The removal of colour from textile wastewater using whether wastewater using whether the second seco

Dyes and Pigments 58, 179-196 DOI: 10.1016/s0143-7208(03)00064-0

Citation Report

#	Article	IF	CITATIONS
1	Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain. Applied and Environmental Microbiology, 2004, 70, 2279-2288.	1.4	133
2	Predicting Dye Biodegradation from Redox Potentials. Biotechnology Progress, 2004, 20, 1588-1592.	1.3	76
3	Organic synthetic dye degradation by modified pinhole discharge. European Physical Journal D, 2004, 54, C958-C963.	0.4	18
4	Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 2004, 61, 121-139.	2.0	650
5	Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 2005, 40, 997-1026.	1.8	1,615
6	Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochemistry, 2005, 40, 2443-2454.	1.8	88
7	Biosorption of Acid Red 274 (AR 274) on Dicranella varia: Determination of equilibrium and kinetic model parameters. Process Biochemistry, 2005, 40, 3559-3568.	1.8	131
8	Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 2005, 30, 38-70.	11.8	1,812
9	Kinetic modeling of the adsorption of basic dyes by kudzu. Journal of Colloid and Interface Science, 2005, 286, 101-109.	5.0	137
10	Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid removal. FEMS Microbiology Letters, 2005, 246, 143-149.	0.7	26
11	Decolorization of bromoamine acid by a newly isolated strain of Sphingomonas xenophaga QYY and its resting cells. Biochemical Engineering Journal, 2005, 27, 104-109.	1.8	34
12	Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 2005, 175, 305-316.	4.0	475
13	Removal of vat and disperse dyes from residual pad liquors. Dyes and Pigments, 2005, 64, 57-61.	2.0	41
14	Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO. Dyes and Pigments, 2005, 66, 189-196.	2.0	151
15	Characterization of the textile anthraquinone dye Reactive Blue 4. Dyes and Pigments, 2005, 67, 35-46.	2.0	108
16	Decolorization of diazo-dye Reactive Blue 172 byPseudomonas aeruginosa NBAR12. Journal of Basic Microbiology, 2005, 45, 407-418.	1.8	72
17	Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 2005, 21, 667-672.	1.7	230
18	Effect of Environmental Conditions on Hydrophobicity of Marine Bacteria Adapted to Textile Effluent Treatment. World Journal of Microbiology and Biotechnology, 2005, 21, 1623-1631.	1.7	17

#	Article	IF	CITATIONS
19	Decolorization kinetics of the azo dye Reactive Red 2 under methanogenic conditions: effect of long-term culture acclimation. Biodegradation, 2005, 16, 135-146.	1.5	42
20	Decolourization of Industrial Effluents – Available Methods and Emerging Technologies – A Review. Reviews in Environmental Science and Biotechnology, 2005, 4, 245-273.	3.9	524
21	Combined anaerobic–aerobic treatment of azo dyes—A short review of bioreactor studies. Water Research, 2005, 39, 1425-1440.	5.3	660
22	Degradation of Dyes. , 2005, , 111-122.		13
23	Anaerobic Membrane Bioreactors: Applications and Research Directions. Critical Reviews in Environmental Science and Technology, 2006, 36, 489-530.	6.6	367
24	Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Research, 2006, 40, 45-52.	5.3	190
25	Kinetics of anaerobic biodecolourisation of azo dyes. Water Science and Technology, 2006, 54, 73-79.	1.2	8
26	The removal of Acid Red 274 from wastewater: Combined biosorption and biocoagulation with Spirogyra rhizopus. Dyes and Pigments, 2006, 71, 83-89.	2.0	103
27	Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 2006, 97, 1061-1085.	4.8	3,556
28	Decolorization of reactive dyes by mixed cultures isolated from textile effluent under anaerobic conditions. Enzyme and Microbial Technology, 2006, 38, 926-930.	1.6	73
29	Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus. Journal of Hazardous Materials, 2006, 135, 355-364.	6.5	95
30	Removal of cationic dyes from aqueous solution using an anionic poly-Î ³ -glutamic acid-based adsorbent. Journal of Hazardous Materials, 2006, 137, 226-234.	6.5	91
31	Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. Journal of Hazardous Materials, 2006, 137, 899-908.	6.5	233
32	Bioremediation of Textile Azo Dyes by Trichophyton rubrum LSK-27. World Journal of Microbiology and Biotechnology, 2006, 22, 1027-1031.	1.7	26
33	Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium. World Journal of Microbiology and Biotechnology, 2006, 22, 163-168.	1.7	86
34	Bioaugmentation of Bromoamine Acid Degradation with Sphingomonas xenophaga QYY and DNA Fingerprint Analysis of Augmented Systems. Biodegradation, 2006, 17, 83-91.	1.5	27
35	Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Applied Microbiology and Biotechnology, 2006, 72, 1316-1321.	1.7	112
36	Reactive azo dye reduction byShewanella strain J18 143. Biotechnology and Bioengineering, 2006, 95, 692-703.	1.7	114

#	Article	IF	CITATIONS
37	An Overview on the Use of Microbial and Enzymatic Systems for Dye Biotransformation. Journal of Natural Fibers, 2007, 3, 69-80.	1.7	3
38	Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Research, 2007, 41, 985-992.	5.3	97
39	Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chemistry and Ecology, 2007, 23, 409-425.	0.6	40
40	Degradation of Orange G by Laccase: Fungal Versus Enzymatic Process. Environmental Technology (United Kingdom), 2007, 28, 1103-1110.	1.2	28
41	Naturalised Dyes: A Simple Straightforward Synthetic Route to a New Class of Dyes – Glycoazodyes (GADs). European Journal of Organic Chemistry, 2007, 2007, 588-595.	1.2	15
42	Decolorizing textile dye wastewater by anoxic/aerobic treatment. Journal of Chemical Technology and Biotechnology, 2007, 82, 16-24.	1.6	15
43	Impact of ozonation on subsequent treatment of azo dye solutions. Journal of Chemical Technology and Biotechnology, 2007, 82, 1012-1022.	1.6	29
44	Sono-sorption as a new method for the removal of methylene blue from aqueous solution. Ultrasonics Sonochemistry, 2007, 14, 599-604.	3.8	47
45	Residual color profiles of reactive dyes mixture during a chemical flocculation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 45-53.	2.3	22
46	Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater. Bioresource Technology, 2007, 98, 1501-1504.	4.8	73
47	Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR). Bioresource Technology, 2007, 98, 2053-2056.	4.8	36
48	Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 2007, 98, 2369-2385.	4.8	1,114
49	Statistical design of experiments as a tool for optimizing the batch conditions to methylene blue biosorption on yellow passion fruit and mandarin peels. Dyes and Pigments, 2007, 72, 256-266.	2.0	102
50	The oxidation kinetics of reduction intermediate product of methyl red with hydrogen peroxide. Dyes and Pigments, 2007, 72, 372-377.	2.0	9
51	Oxidation of azo textile soluble dyes with hydrogen peroxide in the presence of Cu(II)–chitosan heterogeneous catalysts. Dyes and Pigments, 2007, 73, 19-24.	2.0	41
52	Inhibitory effects of chromium(VI) and Remazol Black B on chromium(VI) and dyestuff removals by Trametes versicolor. Enzyme and Microbial Technology, 2007, 40, 1167-1174.	1.6	95
53	Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chemical Engineering and Processing: Process Intensification, 2007, 46, 1020-1029.	1.8	141
54	Nanophotocatalysis using nanoparticles of titania. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 1-6.	2.0	97

#	Article	IF	CITATIONS
55	Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films. Journal of Hazardous Materials, 2007, 146, 73-80.	6.5	59
56	Low cost removal of reactive dyes using wheat bran. Journal of Hazardous Materials, 2007, 146, 408-416.	6.5	146
57	New insights into solar UV-protective properties of natural dye. Journal of Cleaner Production, 2007, 15, 366-372.	4.6	129
58	Decolorisation optimisation of a monoazo disperse dye with Bacillus firmus. Identification of a degradation product. Coloration Technology, 2007, 123, 184-190.	0.7	19
59	Decolourisation of a synthetic textile effluent using a bacterial consortium. Biotechnology Journal, 2007, 2, 370-373.	1.8	3
60	Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 2007, 74, 230-238.	1.7	57
61	Fe(III)-enhanced Azo Reduction by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 2007, 74, 1342-1349.	1.7	40
62	Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolorationis S12. Applied Microbiology and Biotechnology, 2007, 75, 647-654.	1.7	39
63	Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions. Applied Microbiology and Biotechnology, 2007, 76, 719-726.	1.7	96
64	Removal of anionic dyes from aqueous solution using poly [N-vinyl pyrrolidone/2-(methacryloyloxyethyl) trimethyl ammonium chloride] superswelling hydrogels. Polymer Bulletin, 2007, 58, 359-369.	1.7	30
65	Spectroscopic Investigations on the Interaction of Crystal Violet with Nonionic Micelles of Brij and Igepal Surfactants in Aqueous Media. Journal of Solution Chemistry, 2007, 36, 563-571.	0.6	21
66	Residual dyebath purification using a system of constructed wetland. Dyes and Pigments, 2007, 74, 503-507.	2.0	17
67	Residual color profiles of simulated reactive dyes wastewater in flocculation processes by polydiallyldimethylammoniumchloride. Separation and Purification Technology, 2007, 57, 356-365.	3.9	20
68	The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment. Journal of Environmental Management, 2008, 88, 76-82.	3.8	58
69	Capacity of activated carbon in the removal of acid brilliant blue: Determination of equilibrium and kinetic model parameters. Chemical Engineering Journal, 2008, 139, 453-461.	6.6	63
70	Reduction of pigment dispersions by Shewanella strain J18 143. Dyes and Pigments, 2008, 76, 696-705.	2.0	15
71	A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation, 2008, 19, 15-19.	1.5	87
72	Biosorption of Methylene Blue from Aqueous Solutions by Hazelnut Shells: Equilibrium, Parameters and Isotherms. Water, Air, and Soil Pollution, 2008, 192, 141-153.	1.1	96

#	Article	IF	CITATIONS
73	Biodegradation of avermectin by Bacteroidetes endosymbiont strain LYH. World Journal of Microbiology and Biotechnology, 2008, 24, 361-366.	1.7	10
74	Decolorization of 1-aminoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga. World Journal of Microbiology and Biotechnology, 2008, 24, 1147-1152.	1.7	12
75	Decolorization of Fast red by metabolizing cells of Oenococcus oeni ML34. World Journal of Microbiology and Biotechnology, 2008, 24, 1521-1527.	1.7	15
76	Autocatalysis in Reactive Black 5 biodecolorization by Rhodopseudomonas palustris W1. Applied Microbiology and Biotechnology, 2008, 80, 907-915.	1.7	27
77	Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1123-1129.	1.4	43
78	Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP). Journal of Environmental Management, 2008, 87, 177-192.	3.8	19
79	Potential method to improve the treatment efficiency of persistent contaminants in industrial wastewater. Journal of Hazardous Materials, 2008, 150, 438-445.	6.5	6
80	Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. Journal of Hazardous Materials, 2008, 151, 730-737.	6.5	193
81	Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Journal of Hazardous Materials, 2008, 152, 263-275.	6.5	144
82	Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. Journal of Hazardous Materials, 2008, 154, 703-710.	6.5	66
83	Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. Journal of Hazardous Materials, 2008, 158, 507-516.	6.5	120
84	Kinetic study approach of remazol black-B use for the development of two-stage anoxic–oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. Journal of Hazardous Materials, 2008, 159, 319-328.	6.5	82
85	Concentration of organic contaminants by ultrafiltration. Desalination, 2008, 221, 358-369.	4.0	7
86	Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination, 2008, 222, 348-356.	4.0	99
87	Innovative integrated process for the treatment of azo dyes: coupling of photocatalysis and biological treatment. Desalination, 2008, 222, 331-339.	4.0	46
88	Adsorption behavior of cationic dyes on citric acid esterifying wheat straw: kinetic and thermodynamic profile. Desalination, 2008, 230, 220-228.	4.0	142
89	Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes and Pigments, 2008, 76, 76-81.	2.0	68
90	The effects of reductant and carbon source on the microbial decolorization of azo dyes in an an an an an an an	2.0	57

#	Article	IF	CITATIONS
91	Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and Pigments, 2008, 77, 415-426.	2.0	362
92	Treatment of dye-rich wastewater by an immobilized thermophilic cyanobacterial strain: Phormidium sp Ecological Engineering, 2008, 32, 244-248.	1.6	63
93	Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresource Technology, 2008, 99, 562-569.	4.8	156
94	Synthesis of Î ² -cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresource Technology, 2008, 99, 526-531.	4.8	131
95	Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes. Bioresource Technology, 2008, 99, 1225-1235.	4.8	74
96	Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Bioresource Technology, 2008, 99, 3692-3699.	4.8	115
97	Kinetics and thermodynamics of basic dye sorption on phosphoric acid esterifying soybean hull with solid phase preparation technique. Bioresource Technology, 2008, 99, 4510-4514.	4.8	37
98	Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresource Technology, 2008, 99, 7115-7121.	4.8	111
99	Applications of chitosan beads and porous crab shell powder combined with solid-phase microextraction for detection and the removal of colour from textile wastewater. Carbohydrate Polymers, 2008, 72, 550-556.	5.1	21
100	Novel bioreactor design for decolourisation of azo dye effluents. Chemical Engineering Journal, 2008, 143, 293-298.	6.6	36
101	Pretreatment of textile dyeing wastewater using an anoxic baffled reactor. Bioresource Technology, 2008, 99, 7886-7891.	4.8	22
102	Characteristics and phylogenetic analysis of the facultative anaerobic dissimilatory azoreducing bacteria from activated sludge. International Biodeterioration and Biodegradation, 2008, 61, 313-318.	1.9	16
103	Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. International Biodeterioration and Biodegradation, 2008, 62, 263-269.	1.9	139
104	Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. Journal of Environmental Sciences, 2008, 20, 1218-1225.	3.2	43
105	Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microbial Biotechnology, 2008, 1, 40-52.	2.0	68
106	The Fixed-Bed Study of Dye Removal on Chitosan Beads at High pH. Industrial & Engineering Chemistry Research, 2008, 47, 8796-8800.	1.8	34
107	Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes. Chemosphere, 2008, 72, 1816-1822.	4.2	71
108	Comparative Study of Methylene Blue Sorbed on Crude and Monosodium Glutamate Functionalized Sawdust. Journal of Health Science, 2008, 54, 623-628.	0.9	12

#	Article	IF	Citations
" 109	Comparative decolorizing efficiency of textile dye by mesophilic and thermophilic anaerobic treatments. Journal of Water and Environment Technology, 2008, 6, 9-18.	0.3	0
110	Modern Applied Science, Vol. 3, No. 7, July 2009, all in one file, Part A. Modern Applied Science, 2009, 3, .	0.4	0
111	Kinetic Study on Decolorization of the Dye Acid Orange Using the Fungus Phanerochate Chrysosporium. Modern Applied Science, 2009, 3, .	0.4	4
112	A Comparison of Three Isolines of Cotton Differing in Fiber Color for Yield, Quality, and Photosynthesis. Crop Science, 2009, 49, 983-989.	0.8	27
113	Descoloração redutiva do corante azo RR2 na ausência e presença de mediador redox e aceptor de elétrons nitrato. Engenharia Sanitaria E Ambiental, 2009, 14, 275-284.	0.1	7
114	Decolorization of Cibacron Yellow S-3R Using Coriolus Versicolor (MTCC 138). Modern Applied Science, 2009, 2, .	0.4	1
115	Photocatalytic Degradation of Crystal Violet Using Prepared Bismuth Titanate Mixed Oxide. , 2009, , .		0
116	Application of weakly and strongly basic anion exchangers for the removal of brilliant yellow from aqueous solutions. Desalination and Water Treatment, 2009, 2, 160-165.	1.0	12
117	Biodegradation of anthraquinone dyes by Shewanella sp. NTOU1 under anaerobic conditions. Water Science and Technology, 2009, 60, 889-899.	1.2	5
118	Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. Journal of Environmental Sciences, 2009, 21, 960-964.	3.2	44
119	Separation of dyes using composite carbon membranes. AICHE Journal, 2009, 55, 1712-1722.	1.8	6
120	Electrochemical Degradation of Remazol Black B Dye Effluent. Clean - Soil, Air, Water, 2009, 37, 889-900.	0.7	61
121	Preparation of poly (MAA)â€crosslinked pregelled starch graft copolymer and its application in waste water treatments. Journal of Applied Polymer Science, 2009, 112, 2838-2846.	1.3	16
122	Adsorption of anionic textile dye Acid Green 9 from aqueous solution onto weak or strong base anion exchangers. Journal of Applied Polymer Science, 2009, 113, 615-627.	1.3	31
123	Degradation analysis of Reactive Red 198 by hairy roots of Tagetes patula L. (Marigold). Planta, 2009, 230, 725-735.	1.6	97
124	Adsorption studies of Toluidine Blue from aqueous solutions onto gypsum. Chemical Engineering Journal, 2009, 150, 90-95.	6.6	84
125	Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 2009, 90, 2313-2342.	3.8	2,877
126	Anaerobic decolorization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 500-504.	2.7	71

#	Article	IF	CITATIONS
127	Preparation of nanoporous composite carbon membrane for separation of rhodamine B dye. Journal of Membrane Science, 2009, 329, 2-10.	4.1	100
128	Reuse of printing and dyeing wastewater in processess assessed by pilot-scale test using combined biological process and sub-filter technology. Journal of Cleaner Production, 2009, 17, 111-114.	4.6	59
129	Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by Bacillus sp. VUS. Biodegradation, 2009, 20, 777-787.	1.5	85
130	Visible light photodegradation of dyes over mesoporous titania prepared by using chrome azurol S as template. Research on Chemical Intermediates, 2009, 35, 751-760.	1.3	15
131	Vermicompost for Tinted Organic Cationic Dyes Retention. Water, Air, and Soil Pollution, 2009, 200, 227-235.	1.1	22
132	Comparative study on methyl orange removal by growing cells and washed cell suspensions of Lactobacillus casei TISTR 1500. World Journal of Microbiology and Biotechnology, 2009, 25, 973-979.	1.7	4
133	Reactive Blue 4 Decolorization under Mesophilic and Thermophilic Anaerobic Treatments. Applied Biochemistry and Biotechnology, 2009, 152, 405-417.	1.4	12
134	Combined MBR with Photocatalysis/Ozonation for Bromoamine Acid Removal. Applied Biochemistry and Biotechnology, 2009, 159, 664-672.	1.4	11
135	Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers and Polymers, 2009, 10, 636-642.	1.1	85
136	Epichlorohydrin and aspartic acid incorporated into sawdust and application as sorbent for methylene blue. Wood Science and Technology, 2009, 43, 183-193.	1.4	6
136 137		1.4 1.6	6 9
	methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions.		
137	methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions. Polymers for Advanced Technologies, 2009, 20, 308-311. Special traits of decomposition of azo dyes by anaerobic microbial communities. Applied Biochemistry	1.6	9
137 138	 methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions. Polymers for Advanced Technologies, 2009, 20, 308-311. Special traits of decomposition of azo dyes by anaerobic microbial communities. Applied Biochemistry and Microbiology, 2009, 45, 176-181. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous 	1.6 0.3	9 10
137 138 139	 methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions. Polymers for Advanced Technologies, 2009, 20, 308-311. Special traits of decomposition of azo dyes by anaerobic microbial communities. Applied Biochemistry and Microbiology, 2009, 45, 176-181. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267. Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource 	1.6 0.3 2.2	9 10 141
137 138 139 140	 methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions. Polymers for Advanced Technologies, 2009, 20, 308-311. Special traits of decomposition of azo dyes by anaerobic microbial communities. Applied Biochemistry and Microbiology, 2009, 45, 176-181. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267. Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 2009, 100, 1094-1099. Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of 	1.6 0.3 2.2 4.8	9 10 141 58
137 138 139 140 141	 methylene blue. Wood Science and Technology, 2009, 43, 183-193. Preparation of pyridine sulphonamide resin for the removal of dyes from aqueous solutions. Polymers for Advanced Technologies, 2009, 20, 308-311. Special traits of decomposition of azo dyes by anaerobic microbial communities. Applied Biochemistry and Microbiology, 2009, 45, 176-181. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267. Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 2009, 100, 1094-1099. Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of Sphingomonas herbicidovorans. International Biodeterioration and Biodegradation, 2009, 63, 88-92. Selection of Pseudomonas for industrial textile dyes decolourization. International Biodeterioration 	1.6 0.3 2.2 4.8 1.9	9 10 141 58 17

#	Article	IF	CITATIONS
145	Eco-friendly biodegradation of a reactive textile dye Golden Yellow HER by Brevibacillus laterosporus MTCC 2298. International Biodeterioration and Biodegradation, 2009, 63, 582-586.	1.9	27
146	Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride. Ultrasonics Sonochemistry, 2009, 16, 455-461.	3.8	81
147	Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel. Journal of Hazardous Materials, 2009, 161, 102-110.	6.5	252
148	Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: Kinetic and isotherm studies. Journal of Hazardous Materials, 2009, 161, 132-141.	6.5	238
149	Sorption of some textile dyes by beech wood sawdust. Journal of Hazardous Materials, 2009, 162, 1457-1464.	6.5	91
150	Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. Journal of Hazardous Materials, 2009, 165, 100-110.	6.5	282
151	Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. Journal of Hazardous Materials, 2009, 167, 1-9.	6.5	622
152	Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. Journal of Hazardous Materials, 2009, 167, 383-392.	6.5	177
153	Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. Journal of Hazardous Materials, 2009, 167, 995-1001.	6.5	143
154	Oxidative degradations of reactive blue 4 dye by different advanced oxidation methods. Journal of Hazardous Materials, 2009, 168, 129-136.	6.5	103
155	Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 2009, 168, 806-812.	6.5	448
156	Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. Journal of Hazardous Materials, 2009, 169, 297-301.	6.5	110
157	The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution. Journal of Hazardous Materials, 2009, 170, 690-698.	6.5	63
158	Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. Journal of Hazardous Materials, 2009, 170, 836-844.	6.5	156
159	A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes' carbons. Journal of Hazardous Materials, 2009, 171, 83-92.	6.5	163
160	Biological decolorization of the reactive dyes Reactive Black 5 by a novel isolated bacterial strain Enterobacter sp. EC3. Journal of Hazardous Materials, 2009, 171, 654-659.	6.5	146
161	Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. Journal of Hazardous Materials, 2009, 172, 99-107.	6.5	213
162	Synthesis and application of calix[4]arene based resin for the removal of azo dyes. Journal of Hazardous Materials, 2009, 172, 234-239.	6.5	57

