Polymer supported inorganic nanoparticles: characteriz applications

Reactive and Functional Polymers 54, 167-180 DOI: 10.1016/s1381-5148(02)00192-x

Citation Report

#	Article	IF	CITATIONS
1	Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004, 38, 43-74.	3.9	1,552
2	Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. Reactive and Functional Polymers, 2004, 60, 137-149.	2.0	136
3	Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: Nucleation mechanism and morphology. Journal of Polymer Science Part A, 2004, 42, 5695-5705.	2.5	67
4	Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251, 183-190.	2.3	194
5	Magnetic Properties Of Poly[Acrylic Acid-(Cobalt Ferrite- Silica)] Composites. Materials Research Innovations, 2005, 9, 109-109.	1.0	0
6	Heterogeneous catalysis on chitosan-based materials: a review. Progress in Polymer Science, 2005, 30, 71-109.	11.8	648
7	Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie, 2005, 8, 963-970.	0.2	327
8	Studies on the uptake behavior of a magnetic CoO-containing resin for Ni(II), Cu(II) and Hg(II) from their aqueous solutions. Separation and Purification Technology, 2005, 46, 208-213.	3.9	57
9	Thermally responsive complex polymer networks containing Fe3O4 nanoparticles: Composition/morphology/property relationship. Journal of Polymer Science Part A, 2005, 43, 5923-5934.	2.5	13
10	Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles:Â Role of Donnan Membrane Effectâ€. Environmental Science & Technology, 2005, 39, 6508-6515.	4.6	508
11	Preparation and Characterization of Magnetically Active Dual-Zone Sorbent. Industrial & Engineering Chemistry Research, 2005, 44, 600-605.	1.8	23
12	Nerve Agent Destruction by Recyclable Catalytic Magnetic Nanoparticles. Industrial & Engineering Chemistry Research, 2005, 44, 7991-7998.	1.8	56
13	Evidence of Tunable Onâ^'Off Sorption Behaviors of Metal Oxide Nanoparticles:Â Role of Ion Exchanger Support. Industrial & Engineering Chemistry Research, 2006, 45, 7737-7742.	1.8	71
14	In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. Reactive and Functional Polymers, 2006, 66, 1552-1558.	2.0	192
15	Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Separation and Purification Technology, 2006, 49, 64-70.	3.9	75
16	Synthesis and characterization of ferrite nanocomposite spheres from hydroxylated polymers. Journal of Magnetism and Magnetic Materials, 2006, 296, 104-113.	1.0	45
17	Superparamagnetic thermoresponsive composite latex via W/O miniemulsion polymerization. Journal of Applied Polymer Science, 2006, 100, 3987-3996.	1.3	34
18	Two novel applications of ion exchange fibers: Arsenic removal and chemical-free softening of hard water. Environmental Progress, 2006, 25, 300-311.	0.8	88

