Chemical vapour deposition of coatings

Progress in Materials Science 48, 57-170

DOI: 10.1016/s0079-6425(01)00009-3

Citation Report

#	Article	IF	CITATIONS
1	Analysis of hydroxyl group controlled atomic layer deposition of hafnium dioxide from hafnium tetrachloride and water. Journal of Applied Physics, 2004, 95, 4777-4786.	1.1	85
2	Synthesis of nanoscale structures in single crystal silicon carbide by electron beam lithography. , 0, , .		2
3	An Experimentally Assisted Computational Analysis of Tin Oxide Deposition in a Cold-Wall APCVD Reactor. Journal of the Electrochemical Society, 2004, 151, C757.	1.3	14
4	Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique. Materials Chemistry and Physics, 2004, 86, 189-194.	2.0	73
5	Synthesis of TiO2 supported on activated carbon by MOCVD: operation parameters study. Journal of Zhejiang University: Science A, 2004, 5, 1548-1553.	1.3	14
6	New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet. Carbon, 2004, 42, 877-883.	5.4	31
7	Novel CVD Techniques for Micro- and IT-SOFC Fabrication. Fuel Cells, 2004, 4, 48-55.	1.5	22
8	MOCVD Growth of Transparent Conducting Cd2SnO4 Thin Films. Chemical Vapor Deposition, 2004, 10, 297-300.	1.4	18
9	Use of process indices for simplification of the description of vapor deposition systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 156-163.	1.7	7
10	Transport phenomena in an aluminum nitride induction heating sublimation growth system. International Journal of Heat and Mass Transfer, 2004, 47, 2989-3001.	2.5	21
11	Residual stress analysis of thin films and coatings through XRD2 experiments. Thin Solid Films, 2004, 450, 143-147.	0.8	34
12	Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films. Solid State Ionics, 2004, 175, 29-34.	1.3	44
13	The microstructure of alumina coatings prepared by aerosol assisted spray deposition. Surface and Coatings Technology, 2004, 180-181, 436-440.	2.2	14
14	Infrared multiphoton dissociation of SiF4: gas phase reactions of SiF3 with F and H2. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 209-214.	2.0	6
15	Deposition of nanostructured thin films using an inductively coupled plasma chemical vapor deposition technique. Ceramics International, 2004, 30, 1869-1872.	2.3	15
16	Reaction of Organosilicon Hydrides with Solid Surfaces:Â An Example of Surface-Catalyzed Self-Assembly. Journal of the American Chemical Society, 2004, 126, 7595-7600.	6.6	45
17	Green chemistry in the microelectronics industry. Green Chemistry, 2004, 6, 363.	4.6	24
18	Aerosol assisted chemical vapour deposition of photochromic tungsten oxide and doped tungsten oxide thin films. Journal of Materials Chemistry, 2004, 14, 2864.	6.7	79

#	Article	IF	CITATIONS
19	A DFT Study of the Al2O3Atomic Layer Deposition on SAMs:Â Effect of SAM Termination. Chemistry of Materials, 2004, 16, 646-653.	3.2	83
20	Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. Journal of Applied Physics, 2004, 96, 4878-4889.	1.1	132
21	Microwave-induced plasma reactor based on a domestic microwave oven for bulk solid state chemistry. Review of Scientific Instruments, 2004, 75, 5277-5279.	0.6	25
22	Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32, 33-177.	3.9	3,959
23	Vapor Transport Controlled Process Models for AlN Bulk Sublimation Growth., 2004,, 1035.		0
24	Fabrication of Nano-Laminar Composite from Glass Flake. Journal of the Ceramic Society of Japan, 2005, 113, 808-811.	1.3	6
25	Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Applied Catalysis A: General, 2005, 282, 285-293.	2.2	62
26	High temperature properties of SiC and diamond CVD-monofilaments. Journal of the European Ceramic Society, 2005, 25, 1929-1942.	2.8	47
27	A preliminary study of cladding steel with NiTi by microwave-assisted brazing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 407, 273-281.	2.6	23
28	Photocatalytic activity of nanocrystalline TiO2-based films produced by ESAVD method. Materials Science and Engineering C, 2005, 25, 669-674.	3.8	10
29	Wear analysis of tools in cold forging: PVD versus CVD TiN coatings. Wear, 2005, 259, 1109-1116.	1.5	33
30	Synthesis and characteristics of CuInS2 films for photovoltaic application. Thin Solid Films, 2005, 480-481, 13-18.	0.8	30
31	Growth kinetics and microstructure of carbon deposited on quartz plates and optical fibers by open-air laser-induced chemical vapor deposition. Thin Solid Films, 2005, 492, 79-87.	0.8	2
32	Environmental assessment of electrochromic glazing production. Solar Energy Materials and Solar Cells, 2005, 85, 205-240.	3.0	59
33	Dense YSZ electrolyte films prepared by modified electrostatic powder coating. Solid State Ionics, 2005, 176, 669-674.	1.3	15
34	Effects of the plasma oxygen concentration on the formation of SiOxCy films by low temperature PECVD. Surface and Coatings Technology, 2005, 194, 42-47.	2.2	17
35	Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochimica Acta, 2005, 50, 5083-5089.	2.6	207
36	Nanostructured Component Fabrication by Electron Beam-Physical Vapor Deposition. Journal of Materials Engineering and Performance, 2005, 14, 448-459.	1.2	30

#	Article	IF	Citations
37	Enhancing the concentration of TiO2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Research Bulletin, 2005, 40, 1899-1904.	2.7	28
38	Bis[di(2,2,2-trifluoroethyl)dithiocarbamato]Cull: A Volatile Precursor for the Efficient Growth of Cuprous Sulfide Films by MOCVD. Chemical Vapor Deposition, 2005, 11, 291-294.	1.4	5
39	Preparation and Properties of SrTiO3 Thin Films Produced by Mist Plasma Evaporation Using a Metal Nitrate Aqueous Precursor. Chemical Vapor Deposition, 2005, 11, 142-146.	1.4	2
40	Studies on the Preparation of Magnetic Photocatalysts. Journal of Nanoparticle Research, 2005, 7, 691-705.	0.8	51
41	Cyclic-Oxidation Resistance of Protective Silicide Layers on Titanium. Oxidation of Metals, 2005, 63, 305-323.	1.0	16
42	Deposition of Well-Defined Fluoropolymer Nanospheres on PET Substrate by Plasma Polymerization of Heptadecafluorodecyl Acrylate and Their Potential Application as a Protective Layer. Plasma Processes and Polymers, 2005, 2, 127-135.	1.6	13
43	Single-step graded surface coating using combined wire and powder feeding laser clading., 2005,,.		1
44	Application of Silicon for a Protection of Titanium against High-Temperature Oxidation. Materials Science Forum, 2005, 482, 243-246.	0.3	4
45	First-principles study of the effect of hydrogen on the metal–ceramic interface. Journal of Physics Condensed Matter, 2005, 17, 5335-5348.	0.7	29
46	Formation and Rate Processes of Y[sub 2]O[sub 3] Stabilized ZrO[sub 2] Thin Films from Zr(DPM)[sub 4] and Y(DPM)[sub 3] by Cold-Wall Aerosol-Assisted MOCVD. Journal of the Electrochemical Society, 2005, 152, C498.	1.3	12
47	The intersection of design, manufacturing, and surface engineering., 2005,, 321-344.		0
48	Isotropic and anisotropic growth models for the sublimation vapour transport process. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 861-873.	0.8	10
49	CALCULATION AND PLOTTING OF STANDARD FREE ENERGY CHANGES AND EQUILIBRIUM CONSTANTS FOR CVD HARD COATINGS REACTIONS. Surface Review and Letters, 2005, 12, 727-731.	0.5	4
50	Influence of silicon on high-temperature cyclic oxidation behaviour of titanium. Journal of Alloys and Compounds, 2005, 394, 240-249.	2.8	29
51	Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005, 97, 121301.	1.1	2,217
52	La2S3thin films from metal organic chemical vapor deposition of single-source precursor. Journal of Materials Chemistry, 2006, 16, 272-277.	6.7	22
53	Chemical vapour deposition of titanium chalcogenides and pnictides and tungsten oxide thin films. New Journal of Chemistry, 2006, 30, 505.	1.4	30
54	Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catalysis Communications, 2006, 7, 427-431.	1.6	99

#	Article	IF	CITATIONS
55	Aerosol Assisted Chemical Vapor Deposition Using Nanoparticle Precursors:Â A Route to Nanocomposite Thin Films. Journal of the American Chemical Society, 2006, 128, 1587-1597.	6.6	151
56	Surface Chemistry in the Atomic Layer Deposition of TiN Films from TiCl4 and Ammonia. Journal of Physical Chemistry B, 2006, 110, 13491-13498.	1.2	79
57	Decomposition Behavior of M(DPM)n (DPM = $2,2,6,6$ -Tetramethyl- $3,5$ -heptanedionato; n = $2,3,4$). Journal of Physical Chemistry A, 2006, 110, 13479-13486.	1.1	26
58	Thermal Stability and Mechanical Properties for Ceramic Composite Films Coated on Steel by Wet Process. Journal of the Ceramic Society of Japan, 2006, 114, 189-194.	1.3	1
59	Addition of Alkali Silicate to Grain Size-Controlled Ceramic Coatings for Dense Film. Journal of the Ceramic Society of Japan, 2006, 114, 308-312.	1.3	0
60	A comparative study between inductively and capacitively coupled plasma deposited polystyrene films: chemical and morphological characterizations. Surface and Interface Analysis, 2006, 38, 1266-1275.	0.8	9
61	Electrohydrodynamic Jet Processing: An Advanced Electric-Field-Driven Jetting Phenomenon for Processing Living Cells. Small, 2006, 2, 216-219.	5.2	260
62	Atmospheric Pressure Glow Discharge CVD of Al2 O3 Thin Films. Plasma Processes and Polymers, 2006, 3, 597-605.	1.6	20
63	Novel Deposition of Columnar Y3Al5O12 Coatings by Electrostatic Spray-Assisted Vapor Deposition. Journal of the American Ceramic Society, 2006, 89, 385-387.	1.9	9
64	TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44, 325-333.	5.4	86
65	Solid freeform fabrication of alumina using laser-assisted ESAVD. Applied Surface Science, 2006, 252, 4809-4813.	3.1	6
66	An extended Kalman filter for in situ sensing of yttria-stabilized zirconia in chemical vapor deposition. Computers and Chemical Engineering, 2006, 30, 1657-1669.	2.0	17
67	Core electron binding energy shifts of AlBr3 and Al2Br6 vapor. Journal of Electron Spectroscopy and Related Phenomena, 2006, 154, 32-37.	0.8	4
68	Synthesis, processing and characterization of nanocrystalline titanium dioxide. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 435-436, 327-332.	2.6	66
69	An advanced jet-based approach to processing nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 17-26.	1.3	14
70	Growth and structure of TiO2 thin films deposited inside borosilicate tubes by spray pyrolysis. Surface and Coatings Technology, 2006, 200, 4111-4116.	2.2	7
71	Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy. Surface and Coatings Technology, 2006, 200, 5663-5676.	2.2	134
72	Densification of SiO2–Al2O3–TiO2 based ceramic film coated on steel for high thermal stabilty and mechanical properties. Surface and Coatings Technology, 2006, 201, 880-885.	2.2	15

#	Article	IF	CITATIONS
73	Thermodynamical analysis of Al and Si halide gaseous precursors in CVD. Review and approximation for deposition at moderate temperature in FBR-CVD process. Surface and Coatings Technology, 2006, 201, 2475-2483.	2.2	9
74	Processing and structural characterization of porous reforming catalytic films. Thin Solid Films, 2006, 495, 262-265.	0.8	18
75	Controlled synthesis of gas sensing Cr2â^'xTixO3 films by electrostatic spray assisted vapour deposition and their structural characterisation. Thin Solid Films, 2006, 497, 42-47.	0.8	18
76	Deposition of Sm2O3 doped CeO2 thin films from Ce(DPM)4 and Sm(DPM)3 (DPM=2,2,6,6-tetramethyl-3,5-heptanedionato) by aerosol-assisted metal–organic chemical vapor deposition. Thin Solid Films, 2006, 510, 88-94.	0.8	13
77	Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior. Plasma Chemistry and Plasma Processing, 2006, 26, 371-391.	1.1	146
78	Analysis of coating delamination under extreme contact loading. Tribology Letters, 2006, 23, 39-45.	1.2	8
79	Electrospraying: an in-situ polymerisation route for fabricating high macroporous scaffolds. Journal of Sol-Gel Science and Technology, 2006, 38, 293-302.	1.1	16
80	Epitaxial growth of CeO2/yttria-stabilized ZrO2 double layer films on biaxially textured Ni tape via electrostatic spray assisted vapour deposition. Thin Solid Films, 2006, 515, 1825-1829.	0.8	2
81	Alumina-silica composite coatings on graphite by CVD at 550°C. Journal of Coatings Technology Research, 2006, 3, 231-235.	1.2	6
82	Collection of liquid flame spray generated TiO2 nanoparticles on stainless steel surface. Materials Letters, 2006, 60, 530-534.	1.3	19
83	Crystal Growth of ZnS Films by a Charged Aerosol-Assisted Vapor Deposition Process. Chemical Vapor Deposition, 2006, 12, 631-636.	1.4	7
84	Processing and Applications of Aerosol-AssistedÂChemical Vapor Deposition. Chemical Vapor Deposition, 2006, 12, 583-596.	1.4	202
85	A Novel Technique for Forming Selfâ€Assembled Nanotube Structures. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 67-81.	1.0	23
86	Electroless plating for protection against wear. , 2006, , 184-225.		1
87	Chemical vapour deposition methods for protection against wear., 2006,, 101-145.		5
88	ELECTROSPRAYING A NANOPARTICULATE SUSPENSION. International Journal of Nanoscience, 2006, 05, 35-46.	0.4	13
90	Gold CVD Using Trifluorophosphine Gold(I) Chloride Precursor and Its Toluene Solutions. Journal of the Electrochemical Society, 2007, 154, D520.	1.3	25
91	Characterization of Thin Films Deposited with Precursor Ferrocene by Plasma Enhanced Chemical Vapour Deposition. Plasma Science and Technology, 2007, 9, 436-439.	0.7	1

#	ARTICLE	IF	CITATIONS
92	Multiwalled Carbon Nanotubes Catalytically Grown from Amorphous Silica Films Deposited by Combustion CVD. Particulate Science and Technology, 2007, 25, 129-137.	1.1	1
93	MAGNETRON SPUTTERED HARD AND YET TOUGH NANOCOMPOSITE COATINGS WITH CASE STUDIES: NANOCRYSTALLINE TIN EMBEDDED IN AMORPHOUS SINx. , 2007, , 1-110.		8
94	Substrate biasing effect on the electrical properties of magnetron-sputtered high-k titanium silicate thin films. Journal of Applied Physics, 2007, 102 , .	1.1	18
95	Fabrication of Nano-Laminar Glass/Metal Composites by Sintering Glass Flakes. Materials Science Forum, 2007, 539-543, 883-888.	0.3	0
96	Synthesis of Si ₃ N ₄ from Na ₂ SiF ₆ as a Solid Precursor: Microstructural Evolution. Materials Science Forum, 2007, 560, 109-114.	0.3	2
97	Development of Coating Material by In Situ Reaction Synthesis. Key Engineering Materials, 2007, 353-358, 1696-1699.	0.4	1
98	YSZ Thin Films Prepared by a Novel Powder Coating Process on Porous NiO-YSZ Cermet. Key Engineering Materials, 2005, 280-283, 435-438.	0.4	1
99	Development of amorphous SiC for MEMS-based microbridges. , 2007, , .		3
100	Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites. Transactions of Nonferrous Metals Society of China, 2007, 17, 519-522.	1.7	13
101	The Influence of Aluminium Addition on the Microstructure of Zinc Pack Coatings. Solid State Phenomena, 2007, 130, 193-198.	0.3	0
102	Synthesis and characterisation of zirconium–amido guanidinato complex: a potential precursor for ZrO2thin films. Dalton Transactions, 2007, , 1671-1676.	1.6	24
103	Current State of Nanostructured TiO2-based Catalysts: Preparation Methods. , 2007, , 207-229.		3
104	Copper(I)tert-Butylthiolato Clusters as Single-Source Precursors for High-Quality Chalcocite Thin Films:Â Precursor Chemistry in Solution and the Solid State. Chemistry of Materials, 2007, 19, 2768-2779.	3.2	18
105	Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry, 2007, 17, 4743.	6.7	505
106	Processing andin vitro behavior of hydroxyapatite coatings prepared by electrostatic spray assisted vapor deposition method. Journal of Biomedical Materials Research - Part A, 2007, 83A, 683-691.	2.1	11
107	Crystalline, Uniform-Sized TiO2 Nanosphere Films by a Novel Plasma CVD Process at Atmospheric Pressure and Room Temperature. Chemical Vapor Deposition, 2007, 13, 141-144.	1.4	23
108	Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol-Assisted CVD. Chemical Vapor Deposition, 2007, 13, 145-151.	1.4	136
109	ZrO ₂ /SiO ₂ Fine Particle Synthesis by MOCVD. Chemical Vapor Deposition, 2007, 13, 474-480.	1.4	0

#	Article	IF	CITATIONS
110	Nb-Doped VO2 Thin Films Prepared by Aerosol-Assisted Chemical Vapour Deposition. European Journal of Inorganic Chemistry, 2007, 2007, 4050-4055.	1.0	77
111	Fabrication and characterization of Y2O3 stabilized ZrO2 films deposited with aerosol-assisted MOCVD. Solid State Ionics, 2007, 177, 3405-3410.	1.3	30
112	Coincident wire and powder deposition by laser to form compositionally graded material. Surface and Coatings Technology, 2007, 201, 7083-7091.	2.2	24
113	Homogeneous surface coating of bolts, nuts, and screws by barrel-sputtering technique. Surface and Coatings Technology, 2007, 201, 9512-9517.	2.2	4
114	Alternative technique for hydroxyapatite coatings. Surface and Coatings Technology, 2007, 201, 9587-9593.	2.2	46
115	Angle resolved X-ray photoemission spectroscopy double layer model for in situ characterization of metal organic chemical vapour deposition nanometric films. Thin Solid Films, 2007, 515, 6407-6410.	0.8	7
116	Discovery-based design of transparent conducting oxide films. Thin Solid Films, 2007, 515, 7025-7052.	0.8	318
117	Microstructure and kinetics of formation of Si2N2O and Si3N4 into Si porous preforms by chemical vapor infiltration (CVI). Ceramics International, 2007, 33, 1349-1356.	2.3	11
118	Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sensors and Actuators B: Chemical, 2007, 121, 664-678.	4.0	117
119	Au nanolayers deposited on polyethyleneterephtalate and polytetrafluorethylene degraded by plasma discharge. Surface and Interface Analysis, 2007, 39, 79-85.	0.8	29
120	Atmosphericâ€Pressure Glow Discharge CVD of Composite Metallic Aluminium Thin Films. Plasma Processes and Polymers, 2007, 4, 537-547.	1.6	7
121	Deposition of zinc coatings with fluidized bed technique. Materials Letters, 2007, 61, 223-226.	1.3	8
122	Synthesis and Characterization of Carbon-Doped TiO ₂ Nanostructures with Enhanced Visible Light Response. Chemistry of Materials, 2007, 19, 4530-4537.	3.2	272
123	Effect of processing parameters on the deposition rate of Si3N4/Si2N2O by chemical vapor infiltration and the in situ thermal decomposition of Na2SiF6. Applied Physics A: Materials Science and Processing, 2007, 89, 729-735.	1.1	11
124	Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray. Journal of Nanoparticle Research, 2007, 9, 569-588.	0.8	30
125	Gas flow activated in an electron-beam plasma. Journal of Applied Mechanics and Technical Physics, 2007, 48, 1-6.	0.1	6
126	Electrospray droplet sources for thin film deposition. Journal of Materials Science, 2007, 42, 266-297.	1.7	328
127	Perovskite thin films grown by direct liquid injection MOCVD. Applied Surface Science, 2007, 253, 9091-9098.	3.1	17

#	Article	IF	CITATIONS
128	Thin films for micro solid oxide fuel cells. Journal of Power Sources, 2007, 173, 325-345.	4.0	302
129	The electrochemical properties of LSM-based cathodes fabricated by electrostatic spray assisted vapour deposition. Journal of Power Sources, 2008, 180, 373-379.	4.0	6
130	Photocatalytic sterilization of TiO2 films coated on Al fiber. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 183-186.	1.7	22
131	Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids. Electrochimica Acta, 2008, 53, 5022-5032.	2.6	62
132	Halogenated silanes, radicals, and cations: Theoretical predictions on ionization energies, structures and potential energy surfaces of cations, proton affinities, and enthalpies of formation. International Journal of Mass Spectrometry, 2008, 276, 56-76.	0.7	21
133	Initial stages of ZrO2 chemical vapor deposition on Si(100)-($2\tilde{A}$ —1) from zirconium tetra-tert-butoxide. Surface Science, 2008, 602, 1803-1809.	0.8	8
134	Synthesis and characterisation of W-doped VO2 by Aerosol Assisted Chemical Vapour Deposition. Thin Solid Films, 2008, 516, 1992-1997.	0.8	91
135	Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration. Thin Solid Films, 2008, 516, 8248-8254.	0.8	26
136	Tourmaline ceramic balls stimulate growth and metabolism of three fermentation microorganisms. World Journal of Microbiology and Biotechnology, 2008, 24, 725-731.	1.7	19
137	Fabrication of short carbon fiber preforms coated with pyrocarbon/SiC for liquid metal infiltration. Journal of Materials Science, 2008, 43, 4618-4624.	1.7	19
138	Synthesis, processing and forming gold structures from a 0.1 wt. % concentration solution. Gold Bulletin, 2008, 41, 284-295.	3.2	3
139	Fabrication of nano-structured gold films by electrohydrodynamic atomisation. Applied Physics A: Materials Science and Processing, 2008, 91, 141-147.	1.1	29
140	Zinc Oxide Thin Films Grown by Aerosol Assisted CVD. Chemical Vapor Deposition, 2008, 14, 366-372.	1.4	69
141	Preparation and surface characterization of HMDlâ€activated 316L stainless steel for coronary artery stents. Journal of Biomedical Materials Research - Part A, 2008, 85A, 722-730.	2.1	4
142	Gas-phase synthesis of l-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles. Powder Technology, 2008, 187, 289-297.	2.1	18
143	Mechanistic details of atomic layer deposition (ALD) processes for metal nitride film growth. Journal of Molecular Catalysis A, 2008, 281, 35-43.	4.8	51
144	Synthesis and characterization of rhodium sulfide nanoparticles and thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 111-115.	1.7	8
145	Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science, 2008, 33, 40-112.	11.8	486

