Evaluating placental inter-ordinal phylogenies with nov \hat{I}^3 -fibrinogen, ND6, and mt-tRNA, plus MCMC-driven no

Molecular Phylogenetics and Evolution 28, 197-224 DOI: 10.1016/s1055-7903(03)00115-5

Citation Report

#	Article	IF	CITATIONS
1	Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. Molecular Phylogenetics and Evolution, 2003, 28, 328-340.	1.2	56
2	Relationships Among the Families and Orders of Marsupials and the Major Mammalian Lineages Based on Recombination Activating Gene-1. Journal of Mammalian Evolution, 2004, 11, 1-16.	1.0	41
3	LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma, 2004, 113, 137-44.	1.0	44
4	Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution, 2004, 33, 922-935.	1.2	45
5	Cross-species chromosome painting in the golden mole and elephant-shrew: support for the mammalian clades Afrotheria and Afroinsectiphillia but not Afroinsectivora. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1477-1484.	1.2	63
6	Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution, 2004, 19, 430-438.	4.2	376
7	Afrotherian Origins and Interrelationships: New Views and Future Prospects. Current Topics in Developmental Biology, 2004, 63, 37-60.	1.0	50
8	Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation. BMC Evolutionary Biology, 2005, 5, 8.	3.2	36
9	Phylogenetic Relationships of Extinct Cetartiodactyls: Results of Simultaneous Analyses of Molecular, Morphological, and Stratigraphic Data. Journal of Mammalian Evolution, 2005, 12, 145-160.	1.0	75
10	Phylogeny and life histories of the â€~Insectivora': controversies and consequences. Biological Reviews, 2005, 80, 93-128.	4.7	54
11	Organization of the main olfactory bulb of lesser hedgehog tenrecs. Neuroscience Research, 2005, 53, 353-362.	1.0	6
12	Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9929-9934.	3.3	207
13	Evolution of the mammalian placenta revealed by phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3203-3208.	3.3	304
14	SDM: A Fast Distance-Based Approach for (Super)Tree Building in Phylogenomics. Systematic Biology, 2006, 55, 740-755.	2.7	69
15	Retroposed Elements as Archives for the Evolutionary History of Placental Mammals. PLoS Biology, 2006, 4, e91.	2.6	238
16	Early Paleogene insectivore mammals of Asia and establishment of the major groups of Insectivora. Paleontological Journal, 2006, 40, S205-S405.	0.2	68
17	Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Research, 2006, 14, 151-159.	1.0	41
18	Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 2006, 51, 1-35.	1.3	347

#	Article	IF	CITATIONS
19	A higher-level MRP supertree of placental mammals. BMC Evolutionary Biology, 2006, 6, 93.	3.2	97
20	Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics. BMC Evolutionary Biology, 2006, 6, 97.	3.2	11
21	Microinversions in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19824-19829.	3.3	36
22	Early History of Mammals Is Elucidated with the ENCODE Multiple Species Sequencing Data. PLoS Genetics, 2007, 3, e2.	1.5	98
23	The Adequacy of Morphology for Reconstructing the Early History of Placental Mammals. Systematic Biology, 2007, 56, 673-684.	2.7	107
24	Base-Compositional Heterogeneity in the RAG1 Locus among Didelphid Marsupials: Implications for Phylogenetic Inference and the Evolution of GC Content. Systematic Biology, 2007, 56, 83-96.	2.7	50
25	Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research, 2007, 17, 413-421.	2.4	394
26	Molecular and Genomic Data Identify the Closest Living Relative of Primates. Science, 2007, 318, 792-794.	6.0	282
27	Rooting the eutherian tree: the power and pitfalls of phylogenomics. Genome Biology, 2007, 8, R199.	13.9	82
28	Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. Journal of Fish Biology, 2007, 70, 202-218.	0.7	61
29	Mammalian evolution and biomedicine: new views from phylogeny. Biological Reviews, 2007, 82, 375-392.	4.7	86
30	Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus. BMC Evolutionary Biology, 2007, 7, 16.	3.2	45
31	Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies. BMC Evolutionary Biology, 2007, 7, 199.	3.2	37
32	OrthoMaM: A database of orthologous genomic markers for placental mammal phylogenetics. BMC Evolutionary Biology, 2007, 7, 241.	3.2	120
33	Chromosome painting in the manatee supports Afrotheria and Paenungulata. BMC Evolutionary Biology, 2007, 7, 6.	3.2	63
34	Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evolutionary Biology, 2007, 7, 8.	3.2	102
35	The isolator piglet: a model for studying the development of adaptive immunity. Immunologic Research, 2007, 39, 33-51.	1.3	54
36	Evolution of Placentation in Primates: Implications of Mammalian Phylogeny. Evolutionary Biology, 2008, 35, 125-145.	0.5	59