#	Article	IF	CITATIONS
19	Adsorption of Neutral Proteinase on Chitosan Nano-Particles. Biotechnology and Biotechnological Equipment, 2007, 21, 223-228.	0.5	5
20	Using macroporous N-chlorosulfonamide S/DVB copolymer as an aid to iron removal from water. Pure and Applied Chemistry, 2007, 79, 1491-1503.	0.9	8
21	Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Research, 2007, 41, 1603-1613.	5.3	386
22	Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere, 2007, 66, 8-17.	4.2	74
23	Decomposition of Toxic Environmental Contaminants by Recyclable Catalytic, Superparamagnetic Nanoparticles. Industrial & Engineering Chemistry Research, 2007, 46, 3296-3303.	1.8	32
24	Effects of the reinforcement and toughening of acrylate resin/CaCO3 nanoparticles on rigid poly(vinyl chloride). Journal of Applied Polymer Science, 2007, 103, 3940-3949.	1.3	13
25	Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science, 2007, 30, 1751-1772.	1.3	327
26	Ultrasonic-assisted synthesis of PMMA/Ni0.5Zn0.5Fe2O4 nanocomposite in mixed surfactant system. European Polymer Journal, 2007, 43, 1724-1728.	2.6	25
27	Neutral lipase from aqueous solutions on chitosan nano-particles. Biochemical Engineering Journal, 2007, 34, 217-223.	1.8	20
28	Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 2007, 87, 197-206.	1.8	208
29	Synthesis and characterization of an iron oxide poly(styrene-co-carboxybutylmaleimide) ferrimagnetic composite. Polymer, 2007, 48, 720-727.	1.8	30
30	Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 2007, 142, 1-53.	6.5	2,956
31	Cation-exchange membrane as nanoreactor: Intermatrix synthesis of platinum–copper core–shell nanoparticles. Reactive and Functional Polymers, 2007, 67, 1612-1621.	2.0	36
32	Synthesis and morphology of an iron oxide/polystyrene/poly(isopropylacrylamide-co-methacrylic acid) thermosensitive magnetic composite latex with potassium persulfate as the initiator. Journal of Polymer Science Part A, 2007, 45, 3062-3072.	2.5	20
33	Synthesis and morphology of Fe ₃ O ₄ /polystyrene/poly(isopropylacrylamideâ€ <i>co</i> â€methyl acrylate acid) magnetic composite latex – 2,2′â€azobis (2â€methylpropionamidine) dihydrochloride as initiator. Journal of Polymer Science Part A, 2007, 45, 3912-3921.	2.5	16
34	Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers, 2007, 67, 1599-1611.	2.0	104
35	A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: Process concept and laboratory evaluation. Journal of Membrane Science, 2008, 324, 76-84.	4.1	56
36	Synthesis, stability and electrocatalytic activity of polymerâ€stabilized monometallic Pt and bimetallic Pt/Cu core–shell nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1460-1464.	0.8	25

#	Article	IF	CITATIONS
37	Effect of the nature of crosslinking agent on the unusual metal ion specificity and selectivity of <i>N,N</i> â€bis(2â€aminoethyl)polyacrylamide. Journal of Applied Polymer Science, 2008, 108, 2017-2022.	1.3	2
38	Nanocomposite particles with coreâ€shell morphology. I. Preparation and characterization of Fe ₃ O ₄ –poly(butyl acrylateâ€styrene) particles via miniemulsion polymerization. Journal of Applied Polymer Science, 2008, 110, 1242-1249.	1.3	54
39	Characterization of hybrid inorganic/organic polymer-type materials used for arsenic removal from drinking water. Reactive and Functional Polymers, 2008, 68, 1578-1586.	2.0	11
40	Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Separation and Purification Technology, 2008, 61, 348-357.	3.9	102
41	Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic) Tj ETQq0 0 0 rgBT /Overl Polymer Journal, 2008, 44, 2768-2776.	ock 10 Tf 5 2.6	50 587 Td (aci 26
42	Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 2008, 400, 42-51.	3.9	537
43	Arsenic Removal from Groundwater and Its Safe Containment in a Rural Environment: Validation of a Sustainable Approach. Environmental Science & Technology, 2008, 42, 4268-4273.	4.6	153
45	Adsorption of nuclease p1 on chitosan nano-particles. Brazilian Journal of Chemical Engineering, 2009, 26, 435-443.	0.7	5
46	Sensing of toxic metals through pH changes using a hybrid sorbent material: Concept and experimental validation. AICHE Journal, 2009, 55, 2997-3004.	1.8	7
47	Synthesis and characterization of new waterâ€soluble metal–polymer complex and its application for arsenite retention. Journal of Applied Polymer Science, 2009, 111, 2720-2730.	1.3	6
48	Synthesis of poly(methyl methacrylate) nanoparticles initiated by azobisisobutyronitrile using a differential microemulsion polymerization technique. Journal of Applied Polymer Science, 2009, 113, 375-382.	1.3	20
49	Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 2009, 55, 22-45.	1.8	1,197
50	Uptake of arsenate by an alginate-encapsulated magnetic sorbent: Process performance and characterization of adsorption chemistry. Journal of Colloid and Interface Science, 2009, 333, 33-39.	5.0	47
51	Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 52-57.	2.3	147
52	Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresource Technology, 2009, 100, 4348-4353.	4.8	79
53	Groundwater Arsenic Removal Technologies Based on Sorbents. , 2009, , 379-417.		9
54	Hybrid Anion Exchange Fibers with Dual Binding Sites: Simultaneous and Reversible Sorption of Perchlorate and Arsenate. Environmental Engineering Science, 2009, 26, 1673-1683.	0.8	18
55	Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications. Chromatographia, 2010, 72, 875-884.	0.7	42