#	Article	IF	CITATIONS
146	Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 2008, 153, 827-833.	6.5	73
147	Oxidation of epitaxial Y(0001) films. Applied Surface Science, 2008, 254, 3184-3190.	3.1	3
148	The synergistic combination of bis-silane and CeO2Â-ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008, 53, 5913-5922.	2.6	120
149	Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 2008, 66, 197-219.	1.0	800
150	Synthesis of a silicon carbide coating on carbon fibers by deposition of a layer of pyrolytic carbon and reacting it with silicon monoxide. Carbon, 2008, 46, 1339-1344.	5.4	34
151	A role of parameters in RF PA CVD technology of a-C:N:H layers. Vacuum, 2008, 82, 998-1002.	1.6	19
152	Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films, 2008, 516, 1290-1296.	0.8	85
153	Synthesis, structural characterization and optical properties of multilayered Yttria-stabilized ZrO2 thin films obtained by aerosol assisted chemical vapour deposition. Thin Solid Films, 2008, 516, 8282-8288.	0.8	17
154	A method to quantify the degree of uniformity of thickness of thin films. Thin Solid Films, 2008, 516, 8493-8497.	0.8	7
155	Multi-length scale Monte Carlo simulation of the growth process of SiC film by chemical vapor deposition. Applied Surface Science, 2008, 255, 3342-3349.	3.1	6
156	Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with l-leucine in the gas phase. International Journal of Pharmaceutics, 2008, 358, 256-262.	2.6	17
157	Electrodeposition of nanodiamond particles on aluminium alloy A319 for improved tribological properties. Micro and Nano Letters, 2008, 3, 110.	0.6	9
158	Preparation and Properties of Selfâ€Healing Coating for C/SiC Brake Materials. International Journal of Applied Ceramic Technology, 2008, 5, 204-209.	1.1	14
159	Toward Sustainable Nanoproducts. Journal of Industrial Ecology, 2008, 12, 329-359.	2.8	157
160	Thermodynamic calculation on reduction of tungsten oxide in H2 atmosphere. International Journal of Refractory Metals and Hard Materials, 2008, 26, 362-366.	1.7	14
161	A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties. Materials Chemistry and Physics, 2008, 109, 392-398.	2.0	15
162	Roughness evolution during chemical vapor deposition. Materials Chemistry and Physics, 2008, 112, 311-318.	2.0	13
163	Curved Microchannel Flow., 2008,, 324-329.		1

#	Article	IF	CITATIONS
164	Core-Shell Nanoparticles. , 2008, , 322-322.		1
165	Influence of the chemical and electronic structure on the electrical behavior of zirconium oxynitride films. Journal of Applied Physics, 2008, 103, .	1.1	66
167	Cell and Tissue Culture. , 2008, , 234-234.		0
168	Capillary Filling. , 2008, , 185-192.		O
169	Synthesis of nano TiB2 particles in copper matrix by in situ reaction of double-beam melts. Journal of Alloys and Compounds, 2008, 460, 585-589.	2.8	35
170	Calcium Titanium Oxide. , 2008, , 175-175.		O
171	Aerosol-Assisted Chemical Vapor Deposition of Lubricating MoS ₂ Films. Ferrous Substrates and Titanium Film Doping. Chemistry of Materials, 2008, 20, 5438-5443.	3.2	36
172	Tris(phosphino)borato Silver(I) Complexes as Precursors for Metallic Silver Aerosol-Assisted Chemical Vapor Deposition. Inorganic Chemistry, 2008, 47, 2534-2542.	1.9	31
173	MOCVD-Fabricated TiO ₂ Thin Films: Influence of Growth Conditions on Fibroblast Cells Culture. Molecular Crystals and Liquid Crystals, 2008, 483, 266-274.	0.4	7
174	Mechanical and surface properties of Ti-sputtered thin films. International Journal of Surface Science and Engineering, 2008, 2, 366.	0.4	4
175	Examination of microstructural features of zinc protective coatings on low carbon steel formed in fluidised bed reactor. Surface Engineering, 2008, 24, 264-267.	1.1	2
176	Theory of simple biochemical "shape recognition―via diffusion from activator coated nanoshapes. Journal of Chemical Physics, 2008, 129, 125103.	1.2	1
177	Microstructure and oxidation protective ability of MoSi ₂ -SiC-Si coating toughened with SiC whiskers for carbon/carbon composites. Surface Engineering, 2008, 24, 383-387.	1.1	12
178	Characteristics of SiO[sub 2]-Like Thin Film Deposited by Atmospheric-Pressure PECVD Using HMDSâ•O[sub 2]â•Ar. Journal of the Electrochemical Society, 2008, 155, D163.	1.3	22
179	Pharmaceutical Nanosystems: Manufacture, Characterization, and Safety., 0,, 1289-1325.		2
180	Vapour Phase Preparation and Characterisation of SiC _f -SiC and C _f -SiC Ceramic Matrix Composites. Key Engineering Materials, 2008, 395, 209-232.	0.4	6
181	Synthetic Techniques and Applications of Activated Nanostructurized Metals: Highlights up to 2008. Recent Patents on Nanotechnology, 2008, 2, 103-119.	0.7	16
182	Oxidation of metal matrix composites. , 2008, , 365-397.		1

#	Article	IF	CITATIONS
183	Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications. Journal of Sensors, 2008, 2008, 1-7.	0.6	17
184	Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research, 2009, 12, 1-39.	0.6	1,035
185	Copper Nanofilm Formation by Electrochemical ALD. Journal of the Electrochemical Society, 2009, 156, D261.	1.3	33
186	Design and Performance of an LPCVD Reactor for the Growth of 3C-Silicon Carbide. Journal of the Electrochemical Society, 2009, 156, D364.	1.3	0
187	cBN particle filled SiCN precursor coatings. Advances in Applied Ceramics, 2009, 108, 476-482.	0.6	30
188	Thermal Chemistry of Tetrakis(ethylmethylamido)titanium on Si(100) Surfaces. Journal of Physical Chemistry A, 2009, 113, 3946-3954.	1.1	42
189	Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities. Journal of Nanomaterials, 2009, 2009, 1-5.	1.5	9
190	Emerging Multifunctional Nanostructures. Journal of Nanomaterials, 2009, 2009, 1-2.	1.5	0
191	Microstructural Characterization of 316L-Type Stainless Steel Exposed to SiFX Species in Argon Atmosphere. Materials Research Society Symposia Proceedings, 2009, 1242, 1.	0.1	0
192	Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Advanced Materials, 2010, 22, 1993-2027.	11.1	329
193	A new approach to batch process optimization using experimental design. AICHE Journal, 2009, 55, 342-353.	1.8	9
194	The Effect of the H ₂ Flow Rate on the Deposition of TiO ₂ Film Produced by Inductively Coupled Plasmaâ€Assisted CVD. Chemical Vapor Deposition, 2009, 15, 217-220.	1.4	4
195	Preparation of Hollow Carbon and Silicon Carbide Fibers with Different Crossâ€Sections by using Electrospun Fibers as Templates. European Journal of Inorganic Chemistry, 2009, 2009, 4248-4254.	1.0	21
196	Cyclodextrin inclusion complexes as novel MOCVD precursors for potential cobalt oxide deposition. Applied Organometallic Chemistry, 2010, 24, 112-121.	1.7	18
197	Atmospheric pressure PECVD of SiO2 thin film at a low temperature using HMDS/O2/He/Ar. Thin Solid Films, 2009, 517, 4065-4069.	0.8	14
198	Electrostatic layer-by-layer and electrophoretic depositions as methods for electrochromic nanoparticle immobilization. Electrochimica Acta, 2009, 54, 2800-2804.	2.6	44
199	Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin. Journal of Materials Science, 2009, 44, 528-533.	1.7	19
200	Anticorrosive coatings: a review. Journal of Coatings Technology Research, 2009, 6, 135-176.	1.2	709

#	ARTICLE	IF	CITATIONS
201	Electrosynthesis of TiO2 oxide film on ITO substrate and electrochemical comparative study of the oxide with its hydrated gel. Ionics, 2009, 15, 169-176.	1.2	7
202	Low Temperature Growth of Photoactive Titania by Atmospheric Pressure Plasma. Plasma Processes and Polymers, 2009, 6, 575-582.	1.6	16
203	Enhanced APâ€PEâ€CVD Process Understanding and Control by Application of Integrated Optical, Electrical and Modelling Diagnostics. Plasma Processes and Polymers, 2009, 6, S637.	1.6	0
204	Particleâ€Filled PHPS Silazaneâ€Based Coatings on Steel. International Journal of Applied Ceramic Technology, 2009, 6, 373-380.	1.1	61
205	Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts. Thin Solid Films, 2009, 517, 3248-3252.	0.8	22
206	Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition. Thin Solid Films, 2009, 517, 3235-3239.	0.8	23
207	Influence of substrate surface topography in the deposition of nanostructured diamond-like carbon films by high density plasma chemical vapor deposition. Surface and Coatings Technology, 2009, 203, 1193-1198.	2.2	12
208	Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens. Surface and Coatings Technology, 2009, 204, 1141-1144.	2.2	37
209	Fabrication of yttria-stabilized-zirconia coatings using electrophoretic deposition: Effects of agglomerate size distribution on particle packing. Journal of the European Ceramic Society, 2009, 29, 3167-3175.	2.8	20
210	Low-temperature RPCVD of Si, SiGe alloy, and Si1â^'yCy films on Si substrates using trisilane (Silcore®). Journal of Crystal Growth, 2009, 311, 3522-3527.	0.7	38
211	TRISO coated fuel particles with enhanced SiC properties. Journal of Nuclear Materials, 2009, 392, 219-224.	1.3	63
212	SiF4 IR Photodissociation: Gas phase reactions of SiF3 with CH4. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 79-83.	2.0	3
213	Capillary microextraction (CME) and its application to trace elements analysis and their speciation. Analytica Chimica Acta, 2009, 650, 23-32.	2.6	30
214	Low pressure chemical vapor deposition of niobium coating on silicon carbide. Applied Surface Science, 2009, 255, 8611-8615.	3.1	10
215	Photocatalytic activity of TiO2 prepared by microwave/sol–gel method. Reaction Kinetics and Catalysis Letters, 2009, 98, 241-247.	0.6	2
216	Finite element simulation of the effects of process parameters on deposition uniformity of chemical-vapor-deposited silicon carbide. Computational Materials Science, 2009, 46, 1002-1006.	1.4	5
217	In situ nanocrystalline Fe–Si coating by mechanical alloying. Journal of Alloys and Compounds, 2009, 482, 118-122.	2.8	41
218	RAMAN, DIELECTRIC AND OPTICAL INVESTIGATIONS OF DLC THIN FILMS. Surface Review and Letters, 2009, 16, 731-736.	0.5	7

#	Article	IF	CITATIONS
219	Atmospheric-pressure plasma CVD of TiO ₂ photocatalytic films using surface dielectric barrier discharge. Journal Physics D: Applied Physics, 2009, 42, 032001.	1.3	41
220	Coexistence of several structural phases in MOCVD TiO2layers: evolution from nanometre to micrometre thick films. Journal Physics D: Applied Physics, 2009, 42, 175302.	1.3	11
221	Efficient optimization of high vacuum chemical vapor deposition of niobium oxide on full wafer scale. IOP Conference Series: Materials Science and Engineering, 2010, 8, 012026.	0.3	2
222	Orientation control of .ALPHAAl2O3 films prepared by laser chemical vapor deposition using a diode laser. Journal of the Ceramic Society of Japan, 2010, 118, 366-369.	0.5	14
223	Fabrication of TiN and TiCN Coatings by Microwave Irradiation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2010, 57, 753-757.	0.1	1
224	Thermodynamic analysis of silicon deposition on ASTM P92 and AISI 4340 steels. Surface and Coatings Technology, 2010, 205, 325-331.	2.2	2
225	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. Journal of Power Sources, 2010, 195, 393-401.	4.0	28
226	Flame spray deposition of La0.6Sr0.4CoO3â^î^î thin films: Microstructural characterization, electrochemical performance and degradation. Journal of Power Sources, 2010, 195, 8152-8161.	4.0	31
227	Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications. Journal of Thermal Spray Technology, 2010, 19, 510-516.	1.6	46
228	Physicochemical and structural characteristics of TiC and VC thin films deposited by DC reactive magnetron sputtering. Journal of Materials Science, 2010, 45, 4994-5001.	1.7	9
229	Biocorrosion studies of TiO2 nanoparticle-coated Ti–6Al–4V implant in simulated biofluids. Journal of Nanoparticle Research, 2010, 12, 1609-1623.	0.8	34
230	Substrateâ€Dependant Ability of Titanium(IV) Oxide Photocatalytic Thin Films Prepared by Thermal CVD to Generate Hydrogen Gas from a Sacrificial Reaction. Chemical Vapor Deposition, 2010, 16, 301-304.	1.4	9
232	Sprayâ€On Organic/Inorganic Films: A General Method for the Formation of Functional Nano―to Microscale Coatings. Angewandte Chemie - International Edition, 2010, 49, 10110-10113.	7.2	73
233	Low-temperature deposition of \hat{l} ±-Al2O3 films by laser chemical vapor deposition using a diode laser. Applied Surface Science, 2010, 256, 3906-3911.	3.1	33
234	Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. Journal of Power Sources, 2010, 195, 7160-7167.	4.0	86
235	Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: Effect on the ternary carbide texture. Thin Solid Films, 2010, 518, 5071-5077.	0.8	21
236	Structural and mechanical characterization of diamond like carbon films grown by microwave plasma CVD. Surface and Coatings Technology, 2010, 204, 2817-2821.	2.2	15
237	Synthesis of nanostructured SiC coatings on carbon fibres by in situ reaction sintering with milled powders. Surface and Coatings Technology, 2010, 205, 294-298.	2.2	8

#	ARTICLE	IF	CITATIONS
238	Preparation of Ca–Si–O films by chemical vapor deposition. Surface and Coatings Technology, 2010, 205, 2618-2623.	2.2	3
239	Low pressure chemical vapor deposition of niobium coatings on graphite. Vacuum, 2010, 85, 332-337.	1.6	11
240	Texture structure and ablation behavior of TaC coating on carbon/carbon composites. Applied Surface Science, 2010, 257, 656-661.	3.1	49
241	Fabrication of nature-inspired bulk laminar composites by a powder processing. Composites Science and Technology, 2010, 70, 161-166.	3.8	26
242	Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2. Inorganic Materials, 2010, 46, 1090-1095.	0.2	12
244	Analysis of decomposition process of BrCN with microwave discharge flow of Ar. Journal Physics D: Applied Physics, 2010, 43, 045201.	1.3	15
245	Elastic behaviour of a nanocomposite thin film undergoing significant strains. Nanotechnology, 2010, 21, 105708.	1.3	3
246	Mechanochemical plating and surface modification using ultrasonic vibration., 2010,, 251-274.		0
247	Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 2010, 10, 5469-5502.	2.1	1,184
248	Antimony Tin Oxide (ATO) Nanoparticle Formation from H ₂ O ₂ Solutions: a New Generic Film Coating from Basic Solutions. Inorganic Chemistry, 2010, 49, 9110-9112.	1.9	40
249	Chemical Vapour Deposition. Engineering Materials and Processes, 2010, , .	0.2	35
250	Photoelectrochemical and Photoresponsive Properties of Bi ₂ S ₃ Nanotube and Nanoparticle Thin Films. Chemistry of Materials, 2010, 22, 5084-5092.	3.2	205
251	High-Performance Solution-Processed Amorphous Zincâ^'Indiumâ^'Tin Oxide Thin-Film Transistors. Journal of the American Chemical Society, 2010, 132, 10352-10364.	6.6	235
252	Introduction to Chemical Vapour Deposition. Engineering Materials and Processes, 2010, , 1-28.	0.2	6
253	A Family of Heteroleptic Titanium Guanidinates: Synthesis, Thermolysis, and Surface Reactivity. Inorganic Chemistry, 2010, 49, 1976-1982.	1.9	24
254	High-Pressure Behavior and Polymorphism of Titanium Oxynitride Phase Ti _{2.85} O ₄ N. Journal of Physical Chemistry C, 2010, 114, 8546-8551.	1.5	8
255	Magnesium and Titanium Complexes of Polyanionic Phosphazenate Ligands. Organometallics, 2010, 29, 2515-2520.	1.1	28
256	Dissociation and Multiply Charged Silicon Ejection in High Abundance from Hexamethyldisilane. Journal of Physical Chemistry A, 2010, 114, 11890-11895.	1.1	14

#	Article	IF	CITATIONS
257	Microstructural properties of multi-nano-layered YSZ thin films. Journal of Alloys and Compounds, 2010, 495, 629-633.	2.8	17
258	Effect of Temperature on the Synthesis of SiC Coating on Carbon Fibers by the Reaction of SiO with the Deposited Pyrolytic Carbon Layer. Journal of Materials Science and Technology, 2010, 26, 211-216.	5.6	17
259	Characterization of PECVD grown porous SiO2thin films with potential application in an uncooled infrared detector. Semiconductor Science and Technology, 2010, 25, 045017.	1.0	13
260	Optical properties of metal nanoparticles. Proceedings of SPIE, 2010, , .	0.8	11
261	Physical Fundamentals of Chemical Vapour Deposition. Engineering Materials and Processes, 2010, , 29-71.	0.2	0
262	Numerical Simulation of Ethanolâ^'Waterâ^'NaCl Droplet Evaporation. Industrial & Engineering Chemistry Research, 2010, 49, 5631-5643.	1.8	20
263	Syntheses, X-ray structures and CVD of titanium(iv) arsine complexes. Dalton Transactions, 2010, 39, 5325.	1.6	12
265	A novel precursor system and its application to produce tin doped indium oxide. Dalton Transactions, 2011, 40, 6028.	1.6	22
266	Au nanoparticle-functionalised WO ₃ nanoneedles and their application in high sensitivity gas sensor devices. Chemical Communications, 2011, 47, 565-567.	2.2	204
267	CVD of copper and copper oxide thin films via the in situ reduction of copper(ii) nitrateâ€"a route to conformal superhydrophobic coatings. Journal of Materials Chemistry, 2011, 21, 14712.	6.7	48
268	ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols. Catalysis Science and Technology, 2011, 1, 768.	2.1	81
270	Controlled Kinetic Monte Carlo Simulation of Nanomanufacturing Processes. , 2011, , .		2
272	Synthesis, Processing and Characterization of Ceramic Nanobiomaterials for Biomedical Applications. , 2011, , 1-41.		1
274	Laser chemical vapor deposition of TiN film on Ti(C,N)-based cermet substrate using Ti(OiPr)2(dpm)2-NH3 system. Journal of the Ceramic Society of Japan, 2011, 119, 310-313.	O . 5	5
275	Fabrication of Si _{3N_{4-based seal coating on porous Si_{3N_{4 ceramics. International Journal of Materials and Product Technology, 2011, 42, 12.}}}}	0.1	6
277	Deposition of .ALPHAAl2O3 films on Ti(C, N)-based cermet substrate by laser chemical vapor deposition using a diode laser. Journal of the Ceramic Society of Japan, 2011, 119, 570-572.	0.5	3
278	Effect of Manganese Oxide on the Sintered Properties of 8YSZ. Physics Procedia, 2011, 22, 14-19.	1.2	27
279	Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering. Materials Chemistry and Physics, 2011, 130, 147-153.	2.0	68

#	Article	IF	CITATIONS
280	Experimental and numerical investigation of the position-dependent growth of carbon nanotube–alumina microparticle hybrid structures in a horizontal CVD reactor. Carbon, 2011, 49, 5359-5372.	5.4	28
281	Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon. Hyperfine Interactions, 2011, 203, 67-74.	0.2	1
282	SiC fibers with controllable thickness of carbon layer prepared directly by preceramic polymer pyrolysis routes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 706-710.	1.7	16
283	Fabrication at wafer level of miniaturized gas sensors based on SnO2 nanorods deposited by PECVD and gas sensing characteristics. Sensors and Actuators B: Chemical, 2011, 154, 283-287.	4.0	43
284	Microstructures and Ablation Resistance of ZrC Coating for SiC-Coated Carbon/Carbon Composites Prepared by Supersonic Plasma Spraying. Journal of Thermal Spray Technology, 2011, 20, 1286-1291.	1.6	87
285	ZnS Nanodot Film as Defect Passivation Layer for Cu(In,Ga)(S,Se) < sub > 2 < /sub > Thinâ€Film Solar Cells Deposited by Sprayâ€ILGAR (Ionâ€Layer Gas Reaction). Advanced Energy Materials, 2011, 1, 561-564.	10.2	27
286	Organosilicon Polymers Deposition by PECVD and RPECVD on Micropatterned Substrates. Chemical Vapor Deposition, 2011, 17, 321-326.	1.4	10
287	Effects of MOCVD Thin Cobalt Films' Structure and Surface Characteristics on their Magnetic Behavior. Chemical Vapor Deposition, 2011, 17, 211-220.	1.4	21
288	Hexagonal Boron Nitride from a Borazine Precursor for Coating of SiBNC Fibers using a Continuous Atmospheric Pressure CVD Process. Chemical Vapor Deposition, 2011, 17, 221-227.	1.4	9
289	Aerosolâ€Assisted CVD of SnO ₂ Thin Films for Gasâ€Sensor Applications. Chemical Vapor Deposition, 2011, 17, 247-252.	1.4	25
290	Supercritical Fluid Chemical Deposition as an Alternative Process to CVD for the Surface Modification of Materials. Chemical Vapor Deposition, 2011, 17, 342-352.	1.4	32
291	Textured Fluorineâ€Doped Tin Dioxide Films formed by Chemical Vapour Deposition. Chemistry - A European Journal, 2011, 17, 11613-11621.	1.7	56
292	Influence of TaCl5 partial pressure on texture structure of TaC coating deposited by chemical vapor deposition. Applied Surface Science, 2011, 257, 4044-4050.	3.1	23
293	(006)-oriented α-Al2O3 films prepared in CO2–H2 atmosphere by laser chemical vapor deposition using a diode laser. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 984-989.	1.7	4
294	Dome-like and dense SiC-SiO2 nanocomposite films synthesized by laser chemical vapor deposition using CO2 laser. Surface and Coatings Technology, 2011, 205, 2818-2822.	2.2	15
295	Aerosol assisted deposition of melamine-formaldehyde resin: Hydrophobic thin films from a hydrophilic material. Thin Solid Films, 2011, 519, 2181-2186.	0.8	18
296	Effect of Cr interlayer on the adhesion and corrosion enhancement of nanocomposite TiN-based coatings deposited on stainless steel 410. Thin Solid Films, 2011, 519, 3128-3134.	0.8	19
297	Metallic coatings for high-temperature oxidation resistance. , 2011, , 53-74.		4

