Copper homeostasis inEnterococcus hirae

FEMS Microbiology Reviews 27, 183-195 DOI: 10.1016/s0168-6445(03)00053-6

Citation Report

#	Article	IF	CITATIONS
1	Zn(II) metabolism in prokaryotes. FEMS Microbiology Reviews, 2003, 27, 291-311.	3.9	194
2	Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27, 313-339.	3.9	1,214
3	Escherichia colimechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 2003, 27, 197-213.	3.9	608
4	The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003, 27, 145-163.	3.9	628
5	A Heme Chaperone for CytochromecBiosynthesisâ€. Biochemistry, 2003, 42, 13099-13105.	1.2	43
6	Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Microbiology (United Kingdom), 2003, 149, 3413-3421.	0.7	26
8	Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy. Applied and Environmental Microbiology, 2004, 70, 771-780.	1.4	29
9	On the Transcriptional Regulation of Methicillin Resistance. Journal of Biological Chemistry, 2004, 279, 17888-17896.	1.6	67
10	New Expression System Tightly Controlled by Zinc Availability in Lactococcus lactis. Applied and Environmental Microbiology, 2004, 70, 5398-5406.	1.4	69
11	Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath). PLoS Biology, 2004, 2, e303.	2.6	275
12	Role of aStreptococcus gordoniicopper-transport operon,copYAZ, in biofilm detachment. Oral Microbiology and Immunology, 2004, 19, 395-402.	2.8	24
13	Metalloregulation inBacillus subtilis: thecopZchromosomal gene is involved in cadmium resistance. FEMS Microbiology Letters, 2004, 236, 115-122.	0.7	15
14	Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiologia Plantarum, 2004, 121, 282-293.	2.6	36
15	Perspectives in Inorganic Structural Genomics: A Trafficking Route for Copper. European Journal of Inorganic Chemistry, 2004, 2004, 1583-1593.	1.0	77
16	Role of Cofactors in Folding of the Blue-Copper Protein Azurin. Inorganic Chemistry, 2004, 43, 7926-7933.	1.9	66
17	Characterization of a Small Metal Binding Protein fromNitrosomonas europaeaâ€. Biochemistry, 2004, 43, 11206-11213.	1.2	22
18	Role of cofactors in metalloprotein folding. Quarterly Reviews of Biophysics, 2004, 37, 285-314.	2.4	94
21	Lead and Cu in contaminated urban soils: Extraction with chemical reagents and bioluminescent bacteria and veast. Science of the Total Environment, 2005, 350, 194-203	3.9	35

ATION RED

ARTICLE IF CITATIONS # Function and molecular evolution of multicopper blue proteins. Cellular and Molecular Life 22 2.4 241 Sciences, 2005, 62, 2050-2066. Mixed-valence Cu(II)/Cu(I) complex of quinolone ciprofloxacin isolated by a hydrothermal reaction in the presence of l-histidine: comparison of biological activities of various copper–ciprofloxacin 1.5 98 compounds. Journal of Inorganic Biochemistry, 2005, 99, 432-442. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of 24 398 1.4 Industrial Microbiology and Biotechnology, 2005, 32, 587-605. Copper Chaperone Cycling and Degradation in the Regulation of theCop Operon of Enterococcus 1.8 Hirae. BioMetals, 2005, 18, 407-412. Molecular insight into extreme copper resistance in the extremophilic archaeon â€⁻Ferroplasma 26 0.7 79 acidarmanus' Fer1. Microbiology (United Kingdom), 2005, 151, 2637-2646. Family matters: gene regulation by metal-dependent transcription factors. Topics in Current Genetics, 2005, , 341-394. The tcrB gene is part of the tcrYAZB operon conferring copper resistance in Enterococcus faecium 28 0.7 35 and Enterococcus faecalis. Microbiology (United Kingdom), 2005, 151, 3019-3025. Understanding How Cells Allocate Metals Using Metal Sensors and Metallochaperones. Accounts of 29 7.6 161 Chemical Research, 2005, 38, 775-783. CopH from Cupriavidus metallidurans CH34. A Novel Periplasmic Copper-Binding Protein. Biochemistry, 30 1.2 25 2006, 45, 5557-5566. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquatic Toxicology, 2006, 80, 249-260. The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and 32 1.4 50 hydroperoxide. Archives of Biochemistry and Biophysics, 2006, 451, 1-7. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. 210 Environmental Pollution, 2006, 144, 62-69. A mathematical model for copper homeostasis in Enterococcus hirae. Mathematical Biosciences, 2006, 34 0.9 25 203, 222-239. Cop-like operon: Structure and organization in species of the Lactobacillale order. Biological Research, 2006, 39, 87-93. 1.5 23 Proteomic survey of copper-binding proteins inArabidopsis roots by immobilized metal affinity 1.3 36 67 chromatography and mass spectrometry. Proteomics, 2006, 6, 2746-2758. CopY-like Copper Inducible Repressors are Putative â€~Winged Helix' Proteins. BioMetals, 2006, 19, 61-70. 1.8 Differential regulation of Streptococcus mutans gtfBCD genes in response to copper ions. Archives 38 1.0 12 of Microbiology, 2006, 185, 127-135. Copper homeostasis in eukaryotes: Teetering on a tightrope. Biochimica Et Biophysica Acta - Molecular 39 Cell Research, 2006, 1763, 737-746.