#	Article	IF	CITATIONS
56	Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. Journal of Dispersion Science and Technology, 2010, 31, 273-288.	1.3	138
57	Organic–Inorganic Hybrid Magnetic Latex. Advances in Polymer Science, 2010, , 237-281.	0.4	26
58	Kinetics of Chromium Ion Removal from Tannery Wastes Using Amberlite IRA-400 Clâ^' and its Hybrids. Water, Air, and Soil Pollution, 2010, 210, 43-50.	1.1	26
59	Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environmental Geochemistry and Health, 2010, 32, 291-296.	1.8	27
60	Development of a bionanotechnological phosphate removal system with thermostable ferritin. Biotechnology and Bioengineering, 2010, 105, 918-923.	1.7	20
61	Nanocrystalline zirconia: A novel sorbent for the preparation of 188W/188Re generator. Applied Radiation and Isotopes, 2010, 68, 229-238.	0.7	29
63	Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. Advances in Polymer Science, 2010, , 53-123.	0.4	120
64	Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study. Water Research, 2010, 44, 815-824.	5.3	233
65	Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin. International Journal of Environmental Science and Technology, 2010, 7, 147-156.	1.8	126
66	Extraction and Separation of Zirconium(IV) and Hafnium(IV) from Chloride Media Using Magnetic Resin with Phosphoric Acid Functionality. Journal of Dispersion Science and Technology, 2011, 32, 193-202.	1.3	24
67	Fabrication and characterization of water-stable electrospun polyethyleneimine/polyvinyl alcohol nanofibers with super dyesorption capability. New Journal of Chemistry, 2011, 35, 360-368.	1.4	53
68	Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 2011, 45, 886-892.	5.3	603
69	Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Research, 2011, 45, 3318-3330.	5.3	211
70	Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 2011, 45, 3481-3488.	5.3	401
71	High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. Journal of Hazardous Materials, 2011, 192, 1002-1008.	6.5	91
72	Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. Journal of Hazardous Materials, 2011, 198, 241-246.	6.5	74
73	Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. Journal of Nanoparticle Research, 2011, 13, 7167-7176.	0.8	102
74	Fast kinetic and efficient removal of As(V) from aqueous solution using anion exchange resins. Journal of Hazardous Materials, 2011, 191, 1-7.	6.5	50

ARTICLE IF CITATIONS # Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental 75 6.6 70 applications. Chemical Engineering Journal, 2011, 166, 923-931. Recent research progress on the preparation and application of magnetic nanospheres. Polymer 1.6 International, 2011, 60, 976-994. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from 77 195 6.6 aqueous solution. Chemical Engineering Journal, 2011, 171, 612-617. Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions. Journal of Colloid and Interface Science, 2011, 360, 731-738. Toxic Metal Sensing through Novel Use of Hybrid Inorganic and Polymeric Ion-Exchangers. Solvent 79 0.8 5 Extraction and Ion Exchange, 2011, 29, 398-420. Adsorption of Heavy Metals on Tailored Composite Magnetic Microparticles. Solvent Extraction and Ion Exchange, 2011, 29, 673-694. 0.8 Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their 81 1.1 58 Selective Sorption. Water, Air, and Soil Pollution, 2012, 223, 6133-6155. Adsorptive characteristics of akaganeite and its environmental applications: a review. Environmental 2.1 37 Technology Reviews, 2012, 1, 114-126. 83 Fibrous Ion Exchangers., 2012, , 299-371. 12 Synthesis and characteristics of poly(<i>N</i>â€isopropylacrylamideâ€<i>co</i>â€methacrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 84 2.5 Journal of Polymer Science Part A, 2012, 50, 2626-2634. Arsenic removal by magnetic nanocrystalline barium hexaferrite. Journal of Nanoparticle Research, 85 0.8 18 2012, 14, 1. Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36). Korean 1.2 86 Journal of Chemical Engineering, 2012, 29, 473-477. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and 87 0.8 380 applications. Journal of Nanoparticle Research, 2012, 14, 1. Morphological changes of gel-type functional polymers after intermatrix synthesis of polymer 3.1 14 stabilized silver nanoparticles. Nanoscale Research Letters, 2013, 8, 255. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 89 3.1 446 2013, 8, 381. Synthesis and Evaluation of a Novel Hybrid Polymer Containing Manganese and Iron Oxides as a Sorbent for As(III) and As(V) Removal. Industrial & amp; Engineering Chemistry Research, 2013, 52, 1.8 6453-6461. Superparamagnetic Core-Shell Polymeric Nanocomposites for Efficient Removal of Methylene Blue 91 1.521 from Aqueous Solutions. Adsorption Science and Technology, 2013, 31, 397-419. Macronutrient Removal and Recovery from Tertiary Treatment of Wastewater. ACS Symposium Series, 2013, , 167-187.