#	Article	IF	CITATIONS
37	Flying lemurs – The 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biology, 2008, 6, 18.	1.7	44
38	A timescale and phylogeny for "Bandicoots―(Peramelemorphia: Marsupialia) based on sequences for five nuclear genes. Molecular Phylogenetics and Evolution, 2008, 47, 1-20.	1.2	37
39	Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: An example from squamate reptiles. Molecular Phylogenetics and Evolution, 2008, 47, 129-142.	1.2	229
40	Amelogenin, the major protein of tooth enamel: A new phylogenetic marker for ordinal mammal relationships. Molecular Phylogenetics and Evolution, 2008, 47, 865-869.	1.2	17

41 Structural determination of the oligosaccharides in the milk of a giant anteater (<i>Myrmecophaga) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

42	Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evolutionary Biology, 2008, 8, 321.	3.2	84
43	Morphology and Placental Mammal Phylogeny. Systematic Biology, 2008, 57, 499-503.	2.7	21
44	Afrotherian mammals: a review of current data. Mammalia, 2008, 72, .	0.3	65
45	Morphology, Paleontology, and Placental Mammal Phylogeny. Systematic Biology, 2008, 57, 311-317.	2.7	25
46	Confirming the Phylogeny of Mammals by Use of Large Comparative Sequence Data Sets. Molecular Biology and Evolution, 2008, 25, 1795-1808.	3.5	220
47	Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14477-14481.	3.3	51
48	Insectivorous mammals summary. , 2008, , 49-62.		4
49	Specialized Somatosensory Systems. , 2008, , 331-353.		0
50	Mosaic retroposon insertion patterns in placental mammals. Genome Research, 2009, 19, 868-875.	2.4	79
51	Phylogenetic Evidence for Early Hemochorial Placentation in Eutheria. Placenta, 2009, 30, 949-967.	0.7	112
52	The new framework for understanding placental mammal evolution. BioEssays, 2009, 31, 853-864.	1.2	130
53	Divergence time estimates of mammals from molecular clocks and fossils: Relevance of new fossil finds from India. Journal of Biosciences, 2009, 34, 649-659.	0.5	5
54	Measuring Fit of Sequence Data to Phylogenetic Model: Gain of Power Using Marginal Tests. Journal of Molecular Evolution, 2009, 69, 289-299.	0.8	12

CITATION REPORT

#	Article	IF	CITATIONS
55	A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Molecular Phylogenetics and Evolution, 2009, 51, 554-571.	1.2	99
56	Taxonomic position of Afghan vole (Subgenus Blanfordimys) by the sequence of the mitochondrial cytb gene. Russian Journal of Genetics, 2009, 45, 91-97.	0.2	14
57	SuperTRI: A new approach based on branch support analyses of multiple independent data sets for assessing reliability of phylogenetic inferences. Comptes Rendus - Biologies, 2009, 332, 832-847.	0.1	27
58	Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5235-5240.	3.3	162
59	The Oldest and Youngest Records of Afrosoricid Placentals from the Fayum Depression of Northern Egypt. Acta Palaeontologica Polonica, 2010, 55, 599-616.	0.4	34
60	Major histocompatibility complex variation and evolution at a single, expressed DQA locus in two genera of elephants. Immunogenetics, 2010, 62, 85-100.	1.2	34
61	Nomenclature and placental mammal phylogeny. BMC Evolutionary Biology, 2010, 10, 102.	3.2	85
62	Evolution of Picornaviridae: An examination of phylogenetic relationships and cophylogeny. Molecular Phylogenetics and Evolution, 2010, 54, 995-1005.	1.2	23
63	Molecular phylogenetics of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) based on RAG1 and S7 nuclear DNA sequence data. Molecular Phylogenetics and Evolution, 2010, 55, 274-283.	1.2	18
64	Analyzing the relationship between sequence divergence and nodal support using Bayesian phylogenetic analyses. Molecular Phylogenetics and Evolution, 2010, 57, 485-494.	1.2	16
65	Recapitulating the evolution of Afrotheria: 57 genes and rare genomic changes (RGCs) consolidate their history. Systematics and Biodiversity, 2010, 8, 395-408.	0.5	18
66	Developmental constraint on the evolution of marsupial forelimb morphology. Australian Journal of Zoology, 2010, 58, 1.	0.6	42
67	Mammalian Chromosomal Evolution: From Ancestral States to Evolutionary Regions. , 2010, , 143-158.		1
68	Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales. Forensic Science International: Genetics, 2011, 5, 303-307.	1.6	33
69	Relationships between the expression of the stapedial artery and the size of the obturator foramen in euarchontans: Functional and phylogenetic implications. Journal of Human Evolution, 2011, 60, 106-116.	1.3	3
70	A Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. Journal of Mammalian Evolution, 2011, 18, 131-146.	1.0	6
71	Life-History Correlates of Placental Structure in Eutherian Evolution. Evolutionary Biology, 2011, 38, 287-305.	0.5	13
72	Microstructure of dental hard tissues in fossil and recent xenarthrans (Mammalia: Folivora and) Tj ETQq1 1 0.78	34314 rgB1	/Oyerlock 10