#	Article	IF	CITATIONS
163	Equilibrium and kinetic studies on the adsorption of acidic dye by the gel anion exchanger. Journal of Hazardous Materials, 2009, 172, 868-874.	6.5	45
164	Stimulation of reactive dye removal by cyanobacteria in media containing triacontanol hormone. Journal of Hazardous Materials, 2009, 172, 1635-1639.	6.5	40
165	Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochemistry, 2009, 44, 446-452.	1.8	113
166	Electrochemical degradation of distillery spent wash using catalytic anode: Factorial design of experiments. Chemical Engineering Journal, 2009, 146, 22-29.	6.6	70
167	Treatment of artificial textile dye effluent containing Direct Yellow 12 by orange peel carbon. Desalination, 2009, 238, 210-232.	4.0	190
168	Biosorption properties of dried Neurospora crassa for the removal of Burazol Blue ED dye. Desalination, 2009, 249, 273-278.	4.0	31
169	Treatment of dye (Remazol Blue) and heavy metals using yeast cells with the purpose of managing polluted textile wastewaters. Ecological Engineering, 2009, 35, 128-134.	1.6	79
170	Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater. Bioresource Technology, 2009, 100, 244-248.	4.8	48
171	Enhanced bio-decolorization of azo dyes by co-immobilized quinone-reducing consortium and anthraquinone. Bioresource Technology, 2009, 100, 2982-2987.	4.8	42
172	Optically pH and H ₂ O ₂ Dual Responsive Composite Colloids through the Directed Assembly of Organic Dyes on Responsive Microgels. Chemistry of Materials, 2009, 21, 4905-4913.	3.2	27
173	Fungal dye decolourization: Recent advances and future potential. Environment International, 2009, 35, 127-141.	4.8	511
174	Chitosan intercalated montmorillonite: Preparation, characterization and cationic dye adsorption. Applied Clay Science, 2009, 42, 427-431.	2.6	226
175	Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 2009, 29, 94-119.	5.1	93
176	Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5, 3452.	1.2	240
177	Enzyme Activities and Shifts in Microbial Populations Associated with Activated Sludge Treatment of Textile Effluents. Biotechnology and Biotechnological Equipment, 2009, 23, 1136-1142.	0.5	15
178	Bioremoval of colour from textile wastewater by sequencing batch reactor and biotechnological methods. International Journal of Environment and Pollution, 2009, 38, 48.	0.2	1
179	Biological Algorithms for Textile Wastewater Management. Biotechnology and Biotechnological Equipment, 2009, 23, 442-447.	0.5	11
180	Chitin/Chitosan and Derivatives for Wastewater Treatment. , 2010, , 561-585.		16

#	Article	IF	CITATIONS
181	Adsorptive Removal of Reactive Yellow 15 from Aqueous Solution by Coconut Coir Activated Carbon. Adsorption Science and Technology, 2010, 28, 657-667.	1.5	15
182	Modified biopolymer adsorbent for the removal of dissolved organic pollutants. International Journal of Environmental Technology and Management, 2010, 12, 163.	0.1	8
183	Water treatment to remove acid and basic dyes by biosorption on polysaccharide composites. Russian Journal of Applied Chemistry, 2010, 83, 1785-1793.	0.1	4
184	Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Applied Microbiology and Biotechnology, 2010, 88, 637-643.	1.7	53
185	Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chemical Engineering Journal, 2010, 160, 27-32.	6.6	87
186	Intensification of textile effluent chemical oxygen demand reduction by innovative hybrid methods. Chemical Engineering Journal, 2010, 163, 344-354.	6.6	17
187	Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 2010, 177, 70-80.	6.5	2,390
188	Study of the behaviour of different NF membranes for the reclamation of a secondary textile effluent in rinsing processes. Journal of Hazardous Materials, 2010, 178, 341-348.	6.5	44
189	Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. Journal of Hazardous Materials, 2010, 179, 178-186.	6.5	205
190	Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. Journal of Membrane Science, 2010, 365, 138-144.	4.1	88
191	Role of schorl's electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2. Science China Technological Sciences, 2010, 53, 3014-3019.	2.0	6
192	Poly(Amic Acid)-Modified Biomass of Baker's Yeast for Enhancement Adsorption of Methylene Blue and Basic Magenta. Applied Biochemistry and Biotechnology, 2010, 160, 1394-1406.	1.4	13
193	Aerobic Biodegradation of a Sulfonated Phenylazonaphthol Dye by a Bacterial Community Immobilized in a Multistage Packed-Bed BAC Reactor. Applied Biochemistry and Biotechnology, 2010, 162, 1689-1707.	1.4	30
194	Biodegradation of Green HE4B: Co-substrate effect, biotransformation enzymes and metabolite toxicity analysis. Indian Journal of Microbiology, 2010, 50, 156-164.	1.5	10
195	Preparation of sawdust functionalized with aspartic acid and its sorption capacity, kinetics and thermodynamics for basic dyes. Korean Journal of Chemical Engineering, 2010, 27, 1560-1564.	1.2	0
196	Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation, 2010, 21, 999-1015.	1.5	179
197	Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal. Journal of Materials Science, 2010, 45, 6694-6700.	1.7	21
198	Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Reviews in Environmental Science and Biotechnology, 2010, 9, 117-140.	3.9	199

#	Article	IF	CITATIONS
199	Statistical Optimization of Anaerobic Biological Processes for Dye Treatment. Clean - Soil, Air, Water, 2010, 38, 942-950.	0.7	12
200	Removal of phenol from aqueous solutions by adsorption onto polymeric adsorbents. Journal of Applied Polymer Science, 2010, 117, 1908-1913.	1.3	27
201	Removal of basic dyes from aqueous medium using novel poly(MAA)â€cross linked pregelled starch graft copolymer. Journal of Applied Polymer Science, 2010, 118, 2728-2735.	1.3	20
202	Supported photocatalysis as a preâ€treatment prior to biological degradation for the removal of some dyes from aqueous solutions; Acid Red 183, Biebrich Scarlet, Methyl Red Sodium Salt, Orange II. Journal of Chemical Technology and Biotechnology, 2010, 85, 555-563.	1.6	14
203	Tailored activated carbons as catalysts in biodecolourisation of textile azo dyes. Applied Catalysis B: Environmental, 2010, 94, 179-185.	10.8	46
204	Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 2010, 342, 518-527.	5.0	463
205	Decolorization of dye wastewaters by biosorbents: A review. Journal of Environmental Management, 2010, 91, 1915-1929.	3.8	638
206	Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. Journal of Hazardous Materials, 2010, 175, 844-849.	6.5	147
207	Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor. Journal of Hazardous Materials, 2010, 177, 1112-1118.	6.5	63
208	Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials, 2010, 179, 845-851.	6.5	120
209	Adsorption of methyl orange and Cr(VI) on mesoporous TiO2 prepared by hydrothermal method. Journal of Hazardous Materials, 2010, 181, 204-210.	6.5	170
210	Optimization of heavy metal-containing dye Acid Black 172 decolorization byÂPseudomonas sp. DY1 using statistical designs. International Biodeterioration and Biodegradation, 2010, 64, 566-573.	1.9	28
211	Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresource Technology, 2010, 101, 165-173.	4.8	257
212	Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource Technology, 2010, 101, 7271-7277.	4.8	63
213	An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC - Trends in Analytical Chemistry, 2010, 29, 1202-1211.	5.8	201
214	Effects of NiTiO3 nanoparticles supported by mesoporous MCM-41 on photoreduction of methylene blue under UV and visible light irradiation. Superlattices and Microstructures, 2010, 47, 685-694.	1.4	45
215	Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresource Technology, 2010, 101, 34-40.	4.8	125
216	Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic–oxic bioreactor system degrading azo dyes. Bioresource Technology, 2010, 101, 476-484.	4.8	53

#	Article	IF	CITATIONS
217	Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresource Technology, 2010, 101, 2651-2656.	4.8	70
218	Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 2010, 101, 7773-7779.	4.8	115
219	Enhanced biodegradation of Reactive Violet 5R manufacturing wastewater using down flow fixed film bioreactor. Bioresource Technology, 2010, 101, 8627-8631.	4.8	19
220	Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination, 2010, 264, 123-128.	4.0	99
221	The importance of almond (Prunus amygdalus L.) and its by-products. Food Chemistry, 2010, 120, 349-360.	4.2	172
222	Removal of Grey BL from Dye Wastewater by Derris (Pongamia Glabra) Leaf Powder by Adsorption. E-Journal of Chemistry, 2010, 7, 1454-1462.	0.4	4
223	Removal of methyl red from aqueous solution by activated carbon prepared from the <i>Annona squmosa </i> seed by adsorption. Chemical Engineering Research Bulletin, 2010, 14, .	0.2	77
224	Dye decolorizing potential of a novel fungus Coriolus versicolor ML04 in the medium optimized by response surface methodology. Brazilian Archives of Biology and Technology, 2010, 53, 1503-1510.	0.5	9
225	Remoção de cor de efluentes têxteis com cogumelos Agaricus bispora. Acta Scientiarum - Technology, 2010, 32, .	0.4	1
226	Factors Affecting the Complete Mineralization of Azo Dyes. Handbook of Environmental Chemistry, 2010, , 195-210.	0.2	19
227	Modification of Straw for Activated Carbon Preparation and Application for the Removal of Dyes from Aqueous Solutions. , 2010, , 239-252.		2
228	MOLECULARLY IMPRINTED POLYMERS FOR SOME REACTIVE DYES. Preparative Biochemistry and Biotechnology, 2010, 40, 366-376.	1.0	8
229	Isolation of Enterobacter sp. S080 and Its Decolorization of Textile Wastewater Containing Reactive Black 5. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
230	Xylenol Orange Sorption on Modified Carboxymethyl Cellulose. , 2010, , .		0
231	Equilibrium and Molecular Mechanism of Anionic Dyes Adsorption onto Copper(II) Complex of Dithiocarbamate-Modified Starch. Langmuir, 2010, 26, 752-758.	1.6	63
232	A Facile, One-Pot Synthesis of Azoic Compounds and Anthraquinone Derivatives Containing Dialkyl Phosphoryl Moieties in Multicomponent Reactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1395-1403.	0.8	16
233	Bioremediation of wastewater containing azo dyes through sequential anaerobic–aerobic bioreactor system and its biodiversity. Environmental Reviews, 2010, 18, 21-36.	2.1	31
234	Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 400-412.	0.9	24

#	Article	IF	CITATIONS
236	Numerical Analysis of a Periodically Forced Dyeing Process. Industrial & Engineering Chemistry Research, 2010, 49, 8568-8574.	1.8	3
237	Parametric study on the effect of the ratios [H ₂ O ₂]/[Fe ^{3 +}] and [H ₂ O ₂]/[substrate] on the photo-Fenton degradation of cationic azo dye Basic Blue 41. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 2010. 45. 622-629.	0.9	48
238	Bioaugmentation of Azo Dyes. Handbook of Environmental Chemistry, 2010, , 1-37.	0.2	18
239	Biodegradation of Azo Dyes Under Anaerobic Condition: Role of Azoreductase. Handbook of Environmental Chemistry, 2010, , 39-57.	0.2	46
240	Bioreactors for Azo-Dye Conversion. Handbook of Environmental Chemistry, 2010, , 101-131.	0.2	4
241	Efficient industrial dye decolorization by Bacillus sp. VUS with its enzyme system. Ecotoxicology and Environmental Safety, 2010, 73, 1696-1703.	2.9	36
242	Adsorption of Glyphosate and Glufosinate by Ni2AlNO3 layered double hydroxide. Applied Clay Science, 2010, 47, 362-371.	2.6	86
243	Ag–TiO2doped photo catalytic degradation of Procion blue H-B dye in textile washwater. Toxicological and Environmental Chemistry, 2010, 92, 1423-1434.	0.6	4
244	Adsorption of Different Reactive Dyes onto Surfactant-Modified Zeolite: Kinetic and Equilibrium Modeling. , 2010, , 1237-1254.		2
246	Exploration of genetic information from dynamic microbial populations for enhancing the efficiency of azo-dye-degrading systems. Environmental Reviews, 2011, 19, 310-332.	2.1	5
247	The Removal of Color from Fuchsin Basic Dye Wastewater Using Activated Carbon. Advanced Materials Research, 2011, 356-360, 2616-2619.	0.3	1
248	Anionic Dye Adsorption on Chemically Modified Ordered Mesoporous Carbons. Industrial & Engineering Chemistry Research, 2011, 50, 14070-14083.	1.8	88
249	Removal of Synthetic Textile Dyes From Wastewaters: A Critical Review on Present Treatment Technologies. Critical Reviews in Environmental Science and Technology, 2011, 41, 807-878.	6.6	485
250	The decolorisation capacity and mechanism of Shewanella oneidensis MR-1 for Methyl Orange and Acid Yellow 199 under microaerophilic conditions. Water Science and Technology, 2011, 63, 956-963.	1.2	23
251	Water in the Textile Industry. , 2011, , 685-706.		25
253	Sorption of Sunset Yellow dye by weak base anion exchanger – kinetic and equilibrium studies. Environmental Technology (United Kingdom), 2011, 32, 455-465.	1.2	25
254	Multiwalled Carbon Nanotubes as Adsorbents for the Kinetic and Equilibrium Study of the Removal of Alizarin Red S and Morin. Journal of Chemical & Engineering Data, 2011, 56, 2511-2520.	1.0	245
255	Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Applied Clay Science, 2011, 54, 90-96.	2.6	70

#	Article	IF	CITATIONS
256	Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds, 2011, 509, 1648-1660.	2.8	391
257	Exploring decolorization and halotolerance characteristics by indigenous acclimatized bacteria: Chemical structure of azo dyes and dose–response assessment. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 816-825.	2.7	30
258	Biosorption Studies of Methylene Blue by Mediterranean Algae Carolina and Its Chemically Modified Forms. Linear and Nonlinear Models' Prediction Based on Statistical Error Calculation. International Journal of Chemistry, 2011, 3, .	0.3	23
259	Demonstration of Decolorization of Various Dyes by Some Bacterial Isolates Recovered from Textile Effluents. Bangladesh Journal of Scientific and Industrial Research, 2011, 46, 323-328.	0.1	5
260	Biodegradation of Azo Dyes by Three Isolated Bacterial Strains: An Environmental Bioremedial Approach. Journal of Microbial & Biochemical Technology, 0, s3, .	0.2	7
261	Biodegradation of Two Aromatic Amines Produced from the Decolorization of Orange II by Zero-Valence Tin. Journal of Water and Environment Technology, 2011, 9, 89-100.	0.3	1
262	Degradation and detoxification of three textile Azo dyes by mixed fungal cultures from semi-arid region of Brazilian Northeast. Brazilian Archives of Biology and Technology, 2011, 54, 621-628.	0.5	21
263	Colour removal and the effect of reactive dyes on acid producing anaerobic microorganisms. Water Quality Research Journal of Canada, 2011, 46, 211-218.	1.2	1
264	Studies in catalytic wet air oxidation as a process to destroy CI Basic Yellow 11 in aqueous stream over platinum catalyst. Coloration Technology, 2011, 127, 10-17.	0.7	14
265	Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 2011, 29, 32-37.	2.4	102
266	Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination, 2011, 278, 412-423.	4.0	185
267	Sequential anaerobic–aerobic treatment of azo dyes: Decolourisation and amine degradability. Desalination, 2011, 280, 339-346.	4.0	84
268	A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. International Biodeterioration and Biodegradation, 2011, 65, 790-796.	1.9	48
269	Development of bioreactor systems with functional bio-carrier modified by disperse turquoise blue S-GL for disperse scarlet S-BWFL decolorization. Bioresource Technology, 2011, 102, 11239-11243.	4.8	5
270	Biodegradation of 4-aminobenzenesulfonate by Ralstonia sp. PBA and Hydrogenophaga sp. PBC isolated from textile wastewater treatment plant. Chemosphere, 2011, 82, 507-513.	4.2	67
271	Remazol Black B removal from aqueous solutions and wastewater using weakly basic anion exchange resins. Open Chemistry, 2011, 9, 867-876.	1.0	25
272	Adsorptive removal of methyl orange using mesoporous maghemite. Journal of Porous Materials, 2011, 18, 581-587.	1.3	30
273	Unraveling the decolourizing ability of yeast isolates from dye-polluted and virgin environments: an ecological and taxonomical overview. Antonie Van Leeuwenhoek, 2011, 99, 443-456.	0.7	24

# 274	ARTICLE Comparison and Characterization of Microbial Communities in Sulfide-rich Wastewater with and without Propidium Monoazide Treatment. Current Microbiology, 2011, 62, 374-381.	IF 1.0	Citations 28
275	Investigation of dyes degradation intermediates with Scytalidium thermophilum laccase. European Food Research and Technology, 2011, 233, 751-758.	1.6	11
276	Cunninghamella elegans biomass optimisation for textile wastewater biosorption treatment: an analytical and ecotoxicological approach. Applied Microbiology and Biotechnology, 2011, 90, 343-352.	1.7	25
277	Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Applied Microbiology and Biotechnology, 2011, 91, 417-424.	1.7	40
278	Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium. Journal of Industrial and Engineering Chemistry, 2011, 17, 331-339.	2.9	46
279	Deciphering azo dye decolorization characteristics by indigenous Proteus hauseri: Chemical structure. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 327-333.	2.7	17
280	Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Bioresource Technology, 2011, 102, 3748-3753.	4.8	47
281	Wastewater treatment by alkali bacteria and dynamics of microbial communities in two bioreactors. Bioresource Technology, 2011, 102, 3790-3798.	4.8	22
282	Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chemical Engineering Journal, 2011, 167, 35-41.	6.6	68
283	Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Advances in Colloid and Interface Science, 2011, 163, 39-52.	7.0	295
284	Malachite Green Removal from Aqueous Solution by the Peel of <i>Cucumis sativa</i> Fruit. Clean - Soil, Air, Water, 2011, 39, 162-170.	0.7	28
285	Effective Decolorization of Azo Dye Utilizing SnO ₂ /CuO/Polymer Films under Simulated Solar Light Irradiation. Chemical Engineering and Technology, 2011, 34, 179-185.	0.9	15
286	Photocatalytic Discoloration of Dyes: Relation between Effect of Operating Parameters and Dye Structure. Chemical Engineering and Technology, 2011, 34, 1675-1684.	0.9	30
287	Mechanistic studies on the binding of Acid Yellow 99 on coir pith. Bioresource Technology, 2011, 102, 2394-2399.	4.8	54
288	Anaerobic degradation of textile dye bath effluent using Halomonas sp Bioresource Technology, 2011, 102, 6365-6369.	4.8	50
289	Preparation of poly (DMAEM)-cross linked pregelled starch graft copolymer and its application in waste water treatments. Carbohydrate Polymers, 2011, 86, 491-498.	5.1	29
290	Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: Kinetic study with the Fermi's equation. Applied Catalysis B: Environmental, 2011, 101, 197-205.	10.8	68
291	Removal of anionic dyes from aqueous solution by leaching solutions of white mud. Desalination, 2011, 274, 255-261.	4.0	34

#	Article	IF	CITATIONS
292	Defatted Jojoba for the removal of methylene blue from aqueous solution: Thermodynamic and kinetic studies. Desalination, 2011, 276, 169-174.	4.0	43
293	On the 75th anniversary of Prontosil. Dyes and Pigments, 2011, 88, 231-234.	2.0	45
294	The wash-off of dyeings using interstitial water part 1: Initial studies. Dyes and Pigments, 2011, 90, 177-190.	2.0	18
295	Biosorption of reactive dye by waste biomass of Nostoc linckia. Ecological Engineering, 2011, 37, 1589-1594.	1.6	98
296	Biochemical degradation pathway of reactive blue 13 by Candida rugopelliculosa HXL-2. International Biodeterioration and Biodegradation, 2011, 65, 135-141.	1.9	24
297	Preparation and characterization of hexadecyl functionalized magnetic silica nanoparticles and its application in Rhodamine 6G removal. Applied Surface Science, 2011, 257, 8610-8616.	3.1	48
298	Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 138-157.	2.7	1,164
299	Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: Modeling of key factors by neural network. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 380-386.	2.7	46
300	Process optimization for efficient dye removal by Aspergillus lentulus FJ172995. Journal of Hazardous Materials, 2011, 185, 837-843.	6.5	52
301	Efficient removal of Reactive Black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. Journal of Hazardous Materials, 2011, 188, 10-18.	6.5	59
302	Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal of Hazardous Materials, 2011, 190, 351-358.	6.5	131
303	The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 2011, 79, 26-33.	3.9	248
304	Removal of Reactive Brilliant Orange X-GN from Aqueous Solutions By Mg-Al Layered Double Hydroxides. Clays and Clay Minerals, 2011, 59, 438-445.	0.6	6
305	Colour and TOC reduction using biofilter packed with natural zeolite for the treatment of textile wastewaters. Desalination and Water Treatment, 2011, 33, 147-155.	1.0	18
306	Notice of Retraction: Isolation a Candida Strain Capable of Degrading Reactive Blue 13 and Bioaugmentation of Aerobic Sequencing Batch Reactors. , 2011, , .		2
307	Biological decolorization of industrial dyes by Candida tropicalis and Bacillus firmus. Water Science and Technology, 2011, 63, 761-768.	1.2	12
309	Sorption Behaviors of Methylene Blue onto Î ³ -Cyclodextrin Polymer. Advanced Materials Research, O, 255-260, 3032-3036.	0.3	1
310	Sorption of melanoidin onto surfactant modified zeolite. Chemical Industry and Chemical Engineering Quarterly, 2011, 17, 385-395.	0.4	29

#	Article	IF	CITATIONS
311	The Removal of Reactive Black 5 from Aqueous Solutions by Cotton Seed Shell. Water Environment Research, 2012, 84, 323-327.	1.3	15
312	Enhanced Adsorption of Methyl Orange on Mesoporous TiO _{2-X} C _X Modified by CTAB. Advanced Materials Research, 2012, 550-553, 966-969.	0.3	0
313	Novel Cationic Poly[AAm/NVP/DAPB] Hydrogels for Removal of Some Textile Anionic Dyes from Aqueous Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 490-501.	1.2	20
314	Kinetic and equilibrium study of Alizarin Red S removal by activated carbon. Toxicological and Environmental Chemistry, 2012, 94, 40-48.	0.6	56
315	Microbial Degradation of Dye-Containing Wastewater. Environmental Science and Engineering, 2012, , 317-338.	0.1	1
316	Treatment Textiles Wastewater Using Anoxic Filter Bed and Biological Wriggle Bed-Ozone Biological Aerated Filter. Advanced Materials Research, 2012, 518-523, 2961-2964.	0.3	1
317	Oxidative decolorization of carmosine with acidic chloramine-T: Spectrophotometric, kinetic and mechanistic chemistry. European Journal of Chemistry, 2012, 3, 112-118.	0.3	0
318	Textile Wastewater Treatment Using Combined Process of Biological Wriggle Bed and Ozone Biological Aerated Filter. Advanced Materials Research, 2012, 441, 589-592.	0.3	0
319	Enhancing Adsorption of Dyes onto Clay in Bubble Column Adsorber. Adsorption Science and Technology, 2012, 30, 567-577.	1.5	2
321	Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates. Molecules, 2012, 17, 14260-14274.	1.7	152
322	Microbial decolouration of azo dyes: A review. Process Biochemistry, 2012, 47, 1723-1748.	1.8	691
323	Equilibrium and Kinetic Studies on the Removal of Basic Violet 10 from Aqueous Solutions Using Activated Carbons Prepared from Industrial Wastes. Bioremediation Journal, 2012, 16, 86-96.	1.0	5
324	Biological method for decolourisation of an azo dye: clean technology to reduce pollution load in dye waste water. Clean Technologies and Environmental Policy, 2012, 14, 565-572.	2.1	22
325	Sorption of azo dyes from aqueous solutions by tetradodecyloxybenzylcalix[4]resorcinarene derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 467-472.	1.6	13
326	Applications of nano-catalyst in new era. Journal of Saudi Chemical Society, 2012, 16, 307-325.	2.4	406
327	Removal of a low-molecular basic dye (Azure Blue) from aqueous solutions by a native biomass of a newly isolated Cladosporium sp.: Kinetics, equilibrium and biosorption simulation. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 386-392.	2.7	38
328	Operational factors affecting the bioregeneration of mono-amine modified silica loaded with Acid Orange 7. Water Research, 2012, 46, 6419-6429.	5.3	7
329	Removal of a cationic dye – Basic Red 12 – from aqueous solution by adsorption onto animal bone meal. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2012, 12, 48-54.	1.0	31

