Fretting wear behavior of a Cu–Ni–In plasma coatin

Surface and Coatings Technology 163-164, 429-434 DOI: 10.1016/s0257-8972(02)00639-4

Citation Report

#	Article	IF	CITATIONS
1	Impact of contact size and geometry on the lifetime of a solid lubricant. Wear, 2003, 255, 875-882.	1.5	38
2	Characterization of mixed and gross slip fretting wear regimes in Ti6Al4V interfaces at room temperature. Wear, 2004, 257, 167-180.	1.5	63
3	Surface wear study of composite spray coated steel. Surface Engineering, 2005, 21, 431-438.	1.1	0
4	Effect of high temperature on the characterization of fretting wear regimes at Ti6Al4V interfaces. Wear, 2006, 260, 493-508.	1.5	43
5	Durability of Cu–Al coating on Ti–6Al–4V substrate under fretting fatigue. Surface and Coatings Technology, 2006, 201, 1704-1710.	2.2	19
6	Study of seizure of coated and treated titanium alloy under fretting conditions. Tribology International, 2006, 39, 1052-1059.	3.0	9
7	Palliatives in fretting: A dynamical approach. Tribology International, 2006, 39, 1005-1015.	3.0	49
8	Fretting Fatigue Behavior of Cu-Al-Coated Ti-6Al-4V. Tribology Transactions, 2007, 50, 497-506.	1.1	7
9	Effect of surface treatments on fretting fatigue of Ti–6Al–4V. International Journal of Fatigue, 2007, 29, 1302-1310.	2.8	83
10	Life prediction of fretting fatigue with advanced surface treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 468-470, 15-22.	2.6	49
11	Influence of Substrate Material on Plain Fatigue and Fretting Fatigue Behavior of Detonation Gun Sprayed Cu-Ni-In Coating. Journal of Thermal Spray Technology, 2007, 16, 571-579.	1.6	13
12	High temperature fretting wear of a Ti alloy/CuNiIn contact. Surface and Coatings Technology, 2008, 203, 691-698.	2.2	25
13	Corrosion resistance of Molybdenum Nitride modified Ti6Al4V alloy in HCl solution. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 358-361.	0.4	14
14	Microstructure and Microhardness of Coldâ€&prayed CuNiln Coating. Advanced Engineering Materials, 2008, 10, 746-749.	1.6	7
15	Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 83-92.	2.6	30
16	Fretting wear of a coated titanium alloy under free displacement. Wear, 2008, 264, 166-176.	1.5	18
17	Finite element modelling of fretting wear surface evolution: Application to a Ti–6A1–4V contact. Wear, 2008, 264, 26-36.	1.5	85
18	Tribochemistry of a Ti Alloy Under Fretting in Air: Evidence of Titanium Nitride Formation. Tribology Letters, 2009, 34, 211-222.	1.2	25

