify biologically relevant SH3 protein interactions. PLoS Computational Biology, 2005, preprint, e26.	1.5	0
1360	Genomics of Plant Pathogenic Microbes Journal of the Japanese Forest Society, 2005, 87, 251-260.	0.1	0
1361	Genomic analyses and their applications in Fusarium graminearum. Mycotoxins, 2005, 55, 65-71.	0.2	1
1362	High throughput mating tests in Neurospora crassa. Fungal Genetics Reports, 2006, 53, 20-22.	0.6	0
1363	Prospecting for Novel Enzyme Activities and Their Genes in Filamentous Fungi from Extreme Environments. , 2009, , 219-241.		0
1364	Bioinformatics of Seven-Transmembrane Receptors in Plant Genomes. Signaling and Communication in Plants, 2010, , 251-277.	0.5	0
1366	Genomic Approaches for Identification of the Biopolymer Degrading Enzyme Network of Aspergillus niger. , 2011, , 407-424.		0
1367	Genetic Dissection of PARylation in the Filamentous Fungus Neurospora crassa. Methods in Molecular Biology, 2011, 780, 427-441.	0.4	0
1368	Genomes and metagenomes of microbes and viruses. , 2011, , 177-194.		0
1369	Symbiosis and microbes. , 2011, , 257-276.		0
1370	Community structure of microbes in natural environments. , 2011, , 157-176.		0
1371	Physical-chemical environment of microbes. , 2011, , 35-54.		0
1372	Introduction to geomicrobiology. , 2011, , 237-256.		0
1373	Predation and protists. , 2011, , 117-136.		0
1375	Processes in anoxic environments. , 2011, , 195-216.		0

CITATION REPORT

ARTICLE IF CITATIONS The nitrogen cycle., 2011, , 217-236. 0 1376 Modelling spatio-temporal dynamics of circadian rythms in Neurospora crassa. Computer Research 1377 0.2 9 and Modeling, 2011, 3, 191-213. 1378 Methods in Fungal Genetics. Soil Biology, 2013, , 351-380. 0.6 0 Energy Efficient Systems of Artificial Lighting in Technologies of Edible and Medicinal Mushroom 1379 0.2 Cultivation. Nauka Ta Innovacii, 2013, 9, 46-56. Alternaria Comparative Genomics: The Secret Life of Rots., 2014, , 45-63. 1380 3 Genomic Perspectives on the Fungal Kingdom., 0,, 657-666. Studying Fungal Virulence by Using Genomics., 0,, 589-P1. 1382 1 Recombination and Gene Targeting in Neurospora. Fungal Biology, 2015, , 255-262. 0.3 1384 Quantitative Analyses Using Video Bioinformatics and Image Analysis Tools During Growth and 1385 0.1 0 Development in the Multicellular Fungus Neurospora crassa. Computational Biology, 2015, , 237-250. A Carbohydrate Hydrolysis Enzymes encoding Genes in Neurospora crassa. Journal of Advances in 0.1 Biotechnology, 2016, 5, 711-727. A Role of Calcium Signaling Genes in Heterokaryon Incompatibility in Neurospora crassa. 1387 0.4 1 International Journal of Applied Sciences and Biotechnology, 2015, 3, 668-679. Aspergillus nidulans: A Model for Study of Form and Asexual Reproduction., 2016, , 227-236. 1389 Whole Genome Analysis of Fungi. Journal of Bacteriology & Mycology Open Access, 2016, 2, . 1390 0.2 0 A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi., 0, , 571-597. 1394 Protesta en PatzicÃa. Los pueblos de indios y la vacatio regis en el reino de Guatemala. 1398 0.2 0 Revista De Indias, 2018, 78, 147. Neurospora Genetic Backgrounds Differ in Meiotic Silencing by Unpaired DNA (MSUD) Strength: 1402 Implications for Dp-Mediated Suppression of Repeat-Induced Point Mutation (RIP). , 2019, , 215-226. 1 Chromatin Structure and Function in Neurospora crassa., 2020, , 3-24. 1406 1 partial photoreactivation defect phenotype is not due to unrepaired ultraviolet-induced pyrimidine 1411 dimers in ultraviolet-sensitive mutants of <i>Neurospora crassa</i>. Genes and Genetic Systems, 2020,

CITATION REPORT

75

95, 281-289

#	Article	IF	CITATIONS
1412	Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in <i>Cryphonectria parasitica</i> . G3: Genes, Genomes, Genetics, 2021, 11, 1-13.	0.8	4
1413	Growth, cultural and morphological characteristics of strains of Laetiporus sulphureus (Polyporales, Basidiomycota) under the influence of laser irradiation. Ukrainian Botanical Journal, 2020, 77, 472-479.	0.1	0
1414	Comparative Analysis of Carbohydrate Active Enzymes in the Flammulina velutipes var. lupinicola Genome. Microorganisms, 2021, 9, 20.	1.6	3
1415	Genome Mining in Fungi. , 2020, , 34-49.		0
1416	Meeting a Challenge: A View on Studying Transcriptional Control of Genes Involved in Plant Biomass Degradation in Aspergillus niger. Grand Challenges in Biology and Biotechnology, 2020, , 211-235.	2.4	1
1417	12 Exploiting Fungal Photobiology as a Source of Novel Bio-blocks for Optogenetic Systems. , 2020, , 297-318.		0
1418	G-protein-coupled Receptors in Fungi. Fungal Biology, 2020, , 37-126.	0.3	7
1419	9 FungalÂGenomics. , 2020, , 207-224.		0
1424	Advances in Microbial Applications in Safeguarding of Plant Health: Challenges and Future Perspective. , 2021, , 547-562.		1
1425	Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. Journal of Fungi (Basel, Switzerland), 2022, 8, 90.	1.5	4
1426	A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. PLoS ONE, 2022, 17, e0263496.	1.1	8
1427	Characterizing the gene–environment interaction underlying natural morphological variation in <i>Neurospora crassa</i> conidiophores using high-throughput phenomics and transcriptomics. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	2
1428	Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). ELife, 2022, 11, .	2.8	18
1429	The genome organization of <i>Neurospora crassa</i> at high resolution uncovers principles of fungal chromosome topology. G3: Genes, Genomes, Genetics, 2022, , .	0.8	11
1430	Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Current Genetics, 2022, 68, 505-514.	0.8	3
1432	Wavelengths and irradiances modulate the circadian rhythm of Neurospora crassa. PLoS ONE, 2022, 17, e0266266.	1.1	1
1433	Diversity of biologically active secondary metabolites in the ascomycete order Sordariales. Mycological Progress, 2022, 21, 1.	0.5	8
1434	Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: A genome-wide comparative study of the fungal lignocellulolytic system. Gene, 2022, 822, 146345.	1.0	6