#	Article	IF	CITATIONS
93	The impact of contactor scale on a ferric nanoparticle adsorbent process for the removal of phosphorus from municipal wastewater. Chemical Engineering Journal, 2013, 215-216, 209-215.	6.6	15
94	Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a) Tj ETQq1 1 0.78	4314 rgBT 2.1	Ölerlock 10
95	Arsenic sorption by nanocrystalline magnetite: An example of environmentally promising interface with geosphere. Journal of Hazardous Materials, 2013, 262, 1204-1212.	6.5	50
96	Synthesis and characterization of copolymer grafted magnetic nanoparticles via surfaceâ€initiated nitroxideâ€mediated radical polymerization. Polymer Engineering and Science, 2013, 53, 956-962.	1.5	15
97	Characterization of stabilized porous magnetite core-shell nanogel composites based on crosslinked acrylamide/sodium acrylate copolymers. Polymer International, 2013, 62, 1667-1677.	1.6	15
98	Effect of the conditions of synthesis and the pH of the medium on the dimensional characteristics of nanocomplexes of selenium with chymotrypsin. Russian Journal of Physical Chemistry A, 2013, 87, 2074-2076.	0.1	5
99	Synthesis of Fluorescent PMMAâ€Based Nanoparticles. Macromolecular Materials and Engineering, 2013, 298, 771-778.	1.7	28
100	Arsenic(III) Removal at Low Concentrations by Biosorption using <i>Phanerochaete chrysosporium</i> Pellets. Separation Science and Technology, 2013, 48, 1111-1122.	1.3	12
101	Synthesis and characteristics of poly(Nâ€isopropylacrylamideâ€coâ€methacrylic) Tj ETQq0 0 0 rgBT /Overlock 10 thermosensitive magnetic composite hollow latex particles. Journal of Polymer Science Part A, 2013, 51, 2880-2891.	2.5 Tf 50	2 Td (acid)/Fe 14
102	Near-Stoichiometric Adsorption of Phosphate by Silica Gel Supported Nanosized Hematite. ISRN Inorganic Chemistry, 2013, 2013, 1-10.	0.2	2
103	Separation of naphthenic acid from an oilâ€phase using novel magnetic composite particles. Journal of Chemical Technology and Biotechnology, 2014, 89, 927-933.	1.6	2
104	Preparation of an Amphiphilic Magnetic Copolymer Microspheres. Advanced Materials Research, 0, 881-883, 846-849.	0.3	0
105	Evaluation of iron-based hybrid materials for heavy metal ions removal. Journal of Materials Science, 2014, 49, 2483-2495.	1.7	21
106	Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447, 59-66.	2.3	77
107	Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chemical Engineering Journal, 2014, 245, 34-40.	6.6	154
108	Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff. Frontiers of Environmental Science and Engineering, 2014, 8, 463-470.	3.3	16
109	Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 2014, 243, 14-23.	6.6	302
110	Environmental Applications of Magnetic Nanoparticles. Frontiers of Nanoscience, 2014, , 259-307.	0.3	20

