The morphology and crystallography of lath martensite

Acta Materialia 51, 1789-1799 DOI: 10.1016/s1359-6454(02)00577-3

Citation Report

#	Article	IF	CITATIONS
1	TEM Characterization of Microcrack Trajectory in Structural Steels. Key Engineering Materials, 2003, 251-252, 73-78.	0.4	3
2	Multiphase Crystallography in the Nucleation of Intragranular Ferrite on MnS+V(C,N) Complex Precipitate in Austenite. ISIJ International, 2003, 43, 2028-2037.	0.6	104
3	Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys. ISIJ International, 2003, 43, 1475-1477.	0.6	306
4	High-resolution transmission electron microscopy study of crystallography and morphology of TiC precipitates in tempered steel. Philosophical Magazine, 2004, 84, 1735-1751.	0.7	68
5	Dislocation–grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. Journal of Materials Research, 2004, 19, 3626-3632.	1.2	127
6	A new method for the investigation of orientation relationships in meteoritic plessite. Crystal Research and Technology, 2004, 39, 343-352.	0.6	31
7	Plastic flow of martensitic model alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 16-21.	2.6	13
8	Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel. Acta Materialia, 2004, 52, 2337-2348.	3.8	274
9	Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants. International Journal of Materials Research, 2004, 95, 744-755.	0.8	46
10	Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels. ISIJ International, 2005, 45, 91-94.	0.6	247
11	On the strain-hardening of tempered martensitic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 234-240.	2.6	15
12	Crystallographic analysis of grain boundary Bcc-precipitates in a Ni–Cr alloy by FESEM/EBSD and TEM/Kikuchi line methods. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 412, 252-263.	2.6	23
13	Crystallography of [011]/54.7� lath boundary and cementite in tempered 0.2C steel. Acta Materialia, 2005, 53, 2419-2429.	3.8	14
14	Crystallographic analysis of plate martensite in Fe–28.5 at.% Ni by FE-SEM/EBSD. Materials Characterization, 2005, 54, 378-386.	1.9	146
15	Local orientation change inside lenticular martensite plate in Fe–33Ni alloy. Scripta Materialia, 2005, 53, 597-602.	2.6	95
16	Dynamic recrystallization by rapid heating followed by compression for a 17Ni–0.2C martensite steel. Scripta Materialia, 2005, 53, 1471-1476.	2.6	39
17	A Study of the Î ³ -to-α Transformation Using EBSD Techniques. Materials Science Forum, 2005, 495-497, 1201-1206.	0.3	3
18	Apparent Morphologies and Nature of Packet Martensite in High Carbon Steels. Journal of Iron and Steel Research International, 2006, 13, 40-46.	1.4	8

#	Article	IF	CITATIONS
19	A New Approach for Interpretation of Strengthening Mechanism of Martensitic Steel through Characterization of Local Deformation Behavior. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 295-310.	0.1	8
20	Groupoid of orientational variants. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, 21-40.	0.3	82
21	Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006, 54, 1279-1288.	3.8	781
22	Crystallographic relations between face- and body-centred cubic crystals formed under near-equilibrium conditions: Observations from the Gibeon meteorite. Acta Materialia, 2006, 54, 1323-1334.	3.8	48
23	Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel. Acta Materialia, 2006, 54, 5409-5419.	3.8	134
24	The morphology and crystallography of lath martensite in alloy steels. Acta Materialia, 2006, 54, 5323-5331.	3.8	660
25	Crystallography of lath martensite and lower bainite in alloy steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 149-152.	2.6	18
26	Effect of block size on the strength of lath martensite in low carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 237-240.	2.6	514
27	Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 140-144.	2.6	52
28	Crystallography of upper bainite in Fe–Ni–C alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 431, 228-236.	2.6	157
29	Modeling Cu precipitation in tempered martensitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 422, 232-240.	2.6	21
30	Influence of austenitizing temperature on apparent morphologies of as-quenched microstructures of steels. Central South University, 2006, 13, 122-129.	0.5	3
31	Reconstruction of parent grains from EBSD data. Materials Characterization, 2006, 57, 386-401.	1.9	185
32	Improved determination of fcc/bcc orientation relationships by use of high-indexed pole figures. Crystal Research and Technology, 2006, 41, 72-77.	0.6	36
33	Indentation-Induced Deformation Behavior in Martensitic Steel Observed through In Situ Nanoindentation in a Transmission Electron Microscopy. Materials Science Forum, 2006, 503-504, 239-244.	0.3	3
34	Martensitic transformation and magnetic properties of Fe–24·5%Ni–4·5%Si alloy. Materials Science and Technology, 2007, 23, 975-979.	0.8	4
35	Microstructure Refinement of a Low Interstitial Ferritic Stainless Steel by Cold Rolling and Annealing of Martensite. Materials Science Forum, 2007, 558-559, 113-118.	0.3	0
36	Formation of (Ferrite+Cementite) Microduplex Structure by Warm Deformation in High Carbon Steels. Materials Science Forum, 2007, 539-543, 155-160.	0.3	11

#	Article	IF	CITATIONS
37	Comparison of Deformation Structure of Lath Martensite in Low Carbon and Ultra-Low Carbon Steels. Materials Science Forum, 2007, 558-559, 933-938.	0.3	15
38	Formation of Ultrafine Grained Ferrite by Warm Deformation of Tempered Lath Martensite in Low Alloy Steels. Materials Science Forum, 2007, 558-559, 557-562.	0.3	9
39	鋼ã®ãƒ™ã,¤fŠã,¤f^ã•ããø®å•¥æ¥çš"é‡è¦œ€§. Materia Japan, 2007, 46, 321-326.	0.1	11
40	Variant Selection of Reversed Austenite in Lath Martensite. ISIJ International, 2007, 47, 1527-1532.	0.6	135
41	Application of electron backscatter diffraction to the study of phase transformations. International Materials Reviews, 2007, 52, 65-128.	9.4	90
42	Development of Variant Analysis Program by Using EBSD Data. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2007, 93, 591-599.	0.1	14
43	A Study of the Quenching Structures of Fe-B-C Alloy. Materialwissenschaft Und Werkstofftechnik, 2007, 38, 299-302.	0.5	3
44	Martensite laths in creep resistant martensitic 9–12% Cr steels — Calculation and measurement of misorientations. Materials Characterization, 2007, 58, 874-882.	1.9	42
45	Thermally induced martensite properties in Fe–29%Ni–2%Mn alloy. Materials Letters, 2007, 61, 3315-3318.	1.3	13
46	The effect of austenitizing time on martensite morphologies and magnetic properties of martensite in Fe–24.5%Ni–4.5%Si alloy. Journal of Materials Science, 2007, 42, 6102-6107.	1.7	11
47	Simulation of radial forging conditions by third hits hot compression tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 258-265.	2.6	11
48	Transmission Electron Microscopy and Nanoindentation Study of the Weld Zone Microstructure of Diode-Laser-Joined Automotive Transformation-Induced Plasticity Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 593-603.	1.1	14
49	Variant Selection in Grain Boundary Nucleation of Upper Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1003-1013.	1.1	97
50	Microstructural analysis on a creep resistant martensitic 9–12% Cr steel using the EBSD method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 466-470.	2.6	29
51	The extent and mechanism of nanostructure formation during cold rolling and aging of lath martensite in alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 544-549.	2.6	25
52	Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Materialia, 2008, 58, 492-495.	2.6	347
53	Formation of ultrafine grained ferrite by warm deformation of lath martensite in low-alloy steels with different carbon content. Scripta Materialia, 2008, 59, 279-281.	2.6	42
54	Effect of homogenization temperature on the martensitic transformation kinetics in a Fe–32%Ni–0.4%Cr alloy. Materials Characterization, 2008, 59, 498-502.	1.9	7

#	Article	IF	CITATIONS
55	Some characteristics of thermally induced martensite in Fe–30%Ni–3.6%Mo alloy. Materials Characterization, 2008, 59, 769-772.	1.9	3
56	Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel. Science, 2008, 320, 1057-1060.	6.0	330
57	Deformation induced martensite characteristics in Fe–29Ni–2Mn alloy. Materials Science and Technology, 2008, 24, 1204-1208.	0.8	10
58	Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. International Journal of Materials Research, 2008, 99, 1248-1255.	0.1	16
59	Influence of Heat Treatment on Structures and Mechanical Properties of Cast Fe-B-C Alloy. Advanced Materials Research, 2008, 33-37, 459-462.	0.3	0
60	Fusion Zone Microstructure Evolution of Al-Alloyed TRIP Steel in Diode Laser Welding. Materials Transactions, 2008, 49, 746-753.	0.4	20
61	Characterization of the Microstructure, Crystallographic Texture and Segregation of an As ast Duplex Stainless Steel Slab. Steel Research International, 2008, 79, 482-488.	1.0	30
62	Phase Transformation from Fine-grained Austenite. ISIJ International, 2008, 48, 1038-1045.	0.6	131
63	Heterogeneous Deformation Behavior Studied by in Situ Neutron Diffraction during Tensile Deformation for Ferrite, Martensite and Pearlite Steels. ISIJ International, 2008, 48, 525-530.	0.6	49
64	Comments on the Microstructure and Properties of Ultrafine Grained Steel. ISIJ International, 2008, 48, 1063-1070.	0.6	49
65	Hierarchical Characterization by EBSD and Neutron Diffraction on Heterogeneous Deformation Behavior of a Martensitic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2008, 94, 313-320.	0.1	28
66	<i>In-situ</i> Observation of Butterfly-type Martensite in Fe–30mass%Ni Alloy during Tensile Test Using High-resolution EBSD. ISIJ International, 2009, 49, 1784-1791.	0.6	6
67	Modeling of Lath Martensitic Microstructures and Failure Evolution in Steel Alloys. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	0.8	10
68	Ferrite to austenite reverse transformation process in B containing 9%Cr heat resistant steel HAZ. Science and Technology of Welding and Joining, 2009, 14, 698-707.	1.5	33
69	Dislocation density crystalline plasticity modeling of lath martensitic microstructures in steel alloys. Philosophical Magazine, 2009, 89, 3087-3109.	0.7	41
70	Crystallographic analysis of nanobainitic steels. Scripta Materialia, 2009, 60, 455-458.	2.6	81
71	Morphological and crystallographic evolution of bainite transformation in Feâ€0.15C binary alloy. Microscopy Research and Technique, 2010, 73, 67-70.	1.2	4
72	Shear pipe effects and dynamic shear-strain localization in martensitic steels. Acta Materialia, 2009, 57, 4558-4567.	3.8	28

#	Article	IF	CITATIONS
73	Application of electron backscatter diffraction to the study of phase transformations: present and possible future. Journal of Microscopy, 2009, 233, 460-473.	0.8	20
74	Characterization of martensite in Fe–25%Ni–15%Co–5%Mo alloy. Journal of Physics and Chemistry of Solids, 2009, 70, 1226-1229.	1.9	10
75	Cross-sectional analysis of the graded microstructure in an AISI D2-steel treated with low energy high-current pulsed electron beam. Applied Surface Science, 2009, 255, 4758-4764.	3.1	56
76	A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia, 2009, 57, 1931-1937.	3.8	65
77	Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation. Acta Materialia, 2009, 57, 5283-5291.	3.8	84
78	EBSD法ã,'æ′»ç"¨ã⊷ãŸå…^進的解æžã«ãŠãʿã,‹ç•™æ"ç,¹. Keikinzoku/Journal of Japan Institute of Light Metals,	2009, 59,	6&9-696.
79	Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel. Materials Transactions, 2009, 50, 1919-1923.	0.4	100
80	Comparison of damage development depending on the local microstructure in low alloyed Al-TRIP-steels, IF steel and a DP steel. International Journal of Materials Research, 2009, 100, 584-593.	0.1	8
81	Morphology of the creep crack tip in P92 steel and its relation to microstructure. Journal of Physics: Conference Series, 2010, 240, 012076.	0.3	4
82	Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels. Acta Materialia, 2010, 58, 895-903.	3.8	146
83	Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7538-7544.	2.6	164
84	Bainite Transformation in Deformed Austenite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1448-1459.	1.1	39
85	Ultrahigh strength of nanocrystalline iron-based alloys produced by high-pressure torsion. Journal of Materials Science, 2010, 45, 4745-4753.	1.7	8
86	Microstructure and mechanical property of the fusion boundary region in an Alloy 182-low alloy steel dissimilar weld joint. Journal of Materials Science, 2010, 45, 5332-5338.	1.7	57
87	New Routes for Fabricating Ultrafineâ€Grained Microstructures in Bulky Steels without Veryâ€High Strains. Advanced Engineering Materials, 2010, 12, 701-707.	1.6	18
88	An approach to define the effective lath size controlling yield strength of bainite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6614-6619.	2.6	80
89	Dynamic shear–strain localization and inclusion effects in lath martensitic steels subjected to high pressure loads. Journal of the Mechanics and Physics of Solids, 2010, 58, 1057-1072.	2.3	26
90	Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3442-3449.	2.6	204

#	Article	IF	CITATIONS
91	Microstructural and alloy influence on the low-temperature strengthening behavior of commercial steels used as plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5143-5152.	2.6	10
92	A crystallographic model of fcc/bcc martensitic nucleation and growth. Acta Materialia, 2010, 58, 1599-1606.	3.8	7
93	Characterization of microstructural strengthening in the heat-affected zone of a blast-resistant naval steel. Acta Materialia, 2010, 58, 5596-5609.	3.8	59
94	Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Materialia, 2010, 58, 6393-6403.	3.8	233
95	In-Situ Observation of Martensite Transformation of Low Carbon High Alloy Steel Using High Temperature Laser Scanning Confocal Microscopy and X-ray Diffraction by Synchrotron Radiation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 64-69.	0.1	5
96	Effect of Cooling Rate on Morphology and Crystallography of Lath Martensite in Fe-Ni Alloys. Materials Science Forum, 0, 638-642, 1459-1463.	0.3	17
97	Grain-Refining Mechanism of Heavy Cold-Rolling of Lath Martensite. Advanced Materials Research, 0, 148-149, 1701-1704.	0.3	0
98	Direct Observation of the Change in Microstructure with Deformation in Ferrous Lath Martensite by Using Micro-Sized Specimen. Materials Science Forum, 2010, 638-642, 3514-3519.	0.3	1
99	Effect of Substructure on Toughness of Lath Martensite/Bainite Mixed Structure in Low-Carbon Steels. Journal of Iron and Steel Research International, 2010, 17, 40-48.	1.4	78
100	Key Factors in Grain Refinement of Martensite and Bainite. Materials Science Forum, 0, 638-642, 3044-3049.	0.3	23
101	Variant Selection of Low Carbon High Alloy Steel within an Austenite Grain during Martensite Transformation. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2011, 97, 399-405.	0.1	5
102	On the Ductile-Brittle Transition in Lath Martensitic Steel. ISIJ International, 2011, 51, 1569-1575.	0.6	126
103	Development of Ultrafine Lamellar Ferrite and Austenite Duplex Structure in 0.2C5Mn Steel during ART-annealing. ISIJ International, 2011, 51, 651-656.	0.6	110
104	Effect of initial microstructure on ultrafine grain formation through warm deformation in medium-carbon steels. Scripta Materialia, 2011, 65, 404-407.	2.6	24
105	Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels. International Journal of Plasticity, 2011, 27, 1803-1816.	4.1	72
106	Combustion synthesis and characterization of Fe-Ni alloys. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 134-139.	0.2	2
107	Relation between microstructures of martensite and prior austenite in 12Âwt% Cr ferritic steel. Journal of Materials Science, 2011, 46, 4261-4269.	1.7	10
108	Isothermal Transformation of a CMnSi Steel Below the MS Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1575-1585.	1.1	37

#	Article	IF	CITATIONS
109	Spontaneous and Deformationâ€Induced Martensite in Austenitic Stainless Steels with Different Stability. Steel Research International, 2011, 82, 337-345.	1.0	32
110	Effects of carbon content on the formation of nano/ultrafine grained low-carbon steel treated by martensite process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5754-5758.	2.6	20
111	Microstructure and Mechanical Properties of ULCB Steels Affected by Advanced TMCP Technology. Materials Science Forum, 0, 689, 289-295.	0.3	0
112	Effects of Transformation Temperature on Variant Grouping of Bainitic Ferrite in Low Carbon Steel. Solid State Phenomena, 0, 172-174, 155-160.	0.3	3
113	Microstructural Modeling of Failure Modes in Martensitic Steel Alloys. Materials Research Society Symposia Proceedings, 2011, 1296, 1.	0.1	8
114	Microstructural and Crystallographic Characteristics of Deformation-Induced Martensite Formed in Cold-Drawn 316 Type Stainless Steel. Solid State Phenomena, 0, 172-174, 99-104.	0.3	1
115	Micromechanical Modelling of Microtexture Formation in Low Alloy Steel Bainite. Solid State Phenomena, 0, 172-174, 1228-1233.	0.3	0
116	Restitution of Prior-Austenite Grain Orientation by Microtexture Analysis of Tempered Martensite Structure in 9Cr-1Mo Ferritic Steel. Materials Science Forum, 0, 702-703, 880-883.	0.3	3
117	Effect of the Metallurgical State of Austenite on the Microtexture Properties of the Bainitic Transformation in a Low Alloy Steel. Solid State Phenomena, 0, 172-174, 772-777.	0.3	3
118	Formation mechanism of the hierarchic structure in the lath martensite phase in steels. Philosophical Magazine, 2011, 91, 4495-4513.	0.7	30
119	Phase Transformation Behavior and Microstructure Characterization of 9Ni Cryogenic Steel. Advanced Materials Research, 0, 472-475, 1183-1187.	0.3	1
120	The Influence of Austenitization Temperature on the Mechanical Properties of a Prehardened Mould Steel. Materials Science Forum, 0, 706-709, 2140-2145.	0.3	13
121	Carbide-containing bainite in steels. , 2012, , 417-435.		6
122	Morphology and substructure of martensite in steels. , 2012, , 34-58.		38
123	Optimal microstructures for martensitic steels. Journal of Materials Research, 2012, 27, 1598-1611.	1.2	13
124	Variant Selection of Low Carbon High Alloy Steel in an Austenite Grain during Martensite Transformation. ISIJ International, 2012, 52, 510-515.	0.6	36
125	Prediction of the Maximum Dislocation Density in Lath Martensitic Steel by Elasto-Plastic Phase-Field Method. Materials Transactions, 2012, 53, 1598-1603.	0.4	11
126	Phase Field Simulation of the Sub-Block Microstructure in Lath Martensitic Steels. Materials Transactions, 2012, 53, 1822-1825.	0.4	10

