Three limit cycles for a three-dimensional Lotka-Volter heteroclinic cycle

Computers and Mathematics With Applications 46, 231-238 DOI: 10.1016/s0898-1221(03)90027-7

Citation Report

#	Article	IF	CITATIONS
1	Limit cycles for competitor–competitor–mutualist Lotka–Volterra systems. Physica D: Nonlinear Phenomena, 2006, 221, 135-145.	1.3	26
2	Multiple limit cycles in the standard model of three species competition for three essential resources. Journal of Mathematical Biology, 2006, 52, 745-760.	0.8	18
3	A 3D competitive Lotka–Volterra system with three limit cycles: A falsification of a conjecture by Hofbauer and So. Applied Mathematics Letters, 2006, 19, 1-7.	1.5	47
4	Stability analysis for Lotka–Volterra systems based on an algorithm of real root isolation. Journal of Computational and Applied Mathematics, 2007, 201, 367-373.	1.1	2
5	A modified algorithm for the Adomian decomposition method with applications to Lotka–Volterra systems. Mathematical and Computer Modelling, 2007, 46, 1214-1224.	2.0	11
6	Global stability of Gompertz model of three competing populations. Journal of Mathematical Analysis and Applications, 2007, 334, 333-348.	0.5	15
7	Automatic search for multiple limit cycles in three-dimensional Lotka–Volterra competitive systems with classes 30 and 31 in Zeeman's classification. Journal of Mathematical Analysis and Applications, 2008, 348, 34-37.	0.5	6
8	Four limit cycles for a three-dimensional competitive Lotka–Volterra system with a heteroclinic cycle. Computers and Mathematics With Applications, 2009, 58, 649-669.	1.4	33
9	Attractors in coherent systems of differential equations. Journal of Differential Equations, 2009, 246, 3058-3076.	1.1	17
10	Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka–Volterra system. Nonlinear Dynamics, 2010, 59, 411-422.	2.7	27
11	Bifurcation of Limit Cycles for 3D Lotka-Volterra Competitive Systems. Acta Applicandae Mathematicae, 2011, 114, 207-218.	0.5	9
12	Limit cycles and singular point quantities for a 3D Lotka–Volterra system. Applied Mathematics and Computation, 2011, 217, 8856-8859.	1.4	16
13	Multiplicative-noise Can Suppress Chaotic Oscillation in Lotka-Volterra Type Competitive Model. Mathematical Modelling of Natural Phenomena, 2012, 7, 23-46.	0.9	0
14	Geometric approach for global asymptotic stability of three-dimensional Lotka–Volterra systems. Journal of Mathematical Analysis and Applications, 2012, 389, 591-596.	0.5	5
15	Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems. Physical Review E, 2013, 87, 012708.	0.8	27
16	The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems. Scientific World Journal, The, 2014, 2014, 1-12.	0.8	0
17	Limit cycles bifurcating from a non-isolated zero-Hopf equilibrium of three-dimensional differential systems. Proceedings of the American Mathematical Society, 2014, 142, 2047-2062.	0.4	13
18	On the complete classification of nullcline stable competitive three-dimensional Gompertz models. Nonlinear Analysis: Real World Applications, 2014, 20, 21-35.	0.9	14

CITATION REPORT

#	Article	IF	CITATIONS
19	On LotkaVolterra Equations with Identical Minimal Intrinsic Growth Rate. SIAM Journal on Applied Dynamical Systems, 2015, 14, 1558-1599.	0.7	17
20	Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes. Journal of Theoretical Biology, 2015, 375, 77-87.	0.8	22
21	Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka–Volterra systems. Journal of Mathematical Analysis and Applications, 2016, 436, 521-555.	0.5	21
22	On heteroclinic cycles of competitive maps via carrying simplices. Journal of Mathematical Biology, 2016, 72, 939-972.	0.8	21
23	On the validity of Zeeman's classification for three dimensional competitive differential equations with linearly determined nullclines. Journal of Differential Equations, 2017, 263, 7753-7781.	1.1	12
24	Multiple limit cycles for the continuous model of the rock–scissors–paper game between bacteriocin producing bacteria. Applied Mathematics and Computation, 2017, 295, 136-140.	1.4	2
25	On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex. Journal of Mathematical Biology, 2017, 74, 1223-1261.	0.8	26
26	A methodology to quantify the long-term changes in social networks of competing species. Ecological Modelling, 2018, 368, 147-157.	1.2	0
27	A concrete example with multiple limit cycles for three dimensional Lotka–Volterra systems. Journal of Mathematical Analysis and Applications, 2018, 457, 1-9.	0.5	8
28	On the dynamics of multi-species Ricker models admitting a carrying simplex. Journal of Difference Equations and Applications, 2019, 25, 1489-1530.	0.7	14
29	Rhythmic control of oscillatory sequential dynamics in heteroclinic motifs. Neurocomputing, 2019, 331, 108-120.	3.5	7
30	Chaotic attractors in the four-dimensional Leslie–Gower competition model. Physica D: Nonlinear Phenomena, 2020, 402, 132186.	1.3	3
31	On the Zero-Hopf Bifurcation of the Lotkaâ \in "Volterra Systems in $\ \ R$ 3. Mathematics, 2020, 8, 1137.	1.1	3
32	Rough center in a 3-dimensional Lotka-Volterra system. International Journal of Dynamical Systems and Differential Equations, 2020, 10, 116.	0.2	0
33	Chaotic attractors in Atkinson–Allen model of four competing species. Journal of Biological Dynamics, 2020, 14, 440-453.	0.8	2
34	On the first Liapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles. Journal of Differential Equations, 2021, 284, 183-218.	1.1	8
35	On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete and Continuous Dynamical Systems, 2018, 38, 615-650.	0.5	14
36	On a conjecture for three-dimensional competitive Lotka-Volterra systems with a heteroclinic cycle. Differential Equations and Applications, 2009, , 473-490.	0.1	2

#	Article	IF	CITATIONS
37	The Closed Orbits of a Class of Cubic Vector Fields in â"3. Acta Mathematica Sinica, English Series, 2020, 36, 1429-1440.	0.2	0
38	Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in \$\${mathbb {R}}^{3}\$. Qualitative Theory of Dynamical Systems, 2023, 22, .	0.8	3