#	Article	IF	CITATIONS
111	Use of marine and engineered materials for the removal of phosphorus from secondary effluent. Ecological Engineering, 2014, 73, 635-642.	1.6	9
112	Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study. Journal of Environmental Sciences, 2014, 26, 1751-1762.	3.2	114
113	Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	35
115	Mitigating arsenic crisis in the developing world: Role of robust, reusable and selective hybrid anion exchanger (HAIX). Science of the Total Environment, 2014, 488-489, 547-553.	3.9	42
116	Aluminum Pillared Palygorskite-Supported Nanoscale Zero-Valent Iron for Removal of Cu(II), Ni(II) From Aqueous Solution. Arabian Journal for Science and Engineering, 2014, 39, 6727-6736.	1.1	3
117	Synthesis, characterization and aging study of kaolinite-supported zero-valent iron nanoparticles and its application for Ni(II) adsorption. Materials Research Bulletin, 2014, 60, 421-432.	2.7	38
118	Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Analytica Chimica Acta, 2014, 812, 114-120.	2.6	17
119	Nanostructured zirconium phosphate as ion exchanger: Synthesis, size dependent property and analytical application in radiochemical separation. Applied Radiation and Isotopes, 2014, 85, 34-38.	0.7	17
120	Morphological characteristics of selenium-polyethylene glycol nanocomposites. Russian Journal of Physical Chemistry A, 2015, 89, 1625-1627.	0.1	4
121	Synthesis and Characterization of Carrageenan Coated Magnetic Nanoparticles for Drug Delivery Applications. Translational Biomedicine, 2015, 6, .	0.1	4
122	Reduction of Electromagnetic Interference Using ZnO-PCL Nanocomposites at Microwave Frequency. Advances in Materials Science and Engineering, 2015, 2015, 1-7.	1.0	8
123	5-(p-Dimethylaminobenzylidene) rhodanine-modified magnetic halloysite nanotubes as a new solid phase sorbent for silver ions. Analytical Methods, 2015, 7, 5847-5853.	1.3	10
124	Characterization of natural zeolite clinoptilolite for sorption of contaminants. Hyperfine Interactions, 2015, 232, 7-18.	0.2	6
125	Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism. Journal of Hazardous Materials, 2015, 298, 328-337.	6.5	57
126	Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Waste Management and Research, 2015, 33, 612-629.	2.2	35
127	Arsenic(V) sorption using chitosan/Cu(OH) 2 and chitosan/CuO composite sorbents. Carbohydrate Polymers, 2015, 134, 190-204.	5.1	114
128	Effective immobilization of gold nanoparticles on core–shell thiol-functionalized GO coated TiO2 and their catalytic application in the reduction of 4-nitrophenol. Applied Catalysis A: General, 2015, 502, 239-245.	2.2	36
129	Polymeric anion exchanger supported hydrated Zr(IV) oxide nanoparticles: A reusable hybrid sorbent for selective trace arsenic removal. Reactive and Functional Polymers, 2015, 93, 84-94.	2.0	76

#	Article	IF	CITATIONS
130	Synthesis of polymer-based hybrid materials via Mn(II) oxidation with N-bromosulphonamide polymer and their characterization. Journal of Materials Science, 2015, 50, 4300-4311.	1.7	4
131	The distinct role of the flexible polymer matrix in catalytic conversions over immobilised nanoparticles. RSC Advances, 2015, 5, 56181-56188.	1.7	6
132	Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 2015, 263, 55-61.	6.6	70
133	Electric response of a magnetic colloid to periodic external excitation for different nanoparticles concentrations: Determination of the particles' effective charge. Journal of Applied Physics, 2016, 120, .	1.1	3
134	Using Fe–Mn binary oxide three-dimensional nanostructure to remove arsenic from aqueous systems. Water Science and Technology: Water Supply, 2016, 16, 516-524.	1.0	3
135	Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: Impact on enzyme activities and microbial community diversity. Water Research, 2016, 106, 15-25.	5.3	241
136	Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 2016, 3, 1241-1253.	2.2	101
137	Silver Nanoparticle Entrapped Calciumâ€Alginate Beads for Fe(II) Removal via Adsorption. Macromolecular Symposia, 2016, 366, 42-51.	0.4	22
139	Synthesis and Characterization of Montmorillonite-Supported Zero-Valent Iron Nanoparticles with Application for Preconcentration of Zinc. Analytical Letters, 2016, 49, 2766-2782.	1.0	3
140	Modification of a natural zeolite with Fe(<scp>III</scp>) for simultaneous phosphate and ammonium removal from aqueous solutions. Journal of Chemical Technology and Biotechnology, 2016, 91, 1737-1746.	1.6	49
141	Fast and selective adsorption of As(V) on prepared modified cellulose containing Cu(II) moieties. Arabian Journal of Chemistry, 2016, 9, 607-615.	2.3	18
142	Phosphate removal from aqueous solution using a hybrid impregnated polymeric sorbent containing hydrated ferric oxide (<scp>HFO</scp>). Journal of Chemical Technology and Biotechnology, 2016, 91, 693-704.	1.6	40
143	Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity. Journal of Environmental Chemical Engineering, 2016, 4, 681-694.	3.3	50
144	Synthesis and characterization of CuO-loaded macroreticular anion exchange hybrid polymer. Reactive and Functional Polymers, 2016, 100, 107-115.	2.0	18
145	Removal of arsenic from water using nano adsorbents and challenges: A review. Journal of Environmental Management, 2016, 166, 387-406.	3.8	420
146	Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer. Environmental Technology (United Kingdom), 2016, 37, 2099-2112.	1.2	24
147	Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. Journal of Hazardous Materials, 2017, 322, 172-181.	6.5	263
148	Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. Chemosphere, 2017, 171, 126-133.	4.2	56