#	Article	IF	CITATIONS
127	A Transmission Electron Microscopy Investigation of Reaustenitized-and-Cooled HSLA-100 Steel. Metallography, Microstructure, and Analysis, 2012, 1, 131-141.	0.5	8
128	Multi-length scale modeling of martensitic transformations in stainless steels. Acta Materialia, 2012, 60, 6508-6517.	3.8	31
129	Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta Materialia, 2012, 60, 7265-7274.	3.8	161
130	Boron segregation to austenite grain boundary in low alloy steel measured by aberration corrected STEM–EELS. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 358-365.	2.6	41
131	Ultrafine Structure and High Strength in Cold-Rolled Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3517-3531.	1.1	42
132	Microstructure of Low C Steel Isothermally Transformed in the M S to M f Temperature Range. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4967-4983.	1.1	40
133	Microstructural and Crystallographic Features of Hydrogen-related Crack Propagation in Low Carbon Martensitic Steel. ISIJ International, 2012, 52, 208-212.	0.6	85
134	Mechanical Behavior of Deformationâ€Induced αâ€2â€Martensite and Flow Curve Modeling of a Cast CrMnNi TRIPâ€6teel. Steel Research International, 2012, 83, 529-537.	1.0	23
135	Third generation high strength low alloy steels with improved toughness. Science China Technological Sciences, 2012, 55, 1797-1805.	2.0	28
136	Hydrogen Embrittlement of a 1500-MPa Tensile Strength Level Steel with an Ultrafine Elongated Grain Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1670-1687.	1.1	61
137	Enhancement of Upper Shelf Energy through Delamination Fracture in 0.05Âpct P Doped High-Strength Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2453-2465.	1.1	27
138	Effect of tensile deformation of austenite on the morphology and strength of lath martensite. Metals and Materials International, 2012, 18, 317-320.	1.8	24
139	Quantitative analysis of variant selection in ausformed lath martensite. Acta Materialia, 2012, 60, 1139-1148.	3.8	108
140	Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Materialia, 2012, 60, 2387-2396.	3.8	264
141	Transition of solidification mode and the as-cast Î ³ grain structure in hyperperitectic carbon steels. Acta Materialia, 2012, 60, 2927-2938.	3.8	11
142	Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel. Materials & Design, 2012, 34, 427-434.	5.1	57
143	Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time. Materials & Design, 2012, 36, 220-226.	5.1	60
144	The effect of twist angle on anisotropic mobility of {1 1 0} hexagonal dislocation networks in α-iron. Scripta Materialia, 2012, 66, 761-764.	2.6	25

#	Article	IF	CITATIONS
145	Promoting the coalescence of bainite platelets. Scripta Materialia, 2012, 66, 951-953.	2.6	30
146	On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep. Scripta Materialia, 2012, 66, 1045-1048.	2.6	23
147	Variant selection of lenticular martensite by ausforming. Scripta Materialia, 2012, 67, 324-327.	2.6	22
148	Orientational dependence of lathy ferrite in Fe–Cr–Ni alloy during directional solidification. Materials Letters, 2012, 81, 177-180.	1.3	6
149	Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 339-346.	2.6	131
150	Dry-sliding tribological behavior of Fe–Ni alloys. Tribology International, 2012, 51, 11-17.	3.0	9
151	On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part 1. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 245-262.	1.1	4
152	Connectivity of slip systems between different phases in ferrite–martensite dual-phase steels. Journal of Alloys and Compounds, 2013, 577, S597-S600.	2.8	6
153	Morphology and Crystallography of Bainite Transformation in a Single Prior-Austenite Grain of Low-Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2683-2689.	1.1	29
154	Strength increase in the coarse-grained heat-affected zone of a high-strength, blast-resistant steel after post-weld heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 149-154.	2.6	5
155	Effect of Martensite Morphology on Impact Toughness of Ultra-High Strength 25CrMo48V Steel Seamless Tube Quenched at Different Temperatures. Journal of Iron and Steel Research International, 2013, 20, 62-67.	1.4	22
156	Correlation Between the Microstructural Development of Bainitic Ferrite and the Characteristics of Martensite-Austenite Constituent. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5289-5293.	1.1	16
157	Modeling the heterogeneous effects of retained austenite on the behavior of martensitic high strength steels. International Journal of Fracture, 2013, 184, 241-252.	1.1	10
158	Strain-induced martensitic transformation in stainless steels: A three-dimensional phase-field study. Acta Materialia, 2013, 61, 6972-6982.	3.8	49
159	Effect of hot deformation of austenite on martensitic transformation in high manganese steel. Journal of Alloys and Compounds, 2013, 558, 26-33.	2.8	22
160	Influence of Warm Tempforming on Microstructure and Mechanical Properties in an Ultrahigh-Strength Medium-Carbon Low-Alloy Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 560-576.	1.1	46
161	Effects of boundary characteristics on resistance to temper embrittlement and segregation behavior of Ni–Cr–Mo low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 277-284.	2.6	15
162	Microstructural characterization of an as-quenched HSLA-100 plate steel via transmission electron microscopy. Materials Characterization, 2013, 77, 89-98.	1.9	27

ARTICLE IF CITATIONS Variant selection of martensites in steel welded joints with low transformation temperature weld 163 2.8 14 metals. Journal of Alloys and Compounds, 2013, 577, S601-S604. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in 164 2.8 iron-carbon-manganese steels. Journal of Alloys and Compounds, 2013, 577, S587-S592. Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming. 165 2.8 47 Journal of Alloys and Compounds, 2013, 577, S528-S532. Microscale-calibrated modeling of the deformation response of low-carbon martensite. Acta 3.8 Materialia, 2013, 61, 3640-3652. Micromechanical characterization of deformation behavior in ferrous lath martensite. Journal of 167 2.8 13 Alloys and Compounds, 2013, 577, S555-S558. Impact Toughness of an NM400 Wear-Resistant Steel. Journal of Iron and Steel Research International, 1.4 2013, 20, 72-77. Stress-assisted martensitic transformations in steels: A 3-D phase-field study. Acta Materialia, 2013, 61, 169 3.8 49 2595-2606. The effects of microstructure and morphology on fracture nucleation and propagation in 1.7 martensitic steel alloys. Mechanics of Materials, 2013, 58, 110-122. Strengthening of a high strength Fe85Ni15 alloy by tempering treatment. Materials Science & amp; 171 2.6 2 Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 316-319. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain 3.8 264 boundaries: A pathway to ductile martensite. Acta Materialia, 2013, 61, 6132-6152. Energetic stability of boundary between variants in lath martensite. Journal of Alloys and 173 12 2.8 Compounds, 2013, 577, S583-S586. Characterization of phase fractions and misorientations on tempered Bainitic/Martensitic Ni-Cr-Mo 174 1.8 low alloy RPV steel with various Ni content. Metals and Materials International, 2013, 19, 49-54. Evaluation of Interface Boundaries in 9Cr-1Mo Steel After Thermal and Thermomechanical Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 175 1.1 14 1673-1685. Tempforming in medium-carbon low-alloy steel. Journal of Alloys and Compounds, 2013, 577, S538-S542. 2.8 Characterisation of Cr, Si and P distribution at dislocations and grain-boundaries in neutron 177 1.3 43 irradiated Fe–Cr model alloys of low purity. Journal of Nuclear Materials, 2013, 434, 49-55. Nodal effects in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î±</mml:mi></mml:math>-iron dislocation mobility in the presence of helium bubbles. Physical Review B, 2013, 87, . Effect of Boron on the Isothermal Bainite Transformation. Metallurgical and Materials Transactions 179 1.1 25 A: Physical Metallurgy and Materials Science, 2013, 44, 1686-1705. Modeling Lath Martensite Transformation Curve. Metallurgical and Materials Transactions A: 1.1 Physical Metallurgy and Materials Science, 2013, 44, 2-4.

#	Article	IF	CITATIONS
181	Elasto-plastic phase-field simulation of martensitic transformation in lath martensite steels. Philosophical Magazine, 2013, 93, 1739-1747.	0.7	9
182	In situ observations and crystallographic analysis of martensitic transformation in steel. Acta Materialia, 2013, 61, 4831-4839.	3.8	42
183	Microstructural evaluation of austenite reversion during intercritical annealing of Fe–Ni–Mn martensitic steel. Journal of Alloys and Compounds, 2013, 577, S572-S577.	2.8	36
184	Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 130-134.	2.6	35
185	Micro-tension behaviour of lath martensite structures of carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 535-544.	2.6	129
186	A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels. Journal of Materials Science and Technology, 2013, 29, 373-379.	5.6	40
187	Microstructurally induced fracture nucleation and propagation in martensitic steels. Journal of the Mechanics and Physics of Solids, 2013, 61, 1091-1105.	2.3	42
188	Effect of Titanium Carbide Inclusions on Morphology of Low-Carbon Steel Martensite. Materials Science Forum, 2013, 738-739, 25-30.	0.3	6
189	Microstructure and cleavage in lath martensitic steels. Science and Technology of Advanced Materials, 2013, 14, 014208.	2.8	78
190	One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 498-509.	0.3	72
191	Crystallography and morphology of a lathy ferrite in Fe–Cr–Ni alloys during directional solidification. Journal of Materials Research, 2013, 28, 2040-2046.	1.2	4
192	In Situ Investigation of the Allotropic Transformation in Iron. Steel Research International, 2013, 84, 751-760.	1.0	5
193	Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel. ISIJ International, 2013, 53, 1224-1230.	0.6	169
195	Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel. ISIJ International, 2013, 53, 2275-2277.	0.6	31
196	Microstructures of Pearlite and Martensite Transformed from Ultrafine-Grained Austenite Fabricated through Cyclic Heat Treatment in Medium Carbon Steels. Materials Transactions, 2013, 54, 1570-1574.	0.4	11
197	Effect of Carbide Size Distribution on the Impact Toughness of Tempered Martensitic Steels with Two Different Prior Austenite Grain Sizes Evaluated by Instrumented Charpy Test. Materials Transactions, 2013, 54, 1110-1119.	0.4	18
198	An Advanced Fitting Method for Crystallographic and Morphological Analyses of EBSD Data Applied for Low-Carbon Steel Martensite. Materials Transactions, 2013, 54, 1396-1402.	0.4	16
199	āf©ā,¹āfžāf«āf†āf³ā,µā,¤f^ā®éšŽå±Ŗµ"ç¹"ā«āŠā,^ã¼⁄aᠯMå₂°æº¶å…fç′ā®å¼⁄2±éŸ¿. Journal of Smart Processing,	20 03) 2 <u>,</u> 1	104118.

#	Article	IF	CITATIONS
200	Effect of Stress on Variant Selection in Lath Martensite in Low-carbon Steel. ISIJ International, 2013, 53, 1453-1461.	0.6	13
201	Crystallographic Analysis for Acicular Ferrite Formation in Low Carbon Steel Weld Metals. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 33-40.	0.1	9
202	Comparison of Variant Selection between Lenticular and Lath Martensite Transformed from Deformed Austenite. ISIJ International, 2013, 53, 915-919.	0.6	12
203	Thermomechanical Processing of Steel –Past, Present and Future–. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1062-1075.	0.1	29
204	Effect of Ti on Evolution of Microstructure and Hardness of Martensitic Fe–C–Mn Steel during Tempering. ISIJ International, 2014, 54, 2890-2899.	0.6	12
205	Induction Hardening vs Conventional Hardening of a Heat Treatable Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5657-5666.	1.1	20
206	Crystallographic Reconstruction Study of the Effects of Finish Rolling Temperature on the Variant Selection During Bainite Transformation in C-Mn High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5937-5955.	1.1	12
207	Microstructure and Creep Property of Long-Term Serviced Mod.9Cr-1Mo Steels After Repair Welding. , 2014, , .		0
208	On the nanoindentation behaviour of complex ferritic phases. Philosophical Magazine Letters, 2014, 94, 439-446.	0.5	31
209	Dislocation-density-based constitutive modelling of tensile flow and work-hardening behaviour of P92 steel. Philosophical Magazine, 2014, 94, 2992-3016.	0.7	13
210	Microstructure and Texture of Strip Cast Grain-Oriented Silicon Steel after Symmetrical and Asymmetrical Hot Rolling. Steel Research International, 2014, 85, 1477-1482.	1.0	21
211	Tempering of Direct Quenched Low-Alloy Ultra-High-Strength Steel, Part I – Microstructure. Advanced Materials Research, 0, 922, 316-321.	0.3	13
212	Enhanced phase transformation and variant selection by electric current pulses in a Cu–Zn alloy. Journal of Materials Research, 2014, 29, 975-980.	1.2	21
213	Orientation Correlation during α→β Up-Transformation Induced by Electric Current Pulses in a Cu-Zn Alloy. Materials Science Forum, 0, 783-786, 2406-2409.	0.3	1
214	Three-Dimensional Approach to Observing Growth of Blocks and Packets in Fe-18Ni Maraging Steel. Materials Science Forum, 0, 783-786, 916-919.	0.3	5
215	The rotation axes and angles involved in the formation of self-accommodating plates of WidmanstÃ u en ferrite. Acta Materialia, 2014, 72, 13-21.	3.8	19
216	Martensite formation in stainless steels under transient loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 101-105.	2.6	6
217	Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 260-269.	2.6	48

#	Article	IF	CITATIONS
218	Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method. Materials Characterization, 2014, 91, 42-49.	1.9	35
219	Hydrogen-assisted decohesion and localized plasticity in dual-phase steel. Acta Materialia, 2014, 70, 174-187.	3.8	366
220	The microstructure of lath martensite in quenched 9Ni steel. Acta Materialia, 2014, 69, 372-385.	3.8	123
221	The distribution of intervariant crystallographic planes in a lath martensite using five macroscopic parameters. Acta Materialia, 2014, 63, 86-98.	3.8	89
222	In situ X-ray microdiffraction study of deformation-induced phase transformation in 304 austenitic stainless steel. Acta Materialia, 2014, 64, 12-23.	3.8	78
223	Strengthening and Toughening Mechanisms in Martensitic Steel. Advanced Materials Research, 0, 922, 350-355.	0.3	16
224	Microstructural modeling of crack nucleation and propagation in high strength martensitic steels. International Journal of Solids and Structures, 2014, 51, 4345-4356.	1.3	30
225	Effect of normalization temperatures on ductile–brittle transition temperature of a modified 9Cr–1Mo steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 219-231.	2.6	59
226	Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 212-220.	2.6	56
227	Subgrain lath martensite mechanics: A numerical–experimental analysis. Journal of the Mechanics and Physics of Solids, 2014, 73, 69-83.	2.3	50
228	Microtension behaviour of lenticular martensite structure of Fe–30 mass% Ni alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 359-367.	2.6	9
229	Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 205-211.	2.6	38
230	Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia, 2014, 79, 268-281.	3.8	225
231	Crystallographic and Microstructural Studies of Lath Martensitic Steel During Tensile Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5029-5043.	1.1	18
232	Microstructural analysis of martensite constituents in quenching and partitioning steels. Materials Characterization, 2014, 92, 91-95.	1.9	94
233	The influence of silicon in tempered martensite: Understanding the microstructure–properties relationship in 0.5–0.6wt.% C steels. Acta Materialia, 2014, 68, 169-178.	3.8	156
234	Visualization and Analysis of Variant Grouping in Continuously Cooled Low-Carbon Steel Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3554-3559.	1.1	10
235	Crystallographic Orientation of the εÂ→Âα′ Martensitic (Athermal) Transformation in a FeMnAlSi Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3173-3178.	1.1	30

#	Article	IF	CITATIONS
236	Heterogeneous Nucleation of α-Al Grain on Primary α-AlFeMnSi Intermetallic Investigated Using 3D SEM Ultramicrotomy and HRTEM. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3971-3980.	1.1	30
237	Dynamic Compression Behavior and Microstructure of a Novel Low-Carbon Quenching-Partitioning-Tempering Steel. Acta Metallurgica Sinica (English Letters), 2014, 27, 444-451.	1.5	5
238	Austenite–martensite/bainite orientation relationship: Characterisation parameters and their application. Materials Science and Technology, 2014, 30, 1125-1130.	0.8	30
239	Effect of strain path on dynamic strain-induced transformation in a microalloyed steel. Acta Materialia, 2014, 66, 132-149.	3.8	46
240	Friction taper plug welding for S355 steel in underwater wet conditions: Welding performance, microstructures and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 15-28.	2.6	54
241	Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Materialia, 2014, 65, 133-149.	3.8	77
242	On the role of interlath retained austenite in the deformation of lath martensite. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 045011.	0.8	59
243	Fabrication and Microstructural Control of Nano-structured Bulk Steels: A Review. Acta Metallurgica Sinica (English Letters), 2014, 27, 508-520.	1.5	7
244	The crystallography of carbide-free bainites in thermo-mechanically processed low Si transformation-induced plasticity steels. Journal of Alloys and Compounds, 2014, 615, 96-110.	2.8	30
245	Mechanical properties of several laser remelting processed steels with different unit spacings. Applied Surface Science, 2014, 313, 333-340.	3.1	23
246	The microstructure of dislocated martensitic steel: Theory. Acta Materialia, 2014, 76, 23-39.	3.8	57
247	Microstructure of Martensite in Fe–C–Cr and its Implications for Modelling of Carbide Precipitation during Tempering. ISIJ International, 2014, 54, 2649-2656.	0.6	24
248	Bridging the gap between metallurgy and fatigue reliability of hydraulic turbine runners. IOP Conference Series: Earth and Environmental Science, 2014, 22, 012019.	0.2	4
249	Effect of Chemical Composition on Average γ/α' Orientation Relationship in Carbon and Low Alloy Steels. Materials Today: Proceedings, 2015, 2, S663-S666.	0.9	6
250	Block Boundary Analyses to Identify Martensite and Bainite. Materials Today: Proceedings, 2015, 2, S913-S916.	0.9	20
251	Effect of carbon content and microstructural refinement on the mechanical property of quenching-partitioning–tempering-treated steels. Materials Research Innovations, 2015, 19, S54-S58.	1.0	8
252	Effects of Microstructure Transformation on Strengthening and Toughening for Heat-Treated Low Carbon Martensite Stainless Bearing Steel. Materials Science Forum, 0, 817, 667-674.	0.3	4
253	Grain Refinement and Toughening of Low Carbon Low Alloy Martensitic Steel With Yield Strength 900 MPA Grade by Ausforming. , 0, , 195-201.		0

