Development and optimisation of biosensors based on p and cholinesterases for sensitive detection of solanaceo

Biosensors and Bioelectronics 18, 1047-1053 DOI: 10.1016/s0956-5663(02)00222-1

Citation Report

#	Article	IF	CITATIONS
1	Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Analytical and Bioanalytical Chemistry, 2003, 377, 496-506.	1.9	75
3	Enzyme Biosensor for Tomatine Detection in Tomatoes. Analytical Letters, 2004, 37, 1611-1624.	1.0	25
4	Potato glycoalkaloids: true safety or false sense of security?. Trends in Biotechnology, 2004, 22, 147-151.	4.9	95
5	Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes. Sensors and Actuators B: Chemical, 2004, 103, 416-422.	4.0	24
6	Potentiometric Biosensors Based on ISFETs and Immobilized Cholinesterases. Electroanalysis, 2004, 16, 1873-1882.	1.5	41
7	Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon) Tj ETQq1 1 143-155.	0.784314 1.8	ł rgBT /Over 158
8	Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETsâ~†. Talanta, 2005, 66, 28-33.	2.9	30
9	Sensitivity and Specificity Improvement of an Ion Sensitive Field Effect Transistors-Based Biosensor for Potato Glycoalkaloids Detection. Journal of Agricultural and Food Chemistry, 2006, 54, 707-712.	2.4	17
10	Modification/oxidation of GaAs surface in electrolytes for cell-culture bio-sensing devices. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2287-2293.	0.8	10
11	Enzyme biosensors based on ion-selective field-effect transistors. Analytica Chimica Acta, 2006, 568, 248-258.	2.6	117
12	Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 2006, 21, 1405-1423.	5.3	528
13	Development of trypsin biosensor based on ion sensitive field-effect transistors for proteins determination. Materials Science and Engineering C, 2006, 26, 369-373.	3.8	20
14	Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pesticide Biochemistry and Physiology, 2006, 86, 203-210.	1.6	25
15	Nonfaradaic Impedance Probing of Potato Glycoalkaloids Interaction with Butyrylcholinesterase Immobilized onto Gold Electrode. Electroanalysis, 2006, 18, 1950-1956.	1.5	9
16	The passivation/modification of AlGaAs/GaAs surfaces by amorphous TiO2 for the bio-sensing use in electrolytes. Surface Science, 2007, 601, 4536-4540.	0.8	5
17	The surface of TiO2 gate of 2DEG-FET in contact with electrolytes for bio sensing use. Applied Surface Science, 2007, 254, 36-39.	3.1	6
18	AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements. Biosensors and Bioelectronics, 2007, 23, 513-519.	5.3	25
19	Contact angle and biocompatibility of solâ€gel prepared TiO ₂ thin films for their use as semiconductorâ€based cellâ€viability sensors. Surface and Interface Analysis, 2008, <u>40, 579-583.</u>	0.8	20