#	Article	IF	CITATIONS
149	Removal of Nitrate and Phosphate from Water by Clinoptilolite-Supported Iron Hydroxide Nanoparticle. Arabian Journal for Science and Engineering, 2017, 42, 2433-2439.	1.7	15
150	Surface modification of TiO 2 nanoparticle by three dimensional silane coupling agent and preparation of polyamide/modified- TiO 2 nanocomposites for removal of Cr (VI) from aqueous solutions. Progress in Organic Coatings, 2017, 110, 24-34.	1.9	39
151	REMOVAL OF TETRACYCLINE FROM AQUEOUS SOLUTIONS USING NANOSCALE ZERO VALENT IRON AND FUNCTIONAL PUMICE MODIFIED NANOSCALE ZERO VALENT IRON. Journal of Environmental Engineering and Landscape Management, 2017, 25, 223-233.	0.4	23
152	Morphology and thermodynamics of selenium-containing nanosystems: The effect of polymer stabilizers. Russian Journal of Physical Chemistry A, 2017, 91, 609-612.	0.1	2
153	Simultaneous nutrients (N,P) removal by using a hybrid inorganic sorbent impregnated with hydrated manganese oxide. Journal of Environmental Chemical Engineering, 2017, 5, 1516-1525.	3.3	17
156	Synthesis, characterization and application of a novel nanometer-sized chelating resin for removal of Cu(II), Co(II) and Ni(II) ions from aqueous solutions. Journal of Polymer Research, 2017, 24, 1.	1.2	13
157	Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways. Materials Research Express, 2017, 4, 085009.	0.8	9
158	Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: Influencing factors, kinetics and mechanism. Separation and Purification Technology, 2017, 174, 362-371.	3.9	93
159	High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 149-154.	2.7	35
160	Hybrid polymers containing brochantite/tenorite obtained using gel type anion exchanger. Reactive and Functional Polymers, 2018, 124, 12-19.	2.0	11
161	Green synthesis of poly(vinyl alcohol)–silver nanoparticles hybrid using Palash (Butea monosperma) flower extract and investigation of antibacterial activity. Polymer Bulletin, 2018, 75, 1949-1955.	1.7	7
162	Imaging dichromate in living cells with a fluorescence probe. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 165-174.	2.0	9
163	Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrasonics Sonochemistry, 2018, 41, 75-84.	3.8	37
164	Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. Journal of Molecular Liquids, 2018, 264, 253-260.	2.3	41
165	High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars. Ecotoxicology and Environmental Safety, 2018, 162, 616-624.	2.9	33
166	Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water. Journal of Hazardous Materials, 2019, 370, 117-125.	6.5	37
167	Optimization of hybrid polymer preparation by ex situ embedding of waste Fe/Mn oxides into chitosan matrix as an effective As(III) and As(V) sorbent. Environmental Science and Pollution Research, 2019, 26, 26026-26038.	2.7	17
168	Polymeric ion exchanger supported ferric oxide nanoparticles as adsorbents for toxic metal ions from aqueous solutions and acid mine drainage. Journal of Environmental Health Science & Engineering, 2019, 17, 719-730.	1.4	14