#	Article	IF	CITATIONS
254	Automatic Reconstruction Approach to Characterization of Prior-Austenite Microstructure in Various Japanese Swords. Materials Transactions, 2015, 56, 1639-1647.	0.4	8
255	Crystallographic Restriction in Martensite and Bainite Transformations in Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 339-347.	0.2	21
256	Reduction Kinetics of Nano-Sized Nickel Ferrite for the Production of Metallic Alloys. Advanced Materials Research, 2015, 1096, 524-530.	0.3	2
257	Effect of Microstructures on Yield Strength in Hot-Stamped Steel Sheet. MATEC Web of Conferences, 2015, 33, 07002.	0.1	1
258	Effect of martensite fine structure on mechanical properties of an 1100 MPa grade ultra-high strength steel. Journal of Iron and Steel Research International, 2015, 22, 645-651.	1.4	9
259	Characterization of Hydrogen-Related Fracture Behavior in As-Quenched Low-Carbon Martensitic Steel and Tempered Medium-Carbon Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5685-5696.	1.1	69
260	Local Stress Increase Due to Mechanically Induced Phase Transformation Predicted by a Crystal FE Analysis. Materials Today: Proceedings, 2015, 2, S611-S614.	0.9	0
261	Microstructural Analysis of Butterfly-Type Martensite by Using EBSD. Hyomen Kagaku, 2015, 36, 172-177.	0.0	1
262	Effect of Texture on the Cold Cracking in Weld Zone of T23 Steel. ISIJ International, 2015, 55, 308-311.	0.6	1
263	Phase-field Simulation of Habit Plane Formation during Martensitic Transformation in Low-carbon Steels. ISIJ International, 2015, 55, 2455-2462.	0.6	14
264	Crystallographic Analysis of Lath Martensite in Ferrite-Martensite Dual Phase Steel Sheet Annealed after Cold-Rolling. ISIJ International, 2015, 55, 2198-2205.	0.6	13
265	Influence of Carbon Content on Toughening in Ultrafine Elongated Grain Structure Steels. ISIJ International, 2015, 55, 1135-1144.	0.6	25
266	Optimised microstructure for increased creep rupture strength of MarBN steels. Materials at High Temperatures, 2015, 32, 318-322.	0.5	11
267	Visualization of Microstructural Factor Resisting the Cleavage-Crack Propagation in the Simulated Heat-Affected Zone of Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5489-5493.	1.1	5
268	Effect of Finish Rolling Temperature on Direct Quenched Low Alloy Martensite Properties. Materials Today: Proceedings, 2015, 2, S659-S662.	0.9	9
269	In-situ Characterization of Martensitic Transformation in High Carbon Steel Under Continuous-cooling Condition. Materials Today: Proceedings, 2015, 2, S941-S944.	0.9	6
270	Orientation relationships of Laves phase and NiAl particles in an AFA stainless steel. Philosophical Magazine, 2015, 95, 4078-4094.	0.7	17
271	Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel. Materials Science and Technology, 2015, 31, 115-122.	0.8	12

#	Article	IF	CITATIONS
272	Classification of creep crack and cavitation sites in tempered martensite ferritic steel microstructures using MTEX toolbox for EBSD. Materials Science and Technology, 2015, 31, 547-553.	0.8	12
273	Effect of deformation temperature on the ductile–brittle transition behavior of a modified 9Cr–1Mo steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 58-70.	2.6	48
274	The Change of Orientation Relationships Between Austenite and α′-Martensite During Deformation in High Manganese TRIP Steel. Acta Metallurgica Sinica (English Letters), 2015, 28, 289-294.	1.5	5
275	Formation of Packet (Lath) Martensite in Iron-Nickel Alloys. Metal Science and Heat Treatment, 2015, 56, 462-469.	0.2	2
276	Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 688-694.	1.1	42
277	A model for the microstructure behaviour and strength evolution in lath martensite. Acta Materialia, 2015, 98, 81-93.	3.8	252
278	Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness. Materials Characterization, 2015, 106, 232-239.	1.9	32
279	3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence. Acta Materialia, 2015, 95, 366-377.	3.8	191
280	Variant selection during mechanically induced martensitic transformation of metastable austenite by nanoindentation. Scripta Materialia, 2015, 104, 13-16.	2.6	32
281	Dynamic fracture predictions of microstructural mechanisms and characteristics in martensitic steels. Engineering Fracture Mechanics, 2015, 145, 54-66.	2.0	13
282	Improvement of Microstructure and Mechanical Properties of a Low Alloy Cast Steel Processed by Direct Quenching-Partitioning-Tempering Technique. Steel Research International, 2015, 86, 429-435.	1.0	3
283	An examination of the formation of adiabatic shear bands in AISI 4340 steel through analysis of grains and grain deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 631, 18-26.	2.6	19
284	Effect of dynamic plastic deformation on microstructure and annealing behaviour of modified 9Crâ^1Mo steel. Materials Science and Technology, 2015, 31, 715-721.	0.8	13
285	The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 117-123.	2.6	84
286	Boron Grain Boundary Segregation in a Heat Treatable Steel. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2015, 160, 204-208.	0.4	3
287	Effect of Close-Packed Plane Boundaries in a Bain Zone on the Crack Path in Simulated Coarse-Grained HAZ of Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2035-2039.	1.1	31
288	The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 9-16.	2.6	62
289	Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles. Materials Characterization, 2015, 105, 95-103.	1.9	39

#	Article	IF	CITATIONS
290	Effect of High Energy Ar-Ion Milling on Surface of Quenched Low-Carbon Low-Alloyed Steel. Materials Science Forum, 0, 812, 285-290.	0.3	5
291	Anomalous kinetics of lath martensite formation in stainless steel. Materials Science and Technology, 2015, 31, 1355-1361.	0.8	6
292	Direct estimation of austenitic grain dimensions in heat affected zones of a martensitic steel from EBSD images. Journal of Microscopy, 2015, 258, 87-104.	0.8	3
293	Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals. Welding International, 2015, 29, 254-261.	0.3	13
294	Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5789-5800.	1.1	13
295	Microstructural simulation of adiabatic shear band formation in AISI 4340 steel using Voronoi Tessellation. Computational Materials Science, 2015, 109, 157-171.	1.4	5
296	Prediction of diffusion assisted hydrogen embrittlement failure in high strength martensitic steels. Journal of the Mechanics and Physics of Solids, 2015, 85, 143-159.	2.3	25
297	Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Materialia, 2015, 85, 216-228.	3.8	207
298	Analysis of the Transformation-induced Plasticity Effect during the Dynamic Deformation of High-manganese Steel. Journal of Materials Science and Technology, 2015, 31, 191-198.	5.6	11
299	Estimation of martensite feature size in a low-carbon alloy steel by microtexture analysis of boundaries. Micron, 2015, 68, 77-90.	1.1	28
300	Relationship between the Effective Grain Size of Brittle Crack Propagation and Microstructural Size in Low-carbon Low-alloy Bainitic Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 286-294.	0.1	2
301	Microstructure Design of Tempered Martensite by Atomistically Informed Full-Field Simulation: From Quenching to Fracture. Materials, 2016, 9, 673.	1.3	10
302	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its' Microstructure – Part II: Local Strain Mapping of Dual Phase Steel by a Combination Technique of Electron Backscatter Diffraction and Digital Image Correlation Methods. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 253-259.	0.1	6
303	Quantification of Large Deformation with Punching in Dual Phase Steel and Change of its Microstructure –Part II: Local Strain Mapping of Dual Phase Steel by a Combination Technique of Electron Backscatter Diffraction and Digital Image Correlation Methods. ISIJ International, 2016, 56, 2077-2083.	0.6	19
304	The Role of the Bainitic Packet in Control of Impact Toughness in a Simulated CGHAZ of X90 Pipeline Steel. Metals, 2016, 6, 256.	1.0	21
305	Multicomponent High-Strength Low-Alloy Steel Precipitation-Strengthened by Sub-nanometric Cu Precipitates and M2C Carbides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3860-3872.	1.1	82
306	Formation Mechanism of Lath Martensite in Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 669-683.	0.2	3
307	Effect of Solution Carbon and Nitrogen on the Microstructural Size and Crystallography of Lath Martensite in Fe–N and Fe–C Alloys. Materials Transactions, 2016, 57, 227-232.	0.4	13

#	Article	IF	CITATIONS
308	Grain Refinement and Toughening of Low Carbon Low Alloy Martensitic Steel with Yield Strength 900 MPa Grade by Ausforming. , 2016, , 195-201.		0
309	Transformation-rate maxima during lath martensite formation: plastic vs. elastic shape strain accommodation. Philosophical Magazine, 2016, 96, 1420-1436.	0.7	1
310	Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 48-57.	2.6	47
311	Plasticity of lath martensite by sliding of substructure boundaries. Scripta Materialia, 2016, 120, 37-40.	2.6	53
312	Block and sub-block boundary strengthening in lath martensite. Scripta Materialia, 2016, 116, 117-121.	2.6	109
313	Microstructure and mechanical properties of a Ti-microalloyed low-carbon stainless steel treated by quenching-partitioning-tempering process. Materials Characterization, 2016, 116, 55-64.	1.9	11
314	Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2587-2590.	1.1	103
315	Stability of the retained austenite in low-alloyed transformation induced plasticity-aided steels during friction stir welding. Science and Technology of Welding and Joining, 2016, 21, 281-286.	1.5	11
316	Simulation of dislocation recovery in lath martensite steels using the phase-field method. Computational Materials Science, 2016, 119, 108-113.	1.4	16
317	Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel. Journal of Alloys and Compounds, 2016, 675, 104-115.	2.8	83
318	On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3346-3353.	1.1	34
319	Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2133-2147.	1.0	25
320	Microstructure-property relationship in bainitic steel: The effect of austempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 120-127.	2.6	35
321	Direct-Quenched Structural Steels. , 2016, , 1109-1125.		16
322	Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling. Journal of the Mechanics and Physics of Solids, 2016, 96, 65-87.	2.3	115
323	A multi-scale approach to investigate the nonlinear subsurface behavior and strain localization of X38CrMoV5-1 martensitic tool steel: Experiment and numerical analysis. International Journal of Plasticity, 2016, 87, 130-153.	4.1	15
324	Effect of quenching temperature on martensite multi-level microstructures and properties of strength and toughness in 20CrNi2Mo steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 38-47.	2.6	115
325	A Novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast cooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 373-377.	2.6	11

#	ARTICLE	IF	CITATIONS
326	Effects of tempering mode on the structural changes of martensite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 467-475.	2.6	76
327	An Investigation Into 6-Fold Symmetry in Martensitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5266-5270.	1.1	1
328	Influence of the Initial Microstructure on the Reverse Transformation Kinetics and Microstructural Evolution in Transformation-Induced Plasticity–Assisted Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5352-5361.	1.1	14
329	Object kinetic Monte Carlo study of the effect of grain boundaries in martensitic Fe–Cr–C alloys. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2981-2987.	0.8	6
330	Anisotropy of strength and plasticity in lath martensite steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 104-116.	2.6	34
331	Multiple mechanisms of lath martensite plasticity. Acta Materialia, 2016, 121, 202-214.	3.8	190
332	Advanced High-Strength Steels: Electron Backscatter Diffraction (EBSD). , 2016, , 46-69.		7
334	Microstructural Characterization and Hardening Mechanism of Steel for Large Size Bearing Ring Under Fast Heating and Short Soaking Time Condition. Steel Research International, 2016, 87, 1127-1136.	1.0	4
335	Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2188-2200.	1.1	15
336	Twin structure of the lath martensite in low carbon steel. Progress in Natural Science: Materials International, 2016, 26, 169-172.	1.8	70
337	Effect of Prior Austenite Grain Size Refinement by Thermal Cycling on the Microstructural Features of As-Quenched Lath Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5288-5301.	1.1	159
338	Spectral TRIP enables ductile 1.1ÂGPa martensite. Acta Materialia, 2016, 111, 262-272.	3.8	141
339	A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. Acta Materialia, 2016, 112, 361-377.	3.8	76
340	The analysis of bainitic ferrite microstructure in microalloyed plate steels through quantitative characterization of intervariant boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 459-468.	2.6	16
341	Multi-probe microstructure tracking during heat treatment without an in-situ setup: Case studies on martensitic steel, dual phase steel and β-Ti alloy. Materials Characterization, 2016, 111, 137-146.	1.9	17
342	EBSD investigation on effect of cooling rate on microstructure and transformation textures of high strength hot-rolled steel plates. Journal of Iron and Steel Research International, 2016, 23, 261-269.	1.4	8
343	Optimization of Heat Treatments for Reversion of Strain-Induced Martensite in 304L SS Explosive Clad. Journal of Materials Engineering and Performance, 2016, 25, 536-544.	1.2	3
344	Phase-field simulation of austenite growth behavior: Insights into the austenite memory phenomenon. Computational Materials Science, 2016, 117, 139-150.	1.4	12

#	Article	IF	CITATIONS
345	Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 150-158.	2.6	75
346	Effects of Various Post-Weld Heat Treatments on Austenite and Carbide Formation in a 13Cr4Ni Steel Multipass Weld. Metallography, Microstructure, and Analysis, 2016, 5, 50-61.	0.5	8
347	Modulated formation of lath martensite: Influence of uniaxial compressive load and transformation-induced plasticity. Acta Materialia, 2016, 109, 46-54.	3.8	6
348	Crystallographic analysis of lenticular martensite in Fe–1.0C–17Cr stainless steel by electron backscatter diffraction. Materials Characterization, 2016, 113, 17-25.	1.9	13
349	Effect of Partitioning Treatment on the Mechanical Property of Fe-0.19C-1.47Mn-1.50Si Steel with Refined Martensitic Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1072-1082.	1.1	9
350	Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite. Materials Characterization, 2016, 113, 117-124.	1.9	32
351	Reduced crystal plasticity for materials with constrained slip activity. Mechanics of Materials, 2016, 92, 198-210.	1.7	20
352	Deformation behaviour of lath martensite in multi-phase steels. Scripta Materialia, 2016, 110, 74-77.	2.6	28
353	Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size. Acta Materialia, 2017, 125, 401-415.	3.8	72
354	Variant selection in grain boundary nucleation of bainite in Fe-2Mn-C alloys. Acta Materialia, 2017, 127, 368-378.	3.8	59
355	Microstructural characterisation of double pulse resistance spot welded advanced high strength steel. Science and Technology of Welding and Joining, 2017, 22, 545-554.	1.5	57
356	Cooperative strain accommodation over grains in martensitic transformation from Fe-Ni nanocrystalline austenite. Philosophical Magazine Letters, 2017, 97, 132-139.	0.5	8
357	Tensile Properties of Medium Mn Steel with a Bimodal UFG αÂ+Âγ and Coarse δ-Ferrite Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1678-1700.	1.1	61
358	Austenitizing Behavior of Laser Solid Formed Ultrahigh-Strength 300 M Steel. Steel Research International, 2017, 88, 1600371.	1.0	6
359	Crystallography and Interphase Boundary of Martensite and Bainite in Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2739-2752.	1.1	22
360	Hydrogen Environment Assisted Cracking of a Modern Ultra-High Strength Martensitic Stainless Steel. Corrosion, 2017, 73, 1132-1156.	0.5	14
361	Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges. Steel Research International, 2017, 88, 1700038.	1.0	124
362	Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process. Materials Characterization, 2017, 123, 264-274.	1.9	13

ARTICLE IF CITATIONS # Grain Refinement by Cyclic Displacive Forward/Reverse Transformation in Fe-High-Ni Alloys. Metallurgical and Matérials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 363 5 1.1 4204-4210. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and 364 3.8 79 molybdenum-addéd steels. Acta Materialia, 2017, 133, 41-54. Digital identification scheme for steel microstructures in low-carbon steel. Materials 365 9 1.9 Characterization, 2017, 129, 305-312. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and 366 multi-scale characterisation. Materials Science and Technology, 2017, 33, 1481-1496. Role of Different Kinds of Boundaries Against Cleavage Crack Propagation in Low-Temperature 367 Embrittlement of Low-Carbon Martensitic Steel. Metallurgical and Materials Transactions A: Physical 1.1 14 Metallurgy and Materials Science, 2017, 48, 3261-3268. Microstructural and crystallographic features of hydrogen-related fracture in lath martensitic steels. Materials Science and Technology, 2017, 33, 1524-1532. 0.8 Quenching and partitioning (Q&P) processing of fully austenitic stainless steels. Acta Materialia, 369 3.8 58 2017, 133, 346-355. The austenite/lath martensite interface in steels: Structure, athermal motion, and in-situ 370 3.8 56 transformation strain revealed by simulation and theory. Acta Materialia, 2017, 134, 302-323. The important role of martensite laths to fracture toughness for the ductile fracture controlled by 371 the strain in EA4T axle steel. Materials Science & amp; Engineering A: Structural Materials: Properties, 2.6 62 Microstructure and Processing, 2017, 695, 154-164. Effect of Microalloy Precipitates on the Microstructure and Texture of Hot-Deformed Modified 9Cr-1Mo Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1.1 2017, 48, 2410-2424. Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key 373 2.8 65 role of refining prior austenite grain size. Journal of Alloys and Compounds, 2017, 710, 702-710. 374 The microstructure of as-quenched 12Mn steel. Acta Materialia, 2017, 125, 442-454. 3.8 Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel 375 1.0 58 microstructure. Physical Mesomechanics, 2017, 20, 311-323. On the Stability of Reversely Formed Austenite and Related Mechanism of Transformation in an Fe-Ni-Mn Marténsitic Steel Áided by Electron Backscattering Diffraction and Atom Probe Tomography. 1.1 Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48 One-step quenching and partitioning treatment of a commercial low silicon boron steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 377 39 2.6 707, 538-547. Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel. Metallurgical and Materials Transactions A: Physical 378 1.1 Metallurgy and Materials Science, 2017, 48, 5344-5356. On the martensitic structure and hardness in as-quenched Fe-Ni alloys. Journal of Alloys and 379 2.8 6 Compounds, 2022, 894, 143042. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 448-458.