CITATION REPORT

#	Article	IF	CITATIONS
20	Potato glycoalkaloids: formation and strategies for mitigation. Journal of the Science of Food and Agriculture, 2008, 88, 1869-1881.	1.7	59
21	Biosensors for assay of glycoalkaloids in potato tubers. Applied Biochemistry and Microbiology, 2008, 44, 314-318.	0.3	14
22	Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 164-178.	0.7	22
23	Reversible Enzyme Inhibition–Based Biosensors: Applications and Analytical Improvement Through Diagnostic Inhibition. Analytical Letters, 2009, 42, 1258-1293.	1.0	40
24	Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochimica Acta, 2010, 170, 193-214.	2.5	140
25	History and New Developments of Assays for Cholinesterase Activity and Inhibition. Chemical Reviews, 2010, 110, 5216-5234.	23.0	227
26	Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochemistry International, 2012, 61, 783-797.	1.9	72
27	Biosensors. A quarter of a century of R&D experience. Biopolymers and Cell, 2013, 29, 188-206.	0.1	27
28	Healthy and Adverse Effects of Plant-Derived Functional Metabolites: The Need of Revealing their Content and Bioactivity in a Complex Food Matrix. Critical Reviews in Food Science and Nutrition, 2013, 53, 198-213.	5.4	58
29	Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity. International Journal of Molecular Sciences, 2014, 15, 9809-9825.	1.8	186
30	Urease-based ISFET biosensor for arginine determination. Talanta, 2014, 121, 18-23.	2.9	35
31	Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 2015, 854, 161-168.	2.6	33
32	Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, 2015, 69, .	1.0	23
33	MOLECULAR DOCKING STUDIES ON THE THERAPEUTIC TARGETS OF ALZHEIMER'S DISEASE (AChE AND BChE) USING NATURAL BIOACTIVE ALKALOIDS. International Journal of Pharmacy and Pharmaceutical Sciences, 2016, 8, 108.	0.3	4
34	Engineered nanomaterials in plants: Sensors, carriers, and bio-imaging. Comprehensive Analytical Chemistry, 2019, , 133-157.	0.7	3
35	Electrochemical non-enzymatic sensing of glycoside toxins by boronic acid functionalized nano-composites on screen-printed electrode. Sensors and Actuators B: Chemical, 2021, 329, 129197.	4.0	14
36	Biosensors for Fruit and Vegetable Processing. , 2010, , 313-340.		1
37	An update of therapeutic potential and bioanalytical aspects of steroidal glycoalkaloid (solanidine). Journal of Coastal Life Medicine, 2017, 5, 134-140.	0.2	6

CITATION REPORT

#	Article	IF	CITATIONS
38	Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini-Reviews in Medicinal Chemistry, 2020, 20, 703-715.	1.1	68
39	Biosensors based on ion-selective field effect transistors: theory, technology, practice. Biopolymers and Cell, 2004, 20, 7-16.	0.1	3
40	Potato glycoalkaloids detection based on conductometric sensor coupled to butyryl cholinesterase. Biopolymers and Cell, 2004, 20, 331-336.	0.1	1
41	Optimization of multibiosensor operation for inhibitory analysis of toxins. Biopolymers and Cell, 2008, 24, 494-502.	0.1	4
42	Inhibition of immobilized acetylcholinesterase by aflatoxin B1 in a potentiometric biosensor. Biopolymers and Cell, 2016, 32, 271-278.	0.1	3
43	Potentiometric biosensor for detection of potato glycoalcaloids: control of its analytical characteristics, comparison with thin-layer chromatography. Biopolymers and Cell, 2005, 21, 275-282.	0.1	1
44	INVESTIGATION OF POSSIBILITIES OF APPLICATION OF POTENTIOMETRIC BIOSENSORS FOR GLUCOSE ANALYSIS IN BLOOD. Sensor Electronics and Microsystem Technologies, 2014, 6, 42-49.	0.1	0
45	Mercaptobenzothiazole-on-Gold Organic Phase Biosensor Systems: 3. Thick-Film Biosensors for Organophosphate and Carbamate Pesticide Determination. , 0, , .		0
46	OPTIMIZATION OF PROCEDURE OF SEPARATE BIOSENSOR DETECTION OF AFLATOXINS AND PESTICIDES. Sensor Electronics and Microsystem Technologies, 2016, 13, 61-72.	0.1	0
47	Identification of parameters and investigation of stability of the mathematical model biosensor for measuring α-chaconine. Scientific Journal of the Ternopil National Technical University, 2019, 96, 101-111.	0.0	0
48	Potato Glycoalkaloids. , 2020, , 191-211.		3
49	Transistor-based plant sensors for agriculture 4.0 measurements. , 2021, , .		3
50	Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. Sensors, 2022, 22, 4178.	2.1	21
51	Phytochemical and pharmacological studies on Solanum lyratum: a review. Natural Products and Bioprospecting, 2022, 12, .	2.0	0
52	Practical application of electrochemical enzyme biosensors. Biopolymers and Cell, 2022, 38, 71-92.	0.1	1