		CITATION R	EPORT	
#	Article		IF	CITATIONS
169	Microorganism Assisted Synthesized Nanoparticles for Catalytic Applications. Energies	, 2019, 12, 190.	1.6	107
170	Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated review. Science of the Total Environment, 2019, 662, 205-217.	sediments: A	3.9	139
171	Cuprite-doped macroreticular anion exchanger obtained by reduction of the Cu(OH)2 of Environmental Chemical Engineering, 2019, 7, 103198.	deposit. Journal	3.3	6
172	Transforming the Clobal Arsenic and Fluoride Crisis Into an Economic Enterprise: Role of Anion Exchange Nanotechnology (HAIX-Nano) in Ballia, Uttar Pradesh and Nalhati, Wes 327-354.			0
173	Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestio sludge. Environmental Science and Pollution Research, 2019, 26, 10292-10305.	n of sewage	2.7	55
174	Naked oats biochar-supported nanoscale zero-valent iron composite: effects on Cd impenzyme activities in Ulansuhai River sediments of China. Journal of Soils and Sediments 2650-2662.	nobilization and s, 2019, 19,	1.5	13
176	Acid mine drainage pollution remediation using hybrid chelating ion-exchange/HZrO2 r adsorbents. SN Applied Sciences, 2019, 1, 1.	lanocomposite	1.5	6
177	Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes From Wastewater	r., 2019,, 447-472.		55
178	Evidence of Economically Sustainable Village-Scale Microenterprises for Arsenic Remed Developing Countries. Environmental Science & Technology, 2019, 53, 1078-108	liation in 6.	4.6	20
179	New nanocomposites based on polyamide containing imine groups reinforced with fur polyethyleneimineâ€modified ZnO nanoparticles; fabrication, characterization and lead studies. Polymer Composites, 2019, 40, 2602-2616.	ictionalized d ion adsorption	2.3	7
180	Arsenic in Latin America: Part II. , 2020, , 113-182.			5
181	Efficient removal of Cu(II) organic complexes by polymer-supported, nanosized, and hy oxides through a Fenton-like process. Journal of Hazardous Materials, 2020, 386, 1219	drated Fe(III) 69.	6.5	27
182	A facile modification of cation exchange resin by nano-sized goethite for enhanced Cr(from water. Environmental Technology (United Kingdom), 2022, 43, 1833-1842.	VI) removal	1.2	2
183	Recent Developments in Aqueous Arsenic(III) Remediation Using Biomass-Based Adsor Symposium Series, 2020, , 197-251.	bents. ACS	0.5	2
184	Novel hybrid metal loaded chelating resins for removal of toxic metals from acid mine o Water Science and Technology, 2020, 81, 2568-2584.	drainage.	1.2	3
185	Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage W International Journal of Environmental Research and Public Health, 2020, 17, 7693.	/ater.	1.2	9
186	Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended bentonite-supported nanoscale zero-valent iron. Scientific Reports, 2020, 10, 8831.	liquid by	1.6	14
187	Enhanced aqueous phase arsenic removal by a biochar based iron nanocomposite. Env Technology and Innovation, 2020, 19, 100936.	ironmental	3.0	46

Сіт	ΑΤΙ	ON	Red	ORT
U 11	/ \		I CLI	OICT.