#	Article	IF	CITATIONS
298	MOCVD Cobalt Oxide Deposition from Inclusion Complexes: Decomposition Mechanism, Structure, and Properties. Journal of the Electrochemical Society, 2011, 158, P5.	1.3	7
299	Transmission electron microscopy of transparent conductive oxide films made by atmospheric pressure chemical vapor deposition. Applied Physics Letters, 2011, 98, 051907.	1.5	6
300	Thermo-Chemical Process of Aluminizing of the Nickel-Base Superalloy. Materials Science Forum, 2011, 674, 81-88.	0.3	1
301	Reductive Eliminations from Amido Metal Complexes: Implications for Metal Film Deposition. Journal of the Electrochemical Society, 2011, 158, D524.	1.3	28
302	Biomedical Thin Films: Mechanical Properties. , 2011, , 63-73.		4
303	Nanoparticle Deposition from Liquid Flame Spray onto Moving Roll-to-Roll Paperboard Material. Aerosol Science and Technology, 2011, 45, 827-837.	1.5	49
304	The Intersection of Design, Manufacturing, and Surface Engineering., 2012,, 443-480.		1
305	Microcolumnar and Granular Structures of TiO ₂ Films Prepared by Laser CVD Using Nd:YAG Laser. Key Engineering Materials, 2012, 508, 287-290.	0.4	4
306	Multiscale Computational Analysis of the Interaction between the Wafer Micro-Topography and the Film Growth Regimes in Chemical Vapor Deposition Processes. ECS Journal of Solid State Science and Technology, 2012, 1, P197-P203.	0.9	4
307	Amorphous Carbon Deposited by a Novel Aerosol-Assisted Chemical Vapor Deposition for Photovoltaic Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 06FD05.	0.8	6
309	Feedback Control of MEMS to Atoms. , 2012, , .		1
310	Effect of Si and C concentration on the microstructure, and the mechanical, tribological and electrochemical properties of nanocomposite TiC/a-SiC:H/a-C:H coatings prepared by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2012, 111, 043512.	1.1	7
311	Model Surfaces Produced by Atomic Layer Deposition. Chemistry Letters, 2012, 41, 1247-1249.	0.7	12
312	Effects of substrate bias voltage on the microstructure, mechanical properties and tribological behavior of reactive sputtered niobium carbide films. Surface and Coatings Technology, 2012, 212, 185-191.	2.2	47
313	In Situ Optical Sensing and State Estimation for Control of Surface Processing., 2012,, 45-67.		1
314	Uniformity, Structure, and Photocatalytic Activity of TiO ₂ Films Deposited by Atmosphericâ€Pressure Linear Cold Plasma. Chemical Vapor Deposition, 2012, 18, 309-314.	1.4	13
315	A Study on Sc ₂ O ₃ tabilized Zirconia Obtained by MOCVD as a Potential Electrolyte for Solid Oxide Fuel Cells. Chemical Vapor Deposition, 2012, 18, 289-294.	1.4	4
316	Sol–gel preparation of pure and doped TiO2 films for the photocatalytic oxidation of ethanol in air. Journal of Sol-Gel Science and Technology, 2012, 63, 526-536.	1.1	11

#	Article	IF	CITATIONS
317	lon contributions to gas–surface interactions in inductively-coupled fluorocarbon plasmas. International Journal of Mass Spectrometry, 2012, 330-332, 46-57.	0.7	6
318	Film based on Y2O3:Eu3+ (5mol% of Eu3+) for flat panel display. Thin Solid Films, 2012, 524, 299-303.	0.8	20
319	Investigation of morphological and electrical characteristics of tin doped indium oxide layers produced by a quasi single source precursor system. Thin Solid Films, 2012, 524, 67-74.	0.8	2
320	Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films. Journal of Alloys and Compounds, 2012, 536, S412-S417.	2.8	16
321	Reactive-Layer-Assisted Deposition Mechanism and Characterization of Titanium Oxide Films. Langmuir, 2012, 28, 17118-17123.	1.6	5
322	Polymer nanocomposite coatings. , 2012, , 605-638.		19
323	Preparation and Anticoking Performance of MOCVD Alumina Coatings for Thermal Cracking of Hydrocarbon Fuels under Supercritical Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 1256-1263.	1.8	50
324	Chemical vapor deposition of rhenium on a gourd shaped graphite substrate. Surface and Coatings Technology, 2012, 206, 4940-4946.	2.2	25
325	Facile deposition of gold nanoparticle thin films on semi-permeable cellulose substrate. Materials Letters, 2012, 88, 132-135.	1.3	11
326	Protective diffusion coatings on magnesium alloys: A review of recent developments. Journal of Alloys and Compounds, 2012, 520, 11-21.	2.8	152
327	Epitaxial growth of \hat{I}^3 -Ga2O3 films by mist chemical vapor deposition. Journal of Crystal Growth, 2012, 359, 60-63.	0.7	98
328	Deposition of Hexagonal Boron Nitride from <i>N</i> à€Trimethylborazine (TMB) for Continuous CVD Coating of SiBNC Fibers. Chemical Vapor Deposition, 2012, 18, 249-255.	1.4	3
330	Aerosol Assisted Chemical Vapor Deposition of Transparent Conductive Zinc Oxide Films. Chemistry of Materials, 2012, 24, 4704-4710.	3.2	78
332	Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2012, 43, 2095-2106.	3.8	53
333	Study on the influence of reaction temperature on the preparation of C-Core SiC filaments. Procedia Engineering, 2012, 27, 1347-1353.	1.2	1
334	Plasmon Resonance Energy Transfer from Metallic Nanoparticles to Biomolecules. , 2012, , 2126-2126.		0
335	Multi-component oxide nanosystems by Chemical Vapor Deposition and related routes: challenges and perspectives. CrystEngComm, 2012, 14, 6347.	1.3	41
336	Carbothermic reduction of alumina with carbon in vacuum. Journal of Central South University, 2012, 19, 1813-1816.	1.2	7

#	ARTICLE	IF	CITATIONS
337	Application of nanotechnology to control bacterial adhesion and patterning on material surfaces. Journal of Experimental Nanoscience, 2012, 7, 634-651.	1.3	8
338	Influence of bowl shaped substrate holder on growth of polymeric DLC film in a microwave plasma CVD reactor. Bulletin of Materials Science, 2012, 35, 1117-1121.	0.8	2
339	Investigation of thin titanium carbonitride coatings deposited onto stainless steel. Thin Solid Films, 2012, 522, 193-198.	0.8	19
340	Tribological Properties of SiNx Films on PH Stainless Steel with and Without Nitriding as a Pre-treatment., 2012, 1, 313-320.		6
341	Piezoelectric Effect at Nanoscale. , 2012, , 2085-2099.		2
342	Propylene Glycol Methyl Ether Acetate (PGMEA). , 2012, , 2180-2180.		0
343	Polymer Coatings. , 2012, , 2167-2174.		1
344	Hexanuclear copper–nickel and copper–cobalt complexes for thin film deposition of ceramic oxide composites. New Journal of Chemistry, 2012, 36, 911.	1.4	14
345	Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2012, 2, 2067.	1.7	78
346	The origin of persistent shear stress in supercooled liquids. Journal of Chemical Physics, 2012, 137, 014506.	1.2	30
347	Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique. Journal of Chemical Sciences, 2012, 124, 557-563.	0.7	21
348	Nanofabrication Techniques Applied to the Development of Novel Optical Fiber Sensors Based on Nanostructured Coatings. IEEE Sensors Journal, 2012, 12, 2699-2710.	2.4	18
349	Microstructure and mechanical properties of 8YSZ ceramics by liquid-phase sintering with CuO-TiO2 addition. Journal of Central South University, 2012, 19, 1196-1201.	1.2	15
350	Cold atmospheric pressure gas plasma enhances the wear performance of ultra-high molecular weight polyethylene. Acta Biomaterialia, 2012, 8, 1357-1365.	4.1	30
351	Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. Journal of Power Sources, 2012, 202, 47-55.	4.0	31
352	Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement: Journal of the International Measurement Confederation, 2012, 45, 1266-1276.	2.5	117
353	Effect of stand-off distance for cold gas spraying of fine ceramic particles (< $5\hat{l}^{1}/4$ m) under low vacuum and room temperature using nano-particle deposition system (NPDS). Surface and Coatings Technology, 2012, 206, 2125-2132.	2.2	56
354	Rh-nanoparticle-dispersed ZrO2 films prepared by laser chemical vapor deposition. Surface and Coatings Technology, 2012, 206, 3006-3010.	2.2	7

#	Article	IF	CITATIONS
355	Thin functional films by combustion chemical vapour deposition (C-CVD). Thin Solid Films, 2012, 520, 4106-4109.	0.8	20
356	Synthesis of (\hat{l} ±- and \hat{l}^2 -)Si3N4/Si2N2O into silicon particulate porous preforms by hybrid system CVI and direct nitridation. Journal of the European Ceramic Society, 2012, 32, 175-184.	2.8	11
357	Novel antibacterial silver-silica surface coatings prepared by chemical vapour deposition for infection control. Journal of Applied Microbiology, 2013, 115, 1107-1116.	1.4	31
358	Microstructure and thermal properties of copper matrix composites reinforced with titanium-coated graphite fibers. Rare Metals, 2013, 32, 75-80.	3.6	16
359	Unique flexible silver dendrites thin films fabricated on cellulose dialysis cassettes. Journal of Materials Science, 2013, 48, 6418-6425.	1.7	5
360	Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases. Surface and Coatings Technology, 2013, 216, 8-22.	2.2	17
361	A double layer nanostructure SiC coating for anti-oxidation protection of carbon/carbon composites prepared by chemical vapor reaction and chemical vapor deposition. Ceramics International, 2013, 39, 5053-5062.	2.3	71
362	Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: Effect of surface nano-features on CNT growth and structure. Carbon, 2013, 63, 330-347.	5.4	66
363	Development of CVD Ti-containing films. Progress in Materials Science, 2013, 58, 1490-1533.	16.0	38
364	Metals – Gas-Phase Deposition and Applications. , 2013, , 211-269.		6
365	One-Dimensional Inorganic Nanomaterials for Energy Storage and Production., 2013,, 317-341.		1
366	Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method. Carbon, 2013, 62, 193-203.	5.4	51
367	On the change of preferential growth orientation in chemical vapor deposition of titanium carbide by aromatic hydrocarbon precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	3
368	Synthesis by aerosol assisted chemical vapor deposition and microstructural characterization of PbTiO3 thin films. Thin Solid Films, 2013, 531, 179-184.	0.8	7
369	Enhanced transparent-conducting fluorine-doped tin oxide films formed by Aerosol-Assisted Chemical Vapour Deposition. Journal of Materials Chemistry C, 2013, 1, 984-996.	2.7	100
370	Self-organization and nanostructure formation in chemical vapor deposition. Physical Review E, 2013, 88, 042405.	0.8	4
371	On the Influence of DC Electric Fields on the Aerosol Assisted Chemical Vapor Deposition Growth of Photoactive Titanium Dioxide Thin Films. Langmuir, 2013, 29, 13542-13550.	1.6	12
372	The deposition of crystallized TiO2 coatings by closed field unbalanced magnetron sputter ion plating. Surface and Coatings Technology, 2013, 236, 290-295.	2.2	6

#	Article	IF	Citations
373	Micro Metal Forming. Lecture Notes in Production Engineering, 2013, , .	0.3	26
374	Carbon Overcoat Oxidation in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 3721-3724.	1.2	44
375	Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers. Thin Solid Films, 2013, 536, 147-151.	0.8	10
376	CVD and precursor chemistry of transition metal nitrides. Coordination Chemistry Reviews, 2013, 257, 2073-2119.	9.5	102
377	Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens. AMB Express, 2013, 3, 53.	1.4	27
378	Electric field assisted aerosol assisted chemical vapour deposition of nanostructured metal oxide thin films. Thin Solid Films, 2013, 544, 452-456.	0.8	16
379	In vivo synthesis of calcium oxalate whiskers on CoCrMo alloy surfaces via biomineralization. Materials Science and Engineering C, 2013, 33, 3839-3844.	3.8	1
381	Microstructural and mechanical characterization of thermal sprayed nickel–alumina composite coatings. Surface and Coatings Technology, 2013, 216, 78-92.	2.2	85
382	Types and processing of electro-conductive and semiconducting materials for smart textiles. , 2013, , 29-69.		6
383	Nitrogenated amorphous carbon film by thermal chemical vapor deposition., 2013,,.		0
384	Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: effect of chelating agents. New Journal of Chemistry, 2013, 37, 2821.	1.4	46
385	Multiple material additive manufacturing – Part 1: a review. Virtual and Physical Prototyping, 2013, 8, 19-50.	5.3	411
386	Metal oxide semiconductor gas sensors in environmental monitoring., 2013,, 433-466.		38
387	Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation. Physical Chemistry Chemical Physics, 2013, 15, 16788.	1.3	31
388	Mechanisms for hyperthermal polyatomic hydrocarbon modification of PMMA surfaces from molecular dynamics simulations. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 061403.	0.9	0
389	Localized heating to tungsten oxide nanostructures deposition on gas microsensor arrays via aerosol assisted CVD., 2013,,.		3
390	Mechanisms of surface reactions in thin solid film chemical deposition processes. Coordination Chemistry Reviews, 2013, 257, 3177-3191.	9.5	88
391	Influence of a sol–gel alumina coating on oxidation of X20CrMoV12-1 in air up to 650°C. Thin Solid Films, 2013, 539, 29-34.	0.8	7

#	Article	IF	CITATIONS
392	Experimental and computational investigation of chemical vapor deposition of Cu from Cu amidinate. Surface and Coatings Technology, 2013, 230, 273-278.	2.2	13
393	Mechanical, photocatalytic and microbiological properties of titanium dioxide thin films synthesized with the sol–gel and low temperature plasma deposition techniques. Materials Research Bulletin, 2013, 48, 4022-4031.	2.7	25
394	Fabrication and characterization of Ag-implantation modificated TiO2 films followed with thermal annealing. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 373-376.	0.6	5
395	Aerosol assisted chemical vapour deposition of gas-sensitive nanomaterials. Thin Solid Films, 2013, 548, 703-709.	0.8	26
396	The deposition of copper-based thin films via atmospheric pressure plasma-enhanced CVD. Surface and Coatings Technology, 2013, 230, 260-265.	2.2	9
397	Effects of laser power on the growth of polycrystalline AlN films by laser chemical vapor deposition method. Surface and Coatings Technology, 2013, 232, 1-5.	2.2	8
398	Microstructure characterization and deposition mechanism studies of ZrO2 thin films deposited by LI-MOCVD. Surface and Coatings Technology, 2013, 218, 7-16.	2.2	5
399	Covalent Layer-by-Layer Assembly Using Reactive Polymers. , 2013, , 371-406.		10
400	Halide doping effects on transparent conducting oxides formed by aerosol assisted chemical vapour deposition. Thin Solid Films, 2013, 532, 26-30.	0.8	17
401	Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 2013, 58, 636-704.	16.0	467
402	Influence of precursor chemistry on CVD grown TiO2 coatings: differential cell growth and biocompatibility. RSC Advances, 2013, 3, 11234.	1.7	7
403	Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a) Tj ETQq $1\ 1\ 0.784$	13 <u>14</u> rgBT	/Qverlock 1
404	Chapter Green Nanotechnology: Development of Nanomaterials for Environmental and Energy Applications. ACS Symposium Series, 2013, , 201-229.	0.5	24
405	Microstructure and corrosion behavior of AISI 316L duplex treated by means of ion nitriding and plasma based ion implantation and deposition. Surface and Coatings Technology, 2013, 223, 41-46.	2.2	27
406	Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6794.	5.2	35
407	Novel sol–gel preparation of V-TiO2 films for the photocatalytic oxidation of ethanol in air. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 263, 1-7.	2.0	18
408	Electrochromic and Colorimetric Properties of Nickel(II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5675-5682.	4.0	109
409	Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Transactions, 2013, 42, 9406.	1.6	224

#	Article	IF	CITATIONS
410	Exploration of Plasma-Enhanced Chemical Vapor Deposition as a Method for Thin-Film Fabrication with Biological Applications. ACS Applied Materials & Eamp; Interfaces, 2013, 5, 3983-3994.	4.0	110
411	The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 2013, 61, 47-56.	5.4	224
412	Inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials., 2013,, 42-148.		13
413	Dry Production Methods. Interface Science and Technology, 2013, 19, 147-184.	1.6	7
414	Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 8299.	5.2	107
415	A simple approach for surface hardening of polystyrene. Applied Surface Science, 2013, 264, 589-592.	3.1	5
416	On surface temperature measurements with thermographic phosphors: A review. Progress in Energy and Combustion Science, 2013, 39, 37-60.	15.8	295
417	Tungsten oxide nanowire sensors grown by cold wall reactor aerosol assisted chemical vapour deposition. , 2013, , .		0
418	Correlation of SiO \times layer thickness and properties of BOPP/SiO \times composite films with spin coating process parameters. Chinese Journal of Polymer Science (English Edition), 2013, 31, 333-345.	2.0	2
419	Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer. Cellulose, 2013, 20, 391-408.	2.4	31
420	Lengthâ€Dependent Charge Generation from Vertical Arrays of Highâ€Aspectâ€Ratio ZnO Nanowires. Chemistry - A European Journal, 2013, 19, 14665-14674.	1.7	70
421	Vapor-Deposition Techniques., 2013,, 383-398.		25
422	Surface Engineering of the Hydrogenated DLC (a-C:H) Coatings with Optimized Mechanical Performance. Advanced Materials Research, 0, 816-817, 33-37.	0.3	0
423	Synthesis and study of carbon/TiO ₂ and carbon/TiO ₂ core–shell micro-/nanospheres with increased density. Journal of Materials Research, 2013, 28, 440-448.	1.2	5
424	Recent developments in deposition techniques for optical thin films and coatings., 2013,, 3-25.		12
425	Tuning Effect of N ₂ on Atmospheric-Pressure Cold Plasma CVD of TiO ₂ Photocatalytic Films. Plasma Science and Technology, 2013, 15, 64-69.	0.7	10
426	Buckle-driven delamination of thermal barrier coatings on a polynomial curved substrate. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 055026.	0.8	3
427	Chemical Vapor Transport Reactions–Methods, Materials, Modeling. , 0, , .		33

#	ARTICLE	IF	CITATIONS
428	Gadolinia Doped Ceria Thin Films Prepared by Aerosol Assisted Chemical Vapor Deposition and Applications in Intermediateâ€Temperature Solid Oxide Fuel Cells. Fuel Cells, 2013, 13, 658-665.	1.5	10
429	Surfaceâ€immobilized Gold Nanoparticles by Organometallic <scp>CVD</scp> on Amineâ€terminated Glass Surfaces. Chemical Vapor Deposition, 2013, 19, 338-346.	1.4	7
430	Preparation of SiC whisker and application in reinforce of polystyrene resin composite materials. Journal of Applied Polymer Science, 2013, 130, 579-586.	1.3	7
431	Precursor Decomposition, Microstructure, and Porosity of Yttria Stabilized Zirconia Thin Films Prepared by Aerosolâ€Assisted Chemical Vapor Deposition. Advanced Energy Materials, 2013, 3, 375-385.	10.2	25
433	Competing reactions during metalorganic deposition: Ligand-exchange versus direct reaction with the substrate surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 021401.	0.9	23
435	Optical and mechanical properties of transparent SrTiO ₃ thin films deposited by ECR ion beam sputter deposition. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 311-319.	0.8	17
436	Atomic Layer Deposition on Self-Assembled-Monolayers. , 0, , .		10
437	A Review on the Fabrication of Polymer-Based Thermoelectric Materials and Fabrication Methods. Scientific World Journal, The, 2013, 2013, 1-17.	0.8	39
438	Plasma Electrolytic Oxidation Coatings on Lightweight Metals. , 0, , .		19
439	Synthesis and Thermodynamics of Porous Metal Oxide Nanomaterials. Current Inorganic Chemistry, 2014, 4, 40-53.	0.2	7
440	The Effect of Tween® Surfactants in Sol-Gel Processing for the Production of TiO2 Thin Films. Coatings, 2014, 4, 796-809.	1.2	13
441	Fabrication of Micro/Nanostructured Coatings by CVD Techniques. , 2014, , 85-117.		2
442	Aluminum-silicon coatings on austenitic stainless steel (AISI 304 and 317) deposited by chemical vapor deposition in a fluidized bed. Ingenieria E Investigacion, 2014, 34, 5-10.	0.2	16
443	Electric Field–Assisted Chemical Vapor Deposition for Nanostructured Thin Films. , 2014, , 171-190.		3
444	Review on Liquid Flame Spray in paper converting: Multifunctional superhydrophobic nanoparticle coatings. Nordic Pulp and Paper Research Journal, 2014, 29, 747-759.	0.3	11
445	Effect of particle conductivity on Fe-Si composite electrodeposition. Chemical Research in Chinese Universities, 2014, 30, 811-816.	1.3	4
447	Progress in Ultrasonic Spray Pyrolysis for Condensed Matter Sciences Developed From Ultrasonic Nebulization Theories Since Michael Faraday. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 46-80.	6.8	34
448	Nanocrystalline α-Fe Layer Examined by Mössbauer Spectrometry. Acta Physica Polonica A, 2014, 126, 94-95.	0.2	1

#	Article	IF	CITATIONS
449	Health and Safety Issues in Emerging Surface Engineering Techniques. , 2014, , 35-47.		6
450	A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures. , 2014, , 103-125.		23
451	Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	11
452	Technologies Suitable for Gas Sensor Fabrication. Integrated Analytical Systems, 2014, , 393-433.	0.4	1
453	Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions. Review of Scientific Instruments, 2014, 85, 073904.	0.6	15
454	Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-21.	1.4	56
455	PVD and CVD Hard Coatings., 2014,, 449-467.		25
456	Mechanics of Growing Solids: New Track in Mechanical Engineering. , 2014, , .		11
457	Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template. Applied Physics Letters, 2014, 104, .	1.5	4
458	Effects of surface coating on reducing friction and wear of orthopaedic implants. Science and Technology of Advanced Materials, 2014, 15, 014402.	2.8	211
459	Advanced Fabrication Methods and Techniques. , 2014, , 87-170.		2
460	CO ₂ â€Laser Flash Evaporation as Novel CVD Precursor Delivery System for Functional Thin Film Growth. Chemical Vapor Deposition, 2014, 20, 152-160.	1.4	9
461	Wear―and Corrosionâ€Resistant Borideâ€Based Coatings Obtained through Thermal Diffusion CVD Processing. Advanced Engineering Materials, 2014, 16, 713-728.	1.6	30
462	Nanostructure Synthesis at the Solid–Water Interface: Spontaneous Assembly and Chemical Transformations of Tellurium Nanorods. ChemPhysChem, 2014, 15, 3026-3031.	1.0	5
463	Airâ€Stable and Volatile Bis(pyridylalkenolato)germanium(II), â€tin(II), and â€lead(II) Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 506-510.	1.0	16
464	Tribological properties of boride based thermal diffusion coatings. Advances in Applied Ceramics, 2014, 113, 427-437.	0.6	17
465	Non-Axisymmetric Flow Fields in Axisymmetric CVD Reactor Setups Revisited: Influence on the Film's Non-Uniformity. ECS Solid State Letters, 2014, 3, P37-P40.	1.4	8
466	Si/SiC-Based Layer Deposited on Boron Carbide Particles via CVD. Key Engineering Materials, 2014, 602-603, 270-273.	0.4	1