#	Article	IF	CITATIONS
381	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. Journal of the Electrochemical Society, 2017, 164, F1005-F1010.	1.3	15
382	On the plasticity mechanisms of lath martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 252-261.	2.6	15
383	Application of Newton's method for precise calculation of parent orientation and orientation relation relationship from orientations of daughter phase. Materials Characterization, 2017, 132, 108-118.	1.9	9
384	Research on austenitizing behavior and mechanical properties of 40CrNi2Si2MoVA steel. Advances in Materials and Processing Technologies, 2017, 3, 616-626.	0.8	4
385	Effect of solution treatment on microstructure and cryogenic toughness of 316LN austenite stainless steel weld metal welded by NG-MAG arc welding. Fusion Engineering and Design, 2017, 125, 178-188.	1.0	10
386	Effect of Ti on microstructure and strengthening behavior in press hardening steels. Journal of Central South University, 2017, 24, 2215-2221.	1.2	5
387	In Situ Observation of Kinetic Processes of Lath Bainite Nucleation and Growth by Laser Scanning Confocal Microscope in Reheated Weld Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5783-5798.	1.1	27
388	EBSD Analysis of Relationship Between Microstructural Features and Toughness of a Medium-Carbon Quenching and Partitioning Bainitic Steel. Journal of Materials Engineering and Performance, 2017, 26, 6149-6157.	1.2	26
389	Microstructural Characterization and Mechanical Properties across Thickness of Ultraâ€Heavy Steel Plate. Steel Research International, 2017, 88, 1700132.	1.0	12
390	Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4025-4045.	1.1	33
391	Effect of processing on microstructural features and mechanical properties of a reduced activation ferritic/martensitic EUROFER steelÂgrade. Journal of Nuclear Materials, 2017, 494, 1-9.	1.3	36
392	Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4080-4092.	1.1	59
393	Modelling recovery kinetics in high-strength martensitic steels. Philosophical Magazine Letters, 2017, 97, 280-286.	0.5	5
394	Internal friction analysis of lath martensite in press hardened steel. Materials Science and Technology, 2017, 33, 879-892.	0.8	7
395	Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 159-167.	1.1	56
396	Investigation of idiomorphic ferrite and allotriomorphic ferrite using electron backscatter diffraction technique. Materials Science and Technology, 2017, 33, 537-545.	0.8	5
397	Coupling elasto-plastic self-consistent crystal plasticity and implicit finite elements: Applications to compression, cyclic tension-compression, and bending to large strains. International Journal of Plasticity, 2017, 93, 187-211.	4.1	92
398	Kinetics analysis of two-stage austenitization in supermartensitic stainless steel. Materials and Design, 2017, 116, 8-15.	3.3	35

#	Article	IF	CITATIONS
399	High resolution imaging of martensitic all-weld metal. Science and Technology of Welding and Joining, 2017, 22, 336-342.	1.5	16
400	The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment. International Journal of Materials Research, 2017, 108, 725-731.	0.1	1
401	Effect of Layer Construction on Tensile Deformation Behavior of Japanese-Sword-Type Steel Sheet. Journal of the Japan Society for Technology of Plasticity, 2017, 58, 323-329.	0.0	1
402	Effect of crystallographic orientation on quenching stress during martensitic phase transformation of carbon steel plate. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1213-1219.	0.4	4
403	Three-dimensional observations of morphology of low-angle boundaries in ultra-low carbon lath martensite. Journal of Electron Microscopy, 2017, 66, 380-387.	0.9	9
404	Effects of Plastic Deformation, Heat Treatment and Molybdenum and Nickel Concentration on Lath Martensitic Microstructure. Materials Science Forum, 2017, 885, 222-227.	0.3	0
405	Microscopic Analysis of Pigments Extracted from Spalting Fungi. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Over	ock 10 Tf 1.5	50 502 Td (12

406	Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel. Materials, 2017, 10, 453.	1.3	18
407	Morphology and Crystallography of Ausferrite in Austempered Ductile Iron. Metals, 2017, 7, 238.	1.0	4
408	The Mechanisms of Transformation and Mechanical Behavior of Ferrous Martensite. , 2017, , .		2
409	The Influence of Austenite Grain Size on the Mechanical Properties of Low-Alloy Steel with Boron. Metals, 2017, 7, 26.	1.0	56
410	Microstructure Evolution during Reverse Transformation of Austenite from Tempered Martensite in Low Alloy Steel. ISIJ International, 2017, 57, 533-539.	0.6	31
411	Effect of Carbon Content on Bainite Transformation Start Temperature in Low Carbon Fe–9Ni–C Alloys. ISIJ International, 2017, 57, 1866-1873.	0.6	11
412	EBSD characterization of deformed lath martensite in IF steel. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012033.	0.3	3
413	Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures. International Journal of Plasticity, 2018, 104, 104-133.	4.1	53
414	Microstructural characterization of deformation-induced martensite in an ultrafine-grained medium Mn advanced high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 145-153.	2.6	4
415	TEM investigations on lath martensite substructure in quenched Fe-0.2C alloys. Materials Characterization, 2018, 135, 175-182.	1.9	33
416	Crystallographic analysis of lath martensite in a 13Cr-5Ni steel by electron backscattering diffraction.	1.4	2

#	Article	IF	Citations
417	Effective microstructure unit in control of impact toughness in CGHAZ for high strength bridge steel. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 177-184.	0.4	4
418	Crystallographic examination of the interaction between texture evolution, mechanically induced martensitic transformation and twinning in nanostructured bainite. Journal of Alloys and Compounds, 2018, 752, 505-519.	2.8	19
419	Plastic yielding in lath martensites – An alternative viewpoint. Acta Materialia, 2018, 152, 239-247.	3.8	51
420	Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel. Materials Research Express, 2018, 5, 046501.	0.8	8
421	Different Cooling Rates and Their Effect on Morphology and Transformation Kinetics of Martensite. Minerals, Metals and Materials Series, 2018, , 35-40.	0.3	3
422	Effect of Carbon Content on Bainite Transformation Start Temperature on Fe–9Ni–C Alloys. Minerals, Metals and Materials Series, 2018, , 143-147.	0.3	0
423	Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review. Materials Science and Technology, 2018, 34, 1401-1414.	0.8	20
424	Bending deformation and fracture characterisation in quenching and partitioning steel. Materials Science and Technology, 2018, 34, 1379-1387.	0.8	1
425	A comparison of microstructure and mechanical properties of low-alloy-medium-carbon steels after quench-hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 65-75.	2.6	30
426	Microscale modelling of the deformation of a martensitic steel using the Voronoi tessellation method. Journal of the Mechanics and Physics of Solids, 2018, 113, 35-55.	2.3	28
427	Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, 94, 174-242.	16.0	295
428	Effect of Heat Input on the Microstructure and Mechanical Properties of Low Alloy Ultraâ€High Strength Structural Steel Welded Joint. Steel Research International, 2018, 89, 1700500.	1.0	31
429	Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation hardening martensitic stainless steel 15-5 PH. Materials and Design, 2018, 143, 141-149.	3.3	50
430	The effect of ferrite phases on the micromechanical response and crack initiation in the intercritical heatâ€affected zone of a welded 9Cr martensitic steel. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1245-1259.	1.7	19
431	Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1264-1275.	1.1	42
432	Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel. Philosophical Magazine, 2018, 98, 934-958.	0.7	7
433	Variant selection mechanism by elastic anisotropy and double K-S relation for transformation texture in steel; difference between martensite and ferrite. Acta Materialia, 2018, 146, 25-41.	3.8	31
434	Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 663-670.	2.6	24

#	Article	IF	CITATIONS
435	Enhancement of the strength and ductility of martensitic steels by carbon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 87-91.	2.6	22
436	Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations. Acta Materialia, 2018, 146, 314-327.	3.8	61
437	Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and "quasi-cleavage―fracture of lath martensitic steels. Journal of the Mechanics and Physics of Solids, 2018, 112, 403-430.	2.3	225
438	Study on the key role of hierarchical microstructure for strength and plasticity in a lath martensitic steel. IOP Conference Series: Materials Science and Engineering, 2018, 324, 012043.	0.3	5
439	Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure. Materials Characterization, 2018, 140, 312-319.	1.9	62
440	Characterization of lower bainite formed below <i>M</i> _{<i>S</i>} *. HTM - Journal of Heat Treatment and Materials, 2018, 73, 57-67.	0.1	6
441	Different Mechanisms of ε-M and α′-M Variant Selection and the Influencing Factors of ε-M Reversion During Dynamic Tension in TRIP Steel. Acta Metallurgica Sinica (English Letters), 2018, 31, 449-455.	1.5	3
442	Martensite crystallography and chemistry in dual phase and fully martensitic steels. Materials Characterization, 2018, 139, 411-420.	1.9	22
443	Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification. Materials Characterization, 2018, 139, 241-248.	1.9	6
444	Effect of quenching temperature on sulfide stress cracking behavior of martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 131-141.	2.6	20
445	Effect of niobium precipitation behavior on microstructure and hydrogen induced cracking of press hardening steel 22MnB5. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 721, 38-46.	2.6	46
446	Design of novel Fe–Mn–Ni cryogenic steel: microstructure-property relationship during simulated welding. Science and Technology of Welding and Joining, 2018, 23, 125-133.	1.5	2
447	Influence of Deformation Degree and Cooling Rate on Microstructure and Phase Transformation Temperature of B1500HS Steel. Acta Metallurgica Sinica (English Letters), 2018, 31, 33-47.	1.5	12
448	Microstructure evolution during austenite reversion in Fe-Ni martensitic alloys. Acta Materialia, 2018, 144, 269-280.	3.8	61
449	Recent Developments of Crystallographic Analysis Methods in the Scanning Electron Microscope for Applications in Metallurgy. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 455-474.	6.8	36
450	Ductile ultra high strength hot stamped steel obtained by Q&P treatments. Materials Science and Technology, 2018, 34, 268-281.	0.8	6
451	Case study: Wear mechanisms of NiCrVMo-steel and CrB-steel scrap shear blades. Wear, 2018, 398-399, 29-40.	1.5	15
452	Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching–Partitioning–Tempering Steels. Acta Metallurgica Sinica (English Letters), 2018, 31, 659-667.	1.5	2

#	Article	IF	CITATIONS
453	Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 025008.	0.8	37
454	Slurry erosion behaviour of thermomechanically treated 16Cr5Ni stainless steel. Tribology International, 2018, 119, 411-418.	3.0	32
455	Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy. Acta Materialia, 2018, 144, 601-612.	3.8	87
456	Orientational Equidistance Method for Solving Orientation Relationship From Product Variants: Application to Steel. Transactions of the Indian Institute of Metals, 2018, 71, 421-436.	0.7	0
457	Effect of Cl ⁻ Concentration on Pitting Corrosion Property of Maraging Hardened Stainless Steel Based on Pourbaix Diagram. Materials Science Forum, 0, 940, 59-64.	0.3	3
458	Modeling and Crystal Plasticity Simulations of Lath Martensitic Steel under Fatigue Loading. Materials Transactions, 2018, 60, 199-206.	0.4	18
459	Lath and Butterfly Composite Martensite Microstructure of a Medium-carbon Steel and its Quantitative Evaluation. ISIJ International, 2018, 58, 1524-1531.	0.6	14
460	Study on Bainite/Martensite Transformation in Reheated Weld Metals. Materials Science Forum, 2018, 941, 645-650.	0.3	0
461	Formation Mechanism of Lath Martensite in Steels. Materials Transactions, 2018, 59, 151-164.	0.4	4
462	Key Parameters to Promote Granularization of Lath-Like Bainite/Martensite in FeNiC Alloys during Isothermal Holding. Materials, 2018, 11, 1808.	1.3	3
463	Determination of dislocation density in an Inconel 600 nickel alloy by XLPA and automated EBSD. IOP Conference Series: Materials Science and Engineering, 0, 426, 012004.	0.3	1
464	Visualization of strain distribution in tensile test of ferrite + martensite multilayered steel sheet by digital image correlation method. Procedia Manufacturing, 2018, 15, 1656-1662.	1.9	9
465	Microstructure and mechanical properties of Fe-Cr-2Ni-Mo-V steel in carburizing process. Procedia Manufacturing, 2018, 15, 1612-1618.	1.9	8
466	Enhancement of Hot Corrosion Resistance of Modified 9Cr-1Mo Steel Through Surface Nanostructuring and Pre-oxidation. Journal of Materials Engineering and Performance, 2018, 27, 6443-6457.	1.2	5
467	Morphological and Crystallographic Characteristics of α Structure in a Low-Carbon Iron–Nickel Alloy. Crystals, 2018, 8, 468.	1.0	2
468	Randomization of Ferrite/austenite Orientation Relationship and Resultant Hardness Increment by Nitrogen Addition in Vanadium-microalloyed Low Carbon Steels Strengthened by Interphase Precipitation. ISIJ International, 2018, 58, 542-550.	0.6	13
469	Effect of Carbon Partitioning, Carbide Precipitation, and Grain Size on Brittle Fracture of Ultra-High-Strength, Low-Carbon Steel after Welding by a Quenching and Partitioning Process. Metals, 2018, 8, 747.	1.0	6
470	Case microstructure in induction surface hardening of steels: an overview. International Journal of Advanced Manufacturing Technology, 2018, 98, 2619-2637.	1.5	11

#	Article	IF	CITATIONS
471	Influencia del tiempo de revenido a 780ºC sobre la resistencia al creep del acero ASTM A335 P91. Revista Materia, 2018, 23, .	0.1	0
472	Effect of Tempering Temperatures on Tensile Properties and Rotary Bending Fatigue Behaviors of 17Cr2Ni2MoVNb Steel. Metals, 2018, 8, 507.	1.0	9
473	Formation and stabilization of reverted austenite in supermartensitic stainless steel. Metallurgical Research and Technology, 2018, 115, 402.	0.4	6
474	Property Optimization in As-Quenched Martensitic Steel by Molybdenum and Niobium Alloying. Metals, 2018, 8, 234.	1.0	31
475	Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel. Materials, 2018, 11, 1557.	1.3	23
476	Crystallography, Morphology, and Martensite Transformation of Prior Austenite in Intercritically Annealed High-Aluminum Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6426-6441.	1.1	67
477	The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals. Materials Characterization, 2018, 145, 516-526.	1.9	31
478	Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 69-76.	2.6	12
479	Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel. Materials, 2018, 11, 583.	1.3	11
480	Martensitic Transformation of Retained Austenite in Ferrite Matrix for Low Alloy Steel. Materials Transactions, 2018, 59, 712-716.	0.4	9
481	Effect of Crystallographic Texture on Anisotropy of Mechanical Properties in High Strength Martensitic Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 258-263.	0.1	1
482	Intricate morphologies of laths and blocks in low-carbon martensitic steels. Materials and Design, 2018, 154, 81-95.	3.3	13
483	Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels. Wear, 2018, 408-409, 151-159.	1.5	60
484	Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology. Acta Materialia, 2018, 154, 1-13.	3.8	77
485	Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys. Journal of Alloys and Compounds, 2018, 766, 131-139.	2.8	31
486	Contribution of austenite-martensite transformation to deformability of advanced high strength steels: From atomistic mechanisms to microstructural response. Acta Materialia, 2018, 156, 463-478.	3.8	44
487	A hierarchical theoretical model for mechanical properties of lath martensitic steels. International Journal of Plasticity, 2018, 111, 135-151.	4.1	22
488	Microstructural and mechanical properties of low-carbon ultra-fine bainitic steel produced by multi-step austempering process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 329-337.	2.6	40

#	Article	IF	CITATIONS
489	Phase-field modeling of austenite grain size effect on martensitic transformation in stainless steels. Computational Materials Science, 2018, 154, 75-83.	1.4	45
490	Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite. Journal of Materials Science, 2018, 53, 15679-15693.	1.7	14
491	Martensite coarsening in low-temperature plasma carburizing. Surface and Coatings Technology, 2018, 350, 161-171.	2.2	18
492	Effects of Carbon Variation on Microstructure Evolution in Weld Heat-Affected Zone of Nb-Ti Microalloyed Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4824-4837.	1.1	9
493	Competition mechanisms of fatigue crack growth behavior in lath martensitic steel. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2502-2513.	1.7	6
494	Sulfide Stress Cracking Behavior of a Martensitic Steel Controlled by Tempering Temperature. Materials, 2018, 11, 412.	1.3	1
495	Evolution of Grain Interfaces in Annealed Duplex Stainless Steel after Parallel Cross Rolling and Direct Rolling. Materials, 2018, 11, 816.	1.3	5
496	Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints. Journal of Materials Processing Technology, 2018, 262, 638-649.	3.1	16
497	Meta-equilibrium transition microstructure for maximum austenite stability and minimum hardness in a Ti-stabilized supermartensitic stainless steel. Materials and Design, 2018, 156, 609-621.	3.3	19
498	Identification of Hydrogen Trapping Sites in a Strained Ferritic-martensitic Dual Phase Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2018, 104, 27-35.	0.1	4
499	An investigation on the microstructure and mechanical properties in an ultrafine lamellar martensitic steel processed by heavy warm rolling and tempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 369-376.	2.6	15
500	Effect of Initial Microstructure, Heating Rate, and Austenitizing Temperature on the Subsequent Formation of Martensite and Its Microstructural Features in a QT Steel. Steel Research International, 2019, 90, 1800317.	1.0	10
501	A general scenario of fishâ€eye crack initiation on the life of highâ€strength steels in the very highâ€cycle fatigue regime. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2183-2194.	1.7	26
502	From Hessian to Weitzenböck: manifolds with torsion-carrying connections. Information Geometry, 2019, 2, 77-98.	0.8	6
503	Effect of tensile deformation on variant selection in {225}γ plate martensite and {557}γ lath martensite. Results in Materials, 2019, 1, 100006.	0.9	1
504	Significance of Partial Substitution of Carbon by Nitrogen on Strengthening and Toughening Mechanisms of High Nitrogen Fe-15Cr-1Mo-C-N Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4987-4999.	1.1	28
505	Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron. Materials Science and Technology, 2019, 35, 1329-1336.	0.8	6
506	Improving Tensile Properties of Room-Temperature Quenching and Partitioning Steel by Dislocation Engineering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4021-4026.	1.1	18