#	Article	IF	CITATIONS
40	Induction of Heavy-Metal-Transporting CPX-Type ATPases during Acid Adaptation in Lactobacillus bulgaricus. Applied and Environmental Microbiology, 2006, 72, 7445-7454.	1.4	28
41	An arsenic metallochaperone for an arsenic detoxification pump. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15617-15622.	3.3	175
42	Characterization and Structure of a Zn2+ and [2Fe-2S]-containing Copper Chaperone from Archaeoglobus fulgidus. Journal of Biological Chemistry, 2007, 282, 25950-25959.	1.6	32
43	Understanding How Cells Allocate Metals. , 2007, , 3-35.		14
44	Copper Induction of Lactate Oxidase of Lactococcus lactis : a Novel Metal Stress Response. Journal of Bacteriology, 2007, 189, 5947-5954.	1.0	38
45	Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology (United Kingdom), 2007, 153, 4274-4283.	0.7	68
46	Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus. Journal of Bacteriology, 2007, 189, 4887-4898.	1.0	31
47	A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa. Journal of Bacteriology, 2007, 189, 4561-4568.	1.0	163
48	Transport capabilities of eleven gram-positive bacteria: Comparative genomic analyses. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1342-1366.	1.4	106
49	Copper and Human Health: Biochemistry, Genetics, and Strategies for Modeling Dose-response Relationships. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2007, 10, 157-222.	2.9	276
50	Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Transactions, 2007, , 3107.	1.6	178
51	Transcriptomic Responses of Bacterial Cells to Sublethal Metal Ion Stress. , 2007, , 73-115.		22
52	Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1316-1322.	1.1	28
53	Fighting toxic copper in a bacterial pathogen. , 2007, 3, 15-16.		1
54	CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. , 2007, 3, 60-68.		291
55	Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. BioMetals, 2007, 20, 275-289.	1.8	51
56	Metals in the "omics―world: copper homeostasis and cytochrome c oxidase assembly in a new light. Journal of Biological Inorganic Chemistry, 2007, 13, 3-14.	1.1	59
57	Stalking metal-linked dimers. Journal of Inorganic Biochemistry, 2008, 102, 522-531.	1.5	9

#	Article	IF	CITATIONS
58	Predictability of Copper, Irgarol, and Diuron Combined Effects on Sea Urchin Paracentrotus lividus. Archives of Environmental Contamination and Toxicology, 2008, 54, 57-68.	2.1	34
59	Insights into Two High Homogenous Genes Involved in Copper Homeostasis in Acidithiobacillus ferrooxidans. Current Microbiology, 2008, 57, 274-280.	1.0	17
60	Structural insight into the distinct properties of copper transport by the <i>Helicobacter pylori</i> CopP protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1007-1019.	1.5	9
61	Three-dimensional organization of three-domain copper oxidases: A review. Crystallography Reports, 2008, 53, 92-109.	0.1	51
62	Regulation of copper homeostasis in <i>Pseudomonas fluorescens</i> SBW25. Environmental Microbiology, 2008, 10, 3284-3294.	1.8	59
63	Simulating in vitro transcriptional response of zinc homeostasis system in Escherichia coli. BMC Systems Biology, 2008, 2, 89.	3.0	4
64	Copper Homeostasis in Bacteria. Advances in Applied Microbiology, 2008, 65, 217-247.	1.3	139
65	Molecular Mechanisms Underpinning Colonization of a Plant by Plant Growth-Promoting Rhizobacteria. , 0, , 111-128.		1
66	Chapter 21 Microbial activities, monitoring and application as part of a management strategy for heavy metal-contaminated soil and ground water. Developments in Soil Science, 2008, 32, 521-559.	0.5	3
67	Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus. Journal of Molecular Biology, 2008, 378, 581-595.	2.0	27
68	Molecular Structure and Metal-binding Properties of the Periplasmic CopK Protein Expressed in Cupriavidus metallidurans CH34 During Copper Challenge. Journal of Molecular Biology, 2008, 380, 386-403.	2.0	30
69	Cellular multitasking: The dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Archives of Biochemistry and Biophysics, 2008, 476, 22-32.	1.4	181
70	Metal Content of Metallo-β-lactamase L1 Is Determined by the Bioavailability of Metal Ions. Biochemistry, 2008, 47, 7947-7953.	1.2	38
71	Structure and Dynamics of Cu(I) Binding in Copper Chaperones Atox1 and CopZ:  A Computer Simulation Study. Journal of Physical Chemistry B, 2008, 112, 4583-4593.	1.2	30
72	A Multicopper Oxidase (Cj1516) and a CopA Homologue (Cj1161) Are Major Components of the Copper Homeostasis System of <i>Campylobacter jejuni</i> . Journal of Bacteriology, 2008, 190, 8075-8085.	1.0	37
73	Characterization of the CopR Regulon of <i>Lactococcus lactis</i> IL1403. Journal of Bacteriology, 2008, 190, 536-545.	1.0	71
74	Expression of copA and cusA in Shewanella during copper stress. Microbiology (United Kingdom), 2008, 154, 2709-2718.	0.7	37
75	Intracellular Copper Accumulation Enhances the Growth of <i>Kineococcus radiotolerans</i> during Chronic Irradiation. Applied and Environmental Microbiology, 2008, 74, 1376-1384.	1.4	25