#	Article	IF	CITATIONS
467	A Magnetic Properties and Corrosion Resistance of Fe-Si Alloy Coating Prepared on Mild Steel. Medziagotyra, 2014, 20, .	0.1	1
468	9. Carbon-Carbon Composites., 2014,, 255-272.		0
469	Effect of internal and external constraints on sintering behavior of thin film electrolytes for solid oxide fuel cells (SOFCs). Ceramics International, 2014, 40, 13131-13138.	2.3	8
470	CO2 laser coating of nanodiamond on aluminum using an annular beam. Applied Surface Science, 2014, 288, 1-8.	3.1	8
471	Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Applied Catalysis B: Environmental, 2014, 144, 333-342.	10.8	268
472	Production of Nanocrystalline Ni-20Cr Coatings for High-Temperature Applications. Journal of Thermal Spray Technology, 2014, 23, 692-707.	1.6	23
473	Self-assembling and self-limiting monolayer deposition. European Physical Journal D, 2014, 68, 1.	0.6	16
474	Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composites. Ceramics International, 2014, 40, 1539-1544.	2.3	30
475	Upscaling plasma deposition: The influence of technological parameters. Surface and Coatings Technology, 2014, 242, 237-245.	2.2	16
476	Experimentation and simulation of tin oxide deposition on glass based on the SnCl4 hydrolysis in an in-line atmospheric pressure chemical vapor deposition reactor. Thin Solid Films, 2014, 550, 114-120.	0.8	2
477	Superhydrophobic Coatings on Celluloseâ€Based Materials: Fabrication, Properties, and Applications. Advanced Materials Interfaces, 2014, 1, 1300026.	1.9	221
478	Recent advances in vacuum sciences and applications. Journal Physics D: Applied Physics, 2014, 47, 153001.	1.3	33
479	Photo-initiated chemical vapor deposition of thin films using syngas for the functionalization of surfaces at room temperature and near-atmospheric pressure. Surface and Coatings Technology, 2014, 244, 98-108.	2.2	25
480	Solution Processing Route to Multifunctional Titania Thin Films: Highly Conductive and Photcatalytically Active Nb:TiO ₂ . Advanced Functional Materials, 2014, 24, 5075-5085.	7.8	93
481	All-Nanosheet Ultrathin Capacitors Assembled Layer-by-Layer <i>via</i> Solution-Based Processes. ACS Nano, 2014, 8, 2658-2666.	7.3	82
482	A study of diamond like carbon/chromium films deposited by microwave plasma activated chemical vapor deposition. Journal of Non-Crystalline Solids, 2014, 386, 14-18.	1.5	11
483	Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics. Biomedical Microdevices, 2014, 16, 107-114.	1.4	47
484	An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids, 2014, 385, 55-74.	1.5	555

#	Article	IF	CITATIONS
485	Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing. Journal of Solid State Chemistry, 2014, 214, 53-66.	1.4	38
486	Hybrid organosilica membranes and processes: Status and outlook. Separation and Purification Technology, 2014, 121, 2-12.	3.9	70
487	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2014, , .	0.4	48
488	Recent progress in antireflection and self-cleaning technology – From surface engineering to functional surfaces. Progress in Materials Science, 2014, 61, 94-143.	16.0	350
489	Temperature and thickness-dependent growth behaviour and opto-electronic properties of Ga-doped ZnO films prepared by aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry A, 2014, 2, 17174-17182.	5.2	28
490	Atmospheric Pressure Plasma-Initiated Chemical Vapor Deposition (AP-PiCVD) of Poly(diethylallylphosphate) Coating: A Char-Forming Protective Coating for Cellulosic Textile. ACS Applied Materials & Diterfaces, 2014, 6, 18418-18422.	4.0	32
491	Tungsten Nitrido Complexes as Precursors for Low Temperature Chemical Vapor Deposition of WN $<$ sub $<$ i> $<$ i> $<$ i> $<$ bub $<$ 6 <sub<math><6<sub<math><6<sub<math><6<sub<math><7<sub<math><8<sub<math><8<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<sub<math><9<s< td=""><td>6.6</td><td>24</td></s<></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math></sub<math>	6.6	24
492	Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal of Materials Chemistry A, 2014, 2, 15683-15703.	5.2	253
493	Formation of the tetranuclear, tetrakis-terminal-imido Mn ₄ ^{IV} (N ^t Bu) ₈ cubane cluster by four-electron reductive elimination of ^t BuNî€N ^t Bu. The role of the s-block ion in stabilization of high-oxidation state intermediates. Chemical Communications, 2014, 50, 1061-1063.	2.2	10
494	Combinatorial aerosol assisted chemical vapour deposition of a photocatalytic mixed SnO ₂ /TiO ₂ thin film. Journal of Materials Chemistry A, 2014, 2, 5108-5116.	5.2	32
495	Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing. Applied Surface Science, 2014, 316, 501-507.	3.1	26
496	Low-temperature crystal growth of aluminium-doped zinc oxide nanoparticles in a melted viscous liquid of alkylammonium nitrates for fabrication of their transparent crystal films. CrystEngComm, 2014, 16, 10539-10546.	1.3	5
497	Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous graphite fibers. Applied Thermal Engineering, 2014, 73, 739-744.	3.0	26
499	Antimicrobial activity of copper and copper(<scp>i</scp>) oxide thin films deposited via aerosol-assisted CVD. Journal of Materials Chemistry B, 2014, 2, 2855-2860.	2.9	73
500	Structurally different interfaces between electrospark-deposited titanium carbonitride and tungsten carbide films on steel. Surface and Coatings Technology, 2014, 258, 814-821.	2.2	16
501	Highly Soluble Ligand Stabilized Tin Oxide Nanocrystals: Gel Formation and Thin Film Production. Crystal Growth and Design, 2014, 14, 4819-4826.	1.4	7
502	Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD). Surface and Coatings Technology, 2014, 254, 418-422.	2.2	5
503	Interesting Evidence for Templateâ€Induced Ferroelectric Behavior in Ultraâ€Thin Titanium Dioxide Films Grown on (110) Neodymium Gallium Oxide Substrates. Advanced Functional Materials, 2014, 24, 2844-2851.	7.8	16

#	Article	IF	Citations
504	Atomic layer deposition of Cu with a carbene-stabilized Cu($<$ scp $>$ i $<$ /scp $>$) silylamide. Journal of Materials Chemistry C, 2014, 2, 9205-9214.	2.7	16
505	Physical Metallurgy of Nanocrystalline Metals. , 2014, , 2707-2805.		7
506	Studying chemical vapor deposition processes with theoretical chemistry. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	50
507	Corrosion properties of steel protected by nanometre-thick oxide coatings. Corrosion Science, 2014, 82, 208-217.	3.0	29
508	Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion. Materials Characterization, 2014, 93, 110-118.	1.9	27
509	Effects of CVD direct growth of carbon nanotubes and nanofibers on microstructure and electrochemical corrosion behavior of 316 stainless steel. Materials Characterization, 2014, 92, 64-76.	1.9	28
510	Simple Chemical Vapor Deposition Experiment. Journal of Chemical Education, 2014, 91, 1495-1497.	1.1	2
511	Solution Precursor Plasma Spray System. SpringerBriefs in Materials, 2014, , .	0.1	2
512	Effects of synthesis parameters on carbon nanotubes manufactured by template-based chemical vapor deposition. Carbon, 2014, 80, 28-39.	5.4	36
513	Nanostructured Magnesium Composite Coatings for Corrosion Protection of Low-Alloy Steels. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 18873-18883.	1.8	19
514	Mechanical and tribological properties of silicon carbide coating on Inconel alloy from liquid pre-ceramic precursor. Ceramics International, 2014, 40, 6639-6645.	2.3	13
515	A Route Towards Sustainability Through Engineered Polymeric Interfaces. Advanced Materials Interfaces, 2014, 1, 1400117.	1.9	37
516	Penetration treatment of plasma spray SUS316L stainless steel coatings by molten multi-component oxides. Surface and Coatings Technology, 2014, 252, 173-178.	2.2	2
517	Catalyst-free growth of SiC nanowires in a porous graphite substrate by low pressure chemical vapor infiltration. Ceramics International, 2014, 40, 11889-11897.	2.3	33
518	Supersonic flame ablation resistance of W/ZrC coating deposited on C/SiC composites by atmosphere plasma spraying. Ceramics International, 2014, 40, $11825-11830$.	2.3	13
519	Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition. Applied Surface Science, 2014, 309, 263-270.	3.1	2
520	Vapor phase epitaxy of monocrystal tungsten coatings. Journal of Crystal Growth, 2014, 387, 111-116.	0.7	4
521	Microstructure and oxidation resistance of SiC–MoSi2 multi-phase coating for SiC coated C/C composites. Progress in Natural Science: Materials International, 2014, 24, 247-252.	1.8	12

#	Article	IF	CITATIONS
523	Nanocomposite carbonaceous-palladium thin films for ammonia sensors. Journal of Physics: Conference Series, 2014, 564, 012004.	0.3	1
525	Effects of Annealing on the Morphology and Porosity of Porous TiO ₂ Films Fabricated by Deposition of Aerosol Nanoparticles. Journal of Chemical Engineering of Japan, 2015, 48, 292-299.	0.3	6
526	The Importance of Exposure Dose in Communicating the Ecotoxicology of Engineered Nanomaterials. ACS Symposium Series, 2015, , 123-152.	0.5	0
527	Advanced Technologies for High-Temperature Solid Oxide Fuel Cells. Electrochemical Energy Storage and Conversion, 2015, , 307-337.	0.0	0
528	Vapor deposition on doublet airfoil substrates: Coating thickness control. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	6
529	Design and Process control of Siemens polysilicon CVD reactor. , 2015, , .		1
530	5. Research on the photoelectric effect in perovskite oxide heterostructures., 2015, , 191-230.		0
531	Fabrication of PyC/SiC Compound Coating on Carbon Fiber Preform and Its Effect on the Properties of Cf/Al Composite. Rare Metal Materials and Engineering, 2015, 44, 1851-1856.	0.8	6
532	Fire side erosion–corrosion protection of boiler tubes by nanostructured coatings. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 695-709.	0.8	9
533	Film Stress of Amorphous Hydrogenated Carbon on Biaxially Oriented Polyethylene Terephthalate. Plasma Processes and Polymers, 2015, 12, 896-904.	1.6	6
534	Numerical Modeling of the Droplet Vaporization for Design and Operation of Liquidâ€pulsed CVD. Chemical Vapor Deposition, 2015, 21, 375-384.	1.4	5
535	Evolution of the microstructure in titanium dioxide films during chemical vapor deposition. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1533-1538.	0.8	7
536	Effect of Heat Treatment on the Microstructure of Plasma Spray SUS316L Stainless Steel Coating. Advanced Materials Research, 0, 1101, 419-422.	0.3	0
537	The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Beilstein Journal of Nanotechnology, 2015, 6, 1904-1926.	1.5	131
538	Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces. Journal of Nanomaterials, 2015, 2015, 1-20.	1.5	9
539	Numerical Model of Template-Based Chemical Vapor Deposition Processes to Manufacture Carbon Nanotubes for Biological Devices. , 2015, , .		1
540	Preparation of Magnetically Separable Composite Photocatalyst: Titania Coated Magnetic Activated Carbon. Applied Mechanics and Materials, 0, 719-720, 145-156.	0.2	0
541	Development of Erosion-Corrosion-Resistant Cold-Spray Nanostructured Ni-20Cr Coating for Coal-Fired Boiler Applications. Journal of Thermal Spray Technology, 2015, 24, 1441-1449.	1.6	7

#	Article	IF	CITATIONS
542	Aerosol assisted chemical vapour deposition of Ga-doped ZnO films for energy efficient glazing: effects of doping concentration on the film growth behaviour and opto-electronic properties. Journal of Materials Chemistry A, 2015, 3, 13039-13049.	5.2	36
543	Thin films of size-selected Mo clusters: growth modes and structures. Physical Chemistry Chemical Physics, 2015, 17, 20873-20881.	1.3	6
544	Solution processable broadband transparent mixed metal oxide nanofilm optical coatings via substrate diffusion doping. Nanoscale, 2015, 7, 20227-20237.	2.8	11
545	Fabrication of Ultrathin Free-Standing Ceramic Chips Based on Printing Technology. Applied Mechanics and Materials, 0, 748, 11-14.	0.2	1
546	The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition. Journal of Materials Engineering and Performance, 2015, 24, 4462-4474.	1.2	9
547	Evaluation of chemical and structural properties of germanium-carbon coatings deposited by plasma enhanced chemical vapor deposition. Journal of Alloys and Compounds, 2015, 646, 360-367.	2.8	18
548	Low Temperature Coating Deriving from Metal-Organic Precursors. , 2015, , 93-134.		2
549	Magnetised titanium dioxide (TiO ₂) for water purification: preparation, characterisation and application. Desalination and Water Treatment, 2015, 54, 979-1002.	1.0	18
550	Nanocomposite coatings: thermal spray processing, microstructure and performance. International Materials Reviews, 2015, 60, 195-244.	9.4	55
551	Investigations on the Mechanisms of Ash-Induced Agglomeration in Fluidized-Bed Combustion of Biomass. Energy &	2.5	57
552	Low Temperature Chemical Vapor Deposition Using Atomic Layer Deposition Chemistry. Chemistry of Materials, 2015, 27, 1604-1611.	3.2	29
553	Growth and electro-optical properties of Ga-doped ZnO films prepared by aerosol assisted chemical vapour deposition. Thin Solid Films, 2015, 584, 316-319.	0.8	19
554	Lanthanum chromite based perovskites for oxygen transport membrane. Materials Science and Engineering Reports, 2015, 90, 1-36.	14.8	72
555	Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chemical Engineering Journal, 2015, 278, 301-308.	6.6	7
556	Corrosion behavior of pyrocarbon coatings exposed to Al2O3–SiO2 gels containing ammonium nitrate. Corrosion Science, 2015, 94, 401-410.	3.0	14
557	An alternative non-vacuum and low cost ESAVD method for the deposition of Cu(In,Ga)Se ₂ absorber layers. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 72-75.	0.8	8
558	Thin Film Structures in Energy Applications. , 2015, , .		15
559	Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules, 2015, 16, 1873-1885.	2.6	139

#	Article	IF	CITATIONS
560	Coatings for Energy Applications. , 2015, , 51-84.		1
561	Improvement in Resistance to Steam Oxidation of Aluminide-Coated AISI 304 and AISI 316 Steel Produced by Chemical Vapor Deposition in a Fluidized Bed Reactor. Oxidation of Metals, 2015, 84, 429-445.	1.0	10
562	Synthesis and characterization of graphitic mesoporous carbon using metal–metal oxide by chemical vapor deposition method. Microporous and Mesoporous Materials, 2015, 215, 123-132.	2.2	59
563	Soft and Hard Surface Manipulation of Nanoporous Anodic Aluminum Oxide (AAO). Springer Series in Materials Science, 2015, , 155-184.	0.4	4
564	Aerosol-Assisted Chemical Vapour Deposition for Iron Selenide Thin Films from Single Source Ferrocene-Incorporated Selenourea Precursor in the Presence of Surfactants. Australian Journal of Chemistry, 2015, 68, 298.	0.5	24
565	High definition conductive carbon films from solution processing of nitrogen-containing oligomers. Carbon, 2015, 94, 1044-1051.	5.4	3
566	Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24, 16-42.	5.6	762
567	Formation pathway, structural characterization and optimum processing parameters of synthetic topaz – Al2SiO4(OH,F)2 – by CVD. Journal of Solid State Chemistry, 2015, 230, 350-356.	1.4	5
568	High-throughput synthesis of core–shell and multi-shelled materials by fluidised bed chemical vapour deposition. Case study: double-shell rutile–anatase particles. Journal of Materials Chemistry A, 2015, 3, 17241-17247.	5.2	6
569	Erosion–corrosion behavior of cold-spray nanostructured Ni–20Cr coatings in actual boiler environment. Wear, 2015, 332-333, 1035-1043.	1.5	26
570	Atomic Layer Deposition of Alumina Passivation Layers in High-Aspect-Ratio Tubular Reactors for Coke Suppression during Thermal Cracking of Hydrocarbon Fuels. Industrial & Engineering Chemistry Research, 2015, 54, 3746-3753.	1.8	21
571	Anomalous mechanical characteristics of graphene with tilt grain boundaries tuned by hydrogenation. Carbon, 2015, 90, 234-241.	5.4	30
572	Comparative temperature and surfactants effect on the morphologies of FeSe thin films fabricated by AACVD from a single source precursor with mechanism and photocatalytic activity. Materials Chemistry and Physics, 2015, 159, 152-158.	2.0	29
573	Development of nano-crystalline cold sprayed Ni–20Cr coatings for high temperature oxidation resistance. Surface and Coatings Technology, 2015, 266, 122-133.	2.2	29
574	Phase control of iron oxides grown in nano-scale structures on FTO and Si(100): Hematite, maghemite and magnetite. Vacuum, 2015, 117, 85-90.	1.6	8
575	Effect of surfactants on the morphology of FeSe films fabricated from a single source precursor by aerosol assisted chemical vapour deposition. Journal of Chemical Sciences, 2015, 127, 499-507.	0.7	27
576	Flexible Electrodes and Electrolytes for Energy Storage. Electrochimica Acta, 2015, 175, 87-95.	2.6	65
577	Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO ₄ Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process. ACS Applied Materials & Draces, 2015, 7, 11377-11386.	4.0	65

#	Article	IF	CITATIONS
578	Transactions on Engineering Technologies. , 2015, , .		4
579	An Approach to Modeling of Additive Manufacturing Technologies. , 2015, , 99-115.		8
580	Reduced Chemical Warfare Agent Sorption in Polyurethane-Painted Surfaces via Plasma-Enhanced Chemical Vapor Deposition of Perfluoroalkanes. ACS Applied Materials & Interfaces, 2015, 7, 6402-6405.	4.0	10
581	Adhesion of hydroxyapatite on titanium medical implants. , 2015, , 21-51.		12
582	Tunable nanoscale structural disorder in Aurivillius phase, $n=3$ Bi $<$ sub $>4<$ sub $>1i<$ sub $>3<$ sub $>0<$ sub $>12<$ sub $>thin films and their role in the transformation to n=4, Bi<sub>5<sub>1i<sub>5i<sub>1i<sub>5i<sub>1i<sub>5i<sub>1i<sub>5i<sub>1i<sub>5i<sub>5i<sub>5i<sub>5i<sub>5i<sub>5i<sub>5i<sub>5i$	2.7	18
583	Volatile Heterobimetallic Complexes from Pd ^{II} and Cu ^{II} βâ€Diketonates: Structure, Magnetic Anisotropy, and Thermal Properties Related to the Chemical Vapor Deposition of CuPd Thin Films. ChemPlusChem, 2015, 80, 1457-1464.	1.3	15
584	Controllable synthesis of silicon nano-particles using a one-step PECVD-ionic liquid strategy. Journal of Materials Chemistry A, 2015, 3, 10233-10237.	5.2	0
585	Perspectives of energy materials grown by APCVD. Solar Energy Materials and Solar Cells, 2015, 140, 1-8.	3.0	39
586	Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 22497-22503.	4.0	25
587	Low temperature co-fired ceramics (LTCC) for the insulation coating of high temperature electrical conductors., 2015,,.		0
588	Discrete and Continuous Growth of Deformable Cylinder. , 2015, , 239-254.		7
589	Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science, 2015, 6, 6705-6716.	3.7	206
590	CaO Nanoparticles Coated by ZrO ₂ Layers for Enhanced CO ₂ Capture Stability. Industrial & Samp; Engineering Chemistry Research, 2015, 54, 8929-8939.	1.8	40
591	The use of time resolved aerosol assisted chemical vapour deposition in mapping metal oxide thin film growth and fine tuning functional properties. Journal of Materials Chemistry A, 2015, 3, 4811-4819.	5.2	5
592	Universal polymer coatings and their representative biomedical applications. Materials Horizons, 2015, 2, 567-577.	6.4	200
593	Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150015.	1.6	66
594	Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels. Applied Surface Science, 2015, 328, 13-25.	3.1	46
595	Facile preparation of an immobilized surfactant-free palladium nanocatalyst for metal hydride trapping: a novel sensing platform for TXRF analysis. Nanoscale, 2015, 7, 1994-2002.	2.8	14

#	Article	IF	CITATIONS
596	High-quality, conductive, and transparent Ga-doped ZnO films grown by atmospheric-pressure chemical-vapor deposition. Ceramics International, 2015, 41, 2253-2259.	2.3	27
597	Synthesis, microstructural characterization and optical properties of CuO nanorods and nanowires obtained by aerosol assisted CVD. Journal of Alloys and Compounds, 2015, 643, S46-S50.	2.8	30
598	Membranes with Great Hydrophobicity: A Review on Preparation and Characterization. Separation and Purification Reviews, 2015, 44, 109-134.	2.8	134
599	Preparation of free-standing mesoporous metal catalysts and their applications in heterogeneous enantioselective hydrogenations. Catalysis Science and Technology, 2015, 5, 638-649.	2.1	8
600	Application of atmospheric CVD for internal surface coating of graphite conduit by silicon carbide. Journal of Nuclear Materials, 2015, 456, 200-205.	1.3	11
601	Fabrication and characterization of kesterite Cu ₂ ZnSnS ₄ thin films deposited by electrostatic spray assisted vapour deposition method. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 135-139.	0.8	10
602	Oxygen source-Oriented Control of APCVD VO2 for Capacitive Applications. Journal of Electrochemical Science and Engineering, 2016, , .	1.6	3
604	Thin Films for Advanced Glazing Applications. Buildings, 2016, 6, 37.	1.4	34
605	Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators. Micromachines, 2016, 7, 69.	1.4	36
606	Plasma-Enhanced Vapor Deposition Process for the Modification of Textile Materials. , 0, , .		2
607	Polyoxometalate Complexes as Precursors to Vanadiumâ€Doped Molybdenum or Tungsten Oxide Thin Films by Means of Aerosolâ€Assisted Chemical Vapour Deposition. ChemPlusChem, 2016, 81, 307-314.	1.3	7
608	Boride-based coatings for protection of cast iron against wear. Advances in Applied Ceramics, 2016, 115, 483-494.	0.6	8
609	Development of low temperature co-fired ceramic (LTCC) coatings for electrical conductor wires. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 158-164.	1.8	4
610	Alâ€, Gaâ€, and Inâ€doped ZnO thin films via aerosol assisted CVD for use as transparent conducting oxides. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1346-1352.	0.8	43
611	Studies on electrophoretically deposited nanostructured barium titanate systems and carrier transport phenomena. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	0
612	Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19787-19798.	4.0	19
613	pH-Switchable Stratification of Colloidal Coatings: Surfaces "On Demand― ACS Applied Materials & Samp; Interfaces, 2016, 8, 34755-34761.	4.0	40
614	Numerical Investigation of Thermofluid Flow in a Chemical Vapor Deposition Furnace Utilized to Manufacture Template-Synthesized Carbon Nanotubes. Journal of Heat Transfer, 2016, 138, .	1.2	1