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	Measurement of Tangential Contact Stiffness in Frictional Contacts: The Effect of Normal Pressure. Applied Mechanics and Materials, 0, 70, 321-326.	0.2	3
20	Surface engineering to improve the durability and lubricity of Ti–6Al–4V alloy. Wear, 2011, 271, 2006-2015.	1.5	101
21	Pressure and temperature effects on Fretting Wear damage of a Cu–Ni–In plasma coating versus Ti17 titanium alloy contact. Wear, 2011, 272, 18-37.	1.5	62
22	Improvement of the Oxidation and Wear Resistance of Pure Ti by Laser-Cladding Ti3Al Coating at Elevated Temperature. Tribology Letters, 2011, 42, 151-159.	1.2	33
23	Measurements of pressure and area dependent tangential contact stiffness between rough surfaces using digital image correlation. Tribology International, 2011, 44, 1188-1198.	3.0	63
24	Development of a complete contact fretting test device. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 570-578.	1.0	14
25	Influence of phase composition on fretting wear behavior of thermally sprayed aluminum bronze coatings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 1030-1037.	1.0	1
26	Coating Characterizations. , 2014, , 1113-1250.		1
27	Corrosion-resistant antifretting coating for the protection of blade locking pieces in GTE compressors and fans. Russian Metallurgy (Metally), 2014, 2014, 725-732.	0.1	1
29	Evolution of damage in MoS 2 -based dry film lubricants (DFLs) in fretting wear—The effect of DFL thickness and contact geometry. Progress in Organic Coatings, 2017, 105, 67-80.	1.9	6
30	Influence of diamond-like carbon coatings and roughness on fretting behaviors of Ti–6Al–4V for neck adapter–femoral stem contact. Wear, 2018, 406-407, 53-67.	1.5	18
31	The role of a thermally sprayed CuNiln underlayer in the durability of a dry-film lubricant system in fretting – A phenomenological model. Tribology International, 2018, 123, 307-315.	3.0	13
32	Study on hydrophobicity and wettability transition of Ni-Cu-SiC coating on Mg-Li alloy. Surface and Coatings Technology, 2018, 350, 428-435.	2.2	27
33	Influence of Deposition Positions on Fretting Behaviors of DLC Coating on Ti-6Al-4V. Tribology Transactions, 2019, 62, 1155-1172.	1.1	7
34	Low-friction study between diamond-like carbon coating and Ti 6Al 4V under fretting conditions. Tribology International, 2019, 135, 368-388.	3.0	22
35	Influence of two APS coatings on the high-speed tribological behavior of a contact between titanium alloys. Tribology International, 2019, 136, 13-22.	3.0	10
36	Investigation of shot peening combined with plasma-sprayed CuNiln coating on the fretting fatigue behavior of Ti-6Al-4V dovetail joint specimens. Surface and Coatings Technology, 2019, 358, 833-842.	2.2	24
37	Performance of plasma-sprayed CuNiln coatings and Mo coatings subjected to fretting fatigue. Nano Materials Science, 2020, 2, 140-150.	3.9	5

	CITATION F	tion Report		
#	Article	IF	Citations	
38	Laser Surface Texturing to Enhance CuNiln Anti-Fretting Coating Adhesion on Ti6Al4V Alloy for Aerospace Application. Lasers in Manufacturing and Materials Processing, 2020, 7, 141-153.	1.2	8	
39	Ti-6Al-4V fretting wear and a quantitative indicator for fretting regime evaluation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 423-433.	1.0	2	
40	Fretting wear mechanism of plasma-sprayed CuNiln coating on Ti-6Al-4V substrate under plane/plane contact. Surface and Coatings Technology, 2021, 408, 126794.	2.2	14	
41	Experimental analysis on hardness of textile steel components with tungsten carbide coatings. Materials Today: Proceedings, 2021, , .	0.9	Ο	
42	An Analytical Solution for the Initiation and Early Progression of Fretting Wear in Spherical Contacts. Journal of Tribology, 2022, 144, .	1.0	2	
43	Effect of groove surface texture on the fretting wear of Ti–6Al–4V alloy. Wear, 2021, 486-487, 204079.	1.5	14	
44	System Deformation Behavior of Friction Pair in Fretting Wear. Journal of Tribology, 2020, 142, .	1.0	1	
45	Desgaste lubricado de recubrimientos NiCrBSi refundidos parcialmente con lÃ _i ser. Revista De Metalurgia, 2009, 45, 114-123.	0.1	4	
46	Coating Characterizations. , 2021, , 829-906.		0	
47	Experimental investigation of friction behaviors for CrCoNi medium entropy alloy in reciprocating sliding. AIP Advances, 2021, 11, .	0.6	1	
48	Fretting Fatigue in Mechanical Joints: A Literature Review. Lubricants, 2022, 10, 53.	1.2	17	
49	Research on fretting regime transition of DD6 single- crystal superalloy via femtosecond laser-induced asperity and hardened layer. Applied Surface Science, 2023, 610, 155392.	3.1	4	
50	Friction Behavior of Rough Surfaces on the Basis of Contact Mechanics: A Review and Prospects. Micromachines, 2022, 13, 1907.	1.4	3	
51	Surface Characteristic and Friction Behavior of Plasma Sprayed FeCoNiCrMo0.2 High Entropy Alloy Coatings on BS960 High-Strength Steel with Subsequent Shot Peening Treatment. Coatings, 2023, 13, 303.	1.2	2	
52	Friction and wear. , 2023, , 127-206.		0	
54	Surface engineering design on alleviating fretting wear: a review. , 2023, 1, .		0	
56	Case Studies of Fretting Failures. Solid Mechanics and Its Applications, 2024, , 1-60.	0.1	0	