#	Article	IF	CITATIONS
76	Metal Assimilation Pathways. , 2008, , 117-129.		1
77	The Global Responses of <i>Mycobacterium tuberculosis</i> to Physiological Levels of Copper. Journal of Bacteriology, 2008, 190, 2939-2946.	1.0	118
78	Copper Acquisition Is Mediated by YcnJ and Regulated by YcnK and CsoR in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2009, 191, 2362-2370.	1.0	88
79	Chaperone-mediated Cu+ Delivery to Cu+ Transport ATPases. Journal of Biological Chemistry, 2009, 284, 20804-20811.	1.6	52
80	Functional and Expression Analyses of the <i>cop</i> Operon, Required for Copper Resistance in <i>Agrobacterium tumefaciens</i> . Journal of Bacteriology, 2009, 191, 5159-5168.	1.0	22
81	Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. BioMetals, 2009, 22, 363-375.	1.8	25
82	Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Molecular Biology, 2009, 69, 213-226.	2.0	102
83	Effects of a Copper-Resistant Fungus on Copper Adsorption and Chemical Forms in Soils. Water, Air, and Soil Pollution, 2009, 201, 99-107.	1.1	18
84	Roles of <i>rel</i> _{<i>Spn</i>} in stringent response, global regulation and virulence of serotype 2 <i>Streptococcus pneumoniae</i> D39. Molecular Microbiology, 2009, 72, 590-611.	1.2	83
85	Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. Biochemical and Biophysical Research Communications, 2009, 385, 67-71.	1.0	27
86	Structural Biology of Copper Trafficking. Chemical Reviews, 2009, 109, 4760-4779.	23.0	359
87	Single-Molecule Study of Metalloregulator CueR-DNA Interactions Using Engineered Holliday Junctions. Biophysical Journal, 2009, 97, 844-852.	0.2	23
88	Whole-Cell Bioreporters for the Detection of Bioavailable Metals. , 2009, 118, 31-63.		29
89	Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chemical Reviews, 2009, 109, 4828-4861.	23.0	112
90	Coordination Chemistry of Bacterial Metal Transport and Sensing. Chemical Reviews, 2009, 109, 4644-4681.	23.0	540
91	Molecular Insights into the Metal Selectivity of the Copper(I)-Sensing Repressor CsoR from <i>Bacillus subtilis</i> . Biochemistry, 2009, 48, 3325-3334.	1.2	100
92	The copper-responsive repressor CopR of Lactococcus lactis is a â€~winged helix' protein. Biochemical Journal, 2009, 417, 493-499.	1.7	21
93	The P-Type ATPase Superfamily. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 5-104.	1.0	103