#	Article	IF	CITATIONS
615	~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step. Scientific Reports, 2016, 6, 38712.	1.6	27
616	Electron Temperature Measurement by Floating Probe Method Using AC Voltage. Plasma Science and Technology, 2016, 18, 1089-1094.	0.7	4
617	Chemical route derived bismuth ferrite thin films and nanomaterials. Journal of Materials Chemistry C, 2016, 4, 4092-4124.	2.7	148
619	Atomic layer deposition—Sequential self-limiting surface reactions for advanced catalyst "bottom-up― synthesis. Surface Science Reports, 2016, 71, 410-472.	3.8	252
620	Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angewandte Chemie - International Edition, 2016, 55, 122-148.	7.2	207
621	Kinetics of Adsorption of Methylcyclopentadienyl Manganese Tricarbonyl on Copper Surfaces and Implications for the Atomic Layer Deposition of Thin Solid Films. Journal of Physical Chemistry C, 2016, 120, 8232-8239.	1.5	14
622	Thermal oxidation kinetics of CrSi2 powder synthesized by pack cementation process. Journal of Thermal Analysis and Calorimetry, 2016, 125, 111-120.	2.0	6
623	Corrosion resistant Cr-coating on mild steel by powder roll bonding. Surface and Coatings Technology, 2016, 296, 203-210.	2.2	19
624	Characterization of MOCVD TiO2 coating and its anti-coking application in cyclohexane pyrolysis. Surface and Coatings Technology, 2016, 296, 108-116.	2.2	20
625	Microstructure and property of porous mullites with a whiskers framework obtained by a sol–gel process. Ceramics International, 2016, 42, 11270-11274.	2.3	17
626	Synthesis and evaluation of $\hat{l}^2 < \sup > 2 < \sup > -\hat{l}^2$ -diketonate and \hat{l}^2 -ketoesterate tungsten($< \sup > i < \sup$	1.6	13
627	Metal Oxide BiVO ₄ as Photoelectrode in Photoelectrochemical Solar Water Oxidation. Solid State Phenomena, 0, 253, 41-58.	0.3	3
628	Thermoluminescent characterization of Al2O3-derived synthetic topaz. Journal of Alloys and Compounds, 2016, 689, 500-506.	2.8	6
629	Carbon-Coated Nanoparticles. , 2016, , 401-428.		0
631	A Precision Capillary Coating System and Applications. Smart Science, 2016, 4, 151-159.	1.9	1
632	Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Solar Energy Materials and Solar Cells, 2016, 157, 604-623.	3.0	118
633	Material characterizations of Al:ZnO thin films grown by aerosol assisted chemical vapour deposition. Journal of Alloys and Compounds, 2016, 689, 1028-1036.	2.8	11
634	Performance improvement by alumina coatings on Y ₃ Al ₅ O ₁₂ :Ce ³⁺ phosphor powder deposited using atomic layer deposition in a fluidized bed reactor. RSC Advances, 2016, 6, 76454-76462.	1.7	27

#	Article	IF	CITATIONS
635	Formation of Corrosionâ€Resistant Thermal Diffusion Boride Coatings. Advanced Engineering Materials, 2016, 18, 11-33.	1.6	37
636	Fabrication, characterization and applications of iron selenide. Journal of Solid State Chemistry, 2016, 243, 179-189.	1.4	23
637	Enhancing the fracture resistance of carbon fiber reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process. Carbon, 2016, 109, 435-443.	5.4	58
638	Conditions and mechanisms for the bonding of a molten ceramic droplet to a substrate after high-speed impact. Acta Materialia, 2016, 119, 9-25.	3.8	67
639	Synthesis and characterization of one-dimensional nanostructured fluorine-doped tin dioxide thin films. , 2016, , .		0
640	In situ mass spectrometry analysis of chemical vapour deposition of TiO ₂ thin films to study gas phase mechanisms. RSC Advances, 2016, 6, 111797-111805.	1.7	6
641	Aerosol assisted chemical vapour deposition of transparent conductive aluminum-doped zinc oxide thin films from a zinc triflate precursor. Thin Solid Films, 2016, 616, 477-481.	0.8	9
642	Interstitial Boron-Doped TiO ₂ Thin Films: The Significant Effect of Boron on TiO ₂ Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition. ACS Applied Materials & Deposition and September 2016, 8, 25024-25029.	4.0	44
643	Synthesis and Characterization of Nanostructured Magnesium Oxide: Insight from Solid-State Density Functional Theory Calculations. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1413-1420.	1.9	21
644	Recent progress in hollow sphere-based electrodes for high-performance supercapacitors. Nanotechnology, 2016, 27, 342001.	1.3	43
645	Pulsed electric field assisted sol–gel preparation of TiO2 nanoparticles. Journal of Crystal Growth, 2016, 451, 200-206.	0.7	2
646	Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 2016, 5, 223-245.	2.3	640
647	Synthesis of an oxidation-resistant SiC coating on graphite and modeling analysis with thermodynamics calculations. International Journal of Materials Research, 2016, 107, 1026-1030.	0.1	6
648	Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition. Scientific Reports, 2016, 6, 27593.	1.6	15
649	Photo Initiated Chemical Vapour Deposition To Increase Polymer Hydrophobicity. Scientific Reports, 2016, 6, 31574.	1.6	23
650	A review on fabrication processes for electrochromic devices. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 397-421.	2.7	70
651	Controlled Synthesis of Atomically Thin 1T-TaS ₂ for Tunable Charge Density Wave Phase Transitions. Chemistry of Materials, 2016, 28, 7613-7618.	3.2	75
652	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part II – Synthesis and deposition. Solar Energy, 2016, 139, 309-317.	2.9	4

#	Article	IF	CITATIONS
653	Chapter 1 Multifunctional Coatings for Solar Energy Applications. , 2016, , 1-88.		0
654	Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae. Journal of Applied Crystallography, 2016, 49, 2217-2225.	1.9	19
655	Tin trifluoroacetylacetonate [Sn(C5H4O2F3)2] as a precursor of tin dioxide in APCVD process. Russian Journal of Inorganic Chemistry, 2016, 61, 545-553.	0.3	3
656	Effect of deposition parameters on the microstructure and deposition rate of germanium-carbon coatings prepared by plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2016, 302, 107-116.	2.2	12
657	Application of supercritical carbon dioxide in catalyzation and Ni-P electroless plating of nylon 6,6 textile. Surface and Coatings Technology, 2016, 302, 336-343.	2.2	25
658	All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes. ACS Applied Materials & Diterfaces, 2016, 8, 16640-16648.	4.0	29
659	A novel aqueous plasma electrolysis for carbon fiber. Chemical Engineering Journal, 2016, 304, 426-430.	6.6	15
660	Wear Resistance of TiN/TiCN and TiN/TiBN Multilayer Coatings Applied on Hot Work Tool Steel. Key Engineering Materials, 0, 674, 257-262.	0.4	4
661	Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel. Corrosion Science, 2016, 105, 161-169.	3.0	100
662	Metallization of textile by Pt catalyzation in supercritical carbon dioxide and Pt electroless plating for applications in wearable devise. Microelectronic Engineering, 2016, 153, 92-95.	1.1	8
663	Iron boride-based thermal diffusion coatings for tribo-corrosion oil production applications. Ceramics International, 2016, 42, 3190-3211.	2.3	27
664	What Is Coming Next?. Monographs in Electrochemistry, 2016, , 335-348.	0.2	0
665	Chemical Vapor Deposited Graphene for Opto-Electronic Applications. Journal of Nano Research, 2016, 39, 57-68.	0.8	0
666	Chemical Treatment of Low-k Dielectric Surfaces for Patterning of Thin Solid Films in Microelectronic Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6293-6300.	4.0	18
667	New routes for improving adhesion at the metal/ $\hat{l}\pm$ -Al ₂ O ₃ (0001) interface. Physical Chemistry Chemical Physics, 2016, 18, 3032-3039.	1.3	16
668	Application of X-ray micro-CT for micro-structural characterization of APCVD deposited SiC coatings on graphite conduit. Applied Radiation and Isotopes, 2016, 108, 133-142.	0.7	5
669	Corrosion evaluation and prevention of reactor materials to contain thermochemical material for thermal energy storage. Applied Thermal Engineering, 2016, 94, 355-363.	3.0	12
670	Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 72-77.	4.0	21

#	Article	IF	CITATIONS
671	Electrophoretic deposition of nanoscale TiO2: technology and applications. Journal of the European Ceramic Society, 2016, 36, 265-283.	2.8	57
672	Hydrophobic coating of expanded perlite particles by plasma polymerization. Chemical Engineering Journal, 2016, 284, 343-350.	6.6	68
673	Polymer Surface Modifications by Coating. , 2016, , 143-160.		0
674	Order of magnitude increase in photocatalytic rate for hierarchically porous anatase thin films synthesized from zinc titanate coatings. Dalton Transactions, 2017, 46, 1975-1985.	1.6	9
675	Low temperature formation of AlN nanofibers by carbothermal reduction nitridation of hydrothermal precursor fibers. Journal of Asian Ceramic Societies, 2017, 5, 13-17.	1.0	3
676	Influence of the substrate gas-inlet gap on the growth rate, morphology and microstructure of zirconium carbide films grown by chemical vapour deposition. Ceramics International, 2017, 43, 1354-1361.	2.3	6
677	Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells. Surface and Coatings Technology, 2017, 313, 168-176.	2.2	13
678	Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties. Progress in Crystal Growth and Characterization of Materials, 2017, 63, 1-47.	1.8	32
679	A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates. RSC Advances, 2017, 7, 7531-7539.	1.7	54
680	Spark plasma coating of tungsten-coated SiC particles. Powder Technology, 2017, 310, 282-286.	2.1	7
681	Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings. Journal of Thermal Spray Technology, 2017, 26, 554-568.	1.6	12
682	Topaz synthesis using Al2O3, Al(OH)3 or Al2Si2O5(OH)4 and color centers promoting its radioluminescence response. Journal of Alloys and Compounds, 2017, 701, 574-580.	2.8	4
683	In situ coating of low carbon steel with Ni Al Fe powder mixture via mechanical alloying. Surface and Coatings Technology, 2017, 315, 268-273.	2.2	19
684	Tunability and Sensing Properties of Plasmonic/1D Photonic Crystal. Scientific Reports, 2017, 7, 41983.	1.6	86
685	Optimizing the Activity of Nanoneedle Structured WO ₃ Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5983-5993.	1.5	71
686	Thermal stability of ultrathin amorphous carbon films synthesized by plasma-enhanced chemical vapor deposition and filtered cathodic vacuum arc. Philosophical Magazine, 2017, 97, 820-832.	0.7	10
687	Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition methodâ€"research into mechanism, particle growth and optical simulation. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
688	Geometric Aspects of the Theory of Incompatible Deformations in Growing Solids. Advanced Structured Materials, 2017, , 327-347.	0.3	7

#	Article	IF	CITATIONS
689	Characterization of oxidized Ni-based superalloys by GD-OES. Journal of Analytical Atomic Spectrometry, 2017, 32, 1730-1738.	1.6	28
690	An Exploratory Investigation of the Mechanical Properties of the Nanostructured Porous Materials Deposited by Laser-Induced Chemical Solution Synthesis. Journal of Micro and Nano-Manufacturing, 2017, 5, .	0.8	2
691	Nitride, Zirconia, Alumina, and Carbide Coatings on Ti6Al4V Femoral Heads: Effect of Deposition Techniques on Mechanical and Tribological Properties. Advanced Engineering Materials, 2017, 19, 1700177.	1.6	14
692	Interstitial boron-doped anatase TiO ₂ thin-films on optical fibres: atmospheric pressure-plasma enhanced chemical vapour deposition as the key for functional oxide coatings on temperature-sensitive substrates. Journal of Materials Chemistry A, 2017, 5, 10836-10842.	5.2	25
693	Chemical Vapor Transport Reactions – Arguments for Choosing a Suitable Transport Agent. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1295-1311.	0.6	27
694	Recent progress of functional coating materials and technologies for polycarbonate. Journal of Coatings Technology Research, 2017, 14, 21-34.	1.2	14
695	CFD coupled kinetic modeling and simulation of hot wall vertical tubular reactor for deposition of SiC crystal from MTS. Journal of Crystal Growth, 2017, 475, 97-109.	0.7	17
696	Scaling aerosol assisted chemical vapour deposition: Exploring the relationship between growth rate and film properties. Materials and Design, 2017, 129, 116-124.	3.3	44
697	Deconvoluting the Bioactivity of Calcium Phosphateâ€Based Bone Graft Substitutes: Strategies to Understand the Role of Individual Material Properties. Advanced Healthcare Materials, 2017, 6, 1601478.	3.9	34
698	Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chemical Communications, 2017, 53, 7182-7193.	2.2	118
699	Full range of wettability through surface modification of single-wall carbon nanotubes by photo-initiated chemical vapour deposition. Chemical Engineering Journal, 2017, 325, 101-113.	6.6	11
700	Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renewable and Sustainable Energy Reviews, 2017, 79, 1050-1077.	8.2	106
701	CVD Polymers for Devices and Device Fabrication. Advanced Materials, 2017, 29, 1604606.	11.1	93
702	Characterization of photocatalytic, wetting and optical properties of TiO 2 thin films and demonstration of uniform coating on a 3-D surface in the mass transport controlled regime. Surface and Coatings Technology, 2017, 326, 402-410.	2.2	16
703	Ab Initio Study of Growth Mechanism of 4H–SiC: Adsorption and Surface Reaction of C ₂ H ₄ , CH ₄ , and CH ₃ . Journal of Physical Chemistry C, 2017, 121, 1249-1256.	1.5	22
704	Light welding nanoparticles: from metal colloids to free-standing conductive metallic nanoparticle film. Science China Materials, 2017, 60, 39-48.	3.5	12
705	Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 975-981.	1.1	4
706	Graphene-encapsulated materials: Synthesis, applications and trends. Progress in Materials Science, 2017, 86, 1-24.	16.0	71

#	Article	IF	CITATIONS
707	Thermochromic VO2 thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies. Journal of Applied Physics, 2017, 122, .	1.1	34
708	Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite. Journal of Materials Engineering and Performance, 2017, 26, 5885-5896.	1.2	0
709	Dense Plasma Focus—High-Energy-DensityÂPulsed Plasma Device Based Novel Facility for Controlled Material Processing and Synthesis. , 2017, , 39-112.		2
710	Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. ACS Nano, 2017, 11, 11091-11099.	7.3	154
711	The role of ZrCl4 partial pressure on the growth characteristics of chemical vapour deposited ZrC layers. Ceramics International, 2017, 43, 15133-15140.	2.3	5
712	Molecular Precursors for the Phaseâ€Change Material Germaniumâ€Antimonyâ€Telluride, Ge ₂ Sb ₂ Te ₅ (GST). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1150-1166.	0.6	7
713	Molecular layer deposition of polyurethaneâ€"Polymerisation at the very contact to native aluminium and copper. Applied Surface Science, 2017, 426, 133-147.	3.1	2
714	Effect of Sodium Treatment on the Performance of Electrostatic Spray Assisted Vapour Deposited Copper-poor Cu(In,Ga)(S,Se) 2 Solar Cells. Scientific Reports, 2017, 7, 6788.	1.6	22
715	Reduced order modelling for efficient numerical optimisation of a hot-wall chemical vapour deposition reactor. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1602-1622.	1.6	7
716	On processing-structure-property relations and high ionic conductivity in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD. Solid State Ionics, 2017, 313, 32-44.	1.3	16
717	Growing Solids and Thin-Walled Structures. Procedia IUTAM, 2017, 23, 13-32.	1.2	4
718	Study of Ti-coated diamond grits prepared by spark plasma coating. Diamond and Related Materials, 2017, 77, 72-78.	1.8	22
719	Enhancing the erosion-corrosion resistance of steel through friction stir processing. Wear, 2017, 386-387, 129-138.	1.5	30
720	Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 2017, 19, 085503.	0.7	15
721	Aerosol-assisted CVD of thioether-functionalised indium aminoalkoxides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2017, 148, 1385-1392.	0.9	4
722	Effect of precursors' ratio on c -axis-oriented SmBCO film by MOCVD. Ceramics International, 2017, 43, 5488-S492.	2.3	4
723	An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing. Applied Surface Science, 2017, 423, 1054-1061.	3.1	20
724	Preparation of Continuous Al ₂ 3/Y ₂ O ₃ Coating on Carbon Fiber by a Novel Aqueous Plasma Electrolysis. Materials Science Forum, 0, 898, 1575-1582.	0.3	5

#	Article	IF	CITATIONS
725	3.8 Biomedical Thin Films: Mechanical Properties $\hat{a}^{\sim} \uparrow$, 2017, , 128-143.		2
726	Application of Finite Element Analysis for Nanobiomedical Study. , 2017, , 401-421.		1
727	Controllable coating of boron nitride on ceramic fibers by CVD at low temperature. Ceramics International, 2017, 43, 1509-1516.	2.3	23
728	Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size. Computational Materials Science, 2017, 126, 474-478.	1.4	20
729	The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor. Journal of Crystal Growth, 2017, 458, 140-148.	0.7	22
730	Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 2017, 523, 596-613.	4.1	310
731	Mechanical properties, wear behavior and crystallographic texture of Al–multiwalled carbon nanotube composites developed by powder metallurgy route. Journal of Composite Materials, 2017, 51, 1099-1117.	1.2	19
732	Influence of substrate bias voltage on the properties of TiO 2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications. Applied Surface Science, 2017, 395, 72-77.	3.1	37
733	Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: a critical review of current progress and future challenges. Materials Horizons, 2017, 4, 747-771.	6.4	142
735	Aluminizing via Ionic Liquid Electrodeposition and Pack Cementation: A Comparative Study with Inconel 738 and a CoNiCrAlY. Coatings, 2017, 7, 83.	1.2	5
736	Recent Advances in Two-Dimensional Materials with Charge Density Waves: Synthesis, Characterization and Applications. Crystals, 2017, 7, 298.	1.0	44
737	Well-Defined Nanostructures for Catalysis by Atomic Layer Deposition. Studies in Surface Science and Catalysis, 2017, 177, 643-676.	1.5	9
738	Fabrication and antimicrobial performance of surfaces integrating graphene-based materials. Carbon, 2018, 132, 709-732.	5.4	70
739	From 2-D Nanocrystalline Films to 1-D Nanomaterials: An Overview. MRS Advances, 2018, 3, 803-816.	0.5	1
740	Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates. Nature Communications, 2018, 9, 774.	5.8	23
741	Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection. ACS Sensors, 2018, 3, 727-734.	4.0	31
742	Engineering Nitroxide Functional Surfaces Using Bioinspired Adhesion. Langmuir, 2018, 34, 3264-3274.	1.6	21
743	An aminopyridinato Mn(<scp>ii</scp>) compound as a novel CVD precursor for manganese-containing films. New Journal of Chemistry, 2018, 42, 4553-4558.	1.4	5

#	Article	IF	CITATIONS
744	Comparative study of the ball milling and acid treatment of functionalized nanodiamond composites. International Journal of Refractory Metals and Hard Materials, 2018, 73, 46-52.	1.7	36
745	Combining single source chemical vapour deposition precursors to explore the phase space of titanium oxynitride thin films. Dalton Transactions, 2018, 47, 10536-10543.	1.6	8
746	Preparation of boron nitride-based coatings through thermal diffusion process. Advances in Applied Ceramics, 2018, 117, 221-230.	0.6	4
747	Effect of heating parameters on sintering behaviors and properties of mullite whisker frameworks. Nanotechnology, 2018, 29, 164001.	1.3	2
748	Growth Mechanism of SiC CVD: Surface Etching by H ₂ , H Atoms, and HCl. Journal of Physical Chemistry A, 2018, 122, 2503-2512.	1.1	13
749	Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride. Nanoscale, 2018, 10, 3497-3508.	2.8	47
750	Study on poly(tetrafluoroethylene- <i>co</i> -hexafluoropropylene) hollow fiber membranes with surface modification by a chemical vapor deposition method. RSC Advances, 2018, 8, 102-110.	1.7	6
751	Investigation of reaction mechanisms in the chemical vapor deposition of al from DMEAA. Chemical Engineering Science, 2018, 177, 464-470.	1.9	13
752	Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. Journal of Physical Chemistry C, 2018, 122, 714-726.	1.5	16
753	Film thickness effect and substrate dependent tribo-mechanical characteristics of titanium nitride films. Surfaces and Interfaces, 2018, 12, 78-85.	1.5	14
754	Structural development of nanosilver on metal oxide nanofibrous membrane by plasma enhanced chemical vapor deposition (PECVD). Applied Surface Science, 2018, 452, 306-313.	3.1	11
755	How graphene crosses a grain boundary on the catalyst surface during chemical vapour deposition growth. Nanoscale, 2018, 10, 6878-6883.	2.8	13
756	Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale, 2018, 10, 8953-8961.	2.8	76
757	Recent advances in the manufacturing processes of functionally graded materials: a review. Science and Engineering of Composite Materials, 2018, 25, 309-336.	0.6	62
758	In ₂ O ₃ - and SnO ₂ -based Ozone Sensors: Design and Characterization. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 83-132.	6.8	31
759	Synergistic effect of Al2O3/TiO2 reinforcements on slurry erosion performance of nickel-based composite coatings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 974-986.	1.0	8
760	The synthesis and characterization of CVD ZrB2 coating from ZrCl4-BCl3-H2-Ar system. Ceramics International, 2018, 44, 2002-2010.	2.3	13
761	Design, Development and Application of Nanocoatings. Advanced Structured Materials, 2018, , 191-207.	0.3	4

#	Article	IF	Citations
762	Li ₄ Ti ₅ O ₁₂ Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices. Chemical Record, 2018, 18, 350-380.	2.9	31
763	Theoretical investigation on the adsorption and dissociation behaviors of TiCl4 on pyrolytic carbon surface. Applied Surface Science, 2018, 427, 156-165.	3.1	0
764	Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites. Journal of the European Ceramic Society, 2018, 38, 1-28.	2.8	283
765	Surface engineering of wood substrates to impart barrier properties: a photochemical approach. Wood Science and Technology, 2018, 52, 193-207.	1.4	5
766	A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method. Journal of Electronic Materials, 2018, 47, 1962-1969.	1.0	7
767	High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Applied Catalysis B: Environmental, 2018, 224, 904-911.	10.8	51
768	Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chemical Society Reviews, 2018, 47, 291-308.	18.7	132
770	Gas-phase synthesis of hybrid nanostructured materials. Nanoscale, 2018, 10, 22981-22989.	2.8	5
771	The effect of solvent on Al-doped ZnO thin films deposited <i>via </i> erosol assisted CVD. RSC Advances, 2018, 8, 33164-33173.	1.7	39
773	Thermal Stability of Alumina-Overcoated Au ₂₅ Clusters for Catalysis. ACS Applied Nano Materials, 2018, 1, 6904-6911.	2.4	13
774	Novel High-Performance CVD Coatings for Machining Applications. Powder Metallurgy Progress, 2018, 18, 128-138.	0.6	7
776	Interfacing Digital Microfluidics with Ambient Mass Spectrometry Using SU-8 as Dielectric Layer. Micromachines, 2018, 9, 649.	1.4	9
777	Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. Nanomaterials, 2018, 8, 788.	1.9	56
778	The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO ₂ Contact. Advanced Materials Interfaces, 2018, 5, 1801076.	1.9	30
779	Coatings on ceramic powders by rotary chemical vapor deposition and sintering of the coated powders. Journal of the Ceramic Society of Japan, 2018, 126, 413-420.	0.5	10
780	Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1335-1343.	2.4	3
781	Adsorption of Br2 onto Small Au Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 24732-24739.	1.5	2
782	Dynamic Nitroxide Functional Materials. Chemistry - A European Journal, 2018, 24, 18873-18879.	1.7	6