#	Article	IF	Citations
1435	Exploring the resistome, virulome, mobilome and microbiome along pork production chain using metagenomics. International Journal of Food Microbiology, 2022, 371, 109674.	2.1	4
1436	Marine Fungi. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 243-295.	0.2	4
1437	Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions. Journal of Fungi (Basel, Switzerland), 2022, 8, 404.	1.5	4
1438	BLUE LIGHT PHOTORECEPTORS -BEYOND PHOTOTROPINS AND CRYPTOCHROMES., 2006, 253-277.		Ο
1459	Ergothioneine, Ovothiol A, and Selenoneine—Histidine-Derived, Biologically Significant, Trace Global Alkaloids. Molecules, 2022, 27, 2673.	1.7	9
1460	Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins, 2022, 14, 317.	1.5	7
1461	Uncovering in vivo biochemical patterns from time-series metabolic dynamics. PLoS ONE, 2022, 17, e0268394.	1.1	3
1462	Transcriptional Divergence Underpinning Sexual Development in the Fungal Class Sordariomycetes. MBio, 2022, 13, .	1.8	4
1464	Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. MSystems, 2022, 7, .	1.7	2
1470	Cytokinin production and sensing in fungi. Microbiological Research, 2022, 262, 127103.	2.5	6
1472	Neurospora crassa is a potential source of anti-cancer agents against breast cancer. Breast Cancer, 2022, 29, 1032-1041.	1.3	2
1473	Nuclear-specific gene expression in heterokaryons of the filamentous ascomycete <i>Neurospora tetrasperma</i> . Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	1
1475	Safety evaluation of Neurospora crassa mycoprotein for use as a novel meat alternative and enhancer. Food and Chemical Toxicology, 2022, 168, 113342.	1.8	6
1476	Glucuronoyl esterase facilitates biomass degradation in <i>Neurospora crassa</i> by upregulating the expression of plant biomass-degrading enzymes. Journal of General and Applied Microbiology, 2022, 68, 278-286.	0.4	0
1477	Meiotic crossover interference: Methods of analysis and mechanisms of action. Current Topics in Developmental Biology, 2023, , 217-244.	1.0	2
1478	Regulation of Hsp80 involved in the acquisition of induced thermotolerance, and NCA-2 involved in calcium stress tolerance by the calcineurin-CRZ-1 signaling pathway in Neurospora crassa. Mycological Progress, 2022, 21, .	0.5	1
1479	Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control, 2023, 145, 109469.	2.8	9
1480	Genotoxicity, acute, and subchronic toxicity evaluation of dried <i>Neurospora crassa</i> protein-rich biomass. Toxicology Research, 2022, 11, 1003-1017.	0.9	1

CITATION REPORT

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1481	Epigenetic Regulation of Fungal Genes Involved in Plant Colonization. , 2023, , 255-281.		0
1482	Chitosan-modified fluorescent dye for simple, fast, and in-situ measurement of fungal cell growth in the presence of insoluble compounds. FEMS Microbiology Letters, 0, , .	0.7	0
1483	Flavofun: Exploration of fungal flavoproteomes. Frontiers in Catalysis, 0, 2, .	1.8	0
1484	The Botrytis cinerea Gene Expression Browser. Journal of Fungi (Basel, Switzerland), 2023, 9, 84.	1.5	0
1485	The genome of <i>Lyophyllum shimeji</i> provides insight into the initial evolution of ectomycorrhizal fungal genomes. DNA Research, 2023, 30, .	1.5	1
1486	Do mitochondria use efflux pumps to protect their ribosomes from antibiotics?. Microbiology (United) Tj ETQq1	1 0,78431 0.7	l4 rgBT /Ove
1487	Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genetics, 2023, 19, e1010347.	1.5	3
1489	Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. Journal of Fungi (Basel, Switzerland), 2023, 9, 359.	1.5	1
1490	Divergent Evolution of Early Terrestrial Fungi Reveals the Evolution of Mucormycosis Pathogenicity Factors. Genome Biology and Evolution, 2023, 15, .	1.1	7
1491	Characterization and Genome Analysis of Cladobotryum mycophilum, the Causal Agent of Cobweb Disease of Morchella sextelata in China. Journal of Fungi (Basel, Switzerland), 2023, 9, 411.	1.5	1
1493	An in Silico Approach to Identifying TF Binding Sites: Analysis of the Regulatory Regions of BUSCO Genes from Fungal Species in the Ceratocystidaceae Family. Genes, 2023, 14, 848.	1.0	0
1494	Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells, 2023, 12, 1063.	1.8	21
1495	Epigenetic Approaches to Natural Product Synthesis in Fungi. , 2012, , 198-217.		0
1528	Neurospora crassa. , 2024, , .		0