#	Article	IF	CITATIONS
330	Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicology and Environmental Safety, 2012, 85, 131-136.	2.9	67
331	Application of Tetraphenyl- and Ethyltriphenylphosphonium Salts for Separation of Reactive Dyes from Aqueous Solution. Separation Science and Technology, 2012, 47, 1310-1315.	1.3	4
332	Functionalized ordered mesoporous carbon for the adsorption of reactive dyes. Adsorption, 2012, 18, 337-348.	1.4	33
333	Biological decolorization of xanthene dyes by anaerobic granular biomass. Biodegradation, 2012, 23, 725-737.	1.5	55
334	Biodegradation of Azo Dyes from Wastewater. Environmental Chemistry for A Sustainable World, 2012, , 255-275.	0.3	2
335	The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 744, 145-153.	0.9	37
336	Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technology, 2012, 119, 22-27.	4.8	76
337	Bioregeneration of mono-amine modified silica and granular activated carbon loaded with Acid Orange 7 in batch system. Bioresource Technology, 2012, 118, 633-637.	4.8	21
338	Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. International Biodeterioration and Biodegradation, 2012, 74, 24-35.	1.9	74
339	Bacterial Decolorization and Degradation of Azo Dyes. Environmental Science and Engineering, 2012, , 101-133.	0.1	105
340	Peroxidases as a Potential Tool for the Decolorization and Removal of Synthetic Dyes from Polluted Water. , 2012, , 453-498.		7
341	Impact of the redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one- and two-stage anaerobic systems. Bioresource Technology, 2012, 121, 1-7.	4.8	42
342	Optimisation of the electrochemical and UV combined treatment to remove colour and organic halogenated compounds of textile effluents. Separation and Purification Technology, 2012, 98, 375-382.	3.9	14
343	Biological treatment of wastewater containing an azo dye using mixed culture in alternating anaerobic/aerobic sequencing batch reactors. Biotechnology and Bioprocess Engineering, 2012, 17, 875-880.	1.4	30
344	A Computational Fluid Dynamic Model for Prediction of Organic Dyes Adsorption from Aqueous Solutions. Environmental Modeling and Assessment, 2012, 17, 505-513.	1.2	5
345	Choline-Based Ionic Liquids-Enhanced Biodegradation of Azo Dyes. Environmental Science & Technology, 2012, 46, 4902-4908.	4.6	96
346	Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. SpringerPlus, 2012, 1, 37.	1.2	103
347	Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review. Critical Reviews in Environmental Science and Technology, 2012, 42, 677-740.	6.6	256

#	Article	IF	CITATIONS
348	Photocatalytic Degradation of Methylene Blue by Fe/ZnO/SiO ₂ Nanoparticles under Visiblelight. Journal of Nanotechnology, 2012, 2012, 1-5.	1.5	59
349	CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. BioResources, 2012, 7, .	0.5	65
350	Comparative study on decolorization of reactive dye 222 by white rot fungi Pleurotus ostreatus IBL-02 and Phanerochaete chrysosporium IBL-03. African Journal of Microbiology Research, 2012, 6, .	0.4	0
351	Molecular diversity of bacterial community of dye wastewater in an anaerobic sequencing batch reactor. African Journal of Microbiology Research, 2012, 6, .	0.4	14
352	Comparative Study on the Decolorization of Orange II by Zero-valence Tin in Citric and Hydrochloric Acids. Energy and Environment Research, 2012, 2, .	0.1	5
353	Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2012, 2, 6380.	1.7	1,313
354	Copper Oxide Nanoparticle-Coated Quartz Sand as a Catalyst for Degradation of an Organic Dye in Water. Water, Air, and Soil Pollution, 2012, 223, 3105-3115.	1.1	11
356	Decolorization of textile dyes by Alishewanella sp. KMK6. Applied Microbiology and Biotechnology, 2012, 95, 521-529.	1.7	40
357	Biological color stripping: A novel technology for removal of dye from cellulose fibers. Carbohydrate Polymers, 2012, 87, 1476-1481.	5.1	35
358	Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: Revisited of extended Langmuir model. Chemical Engineering Journal, 2012, 189-190, 264-274.	6.6	101
359	Effective aerobic granular sludge treatment of a real dyeing textile wastewater. International Biodeterioration and Biodegradation, 2012, 69, 62-68.	1.9	66
360	Fermentative biohydrogen production from starch-containing textile wastewater. International Journal of Hydrogen Energy, 2012, 37, 2050-2057.	3.8	42
361	A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7. Applied Catalysis B: Environmental, 2012, 121-122, 10-19.	10.8	32
362	Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes and Pigments, 2012, 93, 1441-1446.	2.0	107
363	Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions – Kinetic and equilibrium studies. Dyes and Pigments, 2012, 92, 967-974.	2.0	144
364	Modelling heterocyclic azo dye affinities for cellulose fibres by computational approaches. Dyes and Pigments, 2012, 94, 278-289.	2.0	22
365	A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes and Pigments, 2012, 95, 79-88.	2.0	39
366	Communal microaerophilic–aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium. Bioresource Technology, 2012, 105, 48-59.	4.8	52

#	Article	IF	CITATIONS
367	Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology, 2012, 110, 86-90.	4.8	70
368	Azo dye decolorization by Shewanella aquimarina under saline conditions. Bioresource Technology, 2012, 114, 95-101.	4.8	83
369	Removal of water-insoluble Sudan dyes by Shewanella oneidensis MR-1. Bioresource Technology, 2012, 114, 144-148.	4.8	28
370	Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Separation and Purification Technology, 2012, 91, 103-107.	3.9	32
371	Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management, 2012, 102, 148-164.	3.8	387
372	Decolorization and degradation of azo dye – Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Journal of Hazardous Materials, 2012, 213-214, 378-386.	6.5	131
373	Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL. Journal of Hazardous Materials, 2012, 223-224, 31-38.	6.5	66
374	Adsorption of reactive dyes from aqueous solutions by layered double hydroxides. Journal of Chemical Technology and Biotechnology, 2012, 87, 575-582.	1.6	39
375	Application of nickel (II) complex of dithiocarbamateâ€modified starch for anionic dyes removal from aqueous solutions. Journal of Applied Polymer Science, 2012, 123, 2439-2444.	1.3	12
376	Biodegradation of C.I. Reactive Red 195 by Enterococcus faecalis strain YZ66. World Journal of Microbiology and Biotechnology, 2012, 28, 815-826.	1.7	32
377	Enhanced adsorption of Acid Red 88 by an excellent adsorbent prepared from alunite. Journal of Chemical Technology and Biotechnology, 2013, 88, 293-304.	1.6	27
378	Cadmium adsorption on modified chitosanâ€coated bentonite: batch experimental studies. Journal of Chemical Technology and Biotechnology, 2013, 88, 572-578.	1.6	42
379	Differential catalytic action of <i>Brevibacillus laterosporus</i> on two dissimilar azo dyes Remazol red and Rubine GFL. Journal of Basic Microbiology, 2013, 53, 136-146.	1.8	18
380	Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process. Journal of Environmental Management, 2013, 127, 28-35.	3.8	85
381	FT-IR Analysis of Acid Black Dye Biodegradation Using Saccharomyces cerevisiae Immobilized with Treated Sugarcane Bagasse. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	11
382	Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science, 2013, 3, 773-790.	2.8	378
383	Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption. Journal of Porous Materials, 2013, 20, 1153-1161.	1.3	17
384	Enhanced Remediation of Reactive Black 5 from Aqueous Media Using New Chitosan Ion Exchangers. Journal of Dispersion Science and Technology, 2013, 34, 1008-1019.	1.3	30

#	Article	IF	CITATIONS
386	Factors affecting water colour removal by tyrosinase. International Journal of Environmental Studies, 2013, 70, 316-326.	0.7	9
387	Removal of remazol yellow from aqueous solutions by unmodified and stabilized iron modified clay. Applied Clay Science, 2013, 80-81, 219-225.	2.6	15
388	PMDA-modified biosorbents for enhancement adsorption of basic magenta. Environmental Earth Sciences, 2013, 70, 635-642.	1.3	4
389	Azo dye decolorization assisted by chemical and biogenic sulfide. Journal of Hazardous Materials, 2013, 250-251, 462-468.	6.5	37
390	Reductive Decolourisation of Sulphonated Mono and Diazo Dyes in One- and Two-Stage Anaerobic Systems. Applied Biochemistry and Biotechnology, 2013, 170, 1-14.	1.4	6
391	Dyeing of synthetic fabrics in water using azoic dyes based on boronic acid derivatives. Fibers and Polymers, 2013, 14, 1141-1147.	1.1	7
392	One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications. Materials Science in Semiconductor Processing, 2013, 16, 2070-2083.	1.9	177
393	Decolorization of azo dyes by Geobacter metallireducens. Applied Microbiology and Biotechnology, 2013, 97, 7935-7942.	1.7	21
394	Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Applied Microbiology and Biotechnology, 2013, 97, 7439-7446.	1.7	34
395	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179.	314 rgBT 1.7	Overlock 10 64
395 396	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784		
	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from	1.7	64
396	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 2013, 20, 4540-4550. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus	1.7 2.7	64 13
396 397	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 2013, 20, 4540-4550. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 2013, 20, 347-352. Effect of additives in photocatalytic degradation of commercial azo dye Lanaset Sun Yellow 180.	1.7 2.7 1.8	64 13 59
396 397 398	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 2013, 20, 4540-4550. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 2013, 20, 347-352. Effect of additives in photocatalytic degradation of commercial azo dye Lanaset Sun Yellow 180. Photochemical and Photobiological Sciences, 2013, 12, 703-708. Solar active photocatalyst for effective degradation of RR 120 with dye sensitized mechanism.	1.7 2.7 1.8 1.6	64 13 59 5
396 397 398 399	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 2013, 20, 4540-4550. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 2013, 20, 347-352. Effect of additives in photocatalytic degradation of commercial azo dye Lanaset Sun Yellow 180. Photochemical and Photobiological Sciences, 2013, 12, 703-708. Solar active photocatalyst for effective degradation of RR 120 with dye sensitized mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 175-182. The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters.	1.7 2.7 1.8 1.6 2.0	 64 13 59 5 23
 396 397 398 399 400 	Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic) Tj ETQq1 1 0.784 Bulletin, 2013, 70, 1163-1179. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage. Environmental Science and Pollution Research, 2013, 20, 4540-4550. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 2013, 20, 347-352. Effect of additives in photocatalytic degradation of commercial azo dye Lanaset Sun Yellow 180. Photochemical and Photobiological Sciences, 2013, 12, 703-708. Solar active photocatalyst for effective degradation of RR 120 with dye sensitized mechanism. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 175-182. The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters. Materials, 2013, 6, 5131-5158. Microbial decolorization and degradation of synthetic dyes; a review. Reviews in Environmental	1.7 2.7 1.8 1.6 2.0 1.3	 64 13 59 5 23 156

#	Article	IF	CITATIONS
404	Adsorption of Victoria blue by carbon/Ba/alginate beads: Kinetics, thermodynamics and isotherm studies. Carbohydrate Polymers, 2013, 98, 505-513.	5.1	70
405	Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films. Journal of Colloid and Interface Science, 2013, 411, 27-33.	5.0	87
406	Strategies to Decolorize High Concentrations of Methyl Orange Using Growing Cells ofLactobacillus caseiTISTR 1500. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2030-2037.	0.6	4
407	STATISTICAL OPTIMIZATION OF SYNTHETIC AZO DYE (ORANGE II) DEGRADATION BY AZOREDUCTASE FROM <i>Pseudomonas oleovorans</i> PAMD_1. Preparative Biochemistry and Biotechnology, 2013, 43, 649-667.	1.0	8
408	Adsorption of Zn(II) ions from aqueous solution on lignite-fired fly ash. Desalination and Water Treatment, 2013, 51, 6777-6788.	1.0	4
409	Decolorization and detoxification of sulfonated azo dye C.I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RCS. Journal of Bioscience and Bioengineering, 2013, 115, 658-667.	1.1	151
410	Characteristics of Activated Sludge in an Anoxic Baffled Reactor. Clean - Soil, Air, Water, 2013, 41, 74-79.	0.7	2
411	Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere, 2013, 90, 2109-2114.	4.2	38
412	Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technology, 2013, 138, 307-313.	4.8	109
	8,, , , , , , , , , , , , , , , , , , ,		
413	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843	14 rgBT / 6.6	Overlock 10 T
413 414	· · · · · · · · · · · · · · · · · · ·	14 rgBT / 6.5	Overlock 10 T 47
	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA		
414	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2	6.5	47
414 415	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 2013, 581, 392-397. Biosorption potential of Orange G dye by modified Pyracantha coccinea: Batch and dynamic flow	6.5 2.8	47 123
414 415 416	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 2013, 581, 392-397. Biosorption potential of Orange G dye by modified Pyracantha coccinea: Batch and dynamic flow system applications. Chemical Engineering Journal, 2013, 226, 263-270. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration	6.5 2.8 6.6	47 123 24
414 415 416 417	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 2013, 581, 392-397. Biosorption potential of Orange G dye by modified Pyracantha coccinea: Batch and dynamic flow system applications. Chemical Engineering Journal, 2013, 226, 263-270. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye. Chemosphere, 2013, 90, 1348-1358. Adsorption of colour from Batik effluent by bacterial, Lactobacillus Delbruckii and its growth. , 2013,	6.5 2.8 6.6	47 123 24 52
414 415 416 417 418	Acidic dye wastewater treatment onto a marine macroalga, Nizamuddina zanardini (Phylum:) Tj ETQq1 1 0.7843 Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of Hazardous Materials, 2013, 262, 674-684. Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 2013, 581, 392-397. Biosorption potential of Orange G dye by modified Pyracantha coccinea: Batch and dynamic flow system applications. Chemical Engineering Journal, 2013, 226, 263-270. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye. Chemosphere, 2013, 90, 1348-1358. Adsorption of colour from Batik effluent by bacterial, Lactobacillus Delbruckii and its growth. , 2013, ,	 6.5 2.8 6.6 4.2 	47 123 24 52 5

#	Article	IF	CITATIONS
422	Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo–inorgano pillared clay and two Hydrous Ferric Oxides. Journal of Colloid and Interface Science, 2013, 395, 212-216.	5.0	17
423	Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid and Interface Science, 2013, 193-194, 24-34.	7.0	1,023
424	An Insight Into the Production, Characterization, and Mechanisms of Action of Low-Cost Adsorbents for Removal of Organics From Aqueous Solution. Critical Reviews in Environmental Science and Technology, 2013, 43, 443-549.	6.6	37
425	Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology and Biotechnology, 2013, 97, 7469-7481.	1.7	72
426	Process parameters for decolorization and biodegradation of orange II (Acid Orange 7) in dye-simulated minimal salt medium and subsequent textile effluent treatment by Bacillus cereus (MTCC) Tj ETQc	o 0.0 rgB⁻	[/@serlock]
427	Modeling studies: Adsorption of aniline blue by using Prosopis Juliflora carbon/Ca/alginate polymer composite beads. Carbohydrate Polymers, 2013, 92, 2171-2180.	5.1	44
428	Biodegradation of Direct Red-28 by Bacillus sp. Strain DRS-1 Under Aerobic Conditions and Analysis of Phytotoxicity Levels. , 2013, , 53-83.		0
429	On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan. Journal of Colloid and Interface Science, 2013, 407, 432-441.	5.0	59
430	Decolorization of Reactive Black 5 by a newly isolated bacterium Bacillus sp. YZU1. International Biodeterioration and Biodegradation, 2013, 76, 41-48.	1.9	68
431	Decolorization of azo dyes by marine Shewanella strains under saline conditions. Applied Microbiology and Biotechnology, 2013, 97, 4187-4197.	1.7	46
432	TiO2, ZnO and nanobimetallic silica catalyzed photodegradation of methyl green. Materials Science in Semiconductor Processing, 2013, 16, 185-192.	1.9	52
433	Layered compact textiles applied in fixed-bed column as filters for dye-rich textile wastewaters treatment—a case study. Desalination and Water Treatment, 2013, 51, 3060-3068.	1.0	3
434	Aerobic decolorization of Acid Brilliant Scarlet GR by microbial community and the community dynamics during sequencing batch processes. World Journal of Microbiology and Biotechnology, 2013, 29, 1763-1771.	1.7	4
435	A comparative study on removal of basic violet 10 by adsorption and photocatalytic degradation using low cost activated carbon. International Journal of Environment and Waste Management, 2013, 12, 189.	0.2	2
436	Enhanced TiO2 Photocatalytic Processing of Organic Wastes for Green Space Exploration. , 2013, , .		1
437	Evaluation of the Use ofAcacia niloticaLeaf as an Ecofriendly Adsorbent for Cr (VI) and Its Suitability in Real Waste Water: Study of Residual Errors. Journal of Chemistry, 2013, 2013, 1-7.	0.9	6

 $_{438}$ Treatment of dyeing wastewater including reactive dyes (Reactive Red RB, Reactive Black B, Remazol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

439	Kinetics and mechanism of oxidation of amido black by sodium N-halo-p-toluenesulfonamides in acidic medium: Spectrophotometric approach. European Journal of Chemistry, 2013, 4, 408-413.	0.3	1	
-----	---	-----	---	--

#	Article	IF	CITATIONS
440	Advances of Graphene for Adsorption of Dyes in Wastewater. Advanced Materials Research, 0, 804, 89-93.	0.3	0
441	Optimization of phenoxazinone synthase production by response surface methodology and its application in Congo red decolourization. Electronic Journal of Biotechnology, 2013, 16, .	1.2	2
442	Decolorisation of Reactive Red 120 Dye by Using Single-Walled Carbon Nanotubes in Aqueous Solutions. Journal of Chemistry, 2013, 2013, 1-8.	0.9	67
443	Packed bed column studies for the removal of dyes using novel sorbent. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 461-470.	0.4	9
444	Isolation, Characterization of a <i>Candida</i> Strain Capable Degrading of Dyes 4,5-Diamino-1-Pyrazole Sulfate. Advanced Materials Research, 2013, 663, 749-752.	0.3	0
445	Adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by unmodified <i>Strychnos potatorum</i> seeds. European Journal of Environmental and Civil Engineering, 2013, 17, 293-314.	1.0	16
446	Dye adsorption using biomass wastes and natural adsorbents: overview and future prospects. Desalination and Water Treatment, 0, , 1-24.	1.0	26
447	Sorption of Toxic Cr(VI) From Aqueous Solutions by Using Treated Acacia nilotica Leaf as Adsorbent: Single and Binary System. BioResources, 2013, 8, .	0.5	6
448	Decolorization of Dyeing Wastewater Using Polymeric Absorbents - An Overview. , 2013, , .		10
449	Physiochemical Modification and Characterization of Bentonite Clay and Its Application for the Removal of Reactive Dyes. International Journal of Chemistry, 2013, 5, .	0.3	22
450	USE OF NATURAL AND MODIFIED KAOLINITE/ILITE AS ADSORBENT FOR REMOVAL METHYLENE BLUE DYE FROM AQUEOUS SOLUTION. Journal of the Chilean Chemical Society, 2013, 58, 1517-1519.	0.5	10
451	Adsorptive Removal of Methylene Blue from Aqueous Solution by Spent Mushroom Substrate: Equilibrium, Kinetics, and Thermodynamics. BioResources, 2013, 8, .	0.5	18
452	Effectiveness of Alkali-Acid Treatment in Enhancement the Adsorption Capacity for Rice Straw: The Removal of Methylene Blue Dye. , 2013, 2013, 1-15.		57
454	Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment. , 0, , .		13
455	Isolation and Characterization of <i>Paracoccus</i> sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	18
456	Comparison of physio-chemical characterization of Ceiba Pentradenta wood waste and Ipomea Carnia Stem waste by H3Po4 treatment for the dye removal. Oriental Journal of Chemistry, 2014, 30, 2017-2223.	0.1	0
457	Consorcio microbiano nativo con actividad catalÃtica para remoción de Ãndigo y surfactantes en agua residual industrial textil a través de una matriz de inmovilización. Revista Colombiana De BiotecnologÃa, 2014, 16, 177.	0.5	2
458	Evaluation of Aeromonas Spp. In Microbial Degradation and Decolorization of Reactive Black in Microaerophilic – Aerobic Condition. Journal of Bioremediation & Biodegradation, 2014, 05, .	0.5	6

#	Article	IF	CITATIONS
459	Carrier Assisted Emulsion Liquid Membrane Process for Recovery of Basic Dye from Wastewater using Continuous Extractor. Jurnal Teknologi (Sciences and Engineering), 2014, 67, .	0.3	6
460	Tunable synthesis of SiO2-encapsulated zero-valent iron nanoparticles for degradation of organic dyes. Nanoscale Research Letters, 2014, 9, 501.	3.1	26
461	Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite. Journal of Environmental Health Science & Engineering, 2014, 12, 148.	1.4	18
462	Decolourization of azo dyes by a newly isolated <i>Klebsiella</i> sp. strain Y3, and effects of various factors on biodegradation. Biotechnology and Biotechnological Equipment, 2014, 28, 478-486.	0.5	65
463	Decolorization and detoxification of sulfonated toxic diazo dye C.I. Direct Red 81 by Enterococcus faecalis YZ 66. Journal of Environmental Health Science & Engineering, 2014, 12, 151.	1.4	63
464	Optimization of medium for decolorization of Congo red by <i>Enterobacter</i> sp. SXCR using response surface methodology. Desalination and Water Treatment, 2014, 52, 6166-6174.	1.0	10
465	Fabrication of perovskite-type oxide La _{0.5} Ca _{0.5} CoO _{3â^'} <i>_δ</i> nanoparticles and its Dye removal performance. Desalination and Water Treatment, 2014, 52, 7377-7388.	1.0	9
466	Study of Modern Nano Enhanced Techniques for Removal of Dyes and Metals. Journal of Nanomaterials, 2014, 2014, 1-20.	1.5	39
467	UV/Tio2 photocatalytic reactor for real textile wastewaters treatment. Water Science and Technology, 2014, 70, 1670-1676.	1.2	10
468	Green Adsorbents for Wastewaters: A Critical Review. Materials, 2014, 7, 333-364.	1.3	291
469	Adsorption of Brilliant Green onto Luffa Cylindrical Sponge: Equilibrium, Kinetics, and Thermodynamic Studies. , 2014, 2014, 1-12.		19
470	Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review. BioMed Research International, 2014, 2014, 1-24.	0.9	33
471	Adsorption of basic dye onto raw and surfaceâ€modified agricultural waste. Environmental Progress and Sustainable Energy, 2014, 33, 87-98.	1.3	90
472	Aerobic Decolorization and Degradation of Acid Orange G (AOG) by Suspended Growing Cells and Immobilized Cells of a Yeast Strain Candida tropicalis TL-F1. Applied Biochemistry and Biotechnology, 2014, 174, 1651-1667.	1.4	12
473	Fe(III) removal by activated carbon produced from Egyptian rice straw by chemical activation. Desalination and Water Treatment, 2014, 52, 3159-3168.	1.0	15
474	Adsorbents Based on Electrospun Nanofibers. Nanostructure Science and Technology, 2014, , 473-495.	0.1	2
475	Effective Utilization of Solid WasteÂfrom Leather Industry. , 2014, , 593-613.		7
476	Bacterial decolorization of textile azo dye acid orange by staphylococcus hominis RMLRT03. Toxicology International, 2014, 21, 160.	0.1	119