#	Article	IF	CITATIONS
783	Theoretical Insights into Vinyl Derivatives Adsorption on a $Cu(100)$ Surface. Journal of Physical Chemistry C, 2018, 122, 27301-27313.	1.5	6
784	Sol-gel preparation and characterization of Er3+ doped TiO2 luminescent nanoparticles. Materials Research Bulletin, 2018, 108, 234-241.	2.7	24
785	Plasma states and carbon film deposition in glow discharge connected to dielectric barrier discharge. Vacuum, 2018, 157, 155-158.	1.6	3
786	Combating hot corrosion of boiler tubes – A study. Engineering Failure Analysis, 2018, 94, 379-395.	1.8	130
788	Carbon deposition mechanisms governing template-based synthesis of carbon nanotubes. Carbon, 2018, 137, 395-404.	5.4	2
789	Flexible Polymeric Substrates for Electronic Applications. Polymer Reviews, 2018, 58, 630-667.	5.3	73
790	Enzymatically-controlled biomimetic synthesis of titania/protein hybrid thin films. Journal of Materials Chemistry B, 2018, 6, 3979-3988.	2.9	4
791	Principles, Methods, Formation Mechanisms, and Structures of Nanomaterials Prepared via Gas-Phase Processes., 2018,, 19-70.		1
792	Manufacturing of a hierarchical carbon foam with tailored catalytically Me/MexOy particles. Vacuum, 2018, 155, 490-495.	1.6	4
793	The effect of clay dispersion on polypropylene nanocomposites: Physico-mechanical, thermal, morphological, and optical properties., 2018,, 201-257.		3
794	Recent developments in deposition techniques for optical thin films and coatings., 2018,, 3-23.		3
795	Recent Advances in the Synthesis of Metal Oxide (MO) Nanostructures. , 2018, , 255-281.		10
796	High Temperature Coatings for Oxidation and Erosion Protection of Heat-Resistant Carbonaceous Materials in High-Speed Flows. Key Engineering Materials, 2018, 771, 103-117.	0.4	12
797	The Intersection of Design, Manufacturing, and Surface Engineering. , 2018, , 397-422.		3
798	Fibers made by chemical vapor deposition. , 2018, , 929-991.		2
799	Preparation of MEA. , 2018, , 117-138.		2
800	Membrane separation as a pre-treatment process for oily saline water. Desalination, 2018, 447, 182-202.	4.0	110
801	Effects of precursors on silica particle generation in CVD synthesis for fused silica glass. Journal of Non-Crystalline Solids, 2018, 499, 86-94.	1.5	16

#	Article	IF	Citations
802	Biopolymer reinforced nanocomposites: A comprehensive review. Materials Today Communications, 2018, 16, 353-363.	0.9	154
803	Corrosion Resistance of Boronized, Aluminized, and Chromized Thermal Diffusion-Coated Steels in Simulated High-Temperature Recovery Boiler Conditions. Coatings, 2018, 8, 257.	1.2	13
804	Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods. Plasma Science and Technology, 2018, 20, 085405.	0.7	2
805	Catalyst design using an inverse strategy: From mechanistic studies on inverted model catalysts to applications of oxide-coated metal nanoparticles. Surface Science Reports, 2018, 73, 117-152.	3.8	68
806	Patterned Nanobrush Nature Mimics with Unprecedented Waterâ€Harvesting Efficiency. Advanced Materials Interfaces, 2018, 5, 1800667.	1.9	19
807	Multilayered Coatings for High-Temperature Steam Oxidation: TGA Studies up to 1000°C. Journal of Materials Engineering and Performance, 2018, 27, 4317-4335.	1.2	7
808	Reflective Silver Thin Film Electrodes from Commercial Silver(I) Triflate via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Nano Materials, 2018, 1, 3724-3732.	2.4	6
809	Atomic layer deposition of metal-oxide thin films on cellulose fibers. Journal of Coordination Chemistry, 2018, 71, 2043-2052.	0.8	2
810	Conformal Multilayer Photocatalytic Thin Films on Fine Particles by Atmospheric Pressure Fluidized Bed Chemical Vapor Deposition. Industrial & Engineering Chemistry Research, 2018, 57, 10345-10353.	1.8	10
811	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	9.5	292
812	Modelling and optimisation of single-step laser-based gold nanostructure deposition with tunable optical properties. Optics and Laser Technology, 2018, 108, 295-305.	2.2	3
813	Hydrodynamically Formed Uniform Thick Coatings on Microspheres. Small, 2018, 14, e1800613.	5.2	8
814	Application of dual radio frequency inductive coupled plasma into CVD diamond growth. Vacuum, 2018, 154, 174-176.	1.6	9
815	Resistivity Reduction of Nanostructured Undoped Zinc Oxide thin Films for Ag/ZnO Bilayers Using APCVD and Sputtering Techniques. Materials Research, $2018, 21, \ldots$	0.6	19
816	Low-temperature chemical vapor deposition (CVD) of metallic titanium film from a novel precursor. Surface and Coatings Technology, 2018, 353, 18-24.	2.2	16
817	Design of intelligent surfaces for energy intensive processing industry. MATEC Web of Conferences, 2018, 185, 00001.	0.1	3
818	Surface modification of silicon oxycarbide films produced by remote hydrogen microwave plasma chemical vapour deposition from tetramethyldisiloxane precursor. Surface and Coatings Technology, 2018, 350, 686-698.	2.2	15
819	Functional thin films and nanostructures for sensors. , 2018, , 169-213.		3

#	Article	IF	CITATIONS
820	Plasmonic Enhancement to Second-Order Nonlinearity in Optical Fibers. Journal of Lightwave Technology, 2018, 36, 4834-4842.	2.7	2
821	Principles and Mechanisms of Strain-Dependent Thermal Conductivity of Polycrystalline Graphene with Varying Grain Sizes and Surface Hydrogenation. Journal of Physical Chemistry C, 2018, 122, 19869-19879.	1.5	7
822	Highâ€temperature stable inverse opal photonic crystals via mulliteâ€solâ€gel infiltration of direct photonic crystals. Journal of the American Ceramic Society, 2019, 102, 686-694.	1.9	7
823	Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings, 2018, 8, 260.	1.2	80
824	6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field. Journal of Materials Science and Technology, 2018, 34, 2492-2497.	5.6	14
825	Chemical vapor deposition of ZrN using in situ produced ZrCl4 as a precursor. Ceramics International, 2019, 45, 9410-9414.	2.3	9
826	TiO ₂ photoanodes with exposed {0 1 0} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster. Journal of Materials Chemistry A, 2019, 7, 19161-19172.	5.2	18
827	<i>In Situ</i> Investigation of the Thermal Decomposition of Cl ₄ (CH ₃ CN)W(N ^{<i>i</i>} Pr) During Simulated Chemical Vapor Deposition. European Journal of Inorganic Chemistry, 2019, 2019, 3661-3666.	1.0	3
828	Growth of WOx from Tungsten(VI) Oxo-Fluoroalkoxide Complexes with Partially Fluorinated \hat{l}^2 -Diketonate/ \hat{l}^2 -Ketoesterate Ligands: Comparison of Chemical Vapor Deposition to Aerosol-Assisted CVD. ACS Applied Materials & Empty Interfaces, 2019, 11, 28180-28188.	4.0	6
829	Outstanding Energy Exchange between Organic Molecules and Metal Surfaces: Decomposition Kinetics of Excited Vinyl Derivatives Driven by the Interaction with a Cu(111) Surface. Journal of Physical Chemistry C, 2019, 123, 19625-19636.	1.5	6
830	Dynamic mode optimization for the deposition of homogeneous TiO2 thin film by atmospheric pressure PECVD using a microwave plasma torch. Applied Surface Science, 2019, 493, 703-709.	3.1	13
831	Assessment of synergistic effects of LP-MOCVD TiO2 and Ti surface finish for dental implant purposes. Applied Surface Science, 2019, 490, 568-579.	3.1	10
832	Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 2019, 53, 101174.	1.4	687
833	Direct Liquid Injection Chemical Vapor Deposition. , 0, , .		4
834	New approaches in lowering the gas-phase synthesis temperature of TiO2 nanoparticles by H2O-assisted atmospheric pressure CVS process. Journal of Materials Research and Technology, 2019, 8, 3024-3035.	2.6	6
835	Micro and nano ceramic-metal composite coatings by thermal spray process to control slurry erosion in hydroturbine steel: an overview. Engineering Research Express, 2019, 1, 012001.	0.8	9
836	Study of the Thermal Annealing on Structural and Morphological Properties of High-Porosity A-WO3 Films Synthesized by HFCVD. Nanomaterials, 2019, 9, 1298.	1.9	10
837	Ti-Al-N-Based Hard Coatings: Thermodynamical Background, CVD Deposition, and Properties. A Review. , 0, , .		4

#	Article	IF	Citations
838	Solventless Synthesis and Patterning of UVâ€Responsive Poly(allyl methacrylate) Film. Macromolecular Chemistry and Physics, 2019, 220, 1900299.	1.1	4
839	Modelling of ethanol pyrolysis in a commercial CVD reactor for growing carbon layers on alumina substrates. International Journal of Heat and Mass Transfer, 2019, 145, 118764.	2.5	8
840	In Situ Investigation of the Thermal Decomposition of Cl 4 (CH 3 CN)W(N i Pr) During Simulated Chemical Vapor Deposition. European Journal of Inorganic Chemistry, 2019, 2019, 3646-3646.	1.0	0
841	Methods and fabrication techniques of superhydrophobic surfaces. , 2019, , 43-75.		32
842	Comparative study of high temperature oxidation behavior and mechanical properties of wire arc sprayed Ni Cr and Ni Al coatings. Engineering Failure Analysis, 2019, 106, 104173.	1.8	58
843	Facile preparation of polymer coating on reduced graphene oxide sheets by plasma polymerization. Nanocomposites, 2019, 5, 74-83.	2.2	2
844	Uniformity of Si-containing diamond-like carbon films deposited at different positions by mesh hollow cathode discharge. Results in Physics, 2019, 14, 102480.	2.0	13
845	Effect of HfC-SiC transition layer on the ablation resistance of SiC/HfC-SiC/HfC multi-layer coating for C/C composites. Vacuum, 2019, 169, 108886.	1.6	28
846	Damage behavior of atomic oxygen on CVD SiC coating-modified carbon/carbon composite in low earth orbit environment. Journal of Materials Science and Technology, 2019, 35, 2957-2965.	5.6	9
847	Synthesis of a Cu 2 O/Carbon Film/NiCoBâ€Graphene Oxide Heterostructure as Photocathode for Photoelectrochemical Water Splitting. ChemElectroChem, 2019, 6, 2004-2012.	1.7	13
848	Functionalization of Commercial Sand Core Funnels as Hydrophobic Materials with Novel Physicochemical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 7510-7521.	4.0	8
849	Simulation of reaction-diffusion between substrate and coating during vapor deposition processes. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 64, 278-283.	0.7	5
850	Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst. Chemical Communications, 2019, 55, 2465-2468.	2,2	37
851	SiC coating on HTR graphite spheres prepared by fluidized-bed chemical vapor deposition. Annals of Nuclear Energy, 2019, 134, 11-19.	0.9	6
852	Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting. Applied Surface Science, 2019, 490, 302-308.	3.1	17
853	Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. European Polymer Journal, 2019, 118, 561-577.	2.6	25
854	High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction. Nano Energy, 2019, 63, 103845.	8.2	57
855	Al ₂ O ₃ hollow nanospheres prepared by fluidized bed chemical vapor deposition and further heat treatment. Journal of the American Ceramic Society, 2019, 102, 6463-6468.	1.9	4

#	Article	IF	CITATIONS
856	Heterojunction αâ€Fe ₂ O ₃ /ZnO Films with Enhanced Photocatalytic Properties Grown by Aerosolâ€Assisted Chemical Vapour Deposition. Chemistry - A European Journal, 2019, 25, 11337-11345.	1.7	28
857	Novel approach for fabrication and characterisation of porosity-graded material. Materials Science and Technology, 2019, 35, 1583-1591.	0.8	4
858	Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Electronic Materials, 2019, 1, 1408-1417.	2.0	41
859	Microwave-Assisted Synthesis for Carbon Nanomaterials. , 2019, , 121-147.		5
860	Surface nanopatterning by colloidal lithography. , 2019, , 63-95.		1
861	Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition. Materials and Design, 2019, 179, 107877.	3.3	23
862	Chemical vapor deposition of titanium nitride thin films: kinetics and experiments. CrystEngComm, 2019, 21, 3974-3981.	1.3	22
863	Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Progress in Materials Science, 2019, 106, 100574.	16.0	184
864	Reaction kinetics and temperature effects in syngas photo-initiated chemical vapor deposition on single-walled carbon nanotubes. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	2
865	Offâ€Stoichiometry of Magnetron Sputtered Ba 1â^ x Sr x TiO 3 Thin Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1900148.	0.7	8
866	Effect of crystallinity of PAN-based carbon fiber surfaces on the formation characteristics of silicon carbide coating. Materials Research Express, 2019, 6, 085603.	0.8	11
867	Effect of shot peening on residual stresses and crack closure in CVD coated hard metal cutting inserts. International Journal of Refractory Metals and Hard Materials, 2019, 82, 174-182.	1.7	23
868	Protective coatings for high-temperature steam oxidation in coal-fired power plants. Surface and Coatings Technology, 2019, 369, 127-141.	2.2	8
869	Nanocoatings. , 2019, , 299-331.		4
870	Understanding Surface Characteristics of Nanoparticles., 2019,, 1-17.		5
871	Gasâ€phase carbon coating of LiFePO ₄ nanoparticles in fluidized bed reactor. Canadian Journal of Chemical Engineering, 2019, 97, 2259-2272.	0.9	6
873	Reversely toposelective vapor deposition at normal pressure and temperature by capillary condensation. Materials Horizons, 2019, 6, 1230-1237.	6.4	4
874	Biomimetic hard and tough nanoceramic Ti–Al–N film with self-assembled six-level hierarchy. Nanoscale, 2019, 11, 7986-7995.	2.8	19

#	Article	IF	CITATIONS
875	A review of spinel-type of ferrite thick film technology: fabrication and application. Journal of Materials Science: Materials in Electronics, 2019, 30, 7752-7779.	1.1	18
876	Synthesis of carbon spheres by atmospheric pressure chemical vapor deposition from a serial of aromatic hydrocarbon precursors. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 78-85.	1.3	26
877	A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures. Journal of Thermal Spray Technology, 2019, 28, 645-677.	1.6	63
878	Microstructure and mechanical property of high growth rate SiC via continuous hotâ€wire CVD. Journal of the American Ceramic Society, 2019, 102, 5656-5667.	1.9	15
879	Structural, optical and photovoltaic properties of P3HT and metal doped TiO2 quantum dots based bulk heterojunction layers. Optical Materials, 2019, 91, 376-385.	1.7	6
880	Effect of the ZrCl4 static vaporiser system and deposition time on growth characteristics of chemical vapour deposited zirconium carbide layers. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	3
881	Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment. Review of Scientific Instruments, 2019, 90, 023901.	0.6	27
882	Structural Controlling of Highly-Oriented Polycrystal 3C-SiC Bulks via Halide CVD. Materials, 2019, 12, 390.	1.3	11
883	Low-cost Fabrication of Tunable Band Gap Composite Indium and Gallium Nitrides. Scientific Reports, 2019, 9, 2313.	1.6	18
884	Electric discharge texturing of HSS cutting tool and its performance in dry machining of aerospace alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	20
885	Microstructuring of titanium surfaces with plasma-modified titanium particles by cold spraying. Particuology, 2019, 44, 90-104.	2.0	9
886	Fabrication of coreâ€shell structured TiC–Fe composite powders by fluidized bed chemical vapor deposition. Journal of the American Ceramic Society, 2019, 102, 4470-4479.	1.9	4
887	Graphene Based Futuristic Green Batteries For Energy Harvesting., 2019,,.		1
888	Influence of the Composition of Graft Copolymers of Fluoroalkyl Methacrylates on Stability of the Superhydrophobic State of Stainless Steel Surface. Polymer Science - Series B, 2019, 61, 725-734.	0.3	2
889	Effect of Boron and Oxygen on the Structure and Properties of Protective Decorative Cr–Al–Ti–N Coatings Deposited by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). Applied Sciences (Switzerland), 2019, 9, 4977.	1.3	2
890	Characterization and Wear Properties of Fe3Al and (Fe,Ti)3Al Intermetallic Claddings Produced by GTAW Process. Protection of Metals and Physical Chemistry of Surfaces, 2019, 55, 1142-1147.	0.3	1
891	The Synthesis of Ni–Al Surface Alloy by Low-Energy, High-Current Electron Beam Irradiation of Composite Coating. Russian Physics Journal, 2019, 62, 1298-1305.	0.2	5
892	An Overview: Different Manufacturing Techniques used for Fabricating Functionally Graded Material. Materials Today: Proceedings, 2019, 18, 2942-2951.	0.9	12

#	Article	IF	CITATIONS
893	Review of oxidant resistant coating on graphite substrate of HTR fuel element. Journal of Central South University, 2019, 26, 2915-2929.	1.2	1
894	Deposition of YBCO nanoparticles on graphene nanosheets by using matrix-assisted pulsed laser evaporation. Optics and Laser Technology, 2019, 109, 465-469.	2.2	7
895	Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets. Nano Research, 2019, 12, 91-99.	5.8	17
896	Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method. Journal of Alloys and Compounds, 2019, 772, 612-624.	2.8	22
897	Device Fabrication Based on Oxidative Chemical Vapor Deposition (oCVD) Synthesis of Conducting Polymers and Related Conjugated Organic Materials. Advanced Materials Interfaces, 2019, 6, 1801564.	1.9	65
898	Is dropwise condensation feasible? A review on surface modifications for continuous dropwise condensation and a profitability analysis. Journal of Advanced Research, 2019, 16, 1-13.	4.4	60
899	Study on structural, optical and hydrophilic properties of FTO/TiO2 tandem thin film prepared by aerosol-assisted chemical vapor deposition method. Surface and Coatings Technology, 2019, 358, 715-720.	2.2	10
900	Graphene and Anticorrosive Properties. Interface Science and Technology, 2019, , 303-337.	1.6	43
901	Nano-/Micro-engineering for Future Li–Ion Batteries. Energy, Environment, and Sustainability, 2019, , 141-176.	0.6	0
903	Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose, 2019, 26, 933-944.	2.4	38
904	Instant Tuning of Superhydrophilic to Robust Superhydrophobic and Self-Cleaning Metallic Coating: Simple, Direct, One-Step, and Scalable Technique. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4616-4624.	4.0	23
905	An interlayer/intralayer coupling mechanism for the thermal characteristics of polycrystalline few-layer graphene. Applied Physics Letters, 2019, 114, 021902.	1.5	4
906	Characterization of DLC coatings over nitrided stainless steel with and without nitriding pre-treatment using annealing cycles. Journal of Materials Research and Technology, 2019, 8, 1653-1662.	2.6	10
907	Aerosol assisted chemical vapor deposition (AACVD) synthesis of nanostructured cauliflower patterning in MWCNT doped tungsten oxide. Ceramics International, 2019, 45, 1918-1927.	2.3	5
908	DLC deposition inside of a long tube by using the pulsed-DC PECVD process. Surface and Coatings Technology, 2019, 359, 55-61.	2.2	16
909	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. Advanced Materials, 2019, 31, e1803408.	11.1	48
910	Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells, 2019, 189, 75-102.	3.0	120
911	Erosion tribo performance of HVOF deposited WC-10Co-4Cr and WC-10Co-4Cr + 2%Y ₂ O ₃ micron layers on pump impeller steel. Particulate Science and Technology, 2020, 38, 34-44.	1.1	18

#	Article	IF	CITATIONS
912	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
913	Graphit―und‧iliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
914	Electrophoretic deposition of bi-layered nano-sized silicon carbide/mullite coating from stabilized suspensions. Journal of the Australian Ceramic Society, 2020, 56, 761-770.	1.1	5
915	Chemical vapor deposition and its application in surface modification of nanoparticles. Chemical Papers, 2020, 74, 767-778.	1.0	29
916	Selective self-oriented growth of (2 0 0), (0 0 2), and (0 2 0) δ-WO3 films via metal-organic chemic deposition. Materials Letters, 2020, 258, 126817.	al yapor	9
917	Material Design and Surface Engineering for Bio-implants. Jom, 2020, 72, 684-696.	0.9	21
918	Preparation of tin oxide nanostructures by chemical vapor deposition., 2020,, 247-280.		10
919	Room-temperature solution-phase epitaxial nucleation of PbS quantum dots on rutile TiO ₂ (100). Nanoscale Advances, 2020, 2, 377-383.	2.2	2
920	Self-oriented growth of \hat{I}^2 -Yb2Si2O7 and X1/X2-Yb2SiO5 coatings using laser chemical vapor deposition. Ceramics International, 2020, 46, 9548-9553.	2.3	12
921	Gold(I) carboxylates and [Au(C(NH2)2(=S))2][SO3Me] for the deposition of gold and gold-doped SiOX materials by the atmospheric pressure combustion CVD process. Inorganica Chimica Acta, 2020, 502, 119355.	1.2	4
922	Effect of nitrogen-doping on the surface chemistry and corrosion stability of TiO2 films. Journal of Materials Research and Technology, 2020, 9, 922-934.	2.6	24
923	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	11.1	213
924	SiC-conversion coating from silica sol for improved oxidation resistance of carbon-fiber insulator in solar-cell ingot-growing crucibles. Thin Solid Films, 2020, 694, 137748.	0.8	5
925	High stable self-cleaning surface developed by monolithic hierarchical roughness. Surface Engineering, 2020, 36, 628-635.	1.1	4
926	Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia. Ceramics International, 2020, 46, 8745-8753.	2.3	53
927	Microarc oxidation of pure aluminium in alumina containing electrolytes. Surface Engineering, 2020, 36, 837-846.	1.1	3
928	Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109600.	8.2	278
929	Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Research Letters, 2020, 15, 9.	3.1	80

#	Article	IF	CITATIONS
930	Influence of multi-layered thermal diffusion coatings on high-temperature sulfidation resistance of steels. Surface and Coatings Technology, 2020, 403, 126430.	2.2	7
931	Solar thermal harvesting based on self-doped nanocermet: Structural merits, design strategies and applications. Renewable and Sustainable Energy Reviews, 2020, 134, 110277.	8.2	56
932	Recent development and advances in Photodetectors based on two-dimensional topological insulators. Journal of Materials Chemistry C, 2020, 8, 15526-15574.	2.7	35
933	Improvement on uniformity of diamond-like carbon coatings inside metal tubes using high power pulse supply. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
934	Methods of Fabricating Thin Films for Energy Materials and Devices. , 0, , .		4
935	Experimental investigation of wettability properties for zirconia based coatings by RF magnetron sputtering. Materials Today: Proceedings, 2020, 26, 2447-2451.	0.9	4
936	Atomic layer deposition based nano-island growth. , 2020, , 67-106.		0
937	Fabrication and Characterization of Nanostructured AACVD Thin Films on 316L SS as Surface Protective Layers in Simulated Body Fluid. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4301-4312.	1.1	6
938	Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1353-1362.	2.4	15
939	Research Progress of High Dielectric Constant Zirconia-Based Materials for Gate Dielectric Application. Coatings, 2020, 10, 698.	1.2	24
940	Hierarchical fibrous structures for muscleâ€inspired softâ€actuators: A review. Applied Materials Today, 2020, 20, 100772.	2.3	30
941	High performance <i>iin situ</i> annealed partially pressurized pulsed laser deposited WO ₃ & amp; V ₂ O ₅ thin film electrodes for use as flexible all solid state supercapbatteries. Journal of Materials Chemistry A, 2020, 8, 24148-24165.	5.2	21
943	Research Progress of Silicon/Carbon Anode Materials for Lithiumâ€lon Batteries: Structure Design and Synthesis Method. ChemElectroChem, 2020, 7, 4289-4302.	1.7	56
944	30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges. Composites Part B: Engineering, 2020, 201, 108376.	5.9	329
945	Calcium Phosphate Based Bioactive Ceramic Layers on Implant Materials Preparation, Properties, and Biological Performance. Coatings, 2020, 10, 823.	1.2	15
947	Microstructure and Mechanical Properties of Annealed WC/C PECVD Coatings Deposited Using Hexacarbonyl of W with Different Gases. Materials, 2020, 13, 3576.	1.3	4
948	Processing, microstructure and mechanical properties of a novel mg matrix composites reinforced with urchin-like CNTs@SiCp. Diamond and Related Materials, 2020, 109, 108087.	1.8	3
949	Temperature-dependent growth of topological insulator Bi2Se3 for nanoscale fabrication. AIP Advances, 2020, 10, .	0.6	2