0.			D	
	TAT	ON	Repo	דעו
\sim				

#	Article	IF	CITATIONS
94	Cellular copper distribution: a mechanistic systems biology approach. Cellular and Molecular Life Sciences, 2010, 67, 2563-2589.	2.4	145
95	NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. Journal of Biological Inorganic Chemistry, 2010, 15, 87-98.	1.1	19
96	Response of Gram-positive bacteria to copper stress. Journal of Biological Inorganic Chemistry, 2010, 15, 3-14.	1.1	183
97	Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. BioMetals, 2010, 23, 1105-1112.	1.8	24
98	Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Science of the Total Environment, 2010, 408, 1501-1507.	3.9	70
99	Life in blue: Copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnology Advances, 2010, 28, 839-848.	6.0	160
100	Novel polymerase chain reaction primers for the specific detection of bacterial copper P-type ATPases gene sequences in environmental isolates and metagenomic DNA. Letters in Applied Microbiology, 2010, 50, 552-562.	1.0	34
101	General Trends in Trace Element Utilization Revealed by Comparative Genomic Analyses of Co, Cu, Mo, Ni, and Se. Journal of Biological Chemistry, 2010, 285, 3393-3405.	1.6	106
102	Expression and Physiological Role of Three <i>Myxococcus xanthus</i> Copper-Dependent P _{1B} -Type ATPases during Bacterial Growth and Development. Applied and Environmental Microbiology, 2010, 76, 6077-6084.	1.4	19
103	Structure and Function of CinD (YtjD) of <i>Lactococcus lactis</i> , a Copper-Induced Nitroreductase Involved in Defense against Oxidative Stress. Journal of Bacteriology, 2010, 192, 4172-4180.	1.0	30
104	Copper Stress Induces a Global Stress Response in <i>Staphylococcus aureus</i> and Represses <i>sae</i> and <i>agr</i> Expression and Biofilm Formation. Applied and Environmental Microbiology, 2010, 76, 150-160.	1.4	136
105	Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 397-401.	0.8	67
106	Killing of Bacteria by Copper Surfaces Involves Dissolved Copper. Applied and Environmental Microbiology, 2010, 76, 4099-4101.	1.4	142
107	Bioremediation of soluble heavy metals with recombinant <i>Caulobacter crescentus</i> . Bioengineered Bugs, 2010, 1, 207-212.	2.0	20
108	Heavy Metal Resistance in Pseudomonads. , 2010, , 255-282.		10
109	Molecular recognition in copper trafficking. Natural Product Reports, 2010, 27, 695.	5.2	78
110	Effects of Feeding Elevated Concentrations of Copper and Zinc on the Antimicrobial Susceptibilities of Fecal Bacteria in Feedlot Cattle. Foodborne Pathogens and Disease, 2010, 7, 643-648.	0.8	42
111	Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status. European Journal of Soil Biology, 2010, 46, 168-174.	1.4	34

#	Article	IF	CITATIONS
112	Occurrence of <i>tcrB</i> , a Transferable Copper Resistance Gene, in Fecal Enterococci of Swine. Foodborne Pathogens and Disease, 2010, 7, 1089-1097.	0.8	32
113	Copper mining in Streptomyces: enzymes, natural products and development. Natural Product Reports, 2010, 27, 742.	5.2	39
114	Tackling metal regulation and transport at the single-molecule level. Natural Product Reports, 2010, 27, 757.	5.2	12
115	Metallic Copper as an Antimicrobial Surface. Applied and Environmental Microbiology, 2011, 77, 1541-1547.	1.4	1,205
116	Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae. Biochemical and Biophysical Research Communications, 2011, 406, 183-187.	1.0	6
117	CutC is induced late during copper exposure and can modify intracellular copper content in Enterococcus faecalis. Biochemical and Biophysical Research Communications, 2011, 406, 633-637.	1.0	28
118	In Vitro Study of the Antimicrobial Properties of a Silver Ion-Releasing Polyurethane Foam. CirugÃa Española (English Edition), 2011, 89, 532-538.	0.1	3
119	The Two-Component Signal Transduction System CopRS of Corynebacterium glutamicum Is Required for Adaptation to Copper-Excess Stress. PLoS ONE, 2011, 6, e22143.	1.1	34
120	Impact of Manganese, Copper and Zinc Ions on the Transcriptome of the Nosocomial Pathogen Enterococcus faecalis V583. PLoS ONE, 2011, 6, e26519.	1.1	53
121	The <i>Staphylococcus aureus</i> CsoR regulates both chromosomal and plasmidâ€encoded copper resistance mechanisms. Environmental Microbiology, 2011, 13, 2495-2507.	1.8	42
122	The <i>cop</i> operon is required for copper homeostasis and contributes to virulence in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2011, 81, 1255-1270.	1.2	145
123	Regulation and structure of YahD, a copper-inducible α/β serine hydrolase of Lactococcus lactis IL1403. FEMS Microbiology Letters, 2011, 314, 57-66.	0.7	5
124	ls coproporphyrin III a copper-acquisition compound in Paracoccus denitrificans?. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 311-318.	0.5	25
126	Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. BioMetals, 2011, 24, 827-835.	1.8	47
127	Cupric Reductase Activity in Copper-Resistant Amycolatopsis tucumanensis. Water, Air, and Soil Pollution, 2011, 216, 527-535.	1.1	15
128	Responses of Lactic Acid Bacteria to Heavy Metal Stress. , 2011, , 163-195.		13
129	Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus. Journal of Biological Chemistry, 2011, 286, 13522-13531.	1.6	91
130	Selection of Fecal Enterococci Exhibiting <i>tcrB</i> -Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper. Applied and Environmental Microbiology, 2011, 77, 5597-5603.	1.4	63