#	Article	IF	CITATIONS
477	Optimization of Culture Condition and Influence of Mediators on Degradation of Reactive Magenta-HB Dye UsingGanoderma cupreumAG-1. International Journal of Agriculture Environment and Biotechnology, 2014, 7, 69.	0.1	0
478	An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy, 2014, 2014, 1-14.	1.4	42
479	Electrochemical Treatment of Textile Effluent Containing Acid Red 131 Dye. Journal of Hazardous, Toxic, and Radioactive Waste, 2014, 18, 38-44.	1.2	36
480	Removal of malachite green from aqueous solution using nano-iron oxide-loaded alginate microspheres: batch and column studies. Research on Chemical Intermediates, 2014, 40, 913-930.	1.3	33
481	Carbon based materials as novel redox mediators for dye wastewater biodegradation. Applied Catalysis B: Environmental, 2014, 144, 713-720.	10.8	112
482	Error Anlaysis Studies of Dye Adsorption onto Activated Carbon from Aqueous Solutions. Particulate Science and Technology, 2014, 32, 20-27.	1.1	24
483	Using grape pulp as a new alternative biosorbent for removal of a model basic dye. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 214-225.	0.8	9
484	Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater. Water Resources and Industry, 2014, 5, 1-8.	1.9	31
485	Tin oxide nanoparticle loaded on activated carbon as new adsorbent for efficient removal of malachite green-oxalate: Non-linear kinetics and isotherm study. Journal of Molecular Liquids, 2014, 195, 212-218.	2.3	84
486	Decolourisation of Acid Orange 7 recalcitrant auto-oxidation coloured by-products using an acclimatised mixed bacterial culture. Environmental Science and Pollution Research, 2014, 21, 3891-3906.	2.7	11
487	Toxicity of the azo dyes Acid Red 97 and Bismarck Brown Y to Western clawed frog (Silurana) Tj ETQq0 0 0 rgBT	/Oyerlock 2.7	10 Tf 50 342
488	Potential Use of Low-Cost Lignocellulosic Waste for the Removal of Direct Violet 51 from Aqueous Solution: Equilibrium and Breakthrough Studies. Archives of Environmental Contamination and Toxicology, 2014, 66, 557-571.	2.1	58
489	Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 609-616.	2.7	53
490	Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresource Technology, 2014, 158, 321-328.	4.8	76
491	Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1792-1802.	2.7	57
492	Fabrication of CdS and CuWO4 modified TiO2 nanoparticles and its photocatalytic activity under visible light irradiation. Journal of Industrial and Engineering Chemistry, 2014, 20, 435-443.	2.9	71
493	Phragmites sp. physiological changes in a constructed wetland treating an effluent contaminated with a diazo dye (DR81). Environmental Science and Pollution Research, 2014, 21, 9626-9643.	2.7	15
494	Adsorption removal of organic dyes on covalent triazine framework (CTF). Microporous and	2.2	111

#	Article	IF	CITATIONS
495	Marine Carbohydrates of Wastewater Treatment. Advances in Food and Nutrition Research, 2014, 73, 103-143.	1.5	18
496	Removal of Methyl Violet Dye from Aqueous Solution by <i>sf Platanus Carpinifolia</i> Tree Leaves as Highly Efficient Sorbent: Multivariate Optimization, Isotherm Modeling, and Kinetic Studies. Separation Science and Technology, 2014, 49, 752-762.	1.3	6
497	Bioadsorbtion of industrial dyes from aqueous solution onto water hyacinth (<i>Eichornia) Tj ETQq0 0 0 rgBT /O 2014, 52, 1484-1494.</i>	verlock 10 1.0	Tf 50 667 Tc 19
498	Kinetics of biological decolorisation of anthraquinone based Reactive Blue 19 using an isolated strain of Enterobacter sp.F NCIM 5545. Bioresource Technology, 2014, 173, 342-351.	4.8	76
499	Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environmental Nanotechnology, Monitoring and Management, 2014, 1-2, 36-49.	1.7	127
500	Study of bio-degradation and bio-decolourization of azo dye by <i>Enterobacter</i> sp. SXCR. Environmental Technology (United Kingdom), 2014, 35, 956-965.	1.2	54
501	Co-metabolic degradation of diazo dye—Reactive blue 160 by enriched mixed cultures BDN. Journal of Hazardous Materials, 2014, 279, 85-95.	6.5	70
502	Different molecular complexity of linear-isomaltomegalosaccharides and β-cyclodextrin on enhancing solubility of azo dye ethyl red: Towards dye biodegradation. Bioresource Technology, 2014, 169, 518-524.	4.8	16
503	Biodecolorization of Textile Dye Effluent by Biosorption on Fungal Biomass Materials. Physics Procedia, 2014, 55, 437-444.	1.2	64
504	Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 2014, 108, 72-77.	2.9	37
505	UV/visible-light photodegradation of organic dyes over mesoporous titania prepared by using 2,4,5-triphenylimidazole as template. Materials Science in Semiconductor Processing, 2014, 27, 452-460.	1.9	5
506	Rapid and Efficient Removal of Cationic Dyes by Magnetic Chitosan Adsorbent Modified with EDTA. Separation Science and Technology, 2014, 49, 2049-2059.	1.3	14
507	Anion-Exchange Resins for C.I. Direct Blue 71 Removal from Aqueous Solutions and Wastewaters: Effects of Basicity and Matrix Composition and Structure. Industrial & Engineering Chemistry Research, 2014, 53, 11838-11849.	1.8	39
508	Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. Journal of Molecular Liquids, 2014, 199, 454-461.	2.3	96
509	Amorphous titanium dioxide as an adsorbent for dye polluted water and its recyclability. Journal of Sol-Gel Science and Technology, 2014, 71, 86-95.	1.1	23
510	Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). Journal of Industrial and Engineering Chemistry, 2014, 20, 994-1002.	2.9	88
511	Analysis of the bacterial community in a full-scale printing and dyeing wastewater treatment system based on T-RFLP and 454 pyrosequencing. Biotechnology and Bioprocess Engineering, 2014, 19, 191-200.	1.4	14
512	Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms. Journal of Industrial and Engineering Chemistry, 2014, 20, 2939-2947.	2.9	142

#	Article	IF	CITATIONS
513	A comparative study of microwave and chemically treated Acacia nilotica leaf as an eco friendly adsorbent for the removal of rhodamine B dye from aqueous solution. Arabian Journal of Chemistry, 2014, 7, 494-503.	2.3	56
514	The photo-catalytic activities of MP (M=Ba, Ca, Cu, Sr, Ag; P=PO43â^', HPO42â^') microparticles. Applied Surface Science, 2014, 292, 570-575.	3.1	9
515	Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: Investigation of some physiological responses and effects of operational parameters. Chemical Engineering Research and Design, 2014, 92, 1934-1941.	2.7	38
516	Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism. Journal of Environmental Sciences, 2014, 26, 1125-1134.	3.2	26
517	Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: Catalytic mechanism, analysis of products and degradation route. Chemical Engineering Journal, 2014, 244, 9-18.	6.6	82
518	Decolorization and mineralization of an azo reactive dye using loaded nano-photocatalysts on spacer fabric: Kinetic study and operational factors. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2436-2446.	2.7	69
519	Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system. Journal of Industrial and Engineering Chemistry, 2014, 20, 2059-2065.	2.9	27
520	Adsorption studies of a direct dye using polyaniline coated activated carbon prepared from Prosopis juliflora. Journal of Water Process Engineering, 2014, 2, 87-95.	2.6	45
521	Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and isotherm study. Journal of Industrial and Engineering Chemistry, 2014, 20, 17-28.	2.9	322
522	Environmental Kuznets curve for pollutants emissions in China's textile industry: an empirical investigation. International Journal of Environmental Technology and Management, 2014, 17, 14.	0.1	7
523	Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendent chlorobenzylidine ring. Polish Journal of Chemical Technology, 2015, 17, 100-109.	0.3	4
524	Dyeing process optimization in natural fiber through the Photoacoustic Spectroscopy. Multidiscipline Modeling in Materials and Structures, 2015, 11, 273-283.	0.6	1
525	Removal of Ni(II) from aqueous solution by using micellar enhanced ultrafiltration. Water Science and Technology, 2015, 72, 946-951.	1.2	8
526	Microbial Decolorization of Reactive Dye Solutions. Clean - Soil, Air, Water, 2015, 43, 1426-1432.	0.7	10
527	Concomitant mineralization and detoxification of acid red 88 by an indigenous acclimated mixed culture. Environmental Progress and Sustainable Energy, 2015, 34, 1455-1466.	1.3	25
528	Modelling of crossâ€flow microfiltration of dyeâ€loaded activated carbon in a ceramic tubular membrane module. Canadian Journal of Chemical Engineering, 2015, 93, 2005-2014.	0.9	2
529	A Series of Multifunctional Metal–Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. Chemistry - A European Journal, 2015, 21, 11475-11482.	1.7	219
530	Surfactant-coated Tea Waste: Preparation, Characterization and its Application for Methylene Blue Adsorption from Aqueous Solution. , 2015, 05, .		6

#	Article	IF	CITATIONS
531	The Treatment of Industrial Effluents for the Discharge of Textile Dyes Using by Techniques and Adsorbents. Journal of Textile Science & Engineering, 2015, 06, .	0.2	1
532	Bacterial degradation and decolorization of textile dyes by newly isolated Lysobacter sp African Journal of Microbiology Research, 2015, 9, 979-987.	0.4	6
533	Synthesis and Characterization of a Flower-Structured Ferromagnetic Nickel Oxide Nanoparticle: Investigation of Photocatalytic Activity. Journal of Organic & Inorganic Chemistry, 2015, 1, .	0.0	6
534	An Anionic Dimer of Cyclopentadienyl- Titanium (IV) Sulfide: A Potential Precursor for Heterometallic Assemblies. Journal of Organic & Inorganic Chemistry, 2015, 1, .	0.0	0
535	Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites. Advances in Materials Science and Engineering, 2015, 2015, 1-22.	1.0	102
536	Low-Cost Biodegradation and Detoxification of Textile Azo Dye C.I. Reactive Blue 172 by <i>Providencia rettgeri</i> Strain HSL1. Journal of Chemistry, 2015, 2015, 1-10.	0.9	30
538	Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. Journal of Environmental Health Science & Engineering, 2015, 13, 46.	1.4	62
539	Methylene blue adsorption by cotton grafted with succinic anhydride. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 382-389.	0.3	6
540	Removal of Reactive Blue 21 onto magnetic chitosan microparticles functionalized with polyamidoamine dendrimers. Reactive and Functional Polymers, 2015, 91-92, 43-50.	2.0	54
541	Multivariate analysis of photocatalytic-mineralization of Eriochrome Black T dye using ZnO catalyst and UV irradiation. Materials Science in Semiconductor Processing, 2015, 39, 40-48.	1.9	37
542	Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye. Environmental Technology (United Kingdom), 2015, 36, 2892-2902.	1.2	27
543	Investigation on removal of malachite green using EM based compost as adsorbent. Ecotoxicology and Environmental Safety, 2015, 118, 177-182.	2.9	61
544	EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. Environmental Science and Pollution Research, 2015, 22, 8683-8692.	2.7	31
545	Reductive behaviour of acid azo dye based wastewater: Biocatalyst activity in conjunction with enzymatic and bio-electro catalytic evaluation. Bioresource Technology, 2015, 188, 2-8.	4.8	15
546	Cauliflowerâ€like tin sulphide nanoparticles: an amazing material for adsorption of methylene blue dye. Micro and Nano Letters, 2015, 10, 220-223.	0.6	1
547	A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium. International Journal of Environmental Research and Public Health, 2015, 12, 3480-3505.	1.2	38
548	Sol–gel assisted synthesis of porous nano-crystalline CoFe 2 O 4 composite and its application in the removal of brilliant blue-R from aqueous phase: An ecofriendly and economical approach. Chemical Engineering Journal, 2015, 279, 416-424.	6.6	49
549	Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose, 2015, 22, 2443-2456.	2.4	232

#	Article	IF	CITATIONS
550	Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers. Environmental Science and Pollution Research, 2015, 22, 16514-16524.	2.7	50
551	Algae and Environmental Sustainability. , 2015, , .		20
552	Dissimilatory azoreduction of Orange I by a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1. Biotechnology and Bioprocess Engineering, 2015, 20, 1064-1070.	1.4	7
553	Remediation of Dyes from Aquatic Ecosystems by Biosorption Method Using Algae. , 2015, , 97-106.		12
554	RSM and ANN modeling for electro-oxidation of simulated wastewater using CSTER. Desalination and Water Treatment, 2015, 55, 1445-1452.	1.0	3
555	Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 142, 135-149.	2.0	96
556	Microbial biotechnology for decolorization of textile wastewaters. Reviews in Environmental Science and Biotechnology, 2015, 14, 73-92.	3.9	190
557	Optimizing decolorization of methylene blue dye by electrocoagulation using Taguchi approach. Desalination and Water Treatment, 2015, 55, 2705-2710.	1.0	15
558	Modeling and optimization of Reactive Green 19 oxidation on a BDD thin-film electrode. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51, 152-158.	2.7	10
559	Flocculation of Both Kaolin and Hematite Suspensions Using the Starch-Based Flocculants and Their Floc Properties. Industrial & Engineering Chemistry Research, 2015, 54, 59-67.	1.8	53
560	Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)– A microcosm approach. Ecotoxicology and Environmental Safety, 2015, 114, 52-60.	2.9	68
561	Removal of textile dye reactive black 5 by the cold-adapted, alkali- and halotolerant fungus <i>Aspergillus flavipes</i> MA-25 under non-sterile conditions. Desalination and Water Treatment, 2015, 56, 2258-2266.	1.0	6
562	Polyoxometalates-based heterometallic organic–inorganic hybrid materials for rapid adsorption and selective separation of methylene blue from aqueous solutions. Chemical Communications, 2015, 51, 3336-3339.	2.2	158
563	Sensitive determination and electro-oxidative polymerization of azodyes on a carbon paste electrode modified with bentonite. Applied Clay Science, 2015, 105-106, 131-141.	2.6	12
564	Application of Micellar-Enhanced Ultrafiltration for the Removal of Reactive Blue 19 from Aqueous Media. Journal of Dispersion Science and Technology, 2015, 36, 1208-1215.	1.3	8
565	Treatment of diazo dye Reactive Green 19 by anodic oxidation on a boron-doped diamond electrode. Journal of Industrial and Engineering Chemistry, 2015, 26, 116-121.	2.9	38
566	Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli. Environmental Science and Pollution Research, 2015, 22, 4621-4630.	2.7	8
567	Biodegradation of C.I. Acid Blue 92 byNasturtium officinale: Study of Some Physiological Responses and Metabolic Fate of Dye. International Journal of Phytoremediation, 2015, 17, 322-329.	1.7	9

#	Article	IF	CITATIONS
568	An efficient removal of methyl violet from aqueous solution by an AC-Bi/ZnO nanocomposite material. RSC Advances, 2015, 5, 25857-25869.	1.7	53
569	Adsorption property of methyl orange by chitosan coated on quartz sand in batch mode. Desalination and Water Treatment, 2015, 55, 1598-1608.	1.0	10
570	Removal of methylene blue onto mineral matrices. Desalination and Water Treatment, 2015, 56, 2773-2780.	1.0	15
571	Screening metal-dye-tolerant photoautotrophic microbes from textile wastewaters for biohydrogen production. Journal of Applied Phycology, 2015, 27, 1185-1194.	1.5	11
572	Membrane technologies forÂwater treatment and reuse inÂthe textile industry. , 2015, , 537-550.		13
573	Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydrate Polymers, 2015, 133, 80-89.	5.1	60
574	Improving the biodecolorization of reactive blue 13 by sodium anthraquinone-2-sulfonate immobilized on modified polyvinyl alcohol beads. Chinese Journal of Chemical Engineering, 2015, 23, 1194-1199.	1.7	4
575	Removal of noxious dye—Acid Orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone. Journal of Industrial and Engineering Chemistry, 2015, 31, 124-131.	2.9	47
576	Removal of diazo dye Direct Red 23 from aqueous solution using zero-valent iron nanoparticles immobilized on multi-walled carbon nanotubes. Water Science and Technology, 2015, 71, 1367-1374.	1.2	19
577	UV-assisted degradation of propiconazole in a TiO2aqueous suspension: identification of transformation products and the reaction pathway using GC/MS. International Journal of Environmental Analytical Chemistry, 2015, 95, 494-507.	1.8	9
578	Feasibility and assessment of the phytoremediation potential of duckweed for triarylmethane dye degradation with the emphasis on some physiologicalresponses and effect of operational parameters. Turkish Journal of Biology, 2015, 39, 438-446.	2.1	14
579	Efficient removal of Reactive Black from aqueous solution using polyaniline coated ligno-cellulose composite as a potential adsorbent. Journal of Molecular Liquids, 2015, 209, 387-396.	2.3	39
580	The stability of textile azo dyes in soil and their impact on microbial phospholipid fatty acid profiles. Ecotoxicology and Environmental Safety, 2015, 120, 163-168.	2.9	57
581	Preparation and characterization of chitosan/silver nanoparticle/copper nanoparticle/carbon nanotube multifunctional nano-composite for water treatment: heavy metals removal; kinetics, isotherms and competitive studies. RSC Advances, 2015, 5, 55774-55783.	1.7	38
582	LEATHER AND LEATHER PRODUCTS. , 2015, , 133-256.		4
583	Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. Journal of Molecular Liquids, 2015, 208, 99-105.	2.3	120
584	Dye Decolourisation Using Two Klebsiella Strains. Water, Air, and Soil Pollution, 2015, 226, 2249.	1.1	28
585	Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	10

#	Article	IF	CITATIONS
586	Naturalized dyes — A way to increase susceptibility for microbiological degradation. Biotechnology and Bioprocess Engineering, 2015, 20, 100-108.	1.4	2
587	A Novel Artificial Fish Swarm Algorithm for Recalibration of Fiber Optic Gyroscope Error Parameters. Sensors, 2015, 15, 10547-10568.	2.1	16
588	Synthesis and stabilization of metal nanocatalysts for reduction reactions $\hat{a} \in \hat{a}$ a review. Journal of Materials Chemistry A, 2015, 3, 11157-11182.	5.2	264
589	Identification of Biodegradation Related Genes from Bacterial Consortium NAR-2. Applied Mechanics and Materials, 2015, 735, 220-225.	0.2	1
590	Removal and recovery of Ni(II) ions from synthetic wastewater using surface modified <i>Strychnos potatorum</i> seeds: experimental optimization and mechanism. Desalination and Water Treatment, 2015, 53, 171-182.	1.0	16
592	Optimization of prime parameters for textile dye decolorization by design of experiments (DOEs) using <i>Lysinibacillus fusiformis</i> M1. Desalination and Water Treatment, 2015, 56, 1077-1089.	1.0	5
593	A potential application of sludge-based catalysts for the anaerobic bio-decolorization of tartrazine dye. Environmental Technology (United Kingdom), 2015, 36, 2568-2576.	1.2	4
594	Synthesis of Hierarchically Porous CaFe2O4/Carbon Fiber Hybrids and Microwave Induced Catalytic Activity. Chinese Journal of Chemical Physics, 2015, 28, 84-90.	0.6	4
595	Catalytic degradation of Acid Orange 7 with hydrogen peroxide using Co _x O _y -N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 2015, 5, 84303-84310.	1.7	19
596	Acute Toxicity Assessment of Reactive Red 120 to Certain Aquatic Organisms. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 582-587.	1.3	18
597	Biocompatible G-Fe3O4/CA nanocomposites for the removal of Methylene Blue. Journal of Molecular Liquids, 2015, 212, 63-69.	2.3	53
598	Fibers with the Tunable Structure Colors Based on the Ordered and Amorphous Structures. , 2015, , 127-154.		3
599	Isolation, development and identification of salt-tolerant bacterial consortium from crude-oil-contaminated soil for degradation of di-azo dye Reactive Blue 220. Water Science and Technology, 2015, 72, 311-321.	1.2	14
600	Dye sequestration using agricultural wastes as adsorbents. Water Resources and Industry, 2015, 12, 8-24.	1.9	412
601	A porous trimetallic Au@Pd@Ru nanoparticle system: synthesis, characterisation and efficient dye degradation and removal. Journal of Materials Chemistry A, 2015, 3, 19376-19383.	5.2	60
602	Selective removal of cationic dyes from aqueous solutions by an activated carbon-based multicarboxyl adsorbent. RSC Advances, 2015, 5, 99618-99626.	1.7	37
603	Solid electron acceptor effect on biocatalyst activity in treating azo dye based wastewater. RSC Advances, 2015, 5, 95926-95938.	1.7	20
604	Alternative use of cross-linked polyallylamine (known as Sevelamer pharmaceutical compound) as biosorbent. Journal of Colloid and Interface Science, 2015, 442, 49-59.	5.0	11

#	Article	IF	CITATIONS
605	Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochemical Engineering Journal, 2015, 93, 294-302.	1.8	76
606	Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. Journal of Hazardous Materials, 2015, 284, 1-9.	6.5	158
607	In situ polymerization of 4-vinylpyridine/bentonite composites and their application for toluene removal. Research on Chemical Intermediates, 2015, 41, 1765-1776.	1.3	7
608	Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon. Arabian Journal of Chemistry, 2015, 8, 105-117.	2.3	112
609	Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. Comptes Rendus Chimie, 2015, 18, 23-31.	0.2	47
610	Adsorption of anionic MO or cationic MB from MO/MB mixture using polyacrylonitrile fiber hydrothermally treated with hyperbranched polyethylenimine. Journal of Hazardous Materials, 2015, 283, 321-328.	6.5	132
611	Development of bio-granules using selected mixed culture of decolorizing bacteria for the treatment of textile wastewater. Desalination and Water Treatment, 2015, 54, 132-139.	1.0	18
612	Catalytic performance of functionalized polyurethane foam on the reductive decolorization of Reactive Red K-2G in up-flow anaerobic reactor under saline conditions. Bioprocess and Biosystems Engineering, 2015, 38, 137-147.	1.7	11
613	Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. Journal of Hazardous Materials, 2015, 283, 164-170.	6.5	48
614	Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environmental Science and Pollution Research, 2015, 22, 833-845.	2.7	39
615	Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies. Applied Water Science, 2015, 5, 81-88.	2.8	17
616	Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Chemical Engineering Research and Design, 2015, 93, 282-292.	2.7	153
617	Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 2015, 259, 438-448.	6.6	270
618	Rotating biological contactors for wastewater treatment – A review. Chemical Engineering Research and Design, 2015, 94, 285-306.	2.7	116
619	Optimization of Operational Conditions for Maximum Biodecolorization of Orange C2RL Dye. Journal of Bioremediation & Biodegradation, 2016, 07, .	0.5	1
620	Evaluation of Methyl Red Tolerant Cyanobacteria for Simultaneous Laccase Production and Dye Decolorization. International Journal of Waste Resources, 2016, 6, .	0.2	2
621	Study on the Effect of the Three-Dimensional Electrode in Degradation of Methylene Blue by Lithium Modified Rectorite. Journal of Analytical Methods in Chemistry, 2016, 2016, 1-6.	0.7	3
622	New Method for Removal of Organic Dyes Using Supported Iron Oxide as a Catalyst. Journal of Chemistry, 2016, 2016, 1-9.	0.9	2