#	ARTICLE	IF	CITATIONS
950	Fabrication and synthesis of SnOX thin films: a review. International Journal of Advanced Manufacturing Technology, 2020, 111, 2809-2831.	1.5	11
951	Use of surfactants to tailor the morphologies and crystalline phases of thin films via aerosol assisted chemical vapor deposition. Journal of Solid State Chemistry, 2020, 288, 121429.	1.4	4
952	Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy. Journal of Physics Condensed Matter, 2020, 32, 413003.	0.7	54
953	Effect of increase in Nano-particle Addition on Mechanical and Microstructural Behaviour of HVOF and Cold-Spray Ni-20Cr Coatings on Boiler Steels. Materials Today: Proceedings, 2020, 21, 2035-2042.	0.9	15
954	Deposition of SiO _x thin films using hexamethyldisiloxane in atmospheric pressure plasma enhanced chemical vapor deposition. Journal of Physics: Conference Series, 2020, 1492, 012023.	0.3	3
955	Electrodeposition of Duplex Ni–B–Zn/Co Composite Coatings. Jom, 2020, 72, 4296-4304.	0.9	3
956	Phosphorus Containing Coatings: Technologies and Applications. ChemistrySelect, 2020, 5, 6570-6584.	0.7	2
957	Other applications. , 2020, , 279-288.		0
958	Characterization of Al-induced electroless tin films on mild steel substrate for corrosion protection. Surface Topography: Metrology and Properties, 2020, 8, 025002.	0.9	10
959	Chemical vapor deposition of metallic films using plasma electrons as reducing agents. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	13
960	What Happens during Thermal Postâ€Treatment of Powder Aerosol Deposited Functional Ceramic Films? Explanations Based on an Experimentâ€Enhanced Literature Survey. Advanced Materials, 2020, 32, e1908104.	11.1	35
961	Characterization of a C-Based Coating Applied on an AA6063 Alloy and Developed by a Novel Electrochemical Synthesis Route. Coatings, 2020, 10, 145.	1.2	2
962	Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science, 2020, 112, 100663.	16.0	196
963	A review of quantum dot solar cells fabrication via chemical vapor deposition method. AIP Conference Proceedings, 2020, , .	0.3	1
964	Enhancing the separation properties of plasma polymerized membranes on polydimethylsiloxane substrates by adjusting the auxiliary gas in the PECVD processes. Journal Physics D: Applied Physics, 2020, 53, 445301.	1.3	10
965	Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Advanced Materials Technologies, 2020, 5, 2000100.	3.0	37
966	Low Temperature Scalable Deposition of Copper(I) Thiocyanate Films via Aerosol-Assisted Chemical Vapor Deposition. Crystal Growth and Design, 2020, 20, 5380-5386.	1.4	3
967	Density Functional Theory Study of the Adsorption and Dissociation of Copper(I) Acetamidinates on Ni(110): The Effect of the Substrate. Journal of Physical Chemistry C, 2020, 124, 15366-15376.	1.5	5

#	Article	IF	CITATIONS
968	Nanomaterials and Environmental Biotechnology. Nanotechnology in the Life Sciences, 2020, , .	0.4	15
969	Hierarchically porous graphitic carbon membrane with homogeneously encapsulated metallic nanoparticles as monolith electrodes for high-performance electrocatalysis and sensing. Journal of Colloid and Interface Science, 2020, 570, 223-231.	5.0	4
970	Mathematical Modeling for the Design and Scale-Up of a Large Industrial Aerosol-Assisted Chemical Vapor Deposition Process under Uncertainty. Industrial & Engineering Chemistry Research, 2020, 59, 1249-1260.	1.8	16
971	Filler matrix interfaces of inorganic/biopolymer composites and their applications. , 2020, , 95-112.		6
972	Band-gap engineering using metal-semiconductor interfaces for photocatalysis and supercapacitor application., 2020,, 391-451.		0
973	Materials and nano-structural processes for use in solid oxide fuel cells: a review. Journal of the Korean Ceramic Society, 2020, 57, 135-151.	1.1	29
974	Advanced Strategies in Thin Films Engineering by Magnetron Sputtering. Coatings, 2020, 10, 419.	1.2	4
975	Growth of 2D-molybdenum disulfide on top of magnetite and iron by chemical methods. Thin Solid Films, 2020, 701, 137943.	0.8	3
976	Technical Characteristics and Wear-Resistant Mechanism of Nano Coatings: A Review. Coatings, 2020, 10, 233.	1.2	45
977	Development of a superhydrophobic cellulose fabric via enzyme treatment and surface hydrophobization. Textile Reseach Journal, 2021, 91, 40-50.	1.1	7
978	Multiscale Modeling in Chemical Vapor Deposition Processes: Models and Methodologies. Archives of Computational Methods in Engineering, 2021, 28, 637-672.	6.0	19
979	New insight into reaction mechanisms of TiCl4 for the synthesis of TiO2 nanoparticles in H2O-assisted atmospheric-pressure CVS process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114958.	1.7	7
980	Multi-dimensional Additive Manufacturing., 2021,,.		6
981	A high performance flexible solid-state asymmetric supercapacitor based on composite of reduced graphene oxide@dysprosium sulfide nanosheets and manganese oxide nanospheres. Journal of Alloys and Compounds, 2021, 859, 157829.	2.8	25
982	Fabrication and electrochemical properties of boron-doped SiC. Carbon, 2021, 174, 240-247.	5.4	2
983	Ablation behavior of HfC coating with different thickness for carbon/carbon composites at ultra-high temperature. Journal of the European Ceramic Society, 2021, 41, 1769-1778.	2.8	42
984	Development of tantalum with highly hydrophilic surface and antimicrobial properties obtained by microâ€arc oxidation process. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 829-840.	1.6	14
985	Electrospun-based TiO ₂ nanofibers for organic pollutant photodegradation: a comprehensive review. Reviews in Chemical Engineering, 2022, 38, 641-668.	2.3	4

#	Article	IF	CITATIONS
986	Introduction to nanocomposites. , 2021, , 15-37.		2
987	Polymeric Materials for Eye Surface and Intraocular Applications. Biomacromolecules, 2021, 22, 223-261.	2.6	20
988	Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. Nanoscale, 2021, 13, 9055-9074.	2.8	16
989	Microbial Fuel Cells: Design and Evaluation of Catalysts and Device. , 2021, , 681-764.		1
990	Development of a Scanning Chemical Vapour Deposition Reactor for the realization of patterned and non-patterned depositions: a preliminary overview. Thin Solid Films, 2021, 717, 138446.	0.8	0
991	Chemical vapor deposition of oxide materials at atmospheric pressure. , 2021, , 101-119.		2
992	Anti-corrosion coatings derived from conducting polymeric nanocomposites., 2021,, 185-209.		0
993	Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field. Frontiers in Bioengineering and Biotechnology, 2020, 8, 616845.	2.0	30
994	Application of Thermal Spraying Techniques Used for the Surface Protection of Boiler Tubes in Power Plants. Advances in Chemical and Materials Engineering Book Series, 2021, , 112-134.	0.2	4
995	Flame pyrolysisâ€"a cost-effective approach for depositing thin functional coatings at atmospheric pressure. , 2021, , 139-179.		1
996	Trends in Functional Biomaterials in Tissue Engineering and Regenerative Medicine., 2021,, 215-269.		0
997	Electrospun Nanostructured Iron Oxides for High-Performance Lithium Ion Batteries. Materials Horizons, 2021, , 277-318.	0.3	1
998	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	11.8	244
999	Study of deposition parameters and growth kinetics of ZnO deposited by aerosol assisted chemical vapor deposition. RSC Advances, 2021, 11, 18493-18499.	1.7	15
1000	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	10.2	16
1001	Nanomaterial synthesis protocols. , 2021, , 73-85.		0
1002	Fabrication of Functionally Graded Metal and Ceramic Powders Synthesized by Electroless Deposition. Advances in Chemical and Materials Engineering Book Series, 2021, , 150-187.	0.2	3
1003	Preparation of photocatalysts by physical methodologies. , 2021, , 37-62.		1

#	ARTICLE	IF	CITATIONS
1004	Synthesis of nanomaterials for biofuel and bioenergy applications., 2021,, 97-165.		6
1005	Current Status on the Manufacturing of Nanomaterials for Proton Exchange Membrane Energy Systems by Vapor-Based Processes. Energy & Systems by Vapor-Based Processes.	2.5	10
1006	Rapid detection of free and bound toxins using molecularly imprinted silica/graphene oxide hybrids. Chemical Communications, 2021, 57, 4043-4046.	2.2	3
1007	Effects of Brazing Technology on Hermeticity of Alumina Ceramic-Metal Joint Used in Nuclear Power Plants. Frontiers in Materials, 2021, 7, .	1.2	6
1008	Mixed Films Based on MgO for Secondary Electron Emission Application: General Trends and MOCVD Prospects. Coatings, 2021 , 11 , 176 .	1.2	5
1009	Chemical Vapor Deposition and Its Application in VO2 Synthesis. , 2021, , 215-250.		O
1010	Overview of residual stress in MEMS structures: Its origin, measurement, and control. Journal of Materials Science: Materials in Electronics, 2021, 32, 6705-6741.	1.1	18
1011	Use of Plasma Technologies for Antibacterial Surface Properties of Metals. Molecules, 2021, 26, 1418.	1.7	29
1012	Integration of an Aerosol-Assisted Deposition Technique for the Deposition of Functional Biomaterials Applied to the Fabrication of Miniaturised Ion Sensors. Nanomaterials, 2021, 11, 938.	1.9	4
1013	Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. Nanomaterials, 2021, 11, 1085.	1.9	37
1014	Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review. Metals, 2021, 11, 711.	1.0	37
1015	Spontaneous formation of multilayer refractory carbide coatings in a molten salt media. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
1016	An overview of superhydrophobic ceramic membrane surface modification for oil-water separation. Journal of Materials Research and Technology, 2021, 12, 643-667.	2.6	90
1017	Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes. Electrochimica Acta, 2021, 377, 138092.	2.6	18
1018	Preparation of crystalline SiC coating from Si and C powder mixture using laser sublimation technique. Journal of the Ceramic Society of Japan, 2021, 129, 310-314.	0.5	0
1019	Highly selective and robust nanocomposite-based sensors for potassium ions detection. Applied Materials Today, 2021, 23, 101008.	2.3	2
1020	A novel and potentially scalable CVD-based route towards SnO2:Mo thin films as transparent conducting oxides. Journal of Materials Science, 2021, 56, 15921-15936.	1.7	8
1021	Area selective deposition of iron films using temperature sensitive masking materials and plasma electrons as reducing agents. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 043411.	0.9	O

#	ARTICLE	IF	CITATIONS
1022	Granule spray process for fabrication of adherent, low thermal conductivity ceramic coatings. Ceramics International, 2021, 47, 17921-17929.	2.3	4
1023	SILAR Deposition of Metal Oxide Nanostructured Films. Small, 2021, 17, e2101666.	5.2	33
1024	Novel Plasma Diagnostic Measurement of Electron Temperature and Electron Density Using Tone Burst Wave. IEEE Transactions on Plasma Science, 2021, 49, 2133-2140.	0.6	1
1025	3R-MoS ₂ in Review: History, Status, and Outlook. ACS Applied Energy Materials, 2021, 4, 7405-7418.	2.5	39
1026	Exploring the one-step synthesis of composite BiFeO3 based coatings. Ceramics International, 2021, 47, 18969-18976.	2.3	2
1027	Recent advances of high entropy alloys for aerospace applications: a review. World Journal of Engineering, 2023, 20, 43-74.	1.0	16
1028	Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)3 coating for carbon/carbon composites. Corrosion Science, 2021, 189, 109586.	3.0	35
1029	Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2. Surface and Coatings Technology, 2021, 420, 127332.	2.2	15
1030	An empirical literature analysis of adsorbent performance for methylene blue uptake from aqueous media. Journal of Environmental Chemical Engineering, 2021, 9, 105658.	3.3	80
1031	Phase transformation behavior in nanoalloys. Progress in Materials Science, 2021, 121, 100794.	16.0	14
1032	Progression in manufacturing of functionally graded materials and impact of thermal treatmentâ€"A critical review. Journal of Manufacturing Processes, 2021, 68, 1339-1377.	2.8	59
1033	A comprehensive investigation of phase evolution of Al-Si coating during the prolonged aging at 650 ŰC. Corrosion Science, 2021, 189, 109605.	3.0	6
1034	The wear and arc erosion behavior of novel copper based functionally graded electrical contact materials fabricated by hot pressing assisted electroless plating. Advanced Powder Technology, 2021, 32, 2873-2890.	2.0	66
1035	Three-dimensional foam-type current collectors for rechargeable batteries: A short review. Journal of Power Sources Advances, 2021, 10, 100065.	2.6	14
1036	Characterization of Dy2S3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Solid State Sciences, 2021, 119, 106693.	1.5	8
1037	Green CVD—Toward a sustainable philosophy for thin film deposition by chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	18
1038	Review of plasma electrolytic oxidation of titanium substrates: Mechanism, properties, applications and limitations. Applied Surface Science Advances, 2021, 5, 100121.	2.9	126
1039	Preparation and ablation behavior of HfC-SiC co-deposited coatings with different proportions. Corrosion Science, 2021, 192, 109853.	3.0	16

#	ARTICLE	IF	CITATIONS
1040	Proliferation of mouse fibroblasts and osteoblastic cells on ZrO2-, SiO2-, and ZnO-deposited pure titanium discs using atomic layer deposition. Materials Letters, 2021, 303, 130525.	1.3	3
1041	Effect of microstructure on the ablation behavior and mechanical properties of CVD-HfC coating. Corrosion Science, 2021, 192, 109815.	3.0	14
1042	Growth mechanism and ablation behavior of CVD-HfC coating on the surface of C/C composites and CVD-SiC coating. Corrosion Science, 2021, 192, 109819.	3.0	23
1043	Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022, 607, 869-880.	5.0	17
1044	A Facile and Non-toxic Approach to Develop Superhydrophobic Cotton Fabric Using Octadecylamine and Hexadecyltrimethoxysilane in Aqueous System. Fibers and Polymers, 2021, 22, 131-140.	1.1	9
1045	Nanomaterials: Synthesis, physicochemical characterization, and biopharmaceutical applications., 2021, , 33-70.		2
1046	Graphite Nanoplatelet–Carbon Nanotube Hybrids for Electrical Conducting Polymer Composites. Inorganic Materials Series, 2021, , 129-203.	0.5	0
1047	Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chemical Society Reviews, 2021, 50, 6914-6949.	18.7	91
1048	Micro/nanodeposition techniques for enhanced optical fiber sensors., 2021,, 531-573.		3
1049	Group 7 and 8 Compounds for Chemical Vapor Deposition. , 2021, , 824-841.		O
1050	Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics, 2021, 23, 20028-20037.	1.3	1
1051	Processing Routes for Ceramic Matrix Composites (CMCs). , 2021, , 20-36.		O
1053	Nano/Microfabrication Methods for Sensors and NEMS/MEMS., 2008,, 63-130.		1
1054	Chemical Vapour Deposition Systems Design. Engineering Materials and Processes, 2010, , 73-128.	0.2	2
1055	Thermodynamics and Kinetics of Chemical Vapour Deposition. Engineering Materials and Processes, 2010, , 129-164.	0.2	1
1056	Nano-based Composites and Their Synthesis. Nanotechnology in the Life Sciences, 2020, , 141-161.	0.4	3
1057	Bioactive Coatings. , 2018, , 361-406.		3
1058	Titanium Dioxide MOCVD Coating on CoCr Alloy and its Properties in Compare with Phosphate Coatings. IFMBE Proceedings, 2008, , 26-29.	0.2	1

#	Article	IF	Citations
1059	Nanocomposite Films for Wear Resistance Applications. , 2013, , 45-78.		8
1060	Diamond Films and Their Tribological Performances. , 2013, , 79-110.		2
1061	Chemical Vapor Deposition. , 2021, , 75-95.		2
1062	Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Solar Energy Materials and Solar Cells, 2018, 176, 19-29.	3.0	68
1063	Considering Critical Factors of Silicon/Graphite Anode Materials for Practical High-Energy Lithium-Ion Battery Applications. Energy & Energy & 2021, 35, 944-964.	2.5	85
1064	Film coating on a small sphere crossing an oil-water interface. Physical Review Fluids, 2018, 3, .	1.0	6
1065	Tribology of Nanostructured and Composite Coatings. , 2006, , .		5
1067	Development of the chemical vapor deposition process for applying molybdenum coatings on the components in assembly and engine construction. Eastern-European Journal of Enterprise Technologies, 2020, 2, 6-15.	0.3	7
1068	Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for deposition of hybrid nanostructures. Frontiers in Nanoscience and Nanotechnology, 2017, 3, .	0.3	22
1069	NUMERICAL SIMULATION OF THE DEPOSITION PROCESS AND THE EPITAXIAL GROWTH OF CADMIUM TELLURIDE THIN FILM IN A MOCVD REACTOR. Computational Thermal Sciences, 2013, 5, 177-188.	0.5	3
1070	On a Form of the First Variation of the Action Integral Over a Varied Domain. Izvestiya of Saratov University New Series Series: Mathematics Mechanics Informatics, 2014, 14, 199-209.	0.2	5
1071	Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration. The Open Orthopaedics Journal, 2016, 10, 824-835.	0.1	3
1072	SYNTHESIS AND CHARACTERIZATION OF Mg DOPED TiO2 THIN FILM FOR SOLAR CELL APPLICATION. International Journal of Engineering and Applied Sciences, 2015, 7, 1-1.	0.1	7
1073	Place of electrophoretic deposition among thin-film methods adapted to the solid oxide fuel cell technology: A short review. International Journal of Energy Production and Management, 2019, 4, 1-27.	1.9	23
1074	Morphological Changes Under the Influence of Surfactants of FeSe Fabricated from Single Source Precursor Via AACVD with Mechanism and Photocatalytic Activity. Research & Development in Material Science, 2019, 9, .	0.1	1
1075	Morphological study of SiC coating developed on 2D carbon composites using MTS precursor in a hot-wall vertical reactor. International Journal of Materials Research, 2012, 103, 1251-1256.	0.1	8
1076	Effect of Deposition Temperature on Microstructures and Properties of MoSi ₂ Coatings Prepared by Low Pressure Chemical Vapor Deposition. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 392-396.	0.6	4
1077	Influence of Chemical Vapor Reaction SiC Coating on Mechanical Properties of C/C Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 233-238.	0.6	1

#	Article	IF	CITATIONS
1078	Microwave Plasma CVD Grown Single Crystal Diamonds - A Review. Journal of Coating Science and Technology, 2016, 3, 75-99.	0.3	12
1079	Amorphous Carbon Deposited by a Novel Aerosol-Assisted Chemical Vapor Deposition for Photovoltaic Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 06FD05.	0.8	5
1080	Semiconducting Indium Oxide Sensor for Oxygen Detection., 2021,,.		0
1081	Thin Films/Properties and Applications. , 0, , .		6
1082	Residence Time Effect on the Growth of ZrC by Low Pressure Chemical Vapor Deposition. Journal of the Korean Ceramic Society, 2008, 45, 280-284.	1.1	0
1083	An $ ilde{A}_i$ lisis macrocin $ ilde{A}$ ©tico de la infiltraci $ ilde{A}$ 3n qu $ ilde{A}$ 4mica de vapor de capas de Si y Si/SiC en estructuras biom $ ilde{A}$ 3rficas de carbono. Avances En Ciencias E Ingenier $ ilde{A}$ as, 2009, 1 , .	0.1	0
1084	Modeling of Vapor-Phase Processes. , 2009, , 75-105.		0
1087	Effect of Sn on methane decomposition over Fe supported catalysts to produce carbon., 2011,, 225-232.		0
1090	Schadensanalyse und Schwachstellenbeseitigung. , 2012, , 95-176.		0
1091	Preparation of Silicon Carbide Ceramic Thick Films by Liquid Process. Journal of the Korean Ceramic Society, 2012, 49, 95-99.	1.1	0
1092	Nanometals. , 2012, , 699-720.		1
1093	Surface and Thin Film Analysis. , 2012, , 269-298.		0
1095	Tool Making. Lecture Notes in Production Engineering, 2013, , 201-310.	0.3	1
1096	Technological Limitations in Sensing Material Applications. Integrated Analytical Systems, 2014, , 387-392.	0.4	0
1097	Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition. Korean Journal of Materials Research, 2013, 23, 702-707.	0.1	1
1098	Physics and Chemistry of Colloidal Semiconductor Nanocrystals. Springer Series in Materials Science, 2014, , 15-38.	0.4	0
1099	Chemical Vapor Deposition for Film Deposition. , 2014, , 1-8.		0
1101	Heat and Mass Transfer Analysis for Coating Process of TiN Thin Film in a Tubular Reactor by Thermal CVD. Kagaku Kogaku Ronbunshu, 2014, 40, 425-431.	0.1	2

#	Article	IF	Citations
1102	Surface Modifications and Tribological Effect in Orthopedics Implants. Advances in Chemical and Materials Engineering Book Series, 2015, , 193-217.	0.2	0
1103	Polymer Coatings., 2015, , 1-8.		0
1104	Colloidal Photonic Crystal Architectures for Advanced Light Management Applications. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 119-149.	0.1	0
1105	Aluminum coating by fluidized bed chemical vapor deposition on austenitic stainless steels AISI 304 and AISI 316. DYNA (Colombia), 2015, 82, 22-29.	0.2	4
1106	Chemical Vapor Deposition (CVD). , 2018, , 1-5.		0
1107	WpÅ,yw procesu aluminiowania na mikrostrukturÄ™ nadstopu niklu Inconel 713C. InÅ»ynieria MateriaÅowa, 2015, 1, 22-25.	0.2	0
1109	Chemical Vapor Deposition of Inorganic Thin Films using Atmospheric Plasma: A Review of Research Trend. Journal of the Korean Institute of Surface Engineering, 2015, 48, 245-252.	0.1	0
1110	Effect of spray conditions on formation of one-dimensional fluorine-doped tin oxide thin films. , 0, , .		0
1111	Polymer Coatings. , 2016, , 3341-3349.		0
1112	Functionalized Surfaces: Biomolecular Surface Modification with Functional Polymers., 0,, 3526-3556.		0
1113	Physical and Chemical Vapor DepositionÂTechniques. SpringerBriefs in Materials, 2017, , 19-37.	0.1	0
1114	Polymer- and Carbon-Based Nanofibres for Energy Storage. Engineering Materials and Processes, 2017, , 307-335.	0.2	0
1115	Functionalized Surfaces: Biomolecular Surface Modification with Functional Polymers. , 2017, , 585-615.		0
1116	An Experimental Technique for Studying the Synthesis of Nano- and Microparticles from an Aerosol at Various Spatialâ°'Temporal Stages of a Process. Instruments and Experimental Techniques, 2018, 61, 445-449.	0.1	0
1117	Chemical Vapor Deposition (CVD)., 2019,, 239-243.		0
1118	Corrosion Performance of Conversion Treatments for Electrogalvanised Steel Sheet. Journal of Minerals and Materials Characterization and Engineering, 2019, 07, 307-329.	0.1	0
1121	Analytical Electron Microscopy of Silicon Nitride Nanostructures Synthesized from the Vapor Phase. Journal of Nanotechnology, 2019, 3, 8.	0.2	0
1122	Influence of annealing on electronic properties of thin AlN films deposited by magnetron sputtering method on silicon substrates. , 2019, , .		0