#	Article	IF	CITATIONS
507	Development of New Third-Generation Medium Manganese Advanced High-Strength Steels Elaborating Hot-Rolling and Intercritical Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4261-4274.	1.1	7
508	Influence of quenching conditions on texture and mechanical properties of ultra-high-strength steels. Journal of Materials Science, 2019, 54, 12875-12886.	1.7	10
509	Austenite memory during reverse transformation of steels at different heating rates. Materialia, 2019, 7, 100409.	1.3	3
510	EBSD study on the significance of carbon content on hardenability. Materials Letters, 2019, 254, 412-414.	1.3	8
511	Acceleration of diffusional transformation in a high-carbon steel layer composed of a sandwich-like clad steel sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138217.	2.6	2
512	Uncoupling the effects of strain rate and adiabatic heating on strain induced martensitic phase transformations in a metastable austenitic steel. Acta Materialia, 2019, 176, 134-144.	3.8	47
513	Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters. Materials, 2019, 12, 2852.	1.3	22
514	Mechanical and microstructural analysis on hydrogen-related fracture in a martensitic steel. International Journal of Hydrogen Energy, 2019, 44, 29034-29046.	3.8	32
515	Investigation of characteristic and evolution of fine-grained bainitic microstructure in the coarse-grained heat-affected zone of super-high strength steel for offshore structure. Materials Characterization, 2019, 157, 109893.	1.9	18
516	Effective Microstructure Unit in Control of Plasticity during Strainâ€Controlled Fracture. Steel Research International, 2019, 90, 1900140.	1.0	1
517	An Investigation of Short Range Residual Stress Fields in Ferrous Lath Martensite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5581-5584.	1.1	5
518	Assessing Microcirculation in Resectable Oesophageal Squamous Cell Carcinoma with Dynamic Contrast-enhanced MRI for Identifying Primary tumour and Lymphatic Metastasis. Scientific Reports, 2019, 9, 124.	1.6	4
519	Numerical Simulation of Weak Parts of Main Components of Heavy-Duty Precision Brick Palletizing Robot. IOP Conference Series: Earth and Environmental Science, 2019, 252, 022109.	0.2	0
520	Creep Fibre Method of Simply-supported Composite Beams. IOP Conference Series: Earth and Environmental Science, 2019, 267, 042108.	0.2	1
521	Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel. Materials Characterization, 2019, 158, 109990.	1.9	30
522	Improvement of Mechanical Properties by Martensitic Reversion in Steels. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 449-457.	0.2	3
523	The Influence of Holding Time on the Microstructure and Mechanical Properties of a 58CrMnSiNiMo Wearâ€Resistant Cast Steel during Diffusion Annealing. Steel Research International, 2019, 90, 1900130.	1.0	1
524	Characterization of Plastic Deformation in Lath Martensitic Steel by Micro-pillar Compression Focused on Sub-block and Lath Boundaries. Jom, 2019, 71, 3536-3542.	0.9	1

#	Article	IF	CITATIONS
525	Relationship between high angle grain boundaries and hardness after γ→α transformation. Materials Science and Technology, 2019, 35, 1803-1814.	0.8	16
526	Effect of microstructure quenched around Ac3 point on the damage behavior in 0.087C–1.35Mn steel. Journal of Materials Research and Technology, 2019, 8, 5103-5113.	2.6	4
527	Microstructure analysis of martensitic low alloy carbon steel samples subjected to deformation dilatometry. Materials Characterization, 2019, 157, 109926.	1.9	10
528	Research on the Microstructures and Mechanical Properties of Bainite/Martensite Rail Treated by the Controlled-Cooling Process. Materials, 2019, 12, 3061.	1.3	9
529	Modelling of constitutive relationship, dynamic recrystallization and grain size of 40Cr steel during hot deformation process. Results in Physics, 2019, 12, 784-792.	2.0	52
530	Mechanical properties and microstructural characterization of simulated heat-affected zones in 10†wt pct Ni steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 748, 189-204.	2.6	17
531	The role of the austenite grain size in the martensitic transformation in low carbon steels. Materials and Design, 2019, 167, 107625.	3.3	141
532	Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel. Materials Characterization, 2019, 149, 26-33.	1.9	35
533	Understanding Mechanical Properties of Nano-Grained Bainitic Steels from Multiscale Structural Analysis. Metals, 2019, 9, 426.	1.0	8
534	Application of the Maximum Flow–Minimum Cut Algorithm to Segmentation and Clustering of Materials Datasets. Microscopy and Microanalysis, 2019, 25, 924-941.	0.2	10
535	Phase-field simulation of martensite microstructure in low-carbon steel. Acta Materialia, 2019, 175, 415-425.	3.8	28
536	Bainite growth retardation due to mechanical stabilisation of austenite. Materialia, 2019, 7, 100384.	1.3	12
537	On the martensitic transition manner within the transition martensitic zone of the dissimilar steel interface. Materials and Design, 2019, 179, 107872.	3.3	5
538	Interaction of martensite and bainite transformations and its dependence on quenching temperature in intercritical quenching and partitioning steels. Materials and Design, 2019, 181, 107921.	3.3	42
539	Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel. Journal of Materials Science and Technology, 2019, 35, 2213-2219.	5.6	61
540	Thermodynamic basis of twin-related variant pair in high strength low alloy steel. Scripta Materialia, 2019, 170, 43-47.	2.6	17
541	Effect of preheating on microstructure and low-temperature toughness for coarse-grained heat-affected zone of 5% Ni steel joint made by laser welding. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1229-1241.	1.3	7
542	Physically-based strain hardening rule for HR2 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 231-245.	2.6	2

#	Article	IF	Citations
543	Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 430-436.	2.6	34
544	Grain Refinement Mechanism and Microstructural Evolution of M50NiL Steel during Multi-directional Impact Forging. Journal of Materials Engineering and Performance, 2019, 28, 3505-3516.	1.2	12
545	Unprecedented strength in pure iron via high-pressure induced nanotwinned martensite. Materials Research Letters, 2019, 7, 354-360.	4.1	22
546	Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel. Journal of Iron and Steel Research International, 2019, 26, 637-646.	1.4	13
547	Formation of ultrafine pearlites in tempered 42CrMo steel induced by electro-pulsing. Materials Letters, 2019, 251, 73-77.	1.3	16
548	Influence of pre-tempering treatment on microstructure and mechanical properties in quenching and partitioning steels with ferrite-martensite start structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 248-257.	2.6	16
549	The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel. Materials and Design, 2019, 178, 107847.	3.3	48
550	Effects of Tempering Temperature on the Microstructure and Mechanical Properties of T92 Heat-Resistant Steel. Metals, 2019, 9, 194.	1.0	5
551	Micromechanical Modelling of the Cyclic Deformation Behavior of Martensitic SAE 4150—A Comparison of Different Kinematic Hardening Models. Metals, 2019, 9, 368.	1.0	29
552	Crystallography analysis of toughness in high strength ultra-heavy plate steel. Materials Letters, 2019, 250, 55-59.	1.3	21
553	Microstructure modeling of high-temperature microcrack initiation and evolution in a welded 9Cr martensitic steel. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 2160-2174.	0.7	0
554	Tailoring the strength and ductility of T91 steel by partial tempering treatment. Acta Materialia, 2019, 169, 209-224.	3.8	59
555	Effect of Interface Morphology on Tensile Properties of Carbon Steel Sheet with Sandwich Structure. Steel Research International, 2019, 90, 1900015.	1.0	1
556	Controlling of reheated quenching temperature of 1000â€MPa grade steel plate for hydropower station. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 33-43.	0.5	6
557	New insights on nucleation and transformation process in temperature-induced martensitic transformation. Materials Characterization, 2019, 151, 267-272.	1.9	19
558	Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method. International Journal of Plasticity, 2019, 119, 215-229.	4.1	41
559	Grain refinement mechanisms and strength-hardness correlation of ultra-fine grained grade 91 steel processed by equal channel angular extrusion. International Journal of Pressure Vessels and Piping, 2019, 172, 212-219.	1.2	25
560	Unification of the non-linear geometric transformation theory of martensite and crystal plasticity - Application to dislocated lath martensite in steels. International Journal of Plasticity, 2019, 119, 140-155	4.1	15

#	Article	IF	CITATIONS
561	Atomistic simulation of the effect of carbon content and carbon-rich region on irradiation response of α-Fe on picosecond timescale. Nuclear Instruments & Methods in Physics Research B, 2019, 443, 70-78.	0.6	7
562	Strengthening to softening transition in lath martensite. Materialia, 2019, 5, 100254.	1.3	8
563	Dislocation densities in cold worked copper by electron and X-ray diffraction methods. Materials Science and Technology, 2019, 35, 513-519.	0.8	6
564	Transient liquid phase bonding of carbon steel components using Ni-based foils – A comprehensive joint characterization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 51-61.	2.6	2
565	Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia, 2019, 5, 100252.	1.3	42
566	A Review of Austenite Memory Effect in HAZ of B Containing 9% Cr Martensitic Heat Resistant Steel. Metals, 2019, 9, 1233.	1.0	9
567	Heterogeneous microstructure of low-carbon lath martensite with continuous yielding behavior in Fe-C-Mn alloys. IOP Conference Series: Materials Science and Engineering, 2019, 580, 012045.	0.3	3
568	Observations on the Relationship between Crystal Orientation and the Level of Auto-Tempering in an As-Quenched Martensitic Steel. Metals, 2019, 9, 1255.	1.0	16
569	Microstructural Influences on Fracture at Prior Austenite Grain Boundaries in Dual-Phase Steels. Materials, 2019, 12, 3687.	1.3	10
570	Strain-rate sensitive ductility in a low-alloy carbon steel after quenching and partitioning treatment. Scientific Reports, 2019, 9, 17023.	1.6	9
571	Micromechanical Modeling of Fatigue Crack Nucleation around Non-Metallic Inclusions in Martensitic High-Strength Steels. Metals, 2019, 9, 1258.	1.0	19
572	Parameterization of a Non-local Crystal Plasticity Model for Tempered Lath Martensite Using Nanoindentation and Inverse Method. Frontiers in Materials, 2019, 6, .	1.2	12
573	Advanced Heat Treatments and Complex Ferritic Structures for Bearing Steels. Metals, 2019, 9, 1137.	1.0	1
574	Identification of Hydrogen Trapping Sites in a Strained Ferritic-Martensitic Dual-Phase Steel. ISIJ International, 2019, 59, 1828-1837.	0.6	7
575	Effect of cooling conditions on microstructures and mechanical behaviors of reheated low-carbon weld metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 671-681.	2.6	16
576	Microstructural diagram for steel based on crystallography with machine learning. Computational Materials Science, 2019, 159, 403-411.	1.4	30
577	Crystallography and mechanical properties of intercritically annealed quench and partitioned high-aluminum steel. Materials Characterization, 2019, 148, 71-80.	1.9	7
578	An investigation of microstructural evolution in electron beam welded RAFM steel and 316LN SS dissimilar joint under creep loading conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 432-441.	2.6	16

#	Article	IF	CITATIONS
579	Strengthening mechanisms in an ultrafine grained powder metallurgical hot work tool steel produced by high energy mechanical milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 349-360.	2.6	16
580	Fundamental mechanism of BCC-FCC phase transition from a constructed PdCu potential through molecular dynamics simulation. Computational Materials Science, 2019, 159, 440-447.	1.4	21
581	Exploring the relationship between the microstructure and strength of fresh and tempered martensite in a maraging stainless steel Fe–15Cr–5Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 420-428.	2.6	54
582	New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 126-136.	2.6	57
583	Analysis of Misorientation Relationships Between Austenite Parents and Twins. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 837-855.	1.1	9
584	Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Additive Manufacturing, 2019, 25, 19-31.	1.7	70
585	Effect of inclusion and microstructure on the very high cycle fatigue behaviors of high strength bainite/martensite multiphase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 404-414.	2.6	45
586	Exploring the origin of variant selection through martensite-austenite reconstruction. Philosophical Magazine, 2019, 99, 699-717.	0.7	15
587	DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158, 420-478.	1.4	440
588	Strengthening mechanisms in ultrafine-grained ferritic/martensitic steel produced by equal channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 163-170.	2.6	24
589	Cyclic Deformation Behavior of an Ultraâ€High Strength Austeniticâ€Martensitic Steel Treated by Novel Q&P Processing. Advanced Engineering Materials, 2019, 21, 1800732.	1.6	4
590	Transformation mechanisms and governing orientation relationships through selective dissolution of Ni via liquid metal dealloying from (FeCo)xNi100â°'x precursors. Materials and Design, 2020, 185, 108271.	3.3	16
591	The significance of variant pairing in governing toughness of coarse-grained heat affected zone (CGHAZ) in Nb-bearing high strength structural steels. Materials Letters, 2020, 260, 126974.	1.3	3
592	Correlative microscopy for quantification of prior austenite grain size in AF9628 steel. Materials Characterization, 2020, 159, 109835.	1.9	8
593	Orientation gradient on surface of non-oriented electrical steel annealed by γ → α transformation. Journal of Iron and Steel Research International, 2020, 27, 88-95.	1.4	5
594	The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138668.	2.6	13
595	Examining the multi-scale complexity and the crystallographic hierarchy of isothermally treated bainitic and martensitic structures. Materials Characterization, 2020, 160, 110127.	1.9	8
596	Effect of two-step tempering treatment on microstructure and impact toughness of bainitic steel for heavy wall thickness reactor pressure vessels. Materials Characterization, 2020, 160, 110070.	1.9	13

#	Article	IF	CITATIONS
597	Microstructure-sensitive fatigue crack growth in lath martensite of low carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138830.	2.6	23
598	Shear instability and considerably localized melting in quasi-static compression. Materials Characterization, 2020, 160, 110081.	1.9	3
599	Effect of niobium on sulfide stress cracking behavior of tempered martensitic steel. Corrosion Science, 2020, 165, 108387.	3.0	15
600	Characterization of Martensite Orientation Relationships in Steels and Ferrous Alloys from EBSD Data Using Bayesian Inference. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 142-153.	1.1	8
601	A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion. Metals, 2020, 10, 1273.	1.0	45
602	A methodology of steel microstructure recognition using SEM images by machine learning based on textural analysis. Materials Today Communications, 2020, 25, 101514.	0.9	17
603	Microstructural characterization and toughness evaluation of 10Âwt% Ni steel weld metal gas tungsten arc and gas metal arc weld fusion zones. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140043.	2.6	14
604	Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140115.	2.6	55
605	Optimization scheme of the orientation relationship from crystallographic statistics of variants and its application to lath martensite. Materials and Design, 2020, 195, 109022.	3.3	14
606	Influence of strain rate and strain at temperature on TRIP effect in a metastable austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139046.	2.6	20
607	Internal residual stress originated from Bain strain and its effect on hardness in Fe–Ni martensite. Acta Materialia, 2020, 196, 660-668.	3.8	29
608	Measurement and prediction of the transformation strain that controls ductility and toughness in advanced steels. Acta Materialia, 2020, 200, 246-255.	3.8	10
609	Influence of Niobium Microalloying on the Kinetics ofÂStatic and Dynamic Recrystallization during HotÂRolling of Medium-Carbon High-Strength Steels. Inorganic Materials: Applied Research, 2020, 11, 1325-1332.	0.1	4
610	How hair deforms steel. Science, 2020, 369, 689-694.	6.0	23
611	The influence of the heating rate on the microstructure and mechanical properties of a peak annealed quenched and partitioned steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140061.	2.6	14
612	Wear resistance of steel obtained by surfacing a flux-cored wire 30N8Kh6M3STYu. Journal of Physics: Conference Series, 2020, 1546, 012060.	0.3	0
613	Mechanical Behavior of Fresh and Tempered Martensite in a CrMoV-Alloyed Steel Explained by Microstructural Evolution and Strength Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5077-5087.	1.1	22
614	Microstructural changes and mechanical properties of AerMet100 steel surface-treated by plasma nitriding. Surface and Coatings Technology, 2020, 403, 126392.	2.2	5

#	Δρτιςι ε	IF	CITATIONS
615	Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5517-5586.	1.1	115
616	On the Factors Governing Austenite Stability: Intrinsic versus Extrinsic. Materials, 2020, 13, 3440.	1.3	43
617	Investigation of Size Effects Due to Different Cooling Rates of As-Quenched Martensite Microstructures in a Low-Alloy Steel. Applied Sciences (Switzerland), 2020, 10, 5395.	1.3	6
618	Microstructure and impact toughness of 16MND5 reactor pressure vessel steel manufactured by electrical additive manufacturing. Journal of Iron and Steel Research International, 2020, 27, 992-1004.	1.4	6
619	Crystallographic Features of Decomposition of g-Phase in Austenitic Corrosion-Resistant Steel. Metal Science and Heat Treatment, 2020, 62, 423-429.	0.2	7
620	Effect of Heat Treatment Process on Microstructure and Crystallography of 20CrMnTiH Spur Bevel Gear. Journal of Materials Engineering and Performance, 2020, 29, 6468-6483.	1.2	4
621	Microstructure and Fatigue of Ultrafineâ€Grained Ferritic/Martensitic Steel. Advanced Engineering Materials, 2020, 22, 2000034.	1.6	2
622	A study on the effect of chemical composition on the microstructural characteristics and mechanical performance of DP1000 resistance spot welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139501.	2.6	18
623	Deformation Induced Soft and Hard Lath Packets Enhance Ductility in Martensitic Steels. Crystals, 2020, 10, 373.	1.0	5
624	Resistance to Temper Softening of Low Carbon Martensitic Steels by Microalloying of V, Nb and Ti. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 362-371.	0.1	1
625	New crystallography insights of retained austenite transformation in an intercritical annealed quenching and partitioning steel. Materials Letters, 2020, 273, 127955.	1.3	9
626	Interaction between carbon partitioning and carbide nucleation inside austenite during a bainitic type transformation. Computational Materials Science, 2020, 184, 109846.	1.4	6
627	A fast evaluation method for fatigue strength of maraging steel: The minimum strength principle. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139659.	2.6	7
628	Thermal and athermal contributions to the flow stress of martensite. Materialia, 2020, 11, 100719.	1.3	5
629	High pressure induced ultra-hard twinned lath martensite in binary Fe-15wt.%Cr alloy. Scripta Materialia, 2020, 187, 163-168.	2.6	17
630	Effect of matrix carbon content and lath martensite microstructures on the tempered precipitates and impact toughness of a medium-carbon low-alloy steel. Journal of Materials Research and Technology, 2020, 9, 7701-7710.	2.6	26
631	Orientation Dependence of Deformation-Induced Martensite Transformation During Uniaxial Tensile Deformation of Carbide-Free Bainitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2053-2063.	1.1	6
632	The Effect of Lath Martensite Microstructures on the Strength of Medium-Carbon Low-Alloy Steel. Crystals, 2020, 10, 232.	1.0	35

#	Article	IF	CITATIONS
633	Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears. Journal of Materials Science and Technology, 2020, 49, 157-165.	5.6	25
634	Acicular ferrite nucleation and growth in API5L-X65 steel submerged arc welded joints. Materials Science and Technology, 2020, 36, 1398-1406.	0.8	9
635	Tensile and fatigue behavior of resistance spot-welded HSLA steel sheets: Effect of pre-strain in association with dislocation density. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139796.	2.6	21
636	Effect of lath martensite submicrostructure on mechanical properties and crack propagation behaviour by inâ€situ tension in 0.09C–1.7Mn–0.6Cr steel. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 2550-2559.	1.7	1
637	Effect of martensite–austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel. Materials Characterization, 2020, 161, 110139.	1.9	31
638	The significant effect of non-recrystallization zone reduction on microstructure and mechanical properties in multi-phase steel from the perspective of crystallographic structure and variant pairing. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing 2020, 778, 139078	2.6	8
639	Twinned substructure in lath martensite of water quenched Fe-0.2 %C and Fe-0.8 %C steels. Journal of Materials Science and Technology, 2020, 49, 126-132.	5.6	28
640	Plastic deformation hardening of iron-nickel alloys. Journal of Physics: Conference Series, 2020, 1431, 012043.	0.3	0
641	The Effect of Electroslag Remelting on the Microstructure and Mechanical Properties of CrNiMoWMnV Ultrahigh-Strength Steels. Metals, 2020, 10, 262.	1.0	6
642	Effects of the Phase Interface on Spallation Damage Nucleation and Evolution in Dualâ€Phase Steel. Steel Research International, 2020, 91, 1900583.	1.0	8
643	Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel. Materials Letters, 2020, 267, 127512.	1.3	4
644	Effect of carbon content on selection of slip system during uniaxial tensile deformation of lath martensite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139090.	2.6	19
645	Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel. Scripta Materialia, 2020, 178, 318-323.	2.6	59
646	Study on the surface microstructure evolution and wear property of bainitic rail steel under dry sliding wear. Wear, 2020, 448-449, 203217.	1.5	16
647	Creating in-situ alloys by welding — new perspectives for advanced materials and applications. Journal of Materials Research and Technology, 2020, 9, 6950-6956.	2.6	1
648	Research and modeling on correlation among microstructure, yield strength and process of bainite/martensite steel. Journal of Iron and Steel Research International, 2020, 27, 834-841.	1.4	7
649	Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11. Materials and Design, 2020, 192, 108689.	3.3	58
650	Microstructural Evolution of SA508 Grade 3 Steel during Hot Deformation. Journal of Materials Engineering and Performance, 2020, 29, 1015-1033.	1.2	3

#	Article	IF	CITATIONS
651	Effect of Mn content on microstructure, tensile and impact properties of SA508Gr.4N steel for reactor pressure vessel. Journal of Iron and Steel Research International, 2020, 27, 461-470.	1.4	6
652	Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel. Journal of Materials Science and Technology, 2020, 51, 130-136.	5.6	141
653	Microstructure and mechanical property of electropulsing tempered ultrafine grained 42CrMo steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139213.	2.6	27
654	Effect of Crystallographic Texture on Anisotropy of Mechanical Properties in High Strength Martensitic Steel. ISIJ International, 2020, 60, 346-351.	0.6	3
655	Fabricating 9–12 Cr ferritic/martensitic steels using selective electron beam melting. Materials Letters, 2020, 271, 127747.	1.3	4
656	Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel. Materials and Design, 2021, 197, 109252.	3.3	22
657	Medium Manganese Steel and Mechanism of Austenite Formation during Reversion Annealing. Steel Research International, 2021, 92, 2000381.	1.0	3
658	Crystallographic analysis of fatigue fracture initiation in 8Ni-0.1C martensitic steel. International Journal of Fatigue, 2021, 143, 105921.	2.8	16
659	The influence of carbide formation in ferrite on the bainitic type transformation. Computational Materials Science, 2021, 186, 109961.	1.4	2
660	Effect of Hotâ€Deformation Processes on Phase Transformation of Lowâ€Alloyed, Multiphase, Highâ€Strength Steel. Steel Research International, 2021, 92, .	1.0	2
661	Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. Journal of Materials Science and Technology, 2021, 65, 216-227.	5.6	95
662	Microstructure and wear mechanism of high-strength steels for concrete mixing drum coiled at different temperatures. Ironmaking and Steelmaking, 2021, 48, 351-358.	1.1	1
663	2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness. Journal of Materials Science and Technology, 2021, 66, 36-45.	5.6	22
664	Microstructures and tensile properties of friction stir welded 0.2%C–Si–Mn steel. Materials Scier & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140068.	ice 2.6	13
665	Carbon redistribution in quenched and tempered lath martensite. Acta Materialia, 2021, 205, 11652	l. 3.8	60
666	EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel. Journal of Materials Science and Technology, 2021, 69, 148-155.	5.6	17
667	Revisiting the martensite/ferrite interface damage initiation mechanism: The key role of substructure boundary sliding. Acta Materialia, 2021, 205, 116533.	3.8	20
668	The effects of fusion ratio on microstructure and cryogenic toughness of dissimilar joint between SA553 and SUS304. Journal of Manufacturing Processes, 2021, 61, 56-68.	2.8	4

#	Article	IF	CITATIONS
669	Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140493.	2.6	12
670	Coupling kinetic Monte Carlo and finite element methods to model the strain path sensitivity of the isothermal stress-assisted martensite nucleation in TRIP-assisted steels. Mechanics of Materials, 2021, 154, 103707.	1.7	5
671	Crystallographic orientation dependence of deformation-induced martensitic transformation of 1.3 GPa-class 0.6 %C bainitic steel with retained austenite. Scripta Materialia, 2021, 194, 113666.	2.6	5
672	Comparative study on the microstructure and mechanical properties of a modified 9Cr–2WVTa steel by normalizing-tempering and quenching-partitioning treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140364.	2.6	11
673	The effect of Si and B on formability and wear resistance of preset-powder laser cladding W10V5Co4 alloy steel coating. Optics and Laser Technology, 2021, 134, 106590.	2.2	16
674	Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel. Acta Metallurgica Sinica (English Letters), 2021, 34, 523-533.	1.5	3
675	Microstructure and mechanical properties in core of a carburizing 20CrNi2MoV bearing steel subjected to cryogenic treatment. Journal of Iron and Steel Research International, 2021, 28, 360-369.	1.4	4
676	In Situ Study on Interrupted Growth Behavior and Crystallography of Bainite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 817-825.	1.1	9
677	The influence of martensitic microstructure and oxide inclusions on the toughness of simulated reheated 10Âwt% Ni steel weld metal multi-pass fusion zones. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140336.	2.6	6
678	Phase field modeling and simulation of the evolution of twelve crystallographic martensite variants in austenitic parent grains. Proceedings in Applied Mathematics and Mechanics, 2021, 20, .	0.2	0
679	Simulation of martensitic microstructures in a low-alloy steel. Archive of Applied Mechanics, 2021, 91, 1641-1668.	1.2	4
680	Tailoring Variant Pairing to Enhance Impact Toughness in High-Strength Low-Alloy Steels via Trace Carbon Addition. Acta Metallurgica Sinica (English Letters), 2021, 34, 755-764.	1.5	9
681	Bainite Transformation and Resultant Tensile Properties of 0.6%C Low Alloyed Steels with Different Prior Austenite Grain Sizes. ISIJ International, 2021, 61, 582-590.	0.6	11
682	Lath Martensite Microstructure Modeling: A High-Resolution Crystal Plasticity Simulation Study. Materials, 2021, 14, 691.	1.3	13
683	Symmetry Breakdown Related Fracture in 42CrMo4 Steel. Metals, 2021, 11, 344.	1.0	0
684	Engineering mechanical properties by controlling the microstructure of an Fe–Ni–Mn martensitic steel through pre-cold rolling and subsequent heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140760.	2.6	4
685	Characterisation of microstructure evolution during creep of P91 steel using the electron backscatter diffraction technique. Materials at High Temperatures, 2021, 38, 158-165.	0.5	7
686	Effect of Austenitizing Temperature on The Structural Evolution of Hot Forged Steel Grinding Balls. Journal of Physics: Conference Series, 2021, 1818, 012162.	0.3	0

#	Article	IF	CITATIONS
687	Characteristics and mechanisms of hydrogen-induced quasi-cleavage fracture of lath martensitic steel. Acta Materialia, 2021, 206, 116635.	3.8	45
688	Variant Selection in Phase Transformation and its Influence on Texture and Martensite Starting Temperature in Steel. IOP Conference Series: Materials Science and Engineering, 2021, 1121, 012021.	0.3	1
689	Orientation dependence of transformation induced plasticity in high carbon bainitic steel. IOP Conference Series: Materials Science and Engineering, 2021, 1121, 012022.	0.3	0
690	The fracture toughness of martensite islands in dual-phase DP800 steel. Journal of Materials Research, 2021, 36, 2495-2504.	1.2	8
691	The effect of crystallographic orientation and interfaces on thermo-mechanical softening of a martensitic steel. Journal of Materials Research, 2021, 36, 2742-2753.	1.2	4
692	Microstructure Investigation of Thermally Induced Phase Transformation in Fe–Mn– Mo–Si Alloys. Journal of Natural and Applied Sciences, 0, , 419-431.	0.1	0
693	Low-carbon cast microalloyed steel intercritically heat-treated at different temperatures: microstructure and mechanical properties. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	2
694	Toughening mechanism in 5%Mn and 10%Mn martensitic steels treated by thermo-mechanical control process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141058.	2.6	11
695	Microstructural changes by controlling austenitizing and tempering conditions on the J-R fracture resistance of SA508 Gr. 1A low alloy steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141069.	2.6	5
696	Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141080.	2.6	24
697	The Significant Impact of Ti Addition on the Hot Deformation Behavior of Mediumâ€Manganese Microalloyed Steel. Steel Research International, 2021, 92, 2100074.	1.0	8
698	Effect of heat treatment on microstructure and mechanical properties of low-alloy wear-resistant steel NM450. Materials Research Express, 2021, 8, 045606.	0.8	7
699	Effects of the Phase Content on Spallation Damage Behavior in Dual-Phase Steel. Journal of Materials Engineering and Performance, 2021, 30, 5614-5624.	1.2	4
700	Process Routes of Lowâ€Ni Liquefied Natural Gas Tank Steel with Excellent Cryogenic Toughness. Steel Research International, 2021, 92, 2100127.	1.0	5
701	Resistance to Temper Softening of Low Carbon Martensitic Steels by Microalloying of V, Nb and Ti. ISIJ International, 2021, 61, 1641-1649.	0.6	10
702	Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe-2Mn-1.5Si-0.3C alloy. Acta Materialia, 2021, 209, 116772.	3.8	27
703	Austenite Grain Growth Analysis in a Welded Joint of High-Strength Martensitic Abrasion-Resistant Steel Hardox 450. Materials, 2021, 14, 2850.	1.3	11
704	Effects of α–γ–α Phase Transformation on the â~3 Boundaries in High-Purity Iron. Journal of Materials Engineering and Performance, 2021, 30, 6167-6174.	1.2	3

#	Article	IF	Citations
705	Competition of mechanisms contributing to the texture formation in metastable austenitic steel under compressive load. Materials Characterization, 2021, 176, 111132.	1.9	5
706	New insight into the hardenability of high strength low alloy steel from the perspective of crystallography. Materials Letters, 2021, 292, 129624.	1.3	12
707	Relative effect of B and N concentrations on the microstructural stability and mechanical properties of modified 9Cr-1Mo steel. Journal of Alloys and Compounds, 2021, 867, 158971.	2.8	10
708	Enhanced carbon enrichment in austenite through introducing pre-existing austenite as a †carbon container' in 0.2C-2Mn steel: The significant impact on microstructure and mechanical properties. Materials Characterization, 2021, 176, 111077.	1.9	6
709	Correlating Prior Austenite Grain Microstructure, Microscale Deformation and Fracture of Ultra-High Strength Martensitic Steels. Metals, 2021, 11, 1013.	1.0	4
710	Analysis of variant-pairing tendencies in lenticular martensite microstructures based on rank-1 connection. Scientific Reports, 2021, 11, 14957.	1.6	7
711	Study of the impact properties and microstructure evolution in a high-strength low-alloy heavy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141404.	2.6	5
712	Microstructural characteristics, hardness and wear resistance of a typical ferritic/martensitic steel surface-treated by pulsed laser. Surface and Coatings Technology, 2021, 418, 127261.	2.2	14
713	Relationship between martensite microstructure and ductility of H13 steel from aspect of crystallography. Journal of Iron and Steel Research International, 2021, 28, 1268-1281.	1.4	7
714	Changes in surface roughness and microstructure of 45 steel after irradiation by electron beam. Materials Letters, 2021, 296, 129934.	1.3	16
715	Effect of Prior Austenite Grain Size on Crystallographic Characteristics and Lowâ€Temperature Toughness of a Quenched Lowâ€Carbon Lowâ€Alloy Steel. Steel Research International, 2021, 92, 2100274.	1.0	7
716	Hierarchical Characteristics of Hydrogen-Assisted Crack Growth and Microstructural Strain Evolution in Tempered Martensitic Steels: Case of Quasi-cleavage Fracture. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4703-4713.	1.1	11
717	High pressure effect on the substructure and hardness of IF steel during martensitic transformation. Acta Materialia, 2021, 214, 116978.	3.8	12
718	Revealing the Unexpected Two Variant Pairing Shifts Due to Temperature Change in a Single Bainitic Medium Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4546-4557.	1.1	5
719	Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach. Journal of Manufacturing Processes, 2021, 68, 852-866.	2.8	28
720	A computational experiment on deducing phase diagrams from spatial thermodynamic data using machine learning techniques. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102303.	0.7	9
721	Probabilistic Reconstruction of Austenite Microstructure from Electron Backscatter Diffraction Observations of Martensite. Microscopy and Microanalysis, 2021, 27, 1035-1055.	0.2	8
722	Impact of steel type, composition and heat treatment parameters on effectiveness of deep cryogenic treatment. Journal of Materials Research and Technology, 2021, 14, 1007-1020.	2.6	36

#	Article	IF	CITATIONS
723	Effects of the Primary NbC Elimination on the SSCC Resistance of a HSLA Steel for Oil Country Tubular Goods. Materials, 2021, 14, 5301.	1.3	7
724	Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior. Journal of Materials Science and Technology, 2021, 84, 49-58.	5.6	19
725	Multiscale in-situ studies of strain-induced martensite formation in inter-critically annealed extra-low-carbon martensitic stainless steel. Acta Materialia, 2021, 220, 117339.	3.8	14
726	Study on the mechanism of heat input on the grain boundary distribution and impact toughness in CGHAZ of X100 pipeline steel from the aspect of variant. Materials Characterization, 2021, 179, 111344.	1.9	19
727	Influence of austenitizing temperature on the mechanical properties and microstructure of reduced activation ferritic/martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141934.	2.6	10
728	Effect of geometric lath orientation on fatigue crack propagation via out-of-plane dislocation glide in martensitic steel. Scripta Materialia, 2021, 203, 114045.	2.6	7
729	Ultrafine lamellar microstructure with greatly enhanced strength and ductility of martensite steel via heavily warm rolling of metastable austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141977.	2.6	17
730	Specific features of crystallographic texture formation in BCC-FCC transformation in extruded brass. Journal of Alloys and Compounds, 2021, 882, 160231.	2.8	9
731	Effects of Ti/Mo and Ti/Cu ratio on precipitation behavior of Ti-bearing steel: findings from experiments and critical patent analysis. Journal of Materials Research and Technology, 2021, 15, 1430-1445.	2.6	0
732	2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy. Scripta Materialia, 2021, 204, 114157.	2.6	26
733	A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning. Journal of Materials Science and Technology, 2021, 93, 191-204.	5.6	33
734	Influence of grinding and shot-peening on the near-surface microstructure of a maraging stainless steel. Materialia, 2021, 20, 101220.	1.3	4
735	Effect of manganese on the grain boundary network of lath martensite in precipitation hardenable stainless steels. Journal of Alloys and Compounds, 2021, 886, 161333.	2.8	9
736	Effect of microstructure on hydrogen embrittlement susceptibility in quenching-partitioning-tempering steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142046.	2.6	11
737	Effects of yttrium on the microstructures, internal fraction and martensitic transformation in H13 die steel. Journal of Materials Science, 2021, 56, 7753-7764.	1.7	5
738	Voronoi Diagram-Based Microstructure Modeling and Micromechanical Analysis of Quenched C35 Steel. Metallography, Microstructure, and Analysis, 2021, 10, 96-105.	0.5	0
739	Scanning Electron Microscopy and Complementary In Situ Characterization Techniques for Characterization of Deformation and Damage Processes. Springer Series in Materials Science, 2020, , 485-527.	0.4	1
740	Formation of Ultrafine Grained FerriteÂ+ÂCementite Duplex Structure by Warm Deformation. , 2011, , 495-500.		4