		CITATION R	EPORT	
#	Article		IF	CITATIONS
131	CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-resp activators of transcription. Microbiology (United Kingdom), 2011, 157, 2808-2817.	onsive	0.7	30
132	Structural Analysis of Hypothetical Proteins from Helicobacter pylori: An Approach to Es Functions of Unknown or Hypothetical Proteins. International Journal of Molecular Scier 13, 7109-7137.		1.8	17
133	Metal Assimilation Pathways. , 2012, , 133-153.			0
134	Genome Sequence of Enterococcus hirae (Streptococcus faecalis) ATCC 9790, a Model the Study of Ion Transport, Bioenergetics, and Copper Homeostasis. Journal of Bacteriol 5126-5127.	Organism for ogy, 2012, 194,	1.0	14
135	Response to Copper Stress in Streptomyces lividans Extends beyond Genes under Direc Copper-sensitive Operon Repressor Protein (CsoR). Journal of Biological Chemistry, 201 17833-17847.	t Control of a 2, 287,	1.6	50
136	Direct substitution and assisted dissociation pathways for turning off transcription by a metalloregulator. Proceedings of the National Academy of Sciences of the United States 2012, 109, 15121-15126.	MerR-family of America,	3.3	73
137	A Novel Role for Copper in Ras/Mitogen-Activated Protein Kinase Signaling. Molecular ar Biology, 2012, 32, 1284-1295.	ıd Cellular	1.1	226
138	Evolution of Copper Transporting ATPases in Eukaryotic Organisms. Current Genomics,	2012, 13, 124-133.	0.7	37
139	Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. BioN 25, 995-1008.	1etals, 2012,	1.8	5
140	A novel genetically encoded fluorescent protein as a Cu(<scp>i</scp>) indicator. Dalton Transactions, 2012, 41, 727-729.		1.6	8
141	Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella and Helicobacter pylori and optical, mechanical properties. Applied Surface Science, 201 3823-3828.	typhimurium .2, 258,	3.1	23
142	Copper in Microbial Pathogenesis: Meddling with the Metal. Cell Host and Microbe, 201	2, 11, 106-115.	5.1	241
143	Characterization of copper-resistant bacteria and bacterial communities from copper-po agricultural soils of central Chile. BMC Microbiology, 2012, 12, 193.	lluted	1.3	160
144	Dissecting the dimerization motif of Enterococcus hirae's Zn(II)CopY. Journal of Biol Chemistry, 2012, 17, 1063-1070.	ogical Inorganic	1.1	3
145	Staphylococcal response to oxidative stress. Frontiers in Cellular and Infection Microbio 2, 33.	ogy, 2012,	1.8	174
146	Characterization of Copper-Resistant Rhizosphere Bacteria from Avena sativa and Planta for Copper Bioreduction and Biosorption. Biological Trace Element Research, 2012, 146	igo lanceolata , 107-115.	1.9	27
147	Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. Bic 25, 517-527.	Metals, 2012,	1.8	25
148	Composition dynamics of epilithic intertidal bacterial communities exposed to high cop FEMS Microbiology Ecology, 2012, 79, 720-727.	ber levels.	1.3	16

#	Article	IF	Citations
149	Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. Journal of Inorganic Biochemistry, 2012, 107, 129-143.	1.5	281
150	Sequence Analysis of Hypothetical Lysine Exporter Genes of Rhizobium leguminosarum bv. trifolii from Calamine Old Waste Heaps and Their Evolutionary History. Current Microbiology, 2013, 66, 493-498.	1.0	9
151	Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Letters, 2013, 587, 1902-1910.	1.3	81
152	Single-Molecule Dynamics and Mechanisms of Metalloregulators and Metallochaperones. Biochemistry, 2013, 52, 7170-7183.	1.2	14
153	Iron and Copper Act Synergistically To Delay Anaerobic Growth of Bacteria. Applied and Environmental Microbiology, 2013, 79, 3619-3627.	1.4	50
154	The role of zinc in the interplay between pathogenic streptococci and their hosts. Molecular Microbiology, 2013, 88, 1047-1057.	1.2	45
155	Current Aspects of Metal Resistant Bacteria in Bioremediation: From Genes to Ecosystem. , 2013, , 289-311.		5
156	Non-enzymic copper reduction by menaquinone enhances copper toxicity in Lactococcus lactis IL1403. Microbiology (United Kingdom), 2013, 159, 1190-1197.	0.7	41
157	The Copper Metallome in Prokaryotic Cells. Metal Ions in Life Sciences, 2013, 12, 417-450.	2.8	64
158	Biocide tolerance in bacteria. International Journal of Food Microbiology, 2013, 162, 13-25.	2.1	195
159	The Genome of Pseudomonas fluorescens Strain R124 Demonstrates Phenotypic Adaptation to the Mineral Environment. Journal of Bacteriology, 2013, 195, 4793-4803.	1.0	17
160	Comparative Genomics Analysis of the Metallomes. Metal Ions in Life Sciences, 2013, 12, 529-580.	2.8	14
161	Physical and Chemical Factors Affecting Fermentation in Food Processing. Contemporary Food Engineering, 2013, , 47-74.	0.2	0
162	- Isolation, Improvement, and Preservation of Microbial Cultures. , 2013, , 46-71.		4
163	Metallochaperones Regulate Intracellular Copper Levels. PLoS Computational Biology, 2013, 9, e1002880.	1.5	26
164	Mechanisms of Metal Resistance and Homeostasis in Haloarchaea. Archaea, 2013, 2013, 1-16.	2.3	63
165	Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon <i>Sulfolobus metallicus</i> . Archaea, 2013, 2013, 1-16.	2.3	41
166	Physiology and Genomics of Ammonia-Oxidizing <i>Archaea</i> ., 0, , 115-155.		25

#	ARTICLE Metal Resistance Loci of Bacterial Plasmids. , 2014, , 165-173.	IF	Citations 2
168	A Heavy Metal-Associated Protein (AcHMA1) from the Halophyte, Atriplex canescens (Pursh) Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2014, 15, 14891-14906.	1.8	31
169	Copper Resistance and Oxidative Stress Response in Rhodotorula mucilaginosa RCL-11. Yeast Isolated from Contaminated Environments in TucumĂin, Argentina. , 2014, , 241-253.		5
170	Biocidal Mechanisms of Metallic Copper Surfaces. , 2014, , 103-136.		1
171	Enterococcus faecalis reconfigures its transcriptional regulatory network activation at different copper levels. Metallomics, 2014, 6, 572.	1.0	31
172	A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1. Molecular BioSystems, 2014, 10, 2607-2616.	2.9	9
173	Copper tolerance in Frankia sp. strain Eul1c involves surface binding and copper transport. Applied Microbiology and Biotechnology, 2014, 98, 8005-8015.	1.7	29
174	A versatile and efficient markerless gene disruption system for <scp><i>A</i></scp> <i>ci>cidithiobacillus thiooxidans</i> : application for characterizing a copper tolerance related multicopper oxidase gene. Environmental Microbiology, 2014, 16, 3499-3514.	1.8	19
175	Functional genomics of <i>Lactobacillus casei</i> establishment in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3101-9.	3.3	42
177	Copperâ€ŧransporting <scp>ATPases</scp> : The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life, 2015, 67, 737-745.	1.5	45
178	Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics, 2015, 4, 567-604.	1.5	312
179	The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4. International Journal of Molecular Sciences, 2015, 16, 17005-17017.	1.8	17
180	Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation. Frontiers in Microbiology, 2015, 6, 1425.	1.5	36
181	Copper Tolerance and Characterization of a Copper-Responsive Operon, <i>copYAZ</i> , in an M1T1 Clinical Strain of Streptococcus pyogenes. Journal of Bacteriology, 2015, 197, 2580-2592.	1.0	21
182	The <i>copYAZ</i> Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans. Journal of Bacteriology, 2015, 197, 2545-2557.	1.0	43
183	Structure and Function of Cu(I)- and Zn(II)-ATPases. Biochemistry, 2015, 54, 5673-5683.	1.2	43
184	The zincâ€binding nuclear protein <scp>HIPP</scp> 3 acts as an upstream regulator of the salicylateâ€dependent plant immunity pathway and of flowering time in <i>Arabidopsis thaliana</i> . New Phytologist, 2015, 207, 1084-1096.	3.5	59
185	Diversity of copper proteins and copper homeostasis systems in Melioribacter roseus, a facultatively anaerobic thermophilic member of the new phylum Ignavibacteriae. Microbiology, 2015, 84, 135-143.	0.5	4