#	Article	IF	CITATIONS
1123	Chemical vapor deposition of highly oriented ceramic coatings in a high-intensity laser irradiation. Journal of the Ceramic Society of Japan, 2021, 129, 646-653.	0.5	5
1124	Properties, production methods and use of tin nanoxide. Surface, 2020, 12(27), 193-230.	0.4	1
1125	Graphene Synthesis and Antibody Immobilization Techniques for Immunosensors. , 2020, , 21-34.		1
1126	Performance of Composite Coating on Cutting Tools: Coating Technologies, Performance Optimization, and Their Characterization: A Review. Lecture Notes in Mechanical Engineering, 2020, , 43-57.	0.3	1
1127	A Systematic Method for Predictive <i>In Silico</i> Chemical Vapor Deposition. Journal of Physical Chemistry C, 2020, 124, 7725-7736.	1.5	10
1128	Morphologies and textures of rhenium coatings electrodeposited in chloride molten salts. Surface and Coatings Technology, 2021, 428, 127887.	2.2	2
1129	Perspectiveâ€"Current Understanding of the Halogenated Deposition Chemistry for Chemical Vapor Deposition of SiC. ECS Journal of Solid State Science and Technology, 2020, 9, 104006.	0.9	2
1130	Modeling and investigation of temperature fields at phase boundaries in powder mixtures undergoing melting and chemical transformation. Journal of Physics: Conference Series, 2020, 1658, 012031.	0.3	1
1131	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	16.0	181
1132	Organosilicon compounds as single-source precursors for SiCN films production. Journal of Organometallic Chemistry, 2022, 958, 122183.	0.8	7
1133	Highâ€Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research. Advanced Energy Materials, 2022, 12, 2102678.	10.2	40
1134	The Critical Roles of the Gas Flow in Fabricating Polymer Nanofibers: A Mini-review. Advanced Fiber Materials, 2022, 4, 162-170.	7.9	10
1135	Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community. Surface and Coatings Technology, 2022, 429, 127949.	2.2	51
1136	Recent Advances in Processing and Applications of Heterobimetallic Oxide Thin Films by Aerosolâ€Assisted Chemical Vapor Deposition. Chemical Record, 2022, 22, .	2.9	14
1137	Chemical Supercritical Fluid Infiltration of Pyrocarbon with Thermal Gradients: Deposition Kinetics and Multiphysics Modeling. Journal of Composites Science, 2022, 6, 20.	1.4	1
1138	A systematic review of the effects of deposition parameters on the properties of Inconel thin films. International Journal of Advanced Manufacturing Technology, $0, 1$.	1.5	1
1139	A novel PPTA/PPy composite organic solvent nanofiltration (OSN) membrane prepared by chemical vapor deposition for organic dye wastewater treatment. Journal of Water Process Engineering, 2022, 45, 102533.	2.6	13
1140	Unraveling highly efficient nanomaterial photocatalyst for pollutant removal: a comprehensive review and future progress. Materials Today Chemistry, 2022, 23, 100692.	1.7	26

#	Article	IF	CITATIONS
1141	Magnetron sputtered titanium carbide-based coatings: A review of science and technology. Vacuum, 2022, 197, 110853.	1.6	21
1142	A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchemical Journal, 2022, 175, 107147.	2.3	24
1143	Review on thermochromic materials: development, characterization, and applications. Journal of Coatings Technology Research, 2022, 19, 377-402.	1.2	48
1144	Metal Nanocompositesâ€"Emerging Advanced Materials for Efficient Carbon Capture. Energy, Environment, and Sustainability, 2022, , 91-127.	0.6	1
1145	A review on friction stir processing over other surface modification processing techniques of magnesium alloys. Functional Composites and Structures, 2022, 4, 015006.	1.6	3
1146	Synthesis of green nanocomposite material for engineering application., 2022,, 135-157.		2
1147	CFD modeling and optimal design of SiC deposition on the fuel combustion nozzle in a commercial CVD reactor. Ceramics International, 2022, 48, 11043-11055.	2.3	5
1148	Study on the Hydrophobic Modification of MTES/NH3 Vapor Surface Treatment for SiO2 Broadband Anti-Reflection Coating. Materials, 2022, 15, 912.	1.3	2
1149	Condensation ontrolled Toposelective Vapor Deposition in Nano―and Microcavities: Theory, Methods, Applications, and Related Technologies. Advanced Materials Interfaces, 0, , 2101314.	1.9	1
1150	Surface Engineering Towards Better Material Performance. RSC Nanoscience and Nanotechnology, 2022, , 106-134.	0.2	0
1151	Single-source heterometallic precursors to MOCVD Pd Cu alloy films for energy and catalysis applications., 2022,, 453-472.		1
1152	MOx materials by ALD method., 2022,, 169-199.		0
1153	Chemical Vapor Deposition for Advanced Polymer Electrolyte Fuel Cell Membranes. ChemElectroChem, 2022, 9, .	1.7	3
1154	Recent Advances in Encapsulation of Flexible Bioelectronic Implants: Materials, Technologies, and Characterization Methods. Advanced Materials, 2022, 34, e2201129.	11.1	41
1155	An overview of conventional and new advancements in high kappa thin film deposition techniques in metal oxide semiconductor devices. Journal of Materials Science: Materials in Electronics, 2022, 33, 7313-7348.	1.1	10
1156	î»/4–î»/4 Double-Layer Broadband Antireflective Coatings with Constant High Transmittance. Coatings, 2022, 12, 435.	1.2	0
1157	Surface Functionalized MXenes for Wastewater Treatment—A Comprehensive Review. Global Challenges, 2022, 6, .	1.8	14
1158	Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Frontiers in Bioengineering and Biotechnology, 2022, 10, 850110.	2.0	17

#	Article	IF	CITATIONS
1159	Investigation over effect of different carbon content on various properties of titanium carbon nitride (TiCN) coating grown on Si (100) substrate by chemical vapor deposition (CVD) process. European Physical Journal Plus, 2022, 137, 1.	1.2	5
1160	TEM study on the morphology and interfacial structure of Nb-coated Cf/SiC composite. Vacuum, 2022, 199, 110973.	1.6	5
1161	Plasma spraying Ti–Al–C based composite coatings from Ti/Al/graphite agglomerates: Synthesis, characterization and reaction mechanism. Vacuum, 2022, 200, 111036.	1.6	6
1162	Microwave-assisted titanium nitride coating processing using nitride powders in ambient atmosphere. Journal of Alloys and Compounds, 2022, 908, 164606.	2.8	7
1163	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	7.8	35
1164	Recent Advances in Design and Fabrication of Wear Resistant Materials and Coatings. Advances in Chemical and Materials Engineering Book Series, 2022, , 87-117.	0.2	3
1165	Chemical Vapor Deposition for Film Deposition. , 2008, , 255-260.		0
1166	Optics and Multilayer Coatings for EUVL Systems. , 0, , 133-134.		1
1167	Hydrogen-Free CVD Deposition of Molybdenum Coatings. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 76-83.	0.3	1
1168	A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. Inorganic and Nano-Metal Chemistry, 2023, 53, 366-387.	0.9	25
1169	Wettable TiB2 Cathode for Aluminum Electrolysis: A Review. Journal of Sustainable Metallurgy, 2022, 8, 613-624.	1.1	9
1170	Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Materials Today Bio, 2022, 15, 100270.	2.6	27
1171	Robust, comprehensive, sensitive analysis of flavour additives with carboxyl and hydroxyl groups in cigarette smoke combining silylation and gas chromatography-tandem mass spectrometry with an improved backflushing system. Journal of Chromatography A, 2022, 1675, 463171.	1.8	2
1172	Rational Design of Si(B)Cn Microstructures Using Direct Photolithography of Patternable Preceramic Photoresists. SSRN Electronic Journal, 0, , .	0.4	0
1173	Finishing of nonwoven fabrics. , 2022, , 471-508.		1
1174	Controlled CVD Growth of Highly ⟠111⟠©-Oriented 3C-SiC. Journal of Physical Chemistry C, 2022, 126, 9918-9925.	1.5	8
1175	A transferable prediction model of molecular adsorption on metals based on adsorbate and substrate properties. Physical Chemistry Chemical Physics, 2022, 24, 16545-16555.	1.3	3
1176	Mechanisms and Kinetics of the Hydrogen-Free CVD of Protective Tantalum Coatings. Journal of Surface Investigation, 2022, 16, 254-262.	0.1	0

#	Article	IF	CITATIONS
1177	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
1178	Drug and gene delivery by nanocarriers: Drug delivery process, in brief, using different oxides such as zinc, iron, calcium, polymeric, peptides, and in-vitro drug delivery process by silicon oxide (SiOx) and titanium dioxide (TiO2) nanodots (NDs)., 2022,, 281-320.		0
1179	Advances in Pretreatments for Electroless Copper Plating on Polymer Materials. Acta Chimica Sinica, 2022, 80, 659.	0.5	2
1181	A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Separation and Purification Technology, 2022, 298, 121627.	3.9	28
1182	A mechanistic study of Pt particle electrodeposition and growth on a self-assembled monolayer as an active template. Journal of Electroanalytical Chemistry, 2022, 920, 116638.	1.9	1
1183	Multilayered Nanocomposites Prepared through Quadruple-Layering Approach towards Enhanced Mechanical Performance. Molecules, 2022, 27, 4852.	1.7	1
1184	Recent Advances of Preparation and Application of Two-Dimension van der Waals Heterostructure. Coatings, 2022, 12, 1152.	1,2	6
1185	Characterization and Evaluation of Engineered Coating Techniques for Different Cutting Tools—Review. Materials, 2022, 15, 5633.	1.3	14
1186	Conformal and superconformal chemical vapor deposition of silicon carbide coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	1
1187	Microstructure and performance properties of 1200°C-servicing gradiently aluminized NiCrAlYSi coating for single-crystal nickel-based superalloy. Journal of Alloys and Compounds, 2022, 924, 166619.	2.8	7
1188	Effects of process parameters on preparation of Ti@SiO2 particles during fluidized bed chemical vapor deposition via design of experiments. Chemical Engineering Research and Design, 2022, 187, 425-433.	2.7	1
1189	Photocatalytic reduction of highly toxic lead and cadmium from aqueous solution., 2023,, 399-427.		1
1190	Additively manufactured functionally graded metallic materials., 2022,, 107-136.		0
1191	Preferential Chemical Vapor Deposition for the Synthesis of the Catalysts for Co Mediated Nox Selective Catalytic Reduction. SSRN Electronic Journal, 0, , .	0.4	0
1192	Review on plasma sprayed oxidation resistant coatings for C/C composites. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40, 465-475.	0.3	0
1193	Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact. Atoms, 2022, 10, 101.	0.7	3
1194	Rational design of SiBCN microstructures using direct photolithography of patternable preceramic photoresists. Materials and Design, 2022, 223, 111234.	3.3	2
1195	Metal chalcogenide materials: Synthesis, structure and properties. , 2022, , .		1

#	Article	IF	CITATIONS
1196	Characteristics and Corrosion Behavior of Sinter-Aluminized P/M Steels., 2022, 3, 179-193.		0
1197	A review on the preparation and application of BN composite coatings. Ceramics International, 2023, 49, 24-39.	2.3	15
1198	Diffraction-driven laser surface nanostructuring: Towards patterning with curved periodic surface structures. Applied Surface Science, 2023, 610, 155486.	3.1	5
1199	Studying the effects of processing parameters in the aerosol-assisted chemical vapour deposition of TiO2 coatings on glass for applications in photocatalytic NOx remediation. Applied Catalysis A: General, 2022, 648, 118924.	2.2	10
1200	Preferential chemical vapor deposition for the synthesis of the catalysts for CO mediated NOx selective catalytic reduction. Applied Surface Science, 2023, 610, 155545.	3.1	3
1201	Controllable preparation of novel "ridge-valley shaped―poly(p-phenylene terephthamide) (PPTA) hollow fiber nanofiltration membrane for thermal dye/salt wastewater separation. Journal of Water Process Engineering, 2022, 50, 103251.	2.6	3
1202	Development Status of Hard Coating Materials and Technology. Material Sciences, 2022, 12, 1070-1079.	0.0	0
1203	Effect of Solution and Dry Processing Techniques on the Optical and Transport Properties of Inorganic CsPbBr ₃ Perovskite Films. Journal of Physics: Conference Series, 2022, 2357, 012019.	0.3	2
1204	Double Zone Thermal CVD and Plasma Enhanced CVD Systems for Deposition of Films/Coatings with Eminent Conformal Coverage. Lecture Notes in Mechanical Engineering, 2023, , 273-283.	0.3	7
1205	Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts, 2022, 12, 1386.	1.6	80
1206	Preliminary Observations of Synthesized WS2 and Various Synthesis Techniques for Preparation of Nanomaterials. Lecture Notes in Mechanical Engineering, 2023, , 546-556.	0.3	7
1207	Chemically vapor deposited oxide-based thick film scintillators. Japanese Journal of Applied Physics, 2023, 62, 010612.	0.8	4
1208	Effect of operational conditions on the production of CoS2 nanoparticles. Applied Nanoscience (Switzerland), 0 , , .	1.6	0
1209	Preparation of Ti-coated diamond/WC-Co-based cemented carbide composites by microwave-evaporation titanium-plating of diamond particles and microwave hot-press sintering. Ceramics International, 2023, 49, 10139-10150.	2.3	1
1210	Effect of spray conditions on formation of one-dimensional fluorine-doped tin oxide thin films. , 2016, 4, 011102-011102.		0
1211	Flexible and ultrathin waterproof conductive cellular membranes based on conformally gold-coated PVDF nanofibers and their potential as gas diffusion electrode. Materials and Design, 2023, 225, 111441.	3.3	4
1212	Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants. Journal of Water Process Engineering, 2023, 51, 103360.	2.6	8
1213	Conductive Textiles for Signal Sensing and Technical Applications. Signals, 2023, 4, 1-39.	1.2	6

#	Article	IF	CITATIONS
1214	Recent Advances in Synthesis and Application of Metal Oxide Nanostructures in Chemical Sensors and Biosensors. Nanomaterials, 2022, 12, 4413.	1.9	15
1215	Optimization of process parameters and mechanism of strengthening and toughening of Nb-W alloy prepared by chemical vapor deposition based on orthogonal test. Materials Research Express, 0, , .	0.8	0
1216	Parameters to be considered for the development of highly photoactive TiO2 layers on aluminium substrates by RF magnetron sputtering for treating polluted air. Catalysis Today, 2022, , .	2,2	0
1217	Nanomaterials to address the genesis of antibiotic resistance in Escherichia coli. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
1218	Effects of injection conditions on temperature and component distributions in a CVD furnace for largeâ€size silica glass. Journal of the American Ceramic Society, 2023, 106, 2835-2851.	1.9	3
1219	Surface modification technologies for enhancing the tribological properties of cemented carbides: A review. Tribology International, 2023, 180, 108257.	3.0	14
1220	Substitutional pâ€Type Doping in NbS ₂ –MoS ₂ Lateral Heterostructures Grown by MOCVD. Advanced Materials, 2023, 35, .	11.1	7
1221	Diagnostic Techniques for Electrical Discharge Plasma Used in PVD Coating Processes. Coatings, 2023, 13, 147.	1.2	4
1222	Effect of the orientation polarization and texturing on nano-mechanical and piezoelectric properties of PZT (52/48) films. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	5
1223	Green Synthesis Method of ZnO Nanoparticles using Extracts of Zingiber officinale and Garlic Bulb (Allium sativum) and Their Synergetic Effect for Antibacterial Activities. Journal of Nanomaterials, 2023, 2023, 1-9.	1.5	5
1224	Magnesium based alloys and composites: Revolutionized biodegradable temporary implants and strategies to enhance their performance. Materialia, 2023, 27, 101680.	1.3	5
1225	Facile fabrication of NiFeB deposited flexible carbon cloth electrode towards overall water splitting in alkaline and saline solutions. Electrochimica Acta, 2023, 441, 141779.	2.6	4
1226	Effect of the nanofilm-coated zirconia ceramic on resin cement bond strength. Journal of Dental Research, Dental Clinics, Dental Prospects, 2022, 16, 170-178.	0.4	2
1227	Synchronized Improvements in the Protective and Bioactive Properties of Plasma-Electrolyzed Layers via Cellulose Microcrystalline. ACS Biomaterials Science and Engineering, 2023, 9, 197-210.	2.6	11
1228	Photocatalytic NO <i></i> Oxidation of BiOCl Nanostructure-Based Films Grown Using Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Nano Materials, 2023, 6, 738-749.	2.4	2
1229	Recent progress in waveguide-integrated photodetectors based on 2D materials for infrared detection. Journal Physics D: Applied Physics, 2023, 56, 113001.	1.3	8
1230	Enhancement of voltammetric properties of silver nanoparticles doped ZnO nanorods for glucose biosensing. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1231	Application and translation of nano calcium phosphates in biomedicine. , 2023, , 19-57.		0

#	Article	IF	CITATIONS
1232	Research progress on SiMOC coatings prepared by polymer pyrolysis and chemical vapor deposition. Heat Treatment and Surface Engineering, 2023, 5, .	0.4	0
1233	Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends in Food Science and Technology, 2023, 135, 144-172.	7.8	8
1234	Structural and optical properties of DC sputtered AlxOy/Cr/AlxOy multilayer selective absorber coatings. Physica B: Condensed Matter, 2023, 657, 414783.	1.3	1
1235	Oxidation behavior and interfacial microstructure evolution of MoSi2/MoB coatings on Mo1 substrate at 600 and 1400°C. International Journal of Refractory Metals and Hard Materials, 2023, 113, 106189.	1.7	6
1236	Impact of self-assembled monolayer templates on electrodeposition of Pt particles. Journal of Electroanalytical Chemistry, 2023, 931, 117194.	1.9	O
1237	Fabrication of sensors. , 2023, , 143-174.		1
1238	Biased quartz crystal microbalance method for studies of chemical vapor deposition surface chemistry induced by plasma electrons. Review of Scientific Instruments, 2023, 94, .	0.6	1
1239	Fabrication, Characterization, and Design of Facilitated Transport Membranes (FTMs). Green Energy and Technology, 2023, , 47-91.	0.4	2
1240	Advances in surface modification and functionalization for tailoring the characteristics of thin films and membranes via chemical vapor deposition techniques. Journal of Applied Polymer Science, 2023, 140, .	1.3	7
1241	Synthesis and Characterization of Ether Adducts of Thorium Tetrahydroborate Th(BH ₄) ₄ and Chemical Vapor Deposition of Thorium Boride Thin Films. Inorganic Chemistry, 2023, 62, 4106-4115.	1.9	0
1242	"MASKING OF TASTE OF PHARMACEUTICALS - A CURRENT REVIEW ON USEFUL TECHNOLOGIES― , 2023, , 4	7-51.	0
1243	Research on synthesis and nucleation mechanism of silicon nanowire by silver catalysis in molten salt. Ceramics International, 2023, 49, 18776-18785.	2.3	1
1244	Advances in Preparation Technology of Tool Coatings. , 2023, 4, 146-148.		0
1245	Ultrashort pulse selective laser ablation of multi-layer thin film systems. , 2023, , .		0
1246	Infrared Photodetection from 2D/3D van der Waals Heterostructures. Nanomaterials, 2023, 13, 1169.	1.9	9
1247	Graphene-based 2D materials: recent progress in corrosion inhibition. , 2023, , 159-186.		2
1248	Inorganic–inorganic mixed nanocomposites as anticorrosive coatings. , 2023, , 329-347.		0
1249	Thin Films of Wide Band Gap II-VI Semiconductor Compounds: Features of Preparation., 2023,, 233-275.		1

#	Article	IF	CITATIONS
1250	Layer-by-Layer Self-Assembly. , 2008, , 117-163.		0
1251	Fabrication Routes of Graphene. Engineering Materials, 2023, , 53-90.	0.3	0
1257	Chemical methods for the growth of oxides. , 2023, , 165-199.		0
1259	Recent developments in magnetron-sputtered silicon nitride coatings of improved mechanical and tribological properties for extreme situations. Journal of Materials Science, 2023, 58, 9755-9804.	1.7	7
1261	Green synthesis of graphene and its derivatives. , 2023, , 305-318.		0
1262	Recent Development in the Production and Utilization of Plant Biomass-Based Nanomaterials. Green Energy and Technology, 2023, , 331-368.	0.4	1
1266	The State of Electrolytic Plasma in Synthesis of Oxide Ceramic Coatings on the Magnesium Basis. Lecture Notes in Mechanical Engineering, 2023, , 258-269.	0.3	0
1269	Well-Controlled Nanostructured Growth: Successive Ionic Layer Adsorption And Reaction. , 2023, , 97-158.		0
1272	Modern Coating Processes and Technologies. Materials Horizons, 2023, , 33-80.	0.3	0
1278	A chemist's guide to photoelectrode development for water splitting – the importance of molecular precursor design. , 2023, 1, 832-873.		2
1282	Additive Manufacturing of Functionally Graded Materials: A Comprehensive Review. International Journal of Precision Engineering and Manufacturing, 2024, 25, 165-197.	1.1	1
1287	Coating Deposition Techniques. , 2023, , 33-50.		0
1288	Health and safety issues in emerging surface engineering techniques. , 2023, , .		0
1303	Heat Resistant Coatings—An Overview. Engineering Materials, 2024, , 403-430.	0.3	0
1304	Protective Coatings for High-Temperature Thermoelectric Materials. Engineering Materials, 2024, , 311-349.	0.3	0
1318	Thin film fabrication for wearable electronics: Journey so far. , 2024, , .		0
1320	Smart polymer-based self-cleaning coatings for commercial solar cells and solar panels. , 2024, , 409-435.		0
1321	Introduction to nanotechnology. , 2024, , 1-26.		0

#	Article	IF	CITATIONS
1322	Recent advances in aluminizing of mild steel plates. , 2024, , .		0
1328	Ceramic-based smart thin films. , 2024, , 85-115.		0
1330	Precursor Materials for Semiconductor Thin Films. Indian Institute of Metals Series, 2024, , 191-217.	0.2	0