#	Article	IF	CITATIONS
188	Effective removal of Pb(II), Cd(II) and Zn(II) from aqueous solution by a novel hyper cross-linked nanometer-sized chelating resin. Journal of Environmental Chemical Engineering, 2020, 8, 103788.	3.3	15
189	Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. Journal of Alloys and Compounds, 2021, 852, 156993.	2.8	86
190	Application of magnetic nanomaterials as resonance light scattering sensors. , 2021, , 227-247.		0
191	Microbial Nanobiotechnology in Nanocatalysis: Degradation of Pollutants and Sensing Applications. Materials Horizons, 2021, , 383-397.	0.3	0
192	Simulation-based analysis of full-scale implementation of energy neutral wastewater treatment plants. Journal of Water Process Engineering, 2021, 40, 101875.	2.6	7
193	Nanomaterial for inorganic pollutant remediation. Environmental and Toxicology Management, 2021, 1, 18-25.	0.3	3
194	Recent Advances in Chemical Biology of Mitochondria Targeting. Frontiers in Chemistry, 2021, 9, 683220.	1.8	26
195	Exploration of Microbial Factories for Synthesis of Nanoparticles – A Sustainable Approach for Bioremediation of Environmental Contaminants. Frontiers in Microbiology, 2021, 12, 658294.	1.5	55
196	Transforming a Global Water Crisis into an Economic Opportunity: Unmet Needs and Lessons Learned during the Last Two Decades. Journal of Environmental Engineering, ASCE, 2021, 147, 02521002.	0.7	1
197	Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater. Chemosphere, 2022, 286, 131581.	4.2	13
198	Microbial Nanotechnology in Life Sciences: An Opportunity for Green Applications. Nanotechnology in the Life Sciences, 2021, , 239-269.	0.4	0
199	Arsenic removal by magnetic nanocrystalline barium hexaferrite. , 2012, , 163-169.		2
200	Polymer-supported Fe(III) oxide particles. Arsenic in the Environment, 2008, , 571-580.	0.0	1
201	Adsorption Kinetics of Arsenic Removal from Groundwater by Iron-Modified Zeolite Journal of Chemical Engineering of Japan, 2003, 36, 1516-1522.	0.3	60
202	Chitosan-silver Nanoparticles Composite as Point-of-use Drinking Water Filtration System for Household to Remove Pesticides in Water. Asian Journal of Biochemistry, 2011, 6, 142-159.	0.5	90
203	Characteristics Study on Biosynthesized Au Nanoparticles Supported onto Cross-Linked Chitosan Beads. Journal of Applied Sciences, 2014, 14, 2843-2848.	0.1	4
204	Electrochemical study of iron deposit in acid media for its recovery from spent pickling baths regeneration. Journal of Electroanalytical Chemistry, 2021, 901, 115805.	1.9	1
205	Amphiphilic Organic Nanoparticles as Nano-Absorbent for Pollutants. , 2011, , 1-15.		0

	CITATION R	EPORT	
#	Article	IF	Citations
207	Amphiphilic Organic Nanoparticles as Nano- Absorbent for Pollutants. , 2016, , 9-24.		0
208	Sensing of Toxic Metals Using Innovative Sorption-Based Technique. Ion Exchange and Solvent Extraction, 2016, , 175-240.	0.3	0
209	Montmorillonite-supported nZVI: A novel adsorbent for arsenic removal from aqueous solution. Arsenic in the Environment Proceedings, 2016, , 510-511.	0.0	0
210	Metal Oxyhydroxide Composites for Halogens and Metalloid Removal. Environmental Chemistry for A Sustainable World, 2021, , 57-91.	0.3	0
211	Radioactive decontamination of metal surfaces using peelable films made from chitosan gels and chitosan/magnetite nanoparticle composites. Progress in Nuclear Energy, 2022, 144, 104088.	1.3	13
212	Role of surface chemistry of activated carbon for anchoring iron particles by forced hydrolysis and evaluation of iron-loaded adsorbents for Cr (VI) adsorption. Separation Science and Technology, 0, , 1-11.	1.3	1
213	Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. International Journal of Biological Macromolecules, 2022, 207, 826-840.	3.6	44
214	Fresh biomass derived biochar with high-load zero-valent iron prepared in one step for efficient arsenic removal. Journal of Cleaner Production, 2022, 352, 131616.	4.6	32
215	Study on remediation and mechanism of immobilized bio-nZVI for chromium (VI) contaminated wastewater in an up-flow bioreactor. Journal of Environmental Chemical Engineering, 2021, 9, 106747.	3.3	1
216	Titration of weak base fibrous anion exchangers in the presence of complex-forming divalent cations. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2021, 57, 391-399.	0.1	0
217	Equilibrium, kinetics and thermodynamic studies for the removal of arsenic from water using newly synthesized amino resin supported hydrous ferric oxide nano composite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, , 1-7.	0.9	0
219	Chemical water shutoff agents and their plugging mechanism for gas reservoirs: A review and prospects. Journal of Natural Gas Science and Engineering, 2022, 104, 104658.	2.1	14
220	Removal of arsenic from contaminated water using radiation-induced grafted chitosan: a critical review. Chemistry and Ecology, 2022, 38, 671-705.	0.6	0
221	Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules, 2022, 27, 4856.	1.7	21
222	Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clinical Epigenetics, 2022, 14, .	1.8	9
223	Application of microbial nanobiotechnology for combating water pollution. , 2023, , 365-380.		0
225	Biogenic synthesis of novel nanomaterials and their applications. Nanoscale, 2023, 15, 19423-19447.	2.8	1