#	Article	IF	CITATIONS
186	Strategies on designing multifunctional surfaces to prevent biofilm formation. Frontiers of Chemical Science and Engineering, 2015, 9, 324-335.	2.3	29
187	Cu(II), Fe(III) and Mn(II) combinations as environmental stress factors have distinguishing effects on Enterococcus hirae. Journal of Environmental Sciences, 2015, 28, 95-100.	3.2	5
188	Streptococcus mutanscopper chaperone, CopZ, is critical for biofilm formation and competitiveness. Molecular Oral Microbiology, 2016, 31, 515-525.	1.3	20
190	Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance. Scientific Reports, 2016, 6, 35155.	1.6	12
191	Identification and characterization of the zosA gene involved in copper uptake in Bacillus subtilis 168. Bioscience, Biotechnology and Biochemistry, 2016, 80, 600-609.	0.6	4
192	Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270. Applied and Environmental Microbiology, 2016, 82, 1015-1022.	1.4	27
193	Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals. Bioresource Technology, 2016, 200, 29-34.	4.8	21
194	A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Critical Reviews in Biotechnology, 2017, 37, 296-308.	5.1	69
195	The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environmental Science and Pollution Research, 2017, 24, 16545-16559.	2.7	40
196	Copper and Antibiotics. Advances in Microbial Physiology, 2017, 70, 193-260.	1.0	96
198	Interaction of Haloarchaea with Metals. , 2017, , 143-151.		3
199	The Copper Homeostasis Transcription Factor CopR Is Involved in H2O2 Stress in Lactobacillus plantarum CAUH2. Frontiers in Microbiology, 2017, 8, 2015.	1.5	23
200	The Copper Efflux Regulator CueR Is Subject to ATP-Dependent Proteolysis in Escherichia coli. Frontiers in Molecular Biosciences, 2017, 4, 9.	1.6	12
202	Resistance to Metals Used in Agricultural Production. Microbiology Spectrum, 2018, 6, .	1.2	48
203	Cu ⁺ -specific CopB transporter: Revising P _{1B} -type ATPase classification. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2108-2113.	3.3	31
204	Contact killing and antimicrobial properties of copper. Journal of Applied Microbiology, 2018, 124, 1032-1046.	1.4	417
205	Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling. Waste Management, 2018, 76, 414-422.	3.7	37
206	Stress response of a clinical Enterococcus faecalis isolate subjected to a novel antimicrobial surface coating. Microbiological Research, 2018, 207, 53-64.	2.5	40

# 207	ARTICLE Extending the family of quinolone antibacterials to new copper derivatives: self-assembly, structural and topological features, catalytic and biological activity. New Journal of Chemistry, 2018, 42,	IF 1.4	CITATIONS
207	<pre>ival to pological total (12, 2010, 12, 19644-19658. </pre> (i) n (i) a†'΀* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins. Journal of the American Chemical Society, 2018, 140, 17606-17611.	6.6	42
209	Resistance to Metals Used in Agricultural Production. , 2018, , 83-107.		4
210	Xenon-inhibition of the MscL mechano-sensitive channel and the CopB copper ATPase under different conditions suggests direct effects on these proteins. PLoS ONE, 2018, 13, e0198110.	1.1	8
211	Metal Assimilation Pathways. , 2019, , 171-206.		1
212	Intracellular Metabolism and Homeostasis of Metal Ions. , 2019, , 207-259.		0
213	Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	58
214	CopA Protects Streptococcus suis against Copper Toxicity. International Journal of Molecular Sciences, 2019, 20, 2969.	1.8	12
215	Comparative genomics and metagenomics of the metallomes. Metallomics, 2019, 11, 1026-1043.	1.0	20
216	Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to †clean-up' heavy metal contaminants from water. Aquatic Toxicology, 2019, 212, 1-10.	1.9	125
217	Analysis of copper response in <i>Acinetobacter</i> sp. by comparative proteomics. Metallomics, 2019, 11, 949-958.	1.0	5
218	Enterococcal Genetics. Microbiology Spectrum, 2019, 7, .	1.2	10
219	Metallophore profiling of nitrogen-fixing <i>Frankia</i> spp. to understand metal management in the rhizosphere of actinorhizal plants. Metallomics, 2019, 11, 810-821.	1.0	22
220	Copper-Induced Expression of a Transmissible Lipoprotein Intramolecular Transacylase Alters Lipoprotein Acylation and the Toll-Like Receptor 2 Response to Listeria monocytogenes. Journal of Bacteriology, 2019, 201, .	1.0	9
221	Bioremediation of Heavy Metals. , 2019, , .		8
222	Enterococcal Genetics. , 0, , 398-425.		0
223	Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. Journal of Proteomics, 2019, 198, 132-144.	1.2	32
224	Effects of Copper Availability on the Physiology of Marine Heterotrophic Bacteria. Frontiers in Marine Science, 2019, 5, .	1.2	12