#	Article	IF	CITATIONS
741	Local distribution of orientation relationship and microstructure evolution of lath martensite in an ultra-low-carbon steel. Scripta Materialia, 2020, 180, 1-5.	2.6	16
742	Caution regarding ambiguities in similar expressions of orientation relationships. Journal of Applied Crystallography, 2016, 49, 40-46.	1.9	9
743	Crystallography of γ′-Fe ₄ N formation in single-crystalline α-Fe whiskers. Journal of Applied Crystallography, 2020, 53, 865-879.	1.9	5
744	A parameter-free double-shear theory for lath martensite. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 866-875.	0.0	3
745	The Effects of Ausforming on Variant Selection of Martensite in Cr-Mo Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 178s-182s.	0.1	5
746	A Crystal Plasticity FE Analysis Considering Mechanically Induced Martensitic Phase Transformation. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 102s-106s.	0.1	2
747	Grain Structure of Fe-0.3mass%C-9mass%Ni Steel Processed through .ALPHARARGAMMARARALPHA.' Transformation Caused by Spontaneous Reverse Transformation. ISIJ International, 2005, 45, 736-742.	0.6	2
748	Enhancement of Impact Toughness of 0.05% P Doped High Strength Steel through Formation of an Ultrafine Elongated Grain Structure. ISIJ International, 2010, 50, 1660-1665.	0.6	8
749	Classification of Twin Arrangements in Butterfly Martensite Grains and Analysis of Relationship between Twin Arrangement and Butterfly Wing Angle in Medium-Carbon Steel. ISIJ International, 2020, 60, 2075-2082.	0.6	6
750	Influence of Carbon Content on Toughening in Ultrafine Elongated Grain Structure Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1104-1113.	0.1	5
751	Effect of Stress on Variant Selection of Lath Martensite in Low-carbon Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2012, 98, 425-433.	0.1	4
752	Crystallographic Analysis of Lath Martensite in Ferrite-Martensite Dual Phase Steel Sheet Annealed after Cold-Rolling. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 625-633.	0.1	3
753	Microstructure of Welded Joints for High Cr Heat Resistant Steels. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 846-852.	0.1	1
754	Characterization of structural change in rail surface using advanced automatic crystallographic orientation microscopy. WIT Transactions on the Built Environment, 2016, , .	0.0	3
755	Microstructural Characterization of Martensitic All-Weld Metal Samples. Praktische Metallographie/Practical Metallography, 2017, 54, 513-532.	0.1	7
756	Microstructural Characterization of Ultra-High Strength Martensitic Steels. Praktische Metallographie/Practical Metallography, 2018, 55, 203-222.	0.1	10
757	The effect of materials properties on the reliability of hydraulic turbine runners. International Journal of Fluid Machinery and Systems, 2015, 8, 254-263.	0.5	12
758	Cu Filling into TSV and non-PR Sn bumping for 3 Dimension Chip Packaging. Journal of Welding and Joining, 2011, 29, 9-13.	0.3	4

#	Article	IF	CITATIONS
759	Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel. Journal of Welding and Joining, 2011, 29, 90-98.	0.3	7
760	On the Excess Shear Modulus in Relating to Martensitic Transformation in Steel. Journal of Smart Processing, 2013, 2, 128-133.	0.0	1
761	Microstructure and Pitting Corrosion Resistance of Quenched, Single Tempered and Double Tempered AISI 420 Martensitic Stainless Steel. Materials Research, 2021, 24, .	0.6	3
762	Crystallography of the nugget zone of bainitic steel by friction stir welding in various cooling mediums. Materials Characterization, 2021, 182, 111523.	1.9	13
763	A route to produce toughened acicular ferrite with equivalent hardness as martensite: The combined effect of elements segregation and pre-transformed allotriomorphic ferrite. Materials Characterization, 2021, 182, 111528.	1.9	10
764	Effect of initial microstructure on graphitization behavior of Fe–0.55C–2.3Si steel. Journal of Materials Research and Technology, 2021, 15, 4529-4540.	2.6	3
765	The microstructure and crystallography of lath martensite with Greninger-Troiano orientation relationship in a Fe-12.8Ni-1.5Si-0.22%C steel. Materials Characterization, 2021, 181, 111501.	1.9	5
766	In-situ quantification and density functional theory elucidation of phase transformation in carbon steel during quenching and partitioning. Acta Materialia, 2021, 221, 117361.	3.8	12
767	Crystallographic Features of Lath Martensite in 0.20%C Steel Analyzed by FE-SEM/EBSD. Materia Japan, 2005, 44, 982-982.	0.1	0
768	Application de la diffraction des électrons rétrodiffusés (EBSD) à l'étude des transformations de phase. Materiaux Et Techniques, 2009, 97, 51-60.	0.3	1
770	Effect of Prior Austenite Grain Size on Hydrogen Embrittlement Behaviors In 8Ni-0.1C Steel. , 2013, , 583-589.		1
771	Correlation Between Phase Transition Properties and Lattice-strain Energetics in Metallic Materials. Journal of Smart Processing, 2013, 2, 102-109.	0.0	1
773	Hybrid System for In Situ Observation of Microstructure Evolution in Steel Materials. , 2014, , 1-27.		0
774	Microstructural Behavior and Fracture in Crystalline Materials: Overview. , 2015, , 419-452.		0
775	In-situ Characterization of Phase Transformation. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2015, 84, 51-58.	0.0	0
776	Effects of Pretreatment before Austenitization on Mechanical Properties in a Bainitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 125s-129s.	0.1	0
777	Local Deformation Analysis in Martensite Layer of High-Strength Multilayered Steel Composite Using Synchrotron X-ray Diffraction. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 420-426.	0.1	0
778	Nonlinear Finite Element Analysis Considering Crystal Plasticity and Mechanically Induced Martensite Transformation. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2017, 86, 443-447.	0.0	0

#	Article	IF	CITATIONS
779	Conventional Heat Treatmentsâ \in "Usual Constituents and Their Formation. , 2018, , 193-272.		1
780	Identification of Hot Stamping Fully Martenstic Microstructure SEM Photograph with Support Vector Machine. , 2019, , .		3
781	Effect of Boron Addition on Liquid Zinc Embrittlement of Heat Affected Zone in 490 MPa Grade Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2019, 105, 742-751.	0.1	0
782	Martensitic Steel Microstructure Effects on Cavitation Erosion. Materials Performance and Characterization, 2019, 8, 604-611.	0.2	0
784	Machine-learning for Microstructure in the Low-carbon Steel Weld. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2019, 88, 536-539.	0.0	0
785	Influence of niobium microalloying on the kinetics of static and dynamic recrystallization during hot rolling of medium-carbon high-strength steels. Voprosy Materialovedeniya, 2020, , 5-15.	0.0	0
786	Improvement of toughness and hardness in BR1500HS steel by ultrafine martensite. High Temperature Materials and Processes, 2020, 39, 281-290.	0.6	1
787	Effect of microstructure synergism on cryogenic toughness for CGHAZ of low-carbon martensitic steel containing nickel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142240.	2.6	7
788	Microstructure Analysis in a Fe-Ni-C Alloy with Lenticular Martensite Based on Kinematics and Crystallography. Materia Japan, 2021, 60, 712-716.	0.1	0
789	Effect of cryogenic treatment on microstructure evolution and mechanical properties of high nitrogen plastic die steel. Journal of Materials Research and Technology, 2021, 15, 5128-5140.	2.6	6
790	Effect of direct quenched and tempering temperature on the mechanical properties and microstructure of high strength steel. Materials Research Express, 2020, 7, 126509.	0.8	0
791	Investigation of austenite decomposition behavior and relationship to mechanical properties in continuously cooled medium-Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142208.	2.6	15
792	Tensile deformation behavior of ferrite-bainite dual-phase pipeline steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142230.	2.6	28
793	Relationship between mechanical response and microscopic crack propagation behavior of hydrogen-related intergranular fracture in as-quenched martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142288.	2.6	9
794	New insight into the relationship between grain boundaries and hardness in bainitic/martensitic steels from the crystallographic perspective. Materials Letters, 2022, 308, 131105.	1.3	8
795	Crystallography of Martensitic Transformation in Steels: Advances in Experimental and Theoretical Research. Reviews on Advanced Materials and Technologies, 2020, 2, 39-50.	0.1	2
796	Martensitic Phase Transformation. Springer Series in Materials Science, 2020, , 47-69.	0.4	0
797	Application of Molecular Dynamics Calculations to Elucidation of the Mechanism of Hydrogen-Induced Crack Initiation in Fracture Toughness Tests Using Tempered Martensitic Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 944-954.	0.1	0

#	Article	IF	CITATIONS
798	Combined effect of hydrogen embrittlement and corrosion on the cracking behaviour of C110 low alloy steel in O2-contaminated H2S environment. Corrosion Science, 2022, 194, 109926.	3.0	15
799	Determination of fatigue lifetimes with a micromechanical short crack model for the high-strength steel SAEÂ4150. International Journal of Fatigue, 2022, 156, 106621.	2.8	5
800	Investigation of Composite Behaviour of Lath Martensite. Acta Materialia Transylvanica, 2020, 3, 90-93.	0.2	0
801	Role of martensitic transformation sequences on deformation-induced martensitic transformation at high strain rates: A quasi in-situ study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142319.	2.6	15
802	New insights into the fracture behavior of advanced high strength steel resistance spot welds. Journal of Materials Processing Technology, 2022, 301, 117433.	3.1	13
803	Atomic scale understanding of Kurdyumov-Sachs path during BCC to FCC phase transformation in iron-gallium alloy. Materials Characterization, 2022, 183, 111591.	1.9	4
804	Hydrogen embrittlement behaviors at different deformation temperatures in as-quenched low-carbon martensitic steel. International Journal of Hydrogen Energy, 2022, 47, 3131-3140.	3.8	7
805	Understanding microstructural influences on hydrogen diffusion characteristics in martensitic steels using finite element analysis (FEA). International Journal of Hydrogen Energy, 2022, 47, 1343-1357.	3.8	10
806	Twinned Martensitic Substructure in a Water Quenched Fe–1.0 wt% C Alloy. Acta Metallurgica Sinica (English Letters), 2022, 35, 1157-1163.	1.5	4
807	Formation of {100} Subgrain Variants and Σ3 Variants During Phase Transformation of Columnar Grains in Electrical Steel: Texture Memory and Variant Selection. Steel Research International, 2022, 93, 2100594.	1.0	1
808	Deep Learning for automated phase segmentation in EBSD maps. A case study in Dual Phase steel microstructures. Materials Characterization, 2022, 184, 111638.	1.9	19
809	Effect of ferrite-austenite morphology and orientation relationship on bainite transformation in low-alloy TRIP steels. Materials Characterization, 2022, 184, 111656.	1.9	13
810	Effective structural unit analysis in hexagonal close-packed alloys – reconstruction of parent β microstructures and crystal orientation post-processing analysis. Journal of Applied Crystallography, 2022, 55, 33-45.	1.9	4
811	Parent grain reconstruction from partially or fully transformed microstructures in <i>MTEX</i> . Journal of Applied Crystallography, 2022, 55, 180-194.	1.9	116
812	Effect of Aging Treatment on Toughness and Hardness Behavior in Custom 450 PH Steel. Journal of Materials Engineering and Performance, 2022, 31, 4242-4256.	1.2	4
813	Crystallographic Analysis of Plate and Lath Martensite in Fe-Ni Alloys. Crystals, 2022, 12, 156.	1.0	10
814	Crystalline characteristics of a dual-phase precipitation hardening stainless steel in quenched solid solution and aging treatments. Materials Chemistry and Physics, 2022, 280, 125804.	2.0	6
815	Formation mechanism of partial stacking faults by incomplete mixed-mode phase transformation: A case study of Fe-Ga alloys, Journal of Materials Science and Technology, 2022, 117, 59-64	5.6	1

#	Article	IF	CITATIONS
816	Micromorphic crystal plasticity approach to damage regularization and size effects in martensitic steels. International Journal of Plasticity, 2022, 151, 103187.	4.1	14
817	Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants. International Journal of Materials Research, 2022, 95, 744-755.	0.1	1
818	Combining crystal plasticity and electron microscopy to elucidate texture dependent micro-mechanisms of tensile deformation in lath martensitic steel. International Journal of Plasticity, 2022, 153, 103251.	4.1	7
819	Microstructural Behavior and Fracture in Crystalline Materials: Overview. , 2022, , 1301-1333.		0
820	Microstructure Generating Algorithm for Martensitic Alloys: Application to High-Strength Steels. SSRN Electronic Journal, 0, , .	0.4	0
821	Microstructural Evolution in Additively Manufactured Fe-Cr-Ni Maraging Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1771-1792.	1.1	4
822	Suppression of softening in heat affected zone by Mo addition in friction stir welded martensitic steel. Science and Technology of Welding and Joining, 2022, 27, 204-212.	1.5	3
823	The variant graph approach to improved parent grain reconstruction. Materialia, 2022, 22, 101399.	1.3	33
824	Hydrogen-Related Fracture Behavior under Constant Loading Tensile Test in As-Quenched Low-Carbon Martensitic Steel. Metals, 2022, 12, 440.	1.0	6
825	Factors Distinguishing Hydrogen-Assisted Intergranular and Intergranular-Like Fractures in a Tempered Lath Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1645-1658.	1.1	15
826	Design of a novel austenitising bending process in forming characteristics of high-strength quenched and micro-alloyed steel: Experiment and simulation. Materials and Design, 2022, 215, 110458.	3.3	4
827	Interaction between ÎNi3Ti and reversed austenite within Custom 465 stainless steel: experimental evidence and related patents investigation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142852.	2.6	8
828	Influence of chromium content on the bainite transformation nucleation mechanism and the properties of 800ÂMPa grade low carbon bainite weld deposited metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142893.	2.6	6
829	Correlation between microstructure and nanomechanical properties of 9Cr– 1Mo ferritic martensitic steel through instrumented indentation technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142985.	2.6	3
830	Spall properties and damage mechanisms of a low-alloy steel fabricated via laser powder bed fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142910.	2.6	5
831	Improvement of strength-ductility combination in ultra-high-strength medium-Mn Q&P steel by tailoring the characteristics of martensite/ retained austenite constituents. Journal of Materials Research and Technology, 2022, 18, 352-369.	2.6	19
832	Qualities of electron backscatter diffraction patterns and image contrast from a ferritic-martensitic steel microstructure. Materials Characterization, 2022, 187, 111826.	1.9	0
833	The Effects of Prior Austenite Grain Refinement on Strength and Toughness of High-Strength Low-Alloy Steel. Metals, 2022, 12, 28.	1.0	18

#	Article	IF	CITATIONS
834	Morphology and Crystallography Analyses of HSLA Steels with Hardenability Enhanced by Tailored C–Ni Collocation. Metals, 2022, 12, 32.	1.0	3
835	Texture evolution during processing and post-processing of maraging steel fabricated by laser powder bed fusion. Scientific Reports, 2022, 12, 6396.	1.6	14
836	The influence of parent austenite characteristics on the intervariant boundary network in a lath martensitic steel. Journal of Materials Science, 2022, 57, 8904-8923.	1.7	5
837	The Role of Hot Deformation Texture on Dynamic Transformation of Austenite to Ferrite in a 9%Cr Alloy Steel. Jom, 2022, 74, 2377-2385.	0.9	2
838	Local grid refinement in multigrid method for point contact problems of polycrystalline anisotropic material under dry and lubricated conditions. Friction, 2022, 10, 2086-2110.	3.4	1
839	Effect of cyclic quenching treatment on microstructural evolution and properties of ductile cast iron. Journal of Iron and Steel Research International, 2023, 30, 126-136.	1.4	3
840	Microstructure and mechanical properties of 1000â€MPa grade steel plate for hydropower station in different quenching processes. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 564-575.	0.5	0
841	Ex situ analysis of high-strength quenched and micro-alloyed steel during austenitising bending process: numerical simulation and experimental investigation. International Journal of Advanced Manufacturing Technology, 0, , 1.	1.5	4
842	Insight into the impact of microstructure on crack initiation/propagation behavior in carbide-free bainitic steel during tensile deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143175.	2.6	14
843	A dislocation-based model for cyclic plastic response of lath martensitic steels. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	4
844	Cerium-alloyed ultra-high strength maraging steel with good ductility: Experiments, first-principles calculations and phase-field simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143306.	2.6	3
845	Stress corrosion cracking behavior of super 13Cr tubing in phosphate packer fluid of high pressure high temperature gas well. Engineering Failure Analysis, 2022, 139, 106478.	1.8	6
846	Lath martensite substructure evolution in low-carbon microalloyed steels. Journal of Materials Science, 2022, 57, 10359-10378.	1.7	5
847	Quantitative evaluation of dislocation density in as-quenched martensite with tetragonality by X-ray line profile analysis in a medium-carbon steel. Acta Materialia, 2022, 234, 118052.	3.8	20
848	Effects of Carbon Content and Austenite Grain Size on Retained Austenite Fraction in Stir Zone of Friction Stir Welded 6%Ni Carbon Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2022, 108, 343-353.	0.1	2
849	Early Martensitic Transformation in a 0.74C–1.15Mn–1.08Cr High Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3034-3043.	1.1	4
850	A Critical Review on Mediumâ€Mn Steels: Mechanical Properties Governed by Microstructural Morphology. Steel Research International, 2023, 94, .	1.0	2
851	Effects of prior austenite grain size on reversion kinetics of different crystallographic austenite in a low carbon steel. Materials Characterization, 2022, 190, 112025.	1.9	6