	Cı	CITATION REPORT		
#	Article		IF	CITATIONS
73	Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals. Systematic Biology, 2012, 61, 150.		2.7	106
74	The Chromosomes of Afrotheria and Their Bearing on Mammalian Genome Evolution. Cytogenetic and Genome Research, 2012, 137, 144-153.		0.6	11
75	South Asian Mammals. , 2012, , .			33
76	Checklist of South Asian Mammals. , 2012, , 99-394.			0
77	TPMS: a set of utilities for querying collections of gene trees. BMC Bioinformatics, 2013, 14, 109.		1.2	6
78	Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Ro of Placental Mammals. Molecular Biology and Evolution, 2013, 30, 2134-2144.	ot	3.5	158
79	Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Frontiers in Neuroanatomy, 2014, 8, 23.		0.9	22
80	Complete mitogenome of Chinese shrew moleUropsilus soricipes(Milne-Edwards, 1871) (Mammalia:) History, 2014, 48, 1467-1483.	Tj ETQq1 1 ().784314 0.2	rgBT /Over 8
81	Molecular phylogenetic relationships among Asiatic shrewlike moles inferred from the complete mitogenomes. Journal of Zoological Systematics and Evolutionary Research, 2015, 53, 155-160.		0.6	8
82	The position of tree shrews in the mammalian tree: Comparing multiâ€gene analyses with phylogenor results leaves monophyly of Euarchonta doubtful. Integrative Zoology, 2015, 10, 186-198.	nic	1.3	33
83	High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Scientific Reports, 2016, 6, 24905.		1.6	16
84	Mammal madness: is the mammal tree of life not yet resolved?. Philosophical Transactions of the Roya Society B: Biological Sciences, 2016, 371, 20150140.	l	1.8	216
85	Mitogenomic sequences support a north–south subspecies subdivision within Solenodon paradoxu Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2017, 28, 662-670.	s.	0.7	9
86	Relative benefits of aminoâ€acid, codon, degeneracy, DNA, and purineâ€pyrimidine character coding f phylogenetic analyses of exons. Journal of Systematics and Evolution, 2017, 55, 85-109.	or	1.6	24
87	The record of Aplodontidae (Rodentia, Mammalia) in the Oligocene and Miocene of the Valley of Lakes (Central Mongolia) with some comments on the morphologic variability. Palaeobiodiversity and Palaeoenvironments, 2017, 97, 25-49.	3	0.6	8
88	Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7282-E7290.		3.3	119
89	Talpid Mole Phylogeny Unites Shrew Moles and Illuminates Overlooked Cryptic Species Diversity. Molecular Biology and Evolution, 2017, 34, 78-87.		3.5	36
90	The Fear of Snakes. The Science of the Mind, 2019, , .		0.4	15

CITATION REPORT

0

#	Article	IF	CITATIONS
91	Analyses of RAG1 and RAG2 genes suggest different evolutionary rates in the Cetacea lineage. Molecular Immunology, 2020, 117, 131-138.	1.0	2
92	Deformity Index: A Semi-Reference Clade-Based Quality Metric of Phylogenetic Trees. Journal of Molecular Evolution, 2021, 89, 302-312.	0.8	0
93	Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Molecular Phylogenetics and Evolution, 2021, 157, 107065.	1.2	4
94	On the Unnecessary and Misleading Taxon "Cetartiodactyla― Journal of Mammalian Evolution, 2022, 29, 93-97.	1.0	9
95	Evolutionary History of LINE-1 in the Major Clades of Placental Mammals. PLoS ONE, 2007, 2, e158.	1.1	60
96	Coalescent-Based Genome Analyses Resolve the Early Branches of the Euarchontoglires. PLoS ONE, 2013, 8, e60019.	1.1	43
97	Diversidad y endemismo de los mamÃferos del Perú. Revista Peruana De Biologia, 2011, 16, .	0.1	46
98	Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica, 0, , .	0.9	71
100	Summary of Laurasiatheria (Mammalia) Phylogeny. Zoological Research, 2013, 33, 65-74.	0.6	10
101	Molecular Evidence of Primate Origins and Evolution. , 2013, , 1-47.		0
102	Molecular Evidence on Primate Origins and Evolution. , 2015, , 1083-1135.		3
103	The Underlying Neuronal Circuits of Fear Learning and the Snake Detection Theory (SDT). The Science of the Mind, 2019, , 33-58.	0.4	2

105 Specialized Somatosensory Systems. , 2020, , 426-444.