#	Article	IF	CITATIONS
225	Functional Diversity of Bacterial Strategies to Cope With Metal Toxicity. , 2019, , 409-426.		8
226	Cu Homeostasis in Bacteria: The Ins and Outs. Membranes, 2020, 10, 242.	1.4	60
227	Dissemination and conservation of cadmium and arsenic resistance determinants in <i>Listeria</i> and other Gramâ€positive bacteria. Molecular Microbiology, 2020, 113, 560-569.	1.2	36
228	Integration of Biological Networks for Acidithiobacillus thiooxidans Describes a Modular Gene Regulatory Organization of Bioleaching Pathways. Frontiers in Molecular Biosciences, 2019, 6, 155.	1.6	5
229	Enterococcus faecalis Manganese Exporter MntE Alleviates Manganese Toxicity and Is Required for Mouse Gastrointestinal Colonization. Infection and Immunity, 2020, 88, .	1.0	13
231	Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus, 2021, 9, eESP00142020.	2.1	18
232	Induction of glutamic acid production by copper in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2021, 105, 6909-6920.	1.7	7
233	Copper Intoxication in Group B Streptococcus Triggers Transcriptional Activation of the <i>cop</i> Operon That Contributes to Enhanced Virulence during Acute Infection. Journal of Bacteriology, 2021, 203, e0031521.	1.0	12
234	Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Critical Reviews in Microbiology, 2022, 48, 327-355.	2.7	63
235	Bacterial Strains Isolated from Heavy Metals Contaminated Soil and Wastewater with Potential to Oxidize Arsenite. Environmental Processes, 2021, 8, 333-347.	1.7	6
236	Metals and Metalloids in Photosynthetic Bacteria: Interactions, Resistance and Putative Homeostasis Revealed by Genome Analysis. Advances in Photosynthesis and Respiration, 2009, , 655-689.	1.0	2
238	Copper in Prokaryotes. 2-Oxoglutarate-Dependent Oxygenases, 2014, , 461-499.	0.8	2
239	Copper-responsive gene regulation in bacteria. Microbiology (United Kingdom), 2012, 158, 2451-2464.	0.7	159
240	Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen. PLoS ONE, 2008, 3, e1378.	1.1	159
241	Biological links between nanoparticle biosynthesis and stress responses in bacteria. Mexican Journal of Biotechnology, 2018, 3, 44-69.	0.2	1
242	Tolerância de mudas de canafÃstula (<i>Peltophorum dubium</i> (Spreng.) Taub.) inoculada com <i>Pisolithus microcarpus</i> a solo com excesso de cobre Ciencia Florestal, 2010, 20, 147-156.	0.1	5
245	Stability and Folding of Copper-Binding Proteins. , 2010, , 61-80.		1
246	Mutagenesis of a Copper P-Type ATPase Encoding Genein Methylococcus capsulatus (Bath) Results inCopper-Resistance. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2013, , 37-42.	0.2	0

#	Article	IF	CITATIONS
247	Enterococcal Genetics. , 0, , 312-331.		0
248	Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals. Journal of the Korean Magnetic Resonance Society, 2016, 20, 76-81.	0.1	Ο
249	Biochemical indicators of green photosynthetic bacteria Chlorobium limicola response to Cu(2+) action. Ukrainian Biochemical Journal, 2020, 92, 103-112.	0.1	2
251	Role of rhizosphere microbiome during phytoremediation of heavy metals. , 2022, , 263-291.		5
252	More Insights about the Efficacy of Copper Ion Treatment on Mycobacterium avium subsp. paratuberculosis (MAP): A Clue for the Observed Tolerance. Pathogens, 2022, 11, 272.	1.2	4
253	Bacterial Biofilm Formation on Nano-Copper Added PLA Suited for 3D Printed Face Masks. Microorganisms, 2022, 10, 439.	1.6	8
256	Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance. FEMS Microbiology Letters, 2004, 236, 115-122.	0.7	5
257	Optimum Biosorption and Resistance of Uranium by Metal-Resistant Bacteria Isolated from Rock Ore. Geomicrobiology Journal, 2022, 39, 689-696.	1.0	3
258	Assessment of Haloferax mediterranei Genome in Search of Copper-Molecular Machinery With Potential Applications for Bioremediation. Frontiers in Microbiology, 0, 13, .	1.5	5
259	Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock–Environment–Plant–Human Health Axis and Microbial Homeostasis: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 6943-6962.	2.4	15
261	Complete Genome Sequencing of Polar Arthrobacter sp. PAMC25284, Copper Tolerance Potential Unraveled with Genomic Analysis. International Journal of Microbiology, 2022, 2022, 1-12.	0.9	3
262	Bacillus coagulans XY2 ameliorates copper-induced toxicity by bioadsorption, gut microbiota and lipid metabolism regulation. Journal of Hazardous Materials, 2023, 445, 130585.	6.5	5
263	The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. Journal of Inorganic Biochemistry, 2023, 240, 112122.	1.5	2
264	Synthetic bacteria for the detection and bioremediation of heavy metals. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	5
265	Copper removal capability and genomic insight into the lifestyle of copper mine inhabiting Micrococcus yunnanensis GKSM13. Environmental Research, 2023, 223, 115431.	3.7	6
266	Bioremediation of heavy metals by soil-dwelling microbes: an environment survival approach. , 2023, , 167-190.		1
267	Evidence of Homeostatic Regulation in Mycobacterium avium Subspecies paratuberculosis as an Adaptive Response to Copper Stress. Microorganisms, 2023, 11, 898.	1.6	0
268	Linking Copper-Associated Signal Transduction Systems with Their Environment in Marine Bacteria. Microorganisms, 2023, 11, 1012.	1.6	0

ARTICLE

IF CITATIONS