#	Article	IF	CITATIONS
852	Multi-scale three-dimensional analysis on local arrestability of intergranular crack in high-strength martensitic steel. Acta Materialia, 2022, 234, 118053.	3.8	9
853	The effect of microstructure and mechanical properties on the slurry erosion behavior of carbide-free bainitic and martensitic steel. Wear, 2022, 504-505, 204422.	1.5	3
854	The Coupling Effect of Hierarchical Structures and MNâ€Type Precipitates on the Creep Resistance for the High N Heatâ€Resistant Martensitic Steel. Steel Research International, 2022, 93, .	1.0	0
855	Revealing the Influence of Microstructural Features on the Hardness Heterogeneity of Resistance Spot Welded Ultra-Low-Carbon Steel. SSRN Electronic Journal, 0, , .	0.4	Ο
856	Hydrogen-related Fatigue Fracture under Various Test Frequencies in Low-carbon Martensitic Steel. ISIJ International, 2022, 62, 2089-2094.	0.6	3
857	Effect of rolling on microstructure evolution and plastic deformation behavior of A473M martensitic stainless steel. Steel Research International, 0, , .	1.0	Ο
858	Hydrogen Embrittlement and Microstructure Characterization of 1500 MPa Martensitic Steel. Steel Research International, 2022, 93, .	1.0	4
859	A novel microscale fatigue failure indicator considering plastic irreversibility for microstructure-based lifetime simulation. International Journal of Fatigue, 2022, 163, 107115.	2.8	3
860	Strengthening via Grain Refinement in Lath Martensite on Low Carbon Fe–18Ni Alloys. ISIJ International, 2022, 62, 1502-1511.	0.6	5
861	Mixing effects of SEM imaging conditions on convolutional neural network-based low-carbon steel classification. Materials Today Communications, 2022, 32, 104062.	0.9	3
862	Effect of Carbon Content on Variant Pairing in Bainitic Low Alloy Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3418-3427.	1.1	4
863	Influence of cooling rate during cryogenic treatment on the hierarchical microstructure and mechanical properties of M54 secondary hardening steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143659.	2.6	8
864	Anisotropic cleavage fracture caused by transformation-induced internal stress in an as-quenched martensite. Materials Characterization, 2022, 191, 112157.	1.9	8
865	Medium Mn Dual-Phase Nanotwinned Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3456-3464.	1.1	0
866	Characterization of hierarchical lath martensite microstructure in low carbon steels using ultra-high voltage TEM and SEM-EBSD analysis. IOP Conference Series: Materials Science and Engineering, 2022, 1249, 012020.	0.3	2
867	Hydrogen-related Fracture in Martensitic Steels. Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71, 672-677.	0.1	0
868	Hydrogen gaseous embrittlement effect over mechanical properties of an experimental X-120 microalloyed steel subjected to heat treatments and different cooling rates. International Journal of Hydrogen Energy, 2022, 47, 30707-30721.	3.8	3
869	Modelling the effect of macro-segregation on the fracture toughness of heavy forgings using FFT based crystal plasticity simulations. Engineering Fracture Mechanics, 2022, 272, 108694.	2.0	1

#	ARTICLE	IF	CITATIONS
870	Effect of aging temperature on microstructure evolution and strengthening behavior of L-PBF 18Ni(300) maraging steel. Additive Manufacturing, 2022, 58, 103071.	1.7	6
871	Crystallographic study on deformed bainite structure of ultra-high strength steel and its relationship with strength and ductile-brittle transition temperature. Materials Letters, 2022, 326, 132947.	1.3	2
872	On the variant pairing in transformation product of high strength low alloy steel depending on cooling rate. Materials Letters, 2022, 326, 132953.	1.3	4
873	A multi-scale framework to predict damage initiation at martensite/ferrite interface. Journal of the Mechanics and Physics of Solids, 2022, 168, 105018.	2.3	6
874	Effect of thermomechanical treatment and microstructure on pseudo-elastic behavior of Fe–Mn–Si–Cr–Ni-(V, C) shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143917.	2.6	21
875	Correlation between strength and hardness for substructures of lath martensite in low- and medium-carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 144007.	2.6	9
876	Droplet size dependent localized corrosion evolution of M50 bearing steel in salt water contaminated lubricant oil. Corrosion Science, 2022, 208, 110620.	3.0	4
877	Research on the sensor for detection of carburized case depth based on nonlinear ultrasound. Results in Physics, 2022, 42, 105984.	2.0	2
878	Enhanced cryogenic tensile properties through cryogenic cyclic plastic strengthening in a metastable austenitic stainless steel. Scripta Materialia, 2023, 222, 115024.	2.6	11
879	Predicting Dislocation Density in Martensite Ab-Initio. SSRN Electronic Journal, 0, , .	0.4	0
880	Effects of carbon and chromium on block size of acicular ferrite in low carbon steel weld metals. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2022, 40, 159-168.	0.1	1
881	Crystal Orientation Analysis of Steels by EBSD. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2022, 91, 503-508.	0.0	0
882	A molecular dynamics study of dislocation-interface boundary interactions in lath martensite. AIP Conference Proceedings, 2022, , .	0.3	0
883	Effect of cooling rate on the microstructures of three low carbon alloys with different manganese and molybdenum contents. Metallurgical Research and Technology, 2022, 119, 520.	0.4	2
884	Novel Reconstruction Approaches of Austenitic Annealing Twin Boundaries and Grain Boundaries of Ultrafine Grained Prior Austenite. SSRN Electronic Journal, 0, , .	0.4	0
885	Microstructural Stability of a 9cr Oxide Dispersion Strengthened Alloy Under Thermal Aging at High Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
886	Micro-mechanisms of failure in nano-structured maraging steels characterised through in situ mechanical tests. Nanotechnology, 2023, 34, 025703.	1.3	1
887	{112} 〈111〉 Twins or Twinned Variants Induced by Martensitic Transformation?. Acta Metallurgi (English Letters), 2023, 36, 133-140.	ca Sinica	4

#	Article	IF	Citations
888	Effects of Carbon Content and Austenite Grain Size on Retained Austenite Fraction in Stir Zone of Friction Stir Welded 6%Ni Carbon Steels. ISIJ International, 2022, 62, 1908-1917.	0.6	0
889	Micromechanical properties of low-carbon martensitic stainless steel by microtensile experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, , 144030.	2.6	1
890	Effect of intercritical annealing and subsequent ageing on the microstructure and mechanical properties of a medium Ni–Mn low carbon steel. Journal of Materials Research and Technology, 2022, 20, 3656-3666.	2.6	1
891	Nb reinforced Fe-Mn-Si shape memory alloy composite coating fabricated by laser cladding on 304 stainless steel surface. Journal of Mechanical Science and Technology, 2022, 36, 5027-5033.	0.7	1
892	Boron addition to AISI A213/P91 steel: Preliminary investigation on microstructural evolution and microhardness at simulated heatâ€affected zone. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 1167-1183.	0.5	24
893	Application of Molecular Dynamics Calculations to Elucidation of the Mechanism of Hydrogen-Induced Crack Initiation in Fracture Toughness Tests Using Tempered Martensitic Steels. ISIJ International, 2022, 62, 2107-2117.	0.6	0
894	Three-dimensional Characterisation of Microstructures in Low-carbon Lath Martensite. ISIJ International, 2022, 62, 1972-1980.	0.6	0
895	Origins and Resulting Effects of Internal Stresses in Martensite. ISIJ International, 2022, 62, 1981-1989.	0.6	4
896	Microstructural Size Effect on Strain-Hardening of As-Quenched Low-Alloyed Martensitic Steels. ISIJ International, 2022, 62, 2008-2015.	0.6	3
897	Improvement of resistance against hydrogen embrittlement by controlling carbon segregation at prior austenite grain boundary in 3Mn-0.2C martensitic steels. Scripta Materialia, 2023, 224, 115043.	2.6	10
898	Characterizing local distribution of microstructural features and its correlation with microhardness in resistance spot welded ultra-low-carbon steel: Experimental and finite element characterization, 2022, 194, 112382.	1.9	14
899	Formation mechanism of faulted bands and its effect on α′-martensitic transformation. Materials and Design, 2022, 224, 111321.	3.3	2
900	Adding Cr and Mo simultaneously enhances the strength and impact toughness of TiC microparticle-reinforced steel matrix composites at high temperatures. Journal of Alloys and Compounds, 2023, 931, 167531.	2.8	3
901	Microstructural stability of a 9Cr oxide dispersion strengthened alloy under thermal aging at high temperatures. Journal of Alloys and Compounds, 2023, 932, 167691.	2.8	1
902	Predicting dislocation density in martensite ab-initio. Acta Materialia, 2023, 243, 118500.	3.8	10
903	Refining the hierarchical structure of lath martensitic steel by in situ alloying with nickel: morphology, crystallography, and mechanical properties. Journal of Materials Science, 2022, 57, 20867-20894.	1.7	10
904	Impact of Cooling Rate during High-Pressure Gas Quenching on Fatigue Performance of Low Pressure Carburized Gears. Metals, 2022, 12, 1917.	1.0	1
905	Correlation between microstructure and shape memory properties in an Fe-9.5Ni-6.5Mn dual phase steel developed by intercritical annealing and subsequent ageing. Journal of Materials Research and Technology 2022 21 4537-4547	2.6	7

#	Article	IF	CITATIONS
906	Effect of High-pressure Quenching on Pure-iron Martensite Transformation and Its Strengthening Mechanism. ISIJ International, 2022, 62, 2374-2381.	0.6	1
907	Variant Pairing of Lath Bainite and Martensite in an Ultra-High-Strength Steel. Metals, 2022, 12, 1896.	1.0	1
908	Achieving high strength and large elongation in a strip casting microalloyed steel by ageing treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 860, 144217.	2.6	4
909	Effect of C and Si contents on microstructure and impact toughness in CGHAZ of offshore engineering steel. Metallurgical Research and Technology, 2022, 119, 615.	0.4	1
910	Carbon segregation and cementite precipitation at grain boundaries in quenched and tempered lath martensite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 862, 144369.	2.6	18
911	Enhancement of the strength-toughness balance in a quenched laser-additively-manufactured low alloy mild steel: Effect of grain refinement and nanotwin bundle formation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 862, 144488.	2.6	3
912	Microstructures and Tensile Properties of Friction Stir Welded 0.2%C-2%Si-Cr Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2022, 108, 911-925.	0.1	0
913	Effect of electromagnetic stirring on microstructure formation in 12%Ni steel ESW weld metal. Welding in the World, Le Soudage Dans Le Monde, 0, , .	1.3	0
914	Crystallographic Features of Phase Transformations in Steel 100KhN3A. Metal Science and Heat Treatment, 2022, 64, 379-383.	0.2	0
915	Microstructure and mechanical properties of a 2000 MPa grade ultrahigh strength boron steel. IOP Conference Series: Materials Science and Engineering, 2022, 1270, 012055.	0.3	0
916	Relationship between Hydrogen-related Fracture and Microstructure in High-strength Martensitic Steels. Materia Japan, 2022, 61, 860-863.	0.1	0
917	On the continuous cooling transformation of deformed austenite and relationship to properties in medium-Mn steel. Journal of Materials Science, 2022, 57, 22042-22052.	1.7	5
918	Quantitative relationship between microstructure/crystallography and strength/toughness in simulated inter-critical heat affected subzone of medium Mn steel. Journal of Materials Research and Technology, 2023, 22, 3085-3100.	2.6	3
919	Effect of crystallographic features on low-temperature fatigue ductile-to-brittle transition for simulated coarse-grained heat-affected zone of bainite steel weld. International Journal of Fatigue, 2023, 170, 107523.	2.8	6
920	Unraveling the Effects of Austenitizing Temperature and Austenite Grain Size on the Crystallographic Characteristics and Mechanical Properties of Martensitic Transformation Products in a Low-Alloy Steel. Acta Metallurgica Sinica (English Letters), 0, , .	1.5	1
921	Substructure and crystallography of lath martensite in as-quenched interstitial-free steel and low-carbon steel. Acta Materialia, 2023, 246, 118675.	3.8	15
922	Microstructure Evolution in a GOES Thin Strip. Metals, 2023, 13, 51.	1.0	0
923	Effect of Double-Quenching on the Hardness and Toughness of a Wear-Resistant Steel. Metals, 2023, 13, 61.	1.0	2

#	Article	IF	CITATIONS
925	Correlation between Vickers Hardness and Electromagnetic Properties of Automotive Die-Quenched Steel under Various Die Temperatures. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2023, , .	0.2	0
926	Impact of Multi-Level Microstructures on the Strength and Yield Ratio of Extra-Thick Ultra-High-Strength Steel. Journal of Materials Engineering and Performance, 0, , .	1.2	0
927	Analysis of the microstructural features of phase transformation during hardening processes of 3 martensitic stainless steels. Metallurgical Research and Technology, 2023, 120, 117.	0.4	0
928	Machinability Investigations Based on Tool Wear, Surface Roughness, Cutting Temperature, Chip Morphology and Material Removal Rate during Dry and MQL-Assisted Milling of Nimax Mold Steel. Lubricants, 2023, 11, 101.	1.2	14
929	Sensitivity of local cyclic deformation in lath martensite to flow rule and slip system in crystal plasticity. Computational Materials Science, 2023, 222, 112106.	1.4	4
930	Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current. Acta Metallurgica Sinica (English Letters), 2023, 36, 1511-1522.	1.5	3
931	Significance of Mn concentration on aging behavior, microstructure evolution and mechanical properties of Fe–Ni–Mn alloys. Journal of Materials Research and Technology, 2023, 24, 1-15.	2.6	2
932	Dependence of strengthing and toughening on retained austenite of quenched and partitioned AISI 430 ferritic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144998.	2.6	4
933	Investigation of microstructural evolution and crack extension in a quenching and partitioning (QÂ& P) steel at different strain rates. Journal of Materials Research and Technology, 2023, 24, 2385-2402.	2.6	5
934	Lattice parameters of austenite and martensite during transformation for Fe–18Ni alloy investigated through in-situ neutron diffraction. Acta Materialia, 2023, 250, 118860.	3.8	6
935	Deformation-induced martensite transformation and variant selection in AISI 316L austenitic stainless steel during uniaxial tensile deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144930.	2.6	2
936	The effect of microstructure on the dynamic shock response of 1045 steel. Acta Materialia, 2023, 250, 118874.	3.8	4
937	Capturing the softening in T91 steel annealed with molten LBE through interfacial gradient plasticity. Materials Today Communications, 2023, 35, 105719.	0.9	0
938	Heterogeneous microstructural design with a bimodal grain size distribution of a multicomponent alloy by reversion from a strain-induced martensite. Journal of Alloys and Compounds, 2023, 947, 169646.	2.8	3
939	Low hydrogen pressure effect over microhardness and impact toughness of an experimental X-120 microalloyed steel. International Journal of Pressure Vessels and Piping, 2023, 203, 104946.	1.2	0
940	Modeling Bainite Dual-Phase Steels: A High-Resolution Crystal Plasticity Simulation Study. Crystals, 2023, 13, 673.	1.0	1
941	Interplay between hierarchical microstructure and graded residual stress in a stainless steel fabricated by laser powder bed fusion. Materials Characterization, 2023, 200, 112912.	1.9	2
942	Enhancing the static and dynamic mechanical properties of laser powder bed fusion process built 15–5 precipitation hardening stainless steel specimens by laser shock peening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 866, 144657.	2.6	4

#	Article	IF	CITATIONS
943	Influence of prior austenite grain structure on hydrogen-induced fracture in as-quenched martensitic steels. Engineering Fracture Mechanics, 2023, 281, 109090.	2.0	7
944	Novel reconstruction approaches of austenitic annealing twin boundaries and grain boundaries of ultrafine grained prior austenite. Materials and Design, 2023, 227, 111692.	3.3	5
945	Influence of Heat and Cryogenic Treatments on the Abrasive Wear Behavior of H13 Tool Steel. Journal of Materials Engineering and Performance, 2023, 32, 10254-10264.	1.2	4
946	Influence of Pressâ€Hardening in Combination with Quenching and Partitioning Treatment on the Microstructure of Medium Manganese Steel. Steel Research International, 2023, 94, .	1.0	0
947	Effect of quenching and tempering on structure and mechanical properties of a low-alloy 0.25C steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 868, 144757.	2.6	16
948	High-temperature phase stability, γ → δ transformation of ferritic/martensitic steel studied by differentia scanning calorimetry and electron backscatter diffraction. Journal of Thermal Analysis and Calorimetry, 2023, 148, 3357-3371.	al 2.0	1
949	Crystallographic Analysis on the Upper Bainite Formation at the Austenite Grain Boundary in Fe-0.6C-0.8Mn-1.8Si Steel in the Initial Stage of Transformation. Crystals, 2023, 13, 414.	1.0	2
950	Effect of Hot-Rolling on the Microstructure and Impact Toughness of an Advanced 9%Cr Steel. Crystals, 2023, 13, 492.	1.0	3
951	Phase-field Modeling and Simulation of Solid-state Phase Transformations in Steels. ISIJ International, 2023, 63, 395-406.	0.6	5
952	Study of an Economical and Effective Heat Treatment Method to Improve the Performance of Gear Steels. Steel Research International, 2023, 94, .	1.0	1
953	Study on In-Situ Nucleation, Growth Kinetics and Crystallographic Structure of Acicular Ferrite in X100 Pipeline Steel Welds. Metals and Materials International, 2023, 29, 2623-2635.	1.8	2
954	焼æ^»ãfžãf«ãf†ãf³ã,µã,¤f^鋼ã®é«~C化ã«ã,^ã,‹ç²'界ç´å£Šå¼•岦ã®å•上. Tetsu-To-Hagane/Journal of the I	rത്ഥand S	t eel I nstitut
955	Effects of the microstructure and reversed austenite on the hydrogen embrittlement susceptibility of Ni-Cr-Mo-V/Nb high-strength steel. Corrosion Science, 2023, 218, 111164.	3.0	5
956	Microstructure and mechanical properties of a martensitic stainless steel (0.2%C–12%Cr) after quenching and partitioning (Q&P) process. Journal of Materials Research and Technology, 2023, 24, 3937-3955.	2.6	0
957	Orientation Relationship of FeNiC and FeNiCSi from Variant Detection in EBSD Data. Crystals, 2023, 13, 663.	1.0	1
958	Martensite Boundary Characteristics on Cycle- and Time-Dependent Fatigue Crack Growth Paths of Tempered Lath Martensitic Steels in a 90AMPa Gaseous Hydrogen Atmosphere. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 2512-2518.	1.1	1
959	Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia, 2023, 252, 118947.	3.8	7
960	Microstructure, crystallographic aspects and mechanical properties of AISI 420 martensitic stainless steel after different thermomechanical process routes. Materials Chemistry and Physics, 2023, 305, 127723.	2.0	0

#	Article	IF	CITATIONS
961	Effect of austempering time on bainite plate thickness and variant selection in a high carbon low alloy steel. Materials Characterization, 2023, 200, 112923.	1.9	3
962	Mechanical and microstructure properties of ultra-high strength boron steel using rapid resistance heating without soaking. Journal of Materials Science, 0, , .	1.7	0
963	Tempering mechanism of lath martensite induced in IF steel under high pressure. Journal of Materials Science and Technology, 2023, 160, 148-160.	5.6	3
1003	Variant Pairing Quantification Method for a Bainitic HSLA Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 3697-3702.	1.1	0