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
623	Bioprocesses for Waste and Wastewater Remediation for Sustainable Energy. , 2016,	, 537-565.		8
624	Studies on adsorption potential of oil-extracted marine macro algae Padina gymnospo removal of methylene blue. International Journal of Environment and Sustainable Deve 15, 272.		0.2	1
625	Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 2	2016, 30, 112-133.	1.9	285
626	Design of binary SnO2-CuO nanocomposite for efficient photocatalytic degradation of green dye. AIP Conference Proceedings, 2016, , .	f malachite	0.3	9
627	Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from ma Chemosphere, 2016, 158, 30-36.	rine sediment.	4.2	30
628	Valorization of granulated slag of Arcelor-Mittal (Algeria) in cationic dye adsorption fro solution: column studies. Journal of Water Reuse and Desalination, 2016, 6, 204-213.	om aqueous	1.2	3
629	Controllable synthesis of new Tl2S2O3 nanostructures via hydrothermal process; char and investigation photocatalytic activity for degradation of some anionic dyes. Journal Liquids, 2016, 219, 851-857.		2.3	30
630	The role of adsorption in the photocatalytic decomposition of Orange II on carbon-mo Journal of Molecular Liquids, 2016, 220, 504-512.	dified TiO2.	2.3	31
631	Long–term natural remediation process in textile dye–polluted river sediment driv community changes. Water Research, 2016, 100, 458-465.	en by bacterial	5.3	141
632	The Adsorption of Reactive Blue 19 Dye onto Cucurbit[8]uril and Cucurbit[6]uril: An E Theoretical Study. Journal of Physical Chemistry B, 2016, 120, 4131-4142.	xperimental and	1.2	28
633	Comparison of microbial community in hydrolysis acidification reactor depending on d structure dyes by Illumina MiSeq sequencing. International Biodeterioration and Biode 2016, 111, 14-21.	ifferent gradation,	1.9	74
634	Detoxification of azo dyes in the context of environmental processes. Chemosphere, 2	016, 155, 591-605.	4.2	244
635	Formic acid enhanced effective degradation of methyl orange dye in aqueous solution irradiation. Water Research, 2016, 101, 103-113.	s under UV–Vis	5.3	66
636	Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. Journal of Molecu 2016, 219, 780-788.	lar Liquids,	2.3	105
637	Analysing performance of real textile wastewater bio-decolourization under different re environments. Journal of Cleaner Production, 2016, 129, 468-477.	eaction	4.6	72
638	Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- Trends in Analytical Chemistry, 2016, 85, 47-56.	a review. TrAC -	5.8	79
639	Treatment of landfill leachate using ASBR combined with zeolite adsorption technolog 2016, 6, 195.	y. 3 Biotech,	1.1	37
640	A method for dye extraction using an aqueous two-phase system: Effect of co-occurre contaminants in textile industry wastewater. Journal of Environmental Management, 2	nce of 016, 183, 196-203.	3.8	46

#	Article	IF	CITATIONS
641	Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from <i>Pleurotus nebrodensis</i> . Bioscience Reports, 2016, 36, .	1.1	18
643	Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus, 2016, 5, 1487.	1.2	55
644	Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant thermostable alkylsulfatase (SdsAP) from Pseudomonas sp. S9. Process Biochemistry, 2016, 51, 2084-2089.	1.8	20
645	Microbial Degradation of Lignocellulosic Waste and Its Metabolic Products. , 2016, , 263-312.		2
646	Degradation of Recalcitrant Textile Dyes by Coupling Fungal and Photocatalytic Membrane Reactors. Clean - Soil, Air, Water, 2016, 44, 1345-1351.	0.7	11
647	Removal of Reactive Orange 107 Dye from Aqueous Solution by Activated Carbon from Pinus elliottii Sawdust: a Response Surface Methodology Study. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	5
648	Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21. Biotechnology Reports (Amsterdam, Netherlands), 2016, 12, 52-61.	2.1	13
649	A pillar[5]arene-containing cross-linked polymer: synthesis, characterization and adsorption of dihaloalkanes and n-alkylene dinitriles. RSC Advances, 2016, 6, 89810-89814.	1.7	9
650	Modelling and experimental checking of the influence of substrate concentration on the first order kinetic constant in photo-processes. Journal of Environmental Management, 2016, 183, 818-825.	3.8	13
651	Synthesis and application of rGO/CoFe 2 O 4 composite for catalytic degradation of methylene blue on heterogeneous Fenton-like oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 484-494.	2.7	58
652	Shallow pond systems planted with Lemna minor treating azo dyes. Ecological Engineering, 2016, 94, 295-305.	1.6	58
653	Mesoporous MgO nanoparticles as a potential sorbent for removal of fast orange and bromophenol blue dyes. Nanotechnology for Environmental Engineering, 2016, 1, 1.	2.0	30
654	Biosorption of lac dye by the red marine algaGracilaria tenuistipitata: biosorption kinetics, isotherms, and thermodynamic parameters. Coloration Technology, 2016, 132, 472-480.	0.7	8
655	Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment. Water Science and Technology, 2016, 73, 1500-1510.	1.2	28
656	Rapid and high-capacity adsorption of sulfonated anionic dyes onto basic bismuth(iii) nitrate via bidentate bridging and electrostatic attracting interactions. RSC Advances, 2016, 6, 39861-39869.	1.7	18
657	Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. Environmental Science and Pollution Research, 2016, 23, 14810-14853.	2.7	133
658	Subnanometric Roughness Affects the Deposition and Mobile Adhesion of <i>Escherichia coli</i> on Silanized Glass Surfaces. Langmuir, 2016, 32, 5422-5433.	1.6	36
659	Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Advances, 2016, 6, 49995-50001.	1.7	22

#	Article	IF	CITATIONS
660	Haloalkaliphilic Bacillus species from solar salterns: an ideal prokaryote for bioprospecting studies. Annals of Microbiology, 2016, 66, 1315-1327.	1.1	12
661	Decolorization and biodegradation of remazol reactive dyes by Clostridium species. 3 Biotech, 2016, 6, 20.	1.1	28
662	DNA damage in human germ cell exposed to the some food additives in vitro. Cytotechnology, 2016, 68, 725-733.	0.7	24
663	Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalination and Water Treatment, 2016, 57, 6487-6502.	1.0	41
664	Application of fuzzy inference system (FIS) coupled with Mamdani's method in modelling and optimization of process parameters for biotreatment of real textile wastewater. Desalination and Water Treatment, 2016, 57, 9690-9697.	1.0	4
665	Equilibrium and kinetic studies for the adsorption of Basic Red 29 from aqueous solutions using activated carbon and conducting polymer composite. Desalination and Water Treatment, 2016, 57, 8406-8419.	1.0	10
666	Ag/TiO2/freeze-dried graphene nanocomposite as a high performance photocatalyst under visible light irradiation. Journal of Energy Chemistry, 2016, 25, 393-402.	7.1	33
667	Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Advances, 2016, 6, 3671-3679.	1.7	161
668	A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants. RSC Advances, 2016, 6, 11570-11576.	1.7	114
669	Azo dyes decolourization by the laccase from <i>Trametes trogii</i> . Journal of the Textile Institute, 2016, 107, 1478-1482.	1.0	12
670	Decomposition of organic chemicals by zeolite-TiO 2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation. Applied Catalysis B: Environmental, 2016, 183, 407-416.	10.8	68
671	Increased removal of Reactive Blue 72 and 13 acidic textile dyes by <i>Penicillium ochrochloron</i> fungus isolated from acidic mine drainage. Desalination and Water Treatment, 2016, 57, 19333-19343.	1.0	7
672	Degradation of Reactive Black 5 dye by a newly isolated bacterium <i>Pseudomonas entomophila</i> BS1. Canadian Journal of Microbiology, 2016, 62, 220-232.	0.8	51
673	Assessment of Potential Capability of Water Bamboo Leaves on the Adsorption Removal Efficiency of Cationic Dye from Aqueous Solutions. Journal of Polymers and the Environment, 2016, 24, 148-158.	2.4	34
674	Functional metal sulfides and selenides for the removal of hazardous dyes from Water. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 33-41.	1.7	54
675	Biodegradation and decolorization of azo dyes by adherent Staphylococcus lentus strain. Applied Biological Chemistry, 2016, 59, 405-413.	0.7	25
676	Freeze–dried agarose gels: A cheap, simple and recyclable adsorbent for the purification of methylene blue from industrial wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 1714-1721.	3.3	31
677	Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 2016, 168, 706-723.	5.1	599

# 678	ARTICLE Grafting of edible colorants onto O-carboxymethyl chitosan: preparation, characterization and anti-reduction property evaluation. New Journal of Chemistry, 2016, 40, 3363-3369.	IF 1.4	CITATIONS
679	Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. Water Research, 2016, 93, 230-241.	5.3	59
680	Interactive effect of garlic straw on the sorption and desorption of Direct Red 80 from aqueous solution. Chemical Engineering Research and Design, 2016, 102, 30-43.	2.7	24
681	Characteristics of estrogenic/antiestrogenic activities during the anoxic/aerobic biotreatment process of simulated textile dyeing wastewater. RSC Advances, 2016, 6, 25624-25632.	1.7	7
682	Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1. Bioresource Technology, 2016, 213, 39-43.	4.8	51
683	Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresource Technology, 2016, 203, 287-294.	4.8	134
684	Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from aqueous solutions. Journal of Colloid and Interface Science, 2016, 466, 442-451.	5.0	70
685	Liquid phase-based ultrasonic-assisted synthesis of G–ZnO nanocomposites and its sunlight photocatalytic activity. Materials and Design, 2016, 89, 864-871.	3.3	25
686	Assessment of AOPs as a polishing step in the decolourisation of bio-treated textile wastewater: Technical and economic considerations. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 317, 26-38.	2.0	28
687	An analytical study of the electrochemical degradation of methyl orange using a novel polymer disk electrode. Microelectronic Engineering, 2016, 149, 31-36.	1.1	9
688	Photocatalytic Degradation of Malachite Green by Magnetic Photocatalyst. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 458-463.	0.6	19
689	Equilibrium, kinetic and thermodynamic studies of the removal of triphenyl methane dyes from wastewater using iodopolyurethane powder. Journal of Taibah University for Science, 2016, 10, 46-55.	1.1	19
690	Adsorption of congo red from aqueous solution using various TiO ₂ nanoparticles. Desalination and Water Treatment, 2016, 57, 13318-13333.	1.0	25
691	Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. Journal of Bioscience and Bioengineering, 2016, 121, 442-449.	1.1	60
692	Kinetic and isotherm study of Sudan black B removal. Toxicology and Industrial Health, 2016, 32, 1891-1901.	0.6	0
693	Treatment of color through the adsorption efficiency of waste tire-derived char using response surface methodology. Desalination and Water Treatment, 2016, 57, 10324-10332.	1.0	2
694	Photocatalytic degradation of methylene blue in aqueous suspensions using TiO ₂ and ZnO. Desalination and Water Treatment, 2016, 57, 6141-6147.	1.0	42
695	Insights into the synergy of zero-valent iron and copper oxide in persulfate oxidation of Orange G solutions. Research on Chemical Intermediates, 2016, 42, 481-497.	1.3	15

		ION REPORT	
#	Article	IF	CITATIONS
696	Biodegradation of C.I. Acid Red 1 by indigenous bacteria Stenotrophomonas sp. BHUSSp X2 isolated from dye contaminated soil. Environmental Science and Pollution Research, 2016, 23, 4054-4062.	2.7	22
697	Calcium hydroxide as low cost adsorbent for the effective removal of indigo carmine dye in water. Journal of Saudi Chemical Society, 2017, 21, 165-171.	2.4	57
698	Application of micellar enhanced ultrafiltration for the removal of sunset yellow dye from aqueous media. Journal of Dispersion Science and Technology, 2017, 38, 139-144.	1.3	9
699	Multidimensional monitoring of anaerobic/aerobic azo dye based wastewater treatments by hyphenated UPLC-ICP-MS/ESI-Q-TOF-MS techniques. Environmental Science and Pollution Research, 2017 24, 10929-10938.	, 2.7	13
700	Adsorption studies of ferroin in aqueous solution onto graphite oxide. Canadian Journal of Chemistry, 2017, 95, 520-525.	0.6	0
701	Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	83
702	Effect of construction method and surface area for nano metalâ^'organic framework HKUST-1 upon adsorption and removal of phenazopyridine hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 193-200.	2.3	11
703	Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresource Technology, 2017, 233, 21-29.	4.8	95
704	Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds. International Journal of Environmental Science and Technology, 2017, 14, 1787-1806.	1.8	59
705	Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Ultrasonics Sonochemistry, 2017, 37, 600-613.	3.8	68
706	Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 2017, 21, 479-490.	0.9	51
707	Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study. Journal of Hazardous Materials, 2017, 332, 104-111.	6.5	37
708	Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process. Applied Radiation and Isotopes, 2017, 122, 153-157.	0.7	32
709	A treatment of wastewater containing basic dyes by the use of new strain Streptomyces microflavus CKS6. Journal of Cleaner Production, 2017, 148, 347-354.	4.6	29
710	Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. Journal of Food and Drug Analysis, 2017, 25, 667-680.	0.9	55
711	Light-induced synthesis of triazine N-oxide-based cross-linked polymers for effective photocatalytic degradation of methyl orange. RSC Advances, 2017, 7, 9309-9315.	1.7	4
712	Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environmental Science and Pollution Research, 2017, 24, 14005-14018.	2.7	108
713	Bacterial Decolourization, Degradation and Detoxification of Azo Dyes: An Eco-friendly Approach. , 2017, , 91-124.		2

#	Article	IF	CITATIONS
714	Highly efficient and visible light driven Ni0.5Zn0.5Fe2O4@PANI modified BiOCl heterocomposite catalyst for water remediation. Applied Catalysis B: Environmental, 2017, 211, 305-322.	10.8	41
715	Advances in Environmental Biotechnology. , 2017, , .		10
716	Textile Wastewater Treatment Options: A Critical Review. , 2017, , 183-207.		63
717	Extraction and Characterization of Starch from Oak Acorn, Sorghum, and Potato and Adsorption Application for Removal of Maxilon Red GRL from Wastewater. Chemical Engineering Communications, 2017, 204, 897-906.	1.5	21
718	Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. International Biodeterioration and Biodegradation, 2017, 124, 91-100.	1.9	39
719	Enhancing Cleanup of Environmental Pollutants. , 2017, , .		12
720	Hydrothermal synthesis of novel heterostructured Fe2O3/Bi2S3 nanorods with enhanced photocatalytic activity under visible light. Applied Catalysis B: Environmental, 2017, 213, 18-27.	10.8	203
721	Adsorption of Indigo Carmine Dye onto <i>Acacia Nilotica</i> (Babool) Sawdust Activated Carbon. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, .	1.2	32
722	Bioremediation Technologies for Decolorization of Effluent. , 2017, , 93-123.		0
723	Progress and Prospects of Polysaccharide Composites as Adsorbents for Water and Wastewater Treatment. Springer Briefs in Molecular Science, 2017, , 65-90.	0.1	4
724	Stability of tungsten oxide nanotubes film for improving photocatalytic oxidation reaction. Corrosion Engineering Science and Technology, 2017, 52, 405-410.	0.7	1
725	Coacervate of Polyacrylamide and Cationic Gemini Surfactant for the Extraction of Methyl Orange from Aqueous Solution. Langmuir, 2017, 33, 6846-6856.	1.6	29
726	Degradation of hazardous organic dyes in water by nanomaterials. Environmental Chemistry Letters, 2017, 15, 623-642.	8.3	246
727	Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution. Environmental Science and Pollution Research, 2017, 24, 16958-16970.	2.7	28
728	Structural study, photoluminescence and photocatalytic properties of La2O3 â‹ Fe3O4 â‹ ZnO,AgO â‹ NiO â ZnO and La2O3 â‹ AgO â‹ ZnO nanocomposites. Nano Structures Nano Objects, 2017, 10, 30-41.	^{i<-} 1:9	62
729	MOFs with PCU Topology for the Inclusion of One-Dimensional Water Cages: Selective Sorption of Water Vapor, CO ₂ , and Dyes and Luminescence Properties. Crystal Growth and Design, 2017, 17, 3885-3892.	1.4	26
730	Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 2017, 326, 454-461.	6.6	83
731	Comparison of the adsorption of cationic blue onto graphene oxides prepared from natural graphites with different graphitization degrees. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 292-301.	2.3	22

#	Article	IF	Citations
732	Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity. Bioresource Technology, 2017, 235, 176-184.	4.8	71
733	Doped Ti-pillared clays as effective adsorbents – Application to methylene blue and trimethoprim removal. Environmental Chemistry, 2017, 14, 267.	0.7	12
734	Adsorption of reactive yellow X-RG and reactive brilliant red X-3B onto cucurbit[8]uril and cucurbit[6]uril: Effect factors, adsorption behavior and mechanism study. Journal of Colloid and Interface Science, 2017, 498, 31-46.	5.0	33
735	Folic acid modified cross-linked cationic polymer: Synthesis, characterization and application of the removal of Congo red dye from aqueous medium. Journal of Molecular Liquids, 2017, 227, 87-97.	2.3	25
736	Novel Biodegradable Flocculating Agents Based on Grafted Starch Family for the Industrial Effluent Treatment. Journal of Polymers and the Environment, 2017, 25, 408-418.	2.4	21
737	Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell. Bioresource Technology, 2017, 228, 322-329.	4.8	151
738	Malachite green "a cationic dye―and its removal from aqueous solution by adsorption. Applied Water Science, 2017, 7, 3407-3445.	2.8	180
739	Polydopamine-coated open cell polyurethane foam as an efficient and easy-to-regenerate soft structured catalytic support (S 2 CS) for the reduction of dye. Journal of Environmental Chemical Engineering, 2017, 5, 79-85.	3.3	27
740	Sequential anaerobic–aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater. Water Science and Technology, 2017, 75, 1261-1269.	1.2	30
741	Self-sensitization of tetracycline degradation with simulated solar light catalyzed by ZnO@montmorillonite. Solid State Sciences, 2017, 74, 131-143.	1.5	39
742	Physical-chemical characterization of the textile dye Azo Ab52 degradation by corona plasma. AIP Advances, 2017, 7, 105304.	0.6	3
743	Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 1836-1876.	6.6	524
744	Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, 2017, 543, 184-194.	4.1	69
745	Dye-adsorption properties of WO3 nanorods grown by citric acid assisted hydrothermal methods. Ceramics International, 2017, 43, 17022-17025.	2.3	30
746	Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11, 575-585.	2.3	20
748	Exploitation of mussel byssus mariculture waste as a water remediation material. RSC Advances, 2017, 7, 36605-36611.	1.7	13
749	Surfactant-intercalated smectite modified electrode: sensitive electrochemical detection of methyl orange dye. International Journal of Environmental Analytical Chemistry, 2017, 97, 1207-1222.	1.8	10
750	Cellulose/polyaniline derivatives nanocomposites: Synthesis and their performance in removal of anionic dyes from simulated industrial effluents. Journal of Applied Polymer Science, 2017, 134, 45352.	1.3	29

#	Article	IF	CITATIONS
751	Fabrication of robust mesh with anchored Ag nanoparticles for oil removal and in situ catalytic reduction of aromatic dyes. Journal of Materials Chemistry A, 2017, 5, 15822-15827.	5.2	55
752	Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 2017, 164, 1497-1506.	4.6	127
753	Hydrothermal synthesis of sphere-like BiOCl using sodium lignosulphonate as surfactant and its application in visible light photocatalytic degradation of rodamine B. Journal of Materials Science: Materials in Electronics, 2017, 28, 3119-3127.	1.1	10
754	Degradation of textile dyes by cyanobacteria. Brazilian Journal of Microbiology, 2017, 48, 25-31.	0.8	133
755	Pentaazatetraethylene supported polyacrylamide (PAA-N5) as a novel adsorbent for the efficient removal of industrial dyes from aqueous solutions: adsorption isotherms and kinetics. Monatshefte Für Chemie, 2017, 148, 191-197.	0.9	8
756	Highly effective adsorption performance of carboxymethyl cellulose microspheres crosslinked with epichlorohydrin. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
757	Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes. Separation and Purification Technology, 2017, 172, 450-462.	3.9	69
758	Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study. Journal of Porous Materials, 2017, 24, 165-178.	1.3	20
759	Online monitoring and control of colour removal process in textile waste water. , 2017, , .		0
760	Potential of Basidiomycetous Fungi Isolated from Gunung Barus Forest North Sumatera in Decolorization of Wastewater of Textile Industry. IOP Conference Series: Materials Science and Engineering, 2017, 180, 012095.	0.3	0
761	Methyl Red Decolorization Efficiency of a Korea Strain of Aspergillus sp. Immobilized into Different Polymeric Matrices. Water Environment Research, 2017, 89, 606-613.	1.3	0
762	Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arabian Journal of Chemistry, 2017, 10, S244-S251.	2.3	44
763	Reator anaeróbio tipo UASB conjugado com processo Fenton para remoção de cor e demanda quÃmica de oxigênio de água residuária sintética de indústria têxtil. Engenharia Sanitaria E Ambiental, 2017, 22, 285-292.	0.1	5
764	The Removal of Methyl Orange by Periphytic Biofilms. , 2017, , 367-387.		7
765	Bio-removal of Azo Dyes: A Review. International Journal of Applied Sciences and Biotechnology, 2017, 5, 108-126.	0.4	109
766	Equilibrium and Kinetic Parameters Determination of Cr(VI) Adsorption by Hogla Leaves (Typha) Tj ETQq1 1 0.78-	4314 rgBT	Qverlock 1
767	Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Archives of Microbiology, 2018, 200, 883-895.	1.0	27
768	Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened from Textile Dyeing Effluent. Journal of Genetic Engineering and Biotechnology, 2018, 16, 375-380.	1.5	106

#	Article	IF	CITATIONS
769	Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent. Water Science and Technology, 2018, 2017, 516-526.	1.2	20
770	Synthesis of calcon-imprinted magnetic chitosan nanoparticles as a novel adsorbent and its application in selective removal of calcon dye from aqueous solutions. International Journal of Biological Macromolecules, 2018, 114, 1151-1160.	3.6	20
771	Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. Journal of Environmental Chemical Engineering, 2018, 6, 1683-1689.	3.3	22
772	Exploring the potential of halophilic archaea for the decolorization of azo dyes. Water Science and Technology, 2018, 77, 1602-1611.	1.2	10
773	The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. Environmental Science and Pollution Research, 2018, 25, 8286-8314.	2.7	108
774	Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta. Dyes and Pigments, 2018, 151, 15-21.	2.0	25
775	Development and use of microbial-based cleaning products (MBCPs): Current issues and knowledge gaps. Food and Chemical Toxicology, 2018, 116, 3-9.	1.8	12
776	Photosynthesis of silver nanoparticles using Durio zibethinus aqueous extract and its application in catalytic reduction of nitroaromatics, degradation of hazardous dyes and selective colorimetric sensing of mercury ions. Materials Research Bulletin, 2018, 100, 386-393.	2.7	66
777	Green synthesis of ZnO hollow microspheres and ZnO/rGO nanocomposite using red rice husk extract and their photocatalytic performance. Materials Research Express, 2018, 5, 095012.	0.8	20
778	Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. Journal of Colloid and Interface Science, 2018, 515, 208-220.	5.0	28
779	Investigation on the structural and optical properties of sonochemically synthesized BiVO4 for photocatalytic degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2018, 29, 10715-10722.	1.1	2
780	Mixed hemimicelle solid-phase extraction based on magnetic halloysite nanotubes and ionic liquids for the determination and extraction of azo dyes in environmental water samples. Journal of Chromatography A, 2018, 1551, 10-20.	1.8	27
781	Biodegradation of Environmentally Hazardous Azo Dyes and Aromatic Amines Using Klebsiella pneumoniae. Journal of Environmental Engineering, ASCE, 2018, 144, 04018035.	0.7	13
782	Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43, 7823-7854.	3.8	210
783	Biological Processes as Promoting Way for Both Treatment and Valorization of Dairy Industry Effluents. Waste and Biomass Valorization, 2018, 9, 195-209.	1.8	42
784	Adsorption of dye with carbon media supported on polyurethane open cell foam. Catalysis Today, 2018, 301, 98-103.	2.2	34
785	Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms. Bioresource Technology, 2018, 248, 56-60.	4.8	33
786	Bentonite-modified electrochemical sensors: a brief overview of features and applications. Ionics, 2018, 24, 19-32.	1.2	11

#	Article	IF	CITATIONS
787	A biomimetic approach towards the synthesis of TiO2/carbon-clay as a highly recoverable photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 131-138.	2.0	10
788	An Efficient Method for Isolation and Separation of Pigments from Streptomyces alboflavus TD-1. Lecture Notes in Electrical Engineering, 2018, , 681-691.	0.3	0
789	Removal of methylene blue from water solution by modified nano-boehmite with Bismuth. Inorganic and Nano-Metal Chemistry, 2018, 48, 31-40.	0.9	15
790	Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. International Materials Reviews, 2018, 63, 257-282.	9.4	36
791	Textile dye biodecolourization and ammonium removal over nitrite in aerobic granular sludge sequencing batch reactors. Journal of Hazardous Materials, 2018, 342, 536-543.	6.5	91
792	Removal and separation of mixed ionic dyes by solvent extraction. Textile Reseach Journal, 2018, 88, 1641-1649.	1.1	16
793	Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. Journal of Colloid and Interface Science, 2018, 510, 246-261.	5.0	148
794	Improved Biodegradation of Synthetic Azo Dye by Anionic Cross-Linking of Chloroperoxidase on ZnO/SiO2 Nanocomposite Support. Applied Biochemistry and Biotechnology, 2018, 184, 1009-1023.	1.4	16
795	Photoelectrocatalytic activity of immobilized Fe2O3 photoelectrode for degradation of salicylic acid and methyl orange dye under visible light illumination. Ionics, 2018, 24, 1841-1853.	1.2	12
796	CFC/PVDF/GO-Fe3+ membrane electrode and flow-through system improved E-Fenton performance with a low dosage of aqueous iron. Separation and Purification Technology, 2018, 193, 220-231.	3.9	22
797	Lightweight bricks manufactured from ground soil, textile sludge, and coal ash. Environmental Technology (United Kingdom), 2018, 39, 1359-1367.	1.2	18
798	FOULING MECHANISM OF MICELLE ENHANCED ULTRAFILTRATION WITH SDS SURFACTANT FOR INDIGOZOL DYE REMOVAL. Jurnal Teknologi (Sciences and Engineering), 2018, 80, .	0.3	5
799	Textile Dye Removal by Reduced Graphene Oxide. , 2018, , .		0
800	Removal of an Azo Textile Dye from Wastewater by Cyclodextrin-Epichlorohydrin Polymers. , 0, , .		2
801	Moringa Oleifera Dosage Clustering for Remediation Process of Batik Effluents Using Chemometric Technique. International Journal of Engineering and Technology(UAE), 2018, 7, 85.	0.2	3
802	Effective Degradation of Rh 6G Using Montmorillonite-Supported Nano Zero-Valent Iron under Microwave Treatment. Materials, 2018, 11, 2212.	1.3	15
803	Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions. ACS Omega, 2018, 3, 15140-15148.	1.6	112
804	Adsorptive removal of acid yellow 17 (an anionic dye) from water by novel ionene chloride modified electrospun silica nanofibres. Journal of Environmental Chemical Engineering, 2018, 6, 7257-7272.	3.3	28

#	Article	IF	CITATIONS
805	A luminescent 2D zinc(II) metal–organic framework for selective sensing of Fe(III) ions and adsorption of organic dyes. Polyhedron, 2018, 156, 208-217.	1.0	21
806	Degradation of Organic Dyes over Fenton-Like Cu ₂ O–Cu/C Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 14011-14021.	1.8	116
807	Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination. Catalysts, 2018, 8, 491.	1.6	86
808	Preparation of TiO2-Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite for Selective Adsorption and Degradation of Dyes. Technologies, 2018, 6, 92.	3.0	10
809	Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochemical and Biophysical Research Communications, 2018, 502, 9-14.	1.0	6
810	Biosorption of Cr(VI) from wastewater using <i>Sorghastrum Nutans L.ÂNash</i> . Chemistry and Ecology, 2018, 34, 762-785.	0.6	11
811	Integrated perspectives on the use of bacterial endophytes in horizontal flow constructed wetlands for the treatment of liquid textile effluent: Phytoremediation advances in the field. Journal of Environmental Management, 2018, 224, 387-395.	3.8	71
812	Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Molecular Biotechnology, 2018, 60, 681-689.	1.3	23
813	Microwave-assisted synthesis of high-performance polymer-based nanoadsorbents for pollution control. , 2018, , 337-359.		3
814	Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes. International Journal of Environmental Research and Public Health, 2018, 15, 35.	1.2	8
815	Decolorization of mordant yellow 1 using <i>Aspergillus sp</i> . TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered, 2018, 9, 222-232.	1.4	16
816	Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies. Applied Water Science, 2018, 8, 1.	2.8	28
817	Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World Journal of Microbiology and Biotechnology, 2018, 34, 131.	1.7	29
818	Impact of Microaeration and the Redox Mediator Anthraquinoneâ€2,6â€Disulfonate on Azo Dye Reduction and Byâ€Products Degradation. Clean - Soil, Air, Water, 2018, 46, 1700518.	0.7	4
819	Efficient optimization and mineralization of UV absorbers: A comparative investigation with Fenton and UV/H2O2. Open Chemistry, 2018, 16, 702-708.	1.0	1
820	A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere, 2018, 209, 201-219.	4.2	515
821	Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 729-735.	0.4	11
822	Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes. Water, Air, and Soil Pollution, 2018, 229, 176.	1.1	24

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
823	Remediation of Phenolic Compounds from Polluted Water by Immobilized Peroxidases. , 2019, , 329-358.		6
824	Coloration of bacterial cellulose using in situ and ex situ methods. Textile Reseach Journal, 2019, 89, 1297-1310.	1.1	19
825	Biosorption of direct textile dye Congo red by <i>Bacillus subtilis</i> HAU-KK01. Bioremediation Journal, 2019, 23, 185-195.	1.0	17
826	Ozonation of the dye Reactive Red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: Revealing reaction products and degradation pathways. International Biodeterioration and Biodegradation, 2019, 144, 104742.	1.9	51
827	Investigation on the photocatalytic performance of Ag4P2O7 microcrystals for the degradation of organic pollutants. Applied Surface Science, 2019, 493, 1195-1204.	3.1	15
828	Perspectives, Scope, Advancements, and Challenges of Microbial Technologies Treating Textile Industry Effluents. , 2019, , 237-260.		5
829	Mycoremediation of Environmental Pollutants from Contaminated Soil. , 2019, , 239-274.		10
830	Biodegradation of toxic dyes: a comparative study of enzyme action in a microbial system. , 2019, , 255-287.		13
831	Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Composites Part B: Engineering, 2019, 175, 107120.	5.9	145
832	Adsorption of methylene blue onto size controlled magnetite nanoparticles. Materials Research Express, 2019, 6, 095511.	0.8	11
833	Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polymer Testing, 2019, 78, 105983.	2.3	53
834	Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents. Heliyon, 2019, 5, e02068.	1.4	53
835	Aerobic decolorization and detoxification of Acid Scarlet GR by a newly isolated salt-tolerant yeast strain Galactomyces geotrichum GG. International Biodeterioration and Biodegradation, 2019, 145, 104818.	1.9	31
836	Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 2019, 32, 100911.	2.6	149
837	Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Chemical Engineering Research and Design, 2019, 131, 116-126.	2.7	31
838	Fabrication and adsorption properties of multiwall carbon nanotubes-coated/filled by various Fe3O4 nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 18802-18810.	1.1	7
839	Comparative static and shaking culture of metabolite derived from methyl red degradation by Lysinibacillus fusiformis strain W1B6. Royal Society Open Science, 2019, 6, 190152.	1.1	15
840	Process optimization for effective bio-decolourization of reactive orange 16 using chemometric methods. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 179-192.	0.9	18

#	Article	IF	CITATIONS
841	Synthesis of Cuâ€doped MOFâ€235 for the Degradation of Methylene Blue under Visible Light Irradiation. Bulletin of the Korean Chemical Society, 2019, 40, 112-117.	1.0	27
842	Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism. International Journal of Environmental Science and Technology, 2019, 16, 7805-7816.	1.8	31
843	Hierarchical nanomaterials <i>via</i> biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale, 2019, 11, 4147-4182.	2.8	122
844	Functional collaboration of biofilm-cathode electrode and microbial fuel cell for biodegradation of methyl orange and simultaneous bioelectricity generation. Environmental Science and Pollution Research, 2019, 26, 23061-23069.	2.7	12
845	Development of Disposable Sensor Strips for Point-of-Care Testing of Environmental Pollutants. , 2019, , 95-118.		2
846	Characteristics of White-rot Fungus Phlebia brevispora TMIC33929 and Its Growth-Promoting Bacterium Enterobacter sp. TN3W-14 in the Decolorization of Dye-Contaminated Water. Applied Biochemistry and Biotechnology, 2019, 189, 1183-1194.	1.4	10
847	Synthesis and characterisation of mesoporous hybrid silica-polyoxometalate aerogels for photocatalytic degradation of rhodamine B and methylene blue. International Journal of Environmental Analytical Chemistry, 2019, 99, 1375-1396.	1.8	22
848	Treatment of textile effluents through bio-composite column: decolorization and COD reduction. International Journal of Environmental Science and Technology, 2019, 16, 8653-8662.	1.8	12
849	Detailed Study on Rapid Removal of Cationic Dyes Using TiO ₂ -Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite. Journal of the Electrochemical Society, 2019, 166, B3240-B3245.	1.3	2
850	Compressive Alginate Sponge Derived from Seaweed Biomass Resources for Methylene Blue Removal from Wastewater. Polymers, 2019, 11, 961.	2.0	21
851	Bacterial degradation of anthraquinone dyes. Journal of Zhejiang University: Science B, 2019, 20, 528-540.	1.3	83
852	Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess and Biosystems Engineering, 2019, 42, 1483-1494.	1.7	30
853	Shaddock peels-based activated carbon as cost-saving adsorbents for efficient removal of Cr (VI) and methyl orange. Environmental Science and Pollution Research, 2019, 26, 19828-19842.	2.7	50
854	New chemical products formation from textile dye degradation, chitinolytic and antioxidant activity in new strain nbpc5–18 of Cellulosimicrobium sp. TH-20. Journal of Environmental Chemical Engineering, 2019, 7, 103114.	3.3	2
855	Application of nontoxic green emulsion liquid membrane prepared by sunflower oil for water decolorization: Process optimization by response surface methodology. Journal of Industrial and Engineering Chemistry, 2019, 77, 215-222.	2.9	30
856	Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation. Journal of Environmental Chemical Engineering, 2019, 7, 103096.	3.3	93
857	Decontamination of organic pollutants from aqueous media using cotton fiber–graphene oxide composite, utilizing batch and filter adsorption techniques: a comparative study. RSC Advances, 2019, 9, 5770-5785.	1.7	19
858	Could the porous chitosan-based composite materials have a chance to a "NEW LIFE―after Cu(II) ion binding?. International Journal of Biological Macromolecules, 2019, 131, 134-146.	3.6	27

#	Article	IF	CITATIONS
859	Impact of pH on the Treatment of Artificial Textile Wastewater Containing Azo Dyes Using Pond Systems. International Journal of Environmental Research, 2019, 13, 367-385.	1.1	22
860	Methylammonium iodo bismuthate perovskite (CH3NH3)3Bi2I9 as new effective visible light-responsive photocatalyst for degradation of environment pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 116-126.	2.0	41
861	Biodegradation and Detoxification of Azo Dyes by a Newly Isolated Halotolerant Yeast <i>Candida tropicalis</i> SYF-1. Environmental Engineering Science, 2019, 36, 999-1010.	0.8	18
862	Cellulose-supported magnetic Fe3O4–MOF composites for enhanced dye removal application. Cellulose, 2019, 26, 4909-4920.	2.4	69
863	Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. International Journal of Biological Macromolecules, 2019, 132, 772-783.	3.6	94
864	Low-Cost Materials with Adsorption Performance. , 2019, , 3401-3432.		2
865	Investigation of the adsorption mechanism of methylene blue (MB) on Cortaderia selloana flower spikes (FSs) and on Cortaderia selloana flower spikes derived carbon fibers (CFs). Journal of Molecular Liquids, 2019, 280, 268-273.	2.3	22
866	Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 2019, 236, 727-745.	3.8	225
867	Study of simultaneous bioremediation of mixed reactive dyes and Cr(VI) containing wastewater through designed experiments. Environmental Monitoring and Assessment, 2019, 191, 766.	1.3	18
868	Textile finishing dyes and their impact on aquatic environs. Heliyon, 2019, 5, e02711.	1.4	466
869	Continuously Biodegrading High Concentration of Acid Red B Under Hypersaline Conditions in a Membrane Bioreactor Bioaugmented by a Halotolerant Yeast <i>Pichia occidentalis</i> G1 and Microbial Community Dynamics. Environmental Engineering Science, 2019, 36, 1412-1420.	0.8	6
872	Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater: Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. Applied Sciences (Switzerland), 2019, 9, 4856.	1.3	37
873	Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green Processing and Synthesis, 2019, 8, 272-280.	1.3	92
874	Size-dependent catalytic property of gold nanoparticle mediated by Justicia adhatoda leaf extract. SN Applied Sciences, 2019, 1, 1.	1.5	20
875	Green synthesis of Ag/Fe3O4/RGO nanocomposites by Punica Granatum peel extract: Catalytic activity for reduction of organic pollutants. International Journal of Hydrogen Energy, 2019, 44, 2711-2730.	3.8	73
876	Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride. Applied Surface Science, 2019, 469, 236-245.	3.1	71
877	Selective uptake of cationic organic dyes in a series of isostructural Co2+/Cd2+ metal-doped metal–organic frameworks. Journal of Solid State Chemistry, 2019, 270, 180-186.	1.4	6
878	Improvement of the Textile Industry Wastewater Decolorization Process Using Capillary Microreactor Technology. International Journal of Environmental Research, 2019, 13, 213-222.	1.1	6

# 879	ARTICLE Influence of fuel nature on dye adsorption efficiency of solution combustion derived zinc oxide	IF	Citations
	nanoparticles: A comparative study. Materials Research Express, 2019, 6, 055512. Biosorption of Acid Yellow 12 from simulated wastewater by non-viable T. harzianum: kinetics,	0.8	
880	isotherm and thermodynamic studies. International Journal of Environmental Science and Technology, 2019, 16, 6895-6906.	1.8	25
881	Cross-linking and modification of sodium alginate biopolymer for dye removal in aqueous solution. Polymer Bulletin, 2019, 76, 3535-3554.	1.7	35
882	Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 2019, 122, 52-66.	4.8	503
883	Adsorptive performance of magnetic nano-biosorbent for binary dyes and investigation of comparative biosorption. SN Applied Sciences, 2019, 1, 1.	1.5	12
884	Shallow Pond Systems Planted With Duckweed Treating Azo Dyes. , 2019, , 215-251.		1
885	Optimization of process parameters to enhance the bio-decolorization of Reactive Red 21 by Pseudomonas aeruginosa 23N1. International Journal of Environmental Science and Technology, 2019, 16, 6685-6698.	1.8	19
886	Removal of pharmaceuticals and personal care products from domestic wastewater using rotating biological contactors. International Journal of Environmental Science and Technology, 2019, 16, 1-10.	1.8	37
887	<i>In vivo</i> genotoxicity assessment of sunset yellow and sodium benzoate in female rats. Drug and Chemical Toxicology, 2020, 43, 504-513.	1.2	16
888	High Adsorption Efficiency of Topkhana Natural Clay for Methylene Blue from Medical Laboratory Wastewater: a Linear and Nonlinear Regression. Silicon, 2020, 12, 87-99.	1.8	16
889	Study of phase behavior and Congo red dye partitioning in aqueous two-phase systems composed of hydrophilic alcohols (1-propanol/ 1-butanol) and sodium salts. Separation Science and Technology, 2020, 55, 1495-1504.	1.3	5
890	Decolorization of textile dye Rifafix Red 3BN by natural hematite and a comparative study on different types of Fenton process. Chemical Engineering Communications, 2020, 207, 1380-1389.	1.5	6
891	Eco-benign fungal colorants: sources and applications in textiles. Journal of the Textile Institute, 2020, 111, 148-154.	1.0	9
892	Determining optimum carob powder adsorbtion for cleaning wastewater: intelligent optimization with electro-search algorithm. Wireless Networks, 2020, 26, 5665-5679.	2.0	1
893	Removal of Methylene Blue and Basic Yellow 28 Dyes from Aqueous Solutions Using Sulphonated Waste Poly Methyl Methacrylate. Journal of Polymers and the Environment, 2020, 28, 271-283.	2.4	14
894	Kinetic Study of Degradation of Basic Turquise Blue X-GB and Basic Blue X-GRRL using Advanced Oxidation Process. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1803-1817.	1.4	20
895	Bacillus firmus strain FSS2C ameliorated oxidative stress in wheat plants induced by azo dye ((reactiveÂ) 1.1	Tj ETQq0 0 (

896	The investigation of Amido black 10B adsorption-photocatalytic degradation using the synergistic effect of Cr-doped ZnO/CDs nanocomposite under solar light. Environmental Science and Pollution Research, 2020, 27, 8759-8771.	2.7	11	
-----	---	-----	----	--

#	Article	IF	CITATIONS
897	Ternary structural assembly of BiOCl/TiO2/clinoptilolite composite: Study of coupled mechanism and photocatalytic performance. Journal of Colloid and Interface Science, 2020, 564, 143-154.	5.0	44
898	Pristine and modified mucuna beans adsorptive studies of toxic lead ions and methylene blue dye from aqueous solution. South African Journal of Chemical Engineering, 2020, 31, 33-43.	1.2	16
899	Presentation of different cellulosic yarn spinning wastes for decolorization of a basic dye solution. Journal of the Textile Institute, 2020, 111, 1214-1222.	1.0	1
900	Fabrication of a novel Bi2O3 nanoparticle impregnated nitrogen vacant 2D g-C3N4 nanosheet Z scheme photocatalyst for improved degradation of methylene blue dye under LED light illumination. Applied Surface Science, 2020, 507, 144965.	3.1	44
901	Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotoxicology and Environmental Safety, 2020, 191, 110007.	2.9	45
902	Microbial use for azo dye degradation—a strategy for dye bioremediation. International Microbiology, 2020, 23, 149-159.	1.1	105
903	Optimization for enhanced ecofriendly decolorization and detoxification of Reactive Blue160 textile dye by Bacillus subtilis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00522.	2.1	22
904	Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. Journal of Water Process Engineering, 2020, 38, 101675.	2.6	33
905	Industrial polluted soil borne fungi decolorize the recalcitrant azo dyes Synozol red HF–6BN and Synozol black B. Ecotoxicology and Environmental Safety, 2020, 206, 111381.	2.9	21
906	Extraction, optical properties, and aging studies of natural pigments of various flower plants. Heliyon, 2020, 6, e05104.	1.4	12
907	Removal of Acid Orange 7 Dye from Wastewater: Review. , 2020, , .		2
908	Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 2020, 272, 122636.	4.6	153
909	Micellar-enhanced ultrafiltration (MEUF) for removal of rhodamine B (RhB) from aqueous system. Journal of Dispersion Science and Technology, 2022, 43, 366-348.	1.3	12
910	Degradation of Acid Orange 7 (AO7) by a bacterium strain Flavobacterium mizutaii L-15. Water Science and Technology, 2020, 82, 266-272.	1.2	2
911	Amination of biochar surface from watermelon peel for toxic chromium removal enhancement. Chinese Journal of Chemical Engineering, 2021, 36, 199-222.	1.7	38
912	Isolation and molecular characterization of azo-dye degrading bacteria from soil. AIP Conference Proceedings, 2020, , .	0.3	0
913	Ability of Bacteria of the Genus Azospirillum to Decolorize Synthetic Dyes. Microbiology, 2020, 89, 451-458.	0.5	2
914	Myco-decontamination of azo dyes: nano-augmentation technologies. 3 Biotech, 2020, 10, 384.	1.1	14

#	Article	IF	CITATIONS
915	Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surfaces and Interfaces, 2020, 20, 100616.	1.5	71
916	The Application of Modified Natural Polymers in Toxicant Dye Compounds Wastewater: A Review. Water (Switzerland), 2020, 12, 2032.	1.2	46
917	Actinobacteria for the effective removal of toxic dyes. , 2020, , 37-52.		2
918	Ozone and Ammonium Hydroxide Modification of Biochar Prepared from Pisum sativum Peels Improves the Adsorption of Copper (II) from an Aqueous Medium. Environmental Processes, 2020, 7, 973-1007.	1.7	29
919	Decolorization and detoxification of azo dye by halo-alkaliphilic bacterial consortium: Systematic investigations of performance, pathway and metagenome. Ecotoxicology and Environmental Safety, 2020, 204, 111073.	2.9	48
920	Synthesis of Chitosan/Maleate-Alumoxane nanocomposite membranes for adsorption of anionic dye. Korean Journal of Chemical Engineering, 2020, 37, 1761-1772.	1.2	3
921	Simultaneous removal of copper and zinc ions by Chitosan/Hydroxyapatite/nano-Magnetite composite. Journal of Materials Research and Technology, 2020, 9, 14841-14852.	2.6	43
922	Integrated Membrane–Electrocoagulation System for Removal of Celestine Blue Dyes in Wastewater. Membranes, 2020, 10, 184.	1.4	28
923	Enhanced Photocatalytic Activity of TiO2∫γ-Fe2O3 by Using H2O2 as an Electron Acceptor Under Visible Light Radiation. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	6
924	Contamination of Water Resources by Food Dyes and Its Removal Technologies. , 0, , .		23
925	Improving Azo Dye Decolorization Performance and Halotolerance of Pichia occidentalis A2 by Static Magnetic Field and Possible Mechanisms Through Comparative Transcriptome Analysis. Frontiers in Microbiology, 2020, 11, 712.	1.5	24
926	Visible-Light Driven Effective Photocatalytic Degradation of Methylene Blue Dye Using Perforated Curly Zn _{0.1} Ni _{0.9} O Nanosheets. Journal of Nanoscience and Nanotechnology, 2020, 20, 5759-5764.	0.9	1
927	Mechanistic investigation and photocatalytic activity of yttrium vanadate (YVO4) nanoparticles for organic pollutants mineralization. Journal of Materials Research and Technology, 2020, 9, 5666-5675.	2.6	11
928	Decolorization of Reactive Black 5 and Reactive Red 152 Azo Dyes by New Haloalkaliphilic Bacteria Isolated from the Textile Wastewater. Current Microbiology, 2020, 77, 2084-2092.	1.0	31
929	Latest innovations in bacterial degradation of textile azo dyes. , 2020, , 285-309.		5
930	Morphological effects on the photocatalytic performance of FeVO4 nanocomposite. Nano Structures Nano Objects, 2020, 22, 100431.	1.9	31
931	Potential application of bacterial biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. , 2020, , 267-281.		17
932	Syntheses, crystal structures, dye degradation and luminescence sensing properties of four coordination polymers. CrystEngComm, 2020, 22, 2327-2335.	1.3	24

#	Article	IF	CITATIONS
933	A Kinetic Study on the Efficient Formation of High-Valent Mn(TPPS)-oxo Complexes by Various Oxidants. Catalysts, 2020, 10, 610.	1.6	2
934	Oxidation of azo dye Orange II with hydrogen peroxide catalyzed by 5,10,15,20-tetrakis[4-(diethylmethylammonio)phenyl]porphyrinato-cobalt(II)tetraiodide in aqueous solution. Journal of Saudi Chemical Society, 2020, 24, 520-526.	2.4	12
935	Oxidative degradation of Rhodamine B by Ag@CuO nanocomposite activated persulfate. Synthetic Metals, 2020, 267, 116479.	2.1	20
936	Biodegradation by Coâ€inoculated Bacteria and Fungi Alleviates Adverse Effects of Red‣3B on Growth and Nitrogen Uptake of Wheat. Clean - Soil, Air, Water, 2020, 48, 1900305.	0.7	4
937	Broad-Spectrum Adsorption Property of Chondrus crispus Activated Carbon for Ionic and Solvent Dyes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	7
938	Recent developments in textile wastewater biotreatment: dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles. Reviews in Environmental Science and Biotechnology, 2020, 19, 149-190.	3.9	16
939	Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020, 241, 116733.	3.9	25
940	Fed-Batch Decolourization of Mixture of Brilliant Green and Evans Blue by Bacteria Species Applied as Pure and Mixed Cultures: Influence of Growth Conditions. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	10
941	Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies. Journal of Polymers and the Environment, 2020, 28, 995-1009.	2.4	21
942	Adsorption of dyes onto modified titanium dioxide. , 2020, , 85-160.		2
943	Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environmental Science and Pollution Research, 2020, 27, 9152-9166.	2.7	24
944	Kinetic study and Box–Behnken design approach to optimize the sorption process of toxic azo dye onto organo-modified bentonite. Canadian Journal of Chemistry, 2020, 98, 215-221.	0.6	6
945	Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites. Processes, 2020, 8, 471.	1.3	13
946	Simultaneous adsorption of a ternary mixture of brilliant green, rhodamine B and methyl orange as artificial wastewater onto biochar from cocoa pod husk waste. Quantification of dyes using the derivative spectrophotometry method. New Journal of Chemistry, 2020, 44, 8303-8316.	1.4	30
947	Degradation of environmental contaminants by topical heterogeneous photocatalysts. , 2020, , 151-182.		5
948	Hierarchical Sr-ZnO/g-C3N4 heterojunction with enhanced photocatalytic activities. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112515.	2.0	19
949	Critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A review. Korean Journal of Chemical Engineering, 2021, 38, 248-263.	1.2	10
950	Rapid and Efficient Adsorption Removal of Reactive Blue 4 from Aqueous Solution by Cross-Linked Microcrystalline Cellulose–Epichlorohydrin Polymers: Isothermal, Kinetic, and Thermodynamic Study. Transactions of Tianjin University, 2021, 27, 77-86.	3.3	4

	Сг	tation Report	
#	Article	IF	CITATIONS
951	Conception of yeast microbial desalination cell: applications to dye wastewater treatment and lead removal. Chemical Engineering Communications, 2021, 208, 364-375.	1.5	13
952	Application of magnetized nanomaterial for textile effluent remediation using response surface methodology. Materials Today: Proceedings, 2021, 38, 700-711.	0.9	24
953	Fungal bioremediation of toxic textile dye effluents. , 2021, , 353-380.		1
954	Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. Chemosphere, 2021, 263, 128291.	4.2	92
955	Reactive Orange 16 dye degradation in anaerobic and aerobic MBBR coupled with ozonation: addressing pathways and performance. International Journal of Environmental Science and Technology, 2021, 18, 1991-2010.	1.8	24
956	Removal of organic dyes from wastewater using Eichhornia crassipes: a potential phytoremediation option. Environmental Science and Pollution Research, 2021, 28, 7116-7122.	2.7	47
957	Batik became two sides of blade for the sustainable development in Indonesia. , 2021, , 59-97.		6
958	Efficient reduction of reactive black 5 and Cr(â¥) by a newly isolated bacterium of Ochrobactrum anthropi. Journal of Hazardous Materials, 2021, 406, 124641.	6.5	23
959	Methods of Reactive Red 141 Dye Decolorization, Treatment, and Removal from Industrial Wastewaters: A Critical Review. Environmental Engineering Science, 2021, 38, 577-591.	0.8	10
960	Microbial degradation of reactive red-35 dye: Upgraded progression through Box–Behnken design modeling and cyclic acclimatization. Journal of Water Process Engineering, 2021, 40, 101782.	2.6	8
961	Removal of dyes and pigments from industrial effluents. , 2021, , 135-187.		23
962	A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere, 2021, 268, 129309.	4.2	113
963	Mycoremediation of azo dyes using <i>Cyberlindnera fabianii</i> yeast strain: Application of designs of experiments for decolorization optimization. Water Environment Research, 2021, 93, 1402-1416.	of 1.3	14
964	Magnetically stimulated azo dye biodegradation by a newly isolated osmo-tolerant Candida tropicalis A1 and transcriptomic responses. Ecotoxicology and Environmental Safety, 2021, 209, 111791.	2.9	19
965	Simultaneous removal of copper and zinc ions by low cost natural snail shell/hydroxyapatite/chitosan composite. Chinese Journal of Chemical Engineering, 2021, 33, 221-230). 1.7	31
966	Artificial neural network modeling for Congo red adsorption on microwave-synthesized akaganeite nanoparticles: optimization, kinetics, mechanism, and thermodynamics. Environmental Science and Pollution Research, 2021, 28, 9133-9145.	2.7	13
967	Treatment of dye wastewater by direct contact membrane distillation using superhydrophobic nanofibrous high-impact polystyrene membranes. International Journal of Environmental Science and Technology, 2021, 18, 1513-1528.	1.8	16
968	Occurrence and fate of aromaticity driven recalcitrance in anaerobic treatment of wastewater and organic solidÂwastes. , 2021, , 203-226.		1

#	Article	IF	CITATIONS
969	Physicochemical and biological treatment of textile wastewater. , 2021, , 307-334.		2
970	Decolorization of dyestuffs by some species of green algae and cyanobacteria and its consortium. International Journal of Environmental Science and Technology, 2021, 18, 3895-3906.	1.8	15
971	Preparation and Properties of Polyacrylamide/Sodium Alginate Hydrogel and the Effect of Fe Adsorption on Its Mechanical Performance. Journal of Renewable Materials, 2021, 9, 1447-1462.	1.1	13
972	Eco-Friendly Bioremediation Approach for Dye Removal from Wastewaters: Challenges and Prospects. , 2021, , 273-297.		1
973	Enhanced visible-light photodegradation of fluoroquinolone-based antibiotics and <i>E. coli</i> growth inhibition using Ag–TiO ₂ nanoparticles. RSC Advances, 2021, 11, 13980-13991.	1.7	26
974	Microbial Bioremediation of Heavy Metals. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 417-439.	0.3	3
975	Composites leading to a clean and green future. , 2021, , 253-285.		2
976	Mycoremediation of synthetic dyes by yeast cells: a sustainable biodegradation approach. Environmental Sustainability, 2021, 4, 5-22.	1.4	12
977	Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: experimental and theoretical study using DFT method. International Journal of Environmental Analytical Chemistry, 2023, 103, 1223-1244.	1.8	16
978	Degradation of azo dye wastewater by the combination process of 3D BER and CW-MFC. IOP Conference Series: Earth and Environmental Science, 2021, 675, 012017.	0.2	4
979	Atık Sularda Boya Giderimi İçin Fonsiyonellenmiş Nanoselüloz Esaslı Adsorbanlar. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 0, , .	0.5	1
980	Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. Biotechnology for Biofuels, 2021, 14, 61.	6.2	56
981	Sustainable Textile Processing by Enzyme Applications. , 0, , .		9
982	Production of Ulva prolifera derived biochar and evaluation of adsorptive removal of Reactive Red 120: batch, isotherm, kinetic, thermodynamic and regeneration studies. Biomass Conversion and Biorefinery, 2023, 13, 5379-5390.	2.9	9
983	Highly reusable plant-based biosorbent for the selective methylene blue biosorption from dye mixture in aqueous media. International Journal of Environmental Science and Technology, 2022, 19, 1849-1860.	1.8	6
984	Structuring of ZnTiO3/TiO2 Adsorbents for the Removal of Methylene Blue, Using Zeolite Precursor Clays as Natural Additives. Nanomaterials, 2021, 11, 898.	1.9	16
985	Remediation of Cr(VI) from wastewater using biochar of Indian Grass. IOP Conference Series: Materials Science and Engineering, 2021, 1145, 012115.	0.3	1
986	Photodegradation mechanisms of reactive blue 19 dye under UV and simulated solar light irradiation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119481.	2.0	9

#	Article	IF	CITATIONS
987	Biosorption of methylene blue from water by live Lemna minor. Environmental Technology and Innovation, 2021, 22, 101432.	3.0	18
988	Decolorization of acid blue 29, disperse red 1 and congo red by different indigenous fungal strains. Chemosphere, 2021, 271, 129532.	4.2	23
989	Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous and Mesoporous Materials, 2021, 319, 111040.	2.2	104
990	Screening of ligninolytic fungi for bioremediation of dyes. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 35-42.	0.2	1
991	Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water (Switzerland), 2021, 13, 1453.	1.2	32
992	An investigation on MIL-101 Fe/PANI/Pd nanohybrid as a novel photocatalyst based on MIL-101(Fe) metal–organic frameworks removing methylene blue dye. Journal of Molecular Structure, 2021, 1231, 130007.	1.8	26
993	Biocomposite hydrogel beads from glutaraldehyde-crosslinked phytochemicals in alginate for effective removal of methylene blue. Journal of Molecular Liquids, 2021, 329, 115579.	2.3	30
994	Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: a systematic study of adsorption kinetics. International Journal of Environmental Analytical Chemistry, 2023, 103, 4841-4856.	1.8	34
995	Effective removal of remazol brillinat orange 3R using a biochar derived from Ulva reticulata. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-14.	1.2	7
996	Investigating degradation metabolites and underlying pathway of azo dye "Reactive Black 5―in bioaugmented floating treatment wetlands. Environmental Science and Pollution Research, 2021, 28, 65229-65242.	2.7	4
997	Recent advances in the synthesis and applications of magnetic polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 2021, 99, 1-18.	2.9	22
998	Recent advances in the biodegradation of azo dyes. World Journal of Microbiology and Biotechnology, 2021, 37, 137.	1.7	52
999	Efficient Removal of Azo Dye from Wastewater Using the Non-Toxic Potassium Ferrate Oxidation–Coagulation Process. Applied Sciences (Switzerland), 2021, 11, 6825.	1.3	11
1000	Simultaneous anaerobic decolorization/degradation of Reactive Black-5 azo dye and chromium(VI) removal by Bacillus cereus strain MS038EH followed by UV-C/H2O2 post-treatment for detoxification of biotransformed products. Archives of Microbiology, 2021, 203, 4993-5009.	1.0	6
1001	Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105286.	3.3	31
1002	Concurrent first- and second-order photodegradation of azo dyes using TMU-16 pillared-layer microporous metal organic framework under visible light. Journal of Solid State Chemistry, 2021, 300, 122210.	1.4	4
1003	Metal-organic framework based on Co and 4,4′-dimethylenebiphenyl diphosphonic acid as an efficient methylene blue adsorbent. Journal of Industrial and Engineering Chemistry, 2021, 104, 61-72.	2.9	7
1004	Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review. Journal of Water Process Engineering, 2021, 42, 102148.	2.6	98

#	Article	IF	CITATIONS
1005	Augmentation of microbial fuel cell and photocatalytic polishing technique for the treatment of hazardous dimethyl phthalate containing wastewater. Journal of Hazardous Materials, 2021, 415, 125587.	6.5	18
1006	Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design. Turkish Journal of Chemistry, 2021, 45, 1224-1236.	0.5	2
1007	Biodegradation and detoxification of reactive orange 16 by Candida sake 41E. Bioresource Technology Reports, 2021, 15, 100726.	1.5	9
1008	Application of QSAR for the identification of key molecular fragments and reliable predictions of effects of textile dyes on growth rate and biomass values of Raphidocelis subcapitata. Aquatic Toxicology, 2021, 238, 105925.	1.9	9
1009	Applying Bayesian forecasting to predictive toxicology: The probability of innate carcinogenicity to humans of colorants synthesized from benzidine. Toxicology Letters, 2021, 351, 111-134.	0.4	7
1010	A critical review of the aniline transformation fate in azo dye wastewater treatment. Journal of Cleaner Production, 2021, 321, 128971.	4.6	68
1011	Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. Journal of Environmental Management, 2021, 300, 113786.	3.8	36
1012	Synergistic role of bacterial consortium to biodegrade toxic dyes containing wastewater and its simultaneous reuse as an added value. Chemosphere, 2021, 284, 131273.	4.2	22
1013	Low-pressure UV-initiated synthesis of cationic starch-based flocculant with high flocculation performance. Carbohydrate Polymers, 2021, 273, 118379.	5.1	18
1014	Simultaneous adsorptive removal of conventional and emerging contaminants in multi-component systems for wastewater remediation: A critical review. Science of the Total Environment, 2021, 799, 149500.	3.9	49
1015	Application of random forest for modeling batch and continuous fixed-bed removal of crystal violet from aqueous solutions using Gypsophila aretioides stem-based biosorbent. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120292.	2.0	13
1016	Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere, 2022, 286, 131914.	4.2	35
1017	A new 3D supramolecular 2-fold interpenetrating Ag(I)-based coordination polymer as photocatalyst for aromatic dye degradation. Journal of Molecular Structure, 2022, 1248, 131510.	1.8	2
1018	Natural Zeolites as Sustainable Materials for Environmental Processes. , 2021, , 367-381.		1
1019	Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Current Research in Green and Sustainable Chemistry, 2021, 4, 100180.	2.9	37
1020	Dyeing recipe prediction of cotton fabric based on hyperspectral colour measurement and an improved recurrent neural network. Coloration Technology, 2021, 137, 166-180.	0.7	13
1021	Studies of wastewater treatment techniques using low-cost biosorbents. , 2021, , 395-410.		1
1022	Modeling microbial communities: consensus among experimentalist and theorist. , 2021. , 289-308.		0 -

#	Article	IF	CITATIONS
1023	Dye degradation potential of <i>Acinetobacter baumannii</i> strain VITVB against commercial azo dyes. Bioremediation Journal, 2021, 25, 347-368.	1.0	17
1025	Fungal Enzymes for Bioremediation of Contaminated Soil. Fungal Biology, 2019, , 189-215.	0.3	6
1026	Low-Cost Materials with Adsorption Performance. , 2017, , 1-33.		10
1027	Dyes—Environmental Impact and Remediation. , 2012, , 111-162.		173
1028	Dyes: Effect on the Environment and Biosphere and Their Remediation Constraints. , 2020, , 73-94.		7
1029	Enzymes in textile effluents. , 2014, , 251-298.		5
1030	Bacterial Redox Potential Powers Controlled Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 286-293.	6.6	39
1031	CHAPTER 4. Natural Polysaccharides as Treatment Agents for Wastewater. RSC Green Chemistry, 2013, , 51-81.	0.0	10
1032	Regenerative nanobots based on magnetic layered double hydroxide for azo dye removal and degradation. Chemical Communications, 2017, 53, 10456-10458.	2.2	14
1033	Comparative Study on Biodecolorization Capabilities of Indigenous Strains to Azo Dyes. Science Discovery, 2016, 4, 109.	0.1	2
1034	Dyes Contamination in the Environment. , 2017, , 127-176.		1
1035	Optimization of Environmental Parameters on Decolorization of Remazol Black Busing Mixed Culture. American Journal of Microbiological Research, 2013, 1, 53-56.	0.2	10
1036	Environmental Bioremediation of Dyes by <i>Pseudomonas aeruginosa </i> ETL-1 Isolated from Final Effluent Treatment Plant of Ankleshwar. American Journal of Microbiological Research, 2013, 1, 74-83.	0.2	7
1037	Microbial Degradation of Azo Dye by <i>Pseudomonas spp</i> . MPS-2 by an Application of Sequential Microaerophilic & Aerobic Process. American Journal of Microbiological Research, 2013, 1, 105-112.	0.2	19
1041	Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO ₂ . Advances in Environmental Research, 2015, 4, 25-38.	0.3	12
1042	Synthesis of copolymeric hydrogels of acrylamide and 2-(hydroxyethyl methacrylate) and its use for the adsorption of basic blue 3 dye. Zeitschrift Fur Physikalische Chemie, 2021, 235, 707-721.	1.4	6
1043	Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1381-1393.	1.4	27
1044	Biodegradation of Acid Scarlet 3R by a New Salt-tolerant Strain Alcaligenes faecalis LJ-3: Character, Enzyme and Kinetics Analysis. Chemical and Biochemical Engineering Quarterly, 2018, 32, 371-381.	0.5	3

#	Article	IF	CITATIONS
1045	Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies, 2015, 4, 13.	0.3	14
1046	Studies on Decolourisation of Acid Blue 113 Using Staphylococcus Aureus and Escherichia Coli Isolated From Tannery Wastewater. International Journal of Innovative Research in Science, Engineering and Technology, 2015, 04, 938-948.	0.4	2
1047	Comparative Adsorption Mechanism of Rice Straw Activated Carbon Activated with NaOH and KOH. Sains Malaysiana, 2020, 49, 2721-2734.	0.3	8
1048	Talaromyces aculeatus from acidic environment as a new fungal biosorbent for removal of some reactive textile dyes. Anadolu University Journal of Sciences & Technology, 0, , .	0.2	1
1049	Phytoremediation of Methylene Blue and Methyl Orange Using Eichhornia crassipes. International Journal of Environmental Science and Development, 2016, 7, 724-728.	0.2	41
1050	Adsorption of Lead by Bentonite Clay. International Journal of Scientific Research and Management, 2017, 5, .	0.0	9
1051	Reduction of Color Intensity from Textile Dye Wastewater Using Microorganisms: A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 3407-3415.	0.0	13
1052	Purification and Characterization of Lignin Peroxidase Isozymes from Humicola grisea (Traaen) and Its Application in Bioremediation of Textile Dyes. Egyptian Journal of Botany, 2017, 57, 335-343.	0.1	11
1053	A global trend of Fenton-based AOPs focused on wastewater treatment: a bibliometric and visualization analysis. Water Practice and Technology, 2021, 16, 19-34.	1.0	12
1054	Differential Protein Expression in Shewanella seohaensis Decolorizing Azo Dyes. Current Proteomics, 2019, 16, 156-164.	0.1	6
1055	Photo-catalytic Study of Malachite Green Dye Degradation Using Rice Straw Extracted Activated Carbon Supported ZnO Nano-particles. Nanoscience and Nanotechnology - Asia, 2020, 10, 849-859.	0.3	6
1056	Treatment of Textile Dye Containing Effluents. Current Environmental Engineering, 2015, 1, 162-184.	0.6	21
1057	Using Biomass of Basidiomyceteous Fungi in Decolorization of Wastewater of Textile Industry. Journal of Pure and Applied Microbiology, 2017, 11, 669-675.	0.3	5
1058	Streptomyces Consortium for Enhanced Biodegrdation of Azo Blue Dye. Journal of Pure and Applied Microbiology, 2018, 12, 65-72.	0.3	3
1059	Comparison of adsorption behaviour of coconut coir activated carbon and commercial activated carbon for textile dye. , 2011, , .		2
1060	Nanocrystalline TiO2 and Halloysite clay mineral composite films prepared by sol-gel method: Synergistic effect and the case of silver modification to the photocatalytic degradation of Basic Blue- 41 azo dye in water Global Nest Journal, 2014, 16, 485-498.	0.3	16
1061	Biological decolorization of reactive azo dye by anaerobic/aerobic-sequencing batch reactor system. Global Nest Journal, 2015, 17, 210-219.	0.3	14
1062	Enhanced decolourization of congo red dye under submerged fermentation (SMF) process by newly isolated Bacillus subtilis SPR42. Journal of Applied and Natural Science, 2011, 3, 51-53.	0.2	3

#	Article	IF	CITATIONS
1063	Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate. Tenside, Surfactants, Detergents, 2009, 46, 205-213.	0.5	6
1064	Obtención de un inóculo fúngico para la degradación de un colorante azo por fermentación en estado sólido. Revista U D C A Actualidad & Divulgación CientÃfica, 2014, 17, .	0.1	3
1065	Bioremediation of Methylene Blue by Bacillus thuringiensis 4 G1: Application of Statistical Designs and Surface Plots for Optimization. Biotechnology, 2006, 6, 34-39.	0.5	12
1066	Production, Purification and Application of Bacterial Laccase: A Review. Biotechnology, 2014, 13, 196-205.	0.5	33
1067	Adsorption of Iron (III), Lead (II) and Cadmium (II) Ions by Unmodified Raphia Palm (Raphia hookeri) Fruit Endocarp. Environmental Research Journal, 2011, 5, 104-113.	0.4	30
1068	Azo Dye Degradation by Chlorella vulgaris: Optimization and Kinetics. International Journal of Biological Chemistry, 2019, 14, 1-7.	0.3	36
1069	Decolourization of Synthetic Textile Dyes using the Edible Mushroom Fungi Pleurotus. Pakistan Journal of Biological Sciences, 2014, 17, 248-253.	0.2	4
1070	Biodegradation of Mixed Textile Dyes by Bacterial Strains Isolated from Dyewaste Effluent. Research Journal of Environmental Toxicology, 2011, 5, 97-107.	1.0	33
1071	Biosorption of Dye Molecules. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 51-74.	0.3	5
1072	Decolorization of Textile Dye Remazol Black B by Pseudomonas aeruginosa CR-25 Isolated from the Common Effluent Treatment Plant. Journal of Bioremediation & Biodegradation, 2011, 02, .	0.5	24
1073	Biodegradation and Decolorization of Reactive Orange 16 by Nocardiopsis alba Soil Isolate. Journal of Bioremediation & Biodegradation, 2012, 03, .	0.5	13
1074	Decolourisation of Reactive Black 5 Using paenibacillus sp. Immobilised Onto Macrocomposite. Journal of Bioremediation & Biodegradation, 0, s1, .	0.5	5
1075	Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. Journal of Petroleum & Environmental Biotechnology, 2011, 02, .	0.3	10
1076	The use of the Cytogenetic to Identify Mechanisms of Action of an Azo Dye in Allium Cepa Meristematic Cells. , 2011, 01, .		23
1077	Biodegradation of Textile Dye by Using Achromobacter xylosoxidans GRIRKNM11 Isolated from Dye Polluted Site. , 2012, 02, .		6
1078	Adsorption Isotherms and Kinetic Studies of Congo-Red Removal from Waste Water Using Activated Carbon Prepared from Jujube Seed. American Journal of Analytical Chemistry, 2020, 11, 47-59.	0.3	21
1079	Sustainable Discoloration of Textile Chromo-Baths by Spent Mushroom Substrate from the Industrial Cultivation of Pleurotus ostreatus. Journal of Environmental Protection, 2010, 01, 85-94.	0.3	18
1080	Trivalent Mn and Fe Complexes for the Degradation of Remazol Dyes. Journal of Water Resource and Protection, 2010, 02, 209-213.	0.3	2

		CITATION REPORT	
#	Article	IF	CITATIONS
1082	Iron-loaded Natural Clay as Heterogeneous Catalyst for Fenton-like Discoloration of Dyeing Wastewater. Bulletin of the Korean Chemical Society, 2009, 30, 2249-2252.	1.0	11
1083	Identification and Optimization of Novel NAR-1 Bacterial Consortium for the Biodegradation of Orange II. Insight Biotechnology, 2011, 1, 7-16.	2.0	31
1084	Adsorptive removal of anionic dye from aqueous solutions by mixture of Kaolin and Bentonite clay: Characteristics, isotherm, kinetic and thermodynamic studies. Iranica Journal of Energy & Environment, 2015, 6, .	0.2	16
1087	Removal of Methylene Blue and Malachite Green Dye Using Different Form of Coconut Fibre as Absorbent. Journal of Basic & Applied Sciences, 0, , .	0.8	22
1088	Microbial Decolourization of an Anthraquinone Dye C.I. Reactive Blue 19 Using Bacillus cereus. American Chemical Science Journal, 2012, 2, 60-68.	0.2	14
1089	Adsorption Isotherm Studies of Cd(II) and Pb(II) Ions from Aqueous Solutions by Bamboo-Based Activated Charcoal and Bamboo Dust. American Chemical Science Journal, 2015, 5, 253-269.	0.2	4
1090	Study of Environmental Concerns of Dyes and Recent Textile Effluents Treatment Technology: A Review. Asian Journal of Fisheries and Aquatic Research, 0, , 1-18.	0.0	30
1091	The Applications of Membrane Operations in the Textile Industry: A Review. British Journal of Applied Science & Technology, 2012, 2, 296-310.	0.2	21
1092	Biodegradation of Brown 706 Dye by Bacterial Strain Pseudomonas aeruginosa. Water (Switzerland 2021, 13, 2959.), 1.2	40
1093	Energy Generation Coupled to Azoreduction by Membranous Vesicles from Shewanella decoloration S12. Journal of Microbiology and Biotechnology, 2009, , .	iis 0.9	Ο
1094	Decolorization of sugar beet distillery effluent using mixed cultures of bacteria of the genus Bacillus. African Journal of Biotechnology, 2012, 11, .	0.3	4
1095	Decolorization of Orange II by Mixed Culture of Enterococcus faecalis ID6017 and Chryseobacteriun indologenes ID6016. Microbiology Indonesia, 2012, 6, 117-123.	n 0.2	Ο
1096	Isolation, Identification And Characterisation Of Dye-Adapted Bacteria From Textile Effluents Mixed With Sewage Released Into The River Amaravathy, Karur, Tamilnadu, India IOSR Journal of Environmental Science, Toxicology and Food Technology, 2013, 7, 51-57.	0.1	0
1097	Remediation of Dye Containing Wastewater Using Viable Algal Biomass. RSC Green Chemistry, 2013 212-228.	3, , 0.0	2
1099	Fly Ash Based Substrates for Advanced Wastewater Treatment. Springer Proceedings in Energy, 201 539-569.	4,, 0.2	0
1100	Optimisation of Coagulation Process with SIWW is Coagulant for Colour and COD Removal of Acid Dye Effluent Using Central Composite Design Experiment. International Journal of Environmental Monitoring and Analysis, 2014, 2, 1.	0.2	1
1101	Decolorization and Biodegradation of Direct Blue 2B by Mix Consortia of Bacillus. IOSR Journal of Pharmacy and Biological Sciences, 2014, 9, 34-40.	0.1	1
1103	Effect of Dye-Degrading Microbes' Augmentation on Microbial Ecosystem of the Fluidizing Media an Color Treatment in a Pilot Plant. Journal of Environmental Science International, 2014, 23, 681-695.	id o.o	Ο

	CHATION REL	PORT	
#	Article	IF	Citations
1104	Removal of Methylene Blue Using UV-C Pretreated Citrobacter freundii JH 11-2 and Bacillus pseudomycoides JH 2-2 Biomass. Journal of Soil and Groundwater Environment, 2014, 19, 38-43.	0.1	0
1105	Effect of Temperature on the Colour and TSS Removal of Batik Dye Wastes in an Integrated Biological and Filtration Treatment System. Lecture Notes in Electrical Engineering, 2015, , 55-64.	0.3	0
1106	ESTUDO DA DESSORÇÃO DO CORANTE TÊXTIL REATIVO AZUL 5G ADSORVIDO EM BAGAÇO DE MALTE. , 0, ,	, -	0
1107	Removal of crystal violet from wastewater using different chitosans and cross-linked derivatives. WIT Transactions on Ecology and the Environment, 2015, , .	0.0	4
1108	THE INVESTIGATIONS ON PROCESS TYPE INFLUENCE ON METHYL VIOLET ADSORPTION ON CHITIN AND CHITIN DEACETYLATION PRODUCTS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2015, XX, 273-280.	0.1	0
1109	Equilibrium , Kinetic and Thermodynamic Assessment of the Adsorption of Cadmium Using Water Lily () Tj ETQq1	1.0.7843 0.1	14 rgBT /O∨
1110	Effect of Environmental Factors on Biodecolourization of Textile Effluents Using Mutagenised Strains of Pseudomonas and Bacillus Species. Journal of Applied Life Sciences International, 2016, 5, 1-17.	0.2	0
1111	Simulation of Lab-scale Leachate Treatment Bioreactor with Application of Logistic Growth Equation for Determining Design and Operational Parameters. International Journal of Scientific and Engineering Research, 2017, 8, 1061-1070.	0.1	1
1113	Hybrid Treatment Method of Industrial Effluent. Green Chemistry and Sustainable Technology, 2018, , 199-225.	0.4	1
1114	Removal of Malachite Green from Contaminated Water using Electro-Coagulation Technique. Journal of Analytical & Pharmaceutical Research, 2017, 6, .	0.3	7
1115	Biodegradación de colorantes azo por Pleurotus ostreatus. Mexican Journal of Biotechnology, 2018, 3, 43-59.	0.2	0
1116	Biorremediación del Colorante Negro Azoico por Levadura Inmovilizada en Gelatina. IngenierÃas USBMed, 2018, 9, 30-38.	0.1	0
1117	Chitosan Molecular Weight Effects on The Synthesis of Gold Nanoparticles and Catalytic Degradation of Environmental Pollutants. Journal of Advances in Physics, 2018, 14, 5388-5405.	0.2	1
1118	Biodecolourisation of Acid Red 27 Dye by Citrobacter freundii A1 and Enterococcus casseliflavus bacterial consortium. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 202-207.	0.4	0
1119	Development and performance of BAC-ZS bacterial consortium as biofilm onto macrocomposites for raw textile wastewater treatment. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14, 257-262.	0.4	2
1120	BIODEGRADATION/ DECOLORIZATION OF SYNTHETIC DYES BY BACTERIAL ISOLATES. International Journal of Agriculture Environment and Bioresearch, 2019, 04, 193-206.	0.0	0
1121	Efficient Decolorization of Water and Oil-Soluble Azo Dyes by Enterococcus avium Treated with HP-β-CD. Pakistan Journal of Zoology, 2019, 51, .	0.1	1
1122	Evaluation of Basic blue 41 removal from aqueous solutions by laccase mediated system using response surface methodology. Caspian Journal of Health Research, 2019, 4, 99-104.	0.1	Ο

		ATION REPORT	
#	Article	IF	Citations
1124	Mechanism and Techniques of Dye Removal by Microflora. Sustainable Textiles, 2022, , 87-112.	0.4	0
1125	Synthesis, characterization, and photosensitizer applications for dye-based on ZrO2- acriflavine nanocomposite thin film [ZrO2+ACF]C. Journal of Molecular Structure, 2022, 1250, 131827.	1.8	16
1126	Bioremediation of Dye Using Mesophilic Bacteria: Mechanism and Parametric Influence. Sustainable Textiles, 2022, , 67-86.	0.4	1
1127	Separation of Cadmium Using a new Adsorbent of Modified Chitosan with Pyridine Dicarboxyamide derivative and application in different samples. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	6
1128	Enzyme Action for Dye Degradation. Sustainable Textiles, 2022, , 141-163.	0.4	2
1129	Removal of Dyes from Wastewaters in Moving Bed Biofilm Reactors: A Review of Biodegradation Pathways and Treatment Performance. Sustainable Textiles, 2022, , 227-262.	0.4	1
1130	Preparation of a quinoa straw-derived porous carbon material and a Fe ₃ O ₄ -contained composite material for removal of rhodamine B from water. Materials Research Express, 2020, 7, 125603.	. 0.8	6
1131	Biodegradation of micropollutants. , 2022, , 477-507.		4
1132	Isolation and Screening of Bacteria with Ability to Decolorize Selected Synthetic Dyes – Preliminary Results. Architecture Civil Engineering Environment, 2020, 13, 75-86.	0.6	0
1133	A Review of Production, Properties and Application in Scavenging of Dyes of Biochar. , 0, , .		0
1134	Bacterial Metabolites for Removal of Toxic Dyes and Heavy Metals. Environmental Chemistry for A Sustainable World, 2020, , 85-116.	0.3	3
1135	A 3D 8-connected bcu topological metal–organic framework built by trinuclear Cd(II) units: Photocatalysis and LC-MS studies. Polyhedron, 2022, 211, 115571.	1.0	6
1136	Elimination of cationic azodye from aqueous media using doped polyaniline (PANI): adsorption optimization and modeling. Canadian Journal of Chemistry, 2020, 98, 717-724.	0.6	3
1137	Investigation on the By-Pass Line Orifice Plate Assisted (B-PLOPA) HC Degradation of Basic Fuchsin (BF) in Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
1138	Symbiotically Augmented removal of Congo red by polyaniline/cobalt sulfide/graphite composites. Materials Chemistry and Physics, 2022, 278, 125487.	2.0	6
1139	Emerging Nano-Structured Metal Oxides for Detoxification of Organic Pollutants Towards Environmental Remediation: Overview and Future Aspects. Environmental Chemistry for A Sustainable World, 2022, , 151-186.	0.3	0
1140	Photocatalytic Activity of Revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa's Bio-Capped Silver Nanoparticles for Industrial Wastewater Treatment. Nanomaterials, 202 11, 3241.	21, 1.9	5
1141	Photocatalytic degradation of rhodamine B in the visible region using nanostructured CoAl2â``xLaxO4 (xÂ=Â0, 0.01, 0.03, 0.07, and 0.09) series: Photocatalytic activity and DFT calculations. Inorganic Chemi Communication, 2022, 136, 109176.	istry 1.8	8

#	Article	IF	CITATIONS
1142	Adsorption of Methyl Red Dye from Aqueous Solution Onto Eggshell Waste Material: Kinetics, Isotherms and Thermodynamic Studies. SSRN Electronic Journal, 0, , .	0.4	1
1143	A short review of titania-graphene oxide based composites as a photocatalysts. Advanced Technologies, 2021, 10, 51-60.	0.2	4
1144	Application of Biochar for the Treatment of Textile Dyes and Wastewater. , 2021, , 169-191.		2
1145	Dye contaminated wastewater treatment through metal–organic framework (MOF) based materials. New Journal of Chemistry, 2022, 46, 3054-3072.	1.4	24
1147	Application of plant-based natural coagulants in water treatment. , 2022, , 51-58.		3
1148	Advances in dye contamination. , 2022, , 139-162.		1
1149	Predicting of acid red 14 removals from synthetic wastewater in the advanced oxidation process using artificial neural networks and fuzzy regression. Rendiconti Lincei, 2022, 33, 115-126.	1.0	7
1150	Enzymatic biodegradation, kinetic study, and detoxification of Reactive Red-195 by <i>Halomonas meridiana</i> isolated from Marine Sediments of Andaman Sea, India. Environmental Technology (United Kingdom), 2023, 44, 2648-2667.	1.2	5
1151	Process Technology for the Removal of Cr(VI) from Wastewater Using Pig Iron Sludge. Chemical Engineering and Technology, 2022, 45, 543-551.	0.9	4
1152	Fish scale of Sardina pilchardus as a biosorbent for the removal of Ponceau S dye from water: Experimental, designing and Monte Carlo investigations. Inorganic Chemistry Communication, 2022, 137, 109196.	1.8	6
1153	Investigation on the by-pass line orifice plate assisted hydrodynamic cavitation (B-PLOPA HC) degradation of basic fuchsin (BF) in wastewater. Separation and Purification Technology, 2022, 287, 120501.	3.9	7
1154	Biochar-SO prepared from pea peels by dehydration with sulfuric acid improves the adsorption of Cr6+ from water. Biomass Conversion and Biorefinery, 2024, 14, 2601-2619.	2.9	18
1155	Geopolymer beads and 3D printed lattices containing activated carbon and hydrotalcite for anionic dye removal. Catalysis Today, 2022, 390-391, 57-68.	2.2	19
1156	Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. Biotechnology for Biofuels, 2021, 14, 229.	6.2	21
1157	Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review. Frontiers in Environmental Science, 2021, 9, .	1.5	87
1158	Fundamental of Aerobic and Anaerobic Processes in Dye Wastewater. Sustainable Textiles, 2022, , 39-55.	0.4	3
1160	Overview of Biological Technologies for Azo Dye Removal. Sustainable Textiles, 2022, , 1-38.	0.4	1
1161	Taping into the Super Power and Magic Appeal of Ultrasound Coupled with Edta on Degradation of P-Chlorophenol by FeO Based Advanced Oxidation Processes. SSRN Electronic Journal, O, , .	0.4	0

#	Article	IF	CITATIONS
1162	The Saline Rhizospheric Soil of Sparganium Erectum L. Plant: A New Source of Efficient Bacteria for Azo Dye Decolorization. SSRN Electronic Journal, 0, , .	0.4	0
1163	QSAR modelling of organic dyes for their acute toxicity in <i>Daphnia magna</i> using 2D-descriptors. SAR and QSAR in Environmental Research, 2022, 33, 111-139.	1.0	10
1165	Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers, 2022, 14, 783.	2.0	99
1166	Comparison of reactive azo dye removal with UV/H2O2, UV/S2O82â^ and UV/HSO5â^ processes in aqueous solutions. Environmental Monitoring and Assessment, 2022, 194, 302.	1.3	4
1168	Plant microbe based remediation approaches in dye removal: A review. Bioengineered, 2022, 13, 7798-7828.	1.4	29
1169	Preparation of Ni(OH)2/CuO heterostructures for improved photocatalytic degradation of organic pollutants and microorganism. Chemosphere, 2022, 300, 134484.	4.2	12
1170	Biodegradation of Reactive Red 198 by textile effluent adapted microbial strains. Archives of Microbiology, 2022, 204, 12.	1.0	7
1171	Organic pollutants in wastewater and its remediation approaches using graphene adsorbent. International Journal of Agricultural and Applied Sciences, 2021, 2, 8-13.	0.1	1
1172	Enhanced Ozone Oxidation by a Novel Fe/Mn@ ^ĵ ³â^'Al2O3 Nanocatalyst: The Role of Hydroxyl Radical and Singlet Oxygen. Water (Switzerland), 2022, 14, 19.	1.2	10
1173	An investigation on PANI/NENP-1 composite as a novel photocatalyst for photocatalytic dye wastewater degradation and photocatalytic hydrogen evolution. Reaction Chemistry and Engineering, 2022, 7, 1626-1639.	1.9	8
1174	Transcriptome profiling reveals upregulation of benzoate degradation and related genes in Pseudomonas aeruginosa D6 during textile dye degradation. Environmental Research, 2022, 212, 113288.	3.7	4
1176	Decolorization of Azo Dye-Contaminated Water using Microbes: A Review. Lecture Notes in Civil Engineering, 2022, , 821-835.	0.3	3
1177	High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms, 2022, 10, 992.	1.6	7
1178	Efficient decolorization and detoxification of azo dyes by a halotolerant yeast Meyerozyma guilliermondii A3 with relatively low external carbon source. Journal of Water Process Engineering, 2022, 47, 102810.	2.6	5
1179	Preparation of a redox mediator membrane and its application to catalyzing biodegradation of azo dyes. Journal of Environmental Chemical Engineering, 2022, 10, 107778.	3.3	2
1180	Biodegradation of Textile Dye Wastewater with the Application of Response Surface Methodology (RSM): A Factorial Design Approach. Trends in Sciences, 2022, 19, 4168.	0.2	1
1181	A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 2022, 112, 1-19.	2.9	116
1182	Toxicological Impact of Azo Dyes and Their Microbial Degraded Byproducts on Flora and Fauna. , 2022, , 319-343.		4

щ		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
1185	A cucurbit[6]uril based supramolecular assembly for the detection and removal of dyes and antibiotics from water. Analytical Methods, 2022, 14, 2642-2648.	1.3	4
1186	Separation of dye from aqueous solution by a new gravity compression and aeration system. Environmental Technology (United Kingdom), 2023, 44, 4409-4423.	1.2	0
1187	Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Frontiers in Physiology, 0, 13, .	1.3	6
1188	Tyrosine surface-functionalized V2O5 nanophotocatalyst for environmental remediation. , 2022, , 283-291.		0
1189	Decolorization of Some Textile Dyes Using Phormidium sp. in Heterotrophıc Culture Conditions. Sakarya University Journal of Science, 0, , .	0.3	0
1190	Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water (Switzerland), 2022, 14, 2063.	1.2	53
1191	One-Pot Synthesis of Cellulose/MXene/PVA Foam for Efficient Methylene Blue Removal. Molecules, 2022, 27, 4243.	1.7	5
1192	Screening and identification of azo dye decolorizers from mangrove rhizospheric soil. Environmental Science and Pollution Research, 2022, 29, 83496-83511.	2.7	2
1193	Synthesis of Stabilized Iron Nanoparticles from Acid Mine Drainage and Rooibos Tea for Application as a Fenton-like Catalyst. ACS Omega, 2022, 7, 24423-24431.	1.6	3
1194	Utilization of Sulfonated Waste Polystyrene-Based Cobalt Ferrite Magnetic Nanocomposites for Efficient Degradation of Calcon Dye. Polymers, 2022, 14, 2909.	2.0	6
1195	Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 2022, 6, 100230.	2.9	50
1196	Polycarbodiimide for Textile Dye Removal from Contaminated Water. ACS Applied Polymer Materials, 2022, 4, 6192-6201.	2.0	13
1197	Removal of direct blue 71 and methylene blue from water by graphene oxide: effects of charge interaction and experimental parameters. Journal of Dispersion Science and Technology, 0, , 1-12.	1.3	3
1198	Production of hybrid TiO2/β-CD photocatalysts by supercritical antisolvent micronization for UV light-driven degradation of azo dyes. Journal of Supercritical Fluids, 2022, 188, 105695.	1.6	11
1199	Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. International Journal of Environmental Research and Public Health, 2022, 19, 9962.	1.2	37
1200	Synthesis of HAp/CS-SA composite for effective removal of highly toxic dyes in aqueous solution. Food and Chemical Toxicology, 2022, 168, 113346.	1.8	3
1202	Synthesis and application of cellulose acetate-acrylic acid-acrylamide composite for removal of toxic methylene blue dye from aqueous solution. Journal of Water Process Engineering, 2022, 49, 103102.	2.6	7
1203	Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. Journal of Environmental Management, 2022, 323, 116235.	3.8	12

#	Article	IF	CITATIONS
1204	Electrostimulation for promoted microbial community and enhanced biodegradation of refractory azo dyes. Journal of Environmental Chemical Engineering, 2022, 10, 108626.	3.3	7
1205	Developing a Z-Scheme Ag2co3/Zif-8 Heterojunction for Surface Decoration of Cotton Fabric Towards Repeatable Photocatalytic Dye Degradation. SSRN Electronic Journal, 0, , .	0.4	0
1206	Fabrication of Polyaniline@β-cyclodextrin Nanocomposite for Adsorption of Carcinogenic Phenol from Wastewater. ACS Applied Bio Materials, 2022, 5, 4504-4515.	2.3	8
1207	Degradation of Methylene Blue with a Cu(II)–Quinoline Complex Immobilized on a Silica Support as a Photo-Fenton-Like Catalyst. ACS Omega, 2022, 7, 33258-33265.	1.6	9
1208	Photocatalytic Remediation of Industrial Dye Waste Streams Using Biochar and Metal-Biochar Hybrids: A Critical Review. Chemistry Africa, 2023, 6, 609-628.	1.2	16
1209	Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. International Journal of Molecular Sciences, 2022, 23, 10637.	1.8	20
1212	Microbial Degradation, Spectral analysis and Toxicological Assessment of Malachite Green Dye by Streptomyces exfoliatus. Molecules, 2022, 27, 6456.	1.7	14
1215	Adsorption removal of Brilliant green and <scp>Safraninâ€O</scp> contaminants from water using a hydrogel based on carboxymethyl cellulose and sodium alginate crosslinked by epichlorohydrin. Coloration Technology, 2023, 139, 407-429.	0.7	4
1216	A novel combination of immobilized Enterococcus casseliflavus sp. nov. with silver nanoparticles into a reusable matrix of Ca-Alg beads as a new strategy for biotreatment of Disperse Blue 183: Insights into metabolic characterization, biotoxicity, and mutagenic properties. Journal of Environmental Management, 2023, 325, 116578.	3.8	2
1217	Refractory azo dye wastewater treatment by combined process of microbial electrolytic reactor and plant-microbial fuel cell. Environmental Research, 2023, 216, 114625.	3.7	6
1218	Developing a Z-scheme Ag2CO3/ZIF-8 heterojunction for the surface decoration of cotton fabric toward repeatable photocatalytic dye degradation. Applied Surface Science, 2023, 610, 155605.	3.1	12
1219	Fabrication of cellulose acetate/cellulose nitrate/carbon black nanofiber composite for oil spill treatment. Biomass Conversion and Biorefinery, 0, , .	2.9	4
1220	Biological and Photocatalytic Degradation of Congo Red, a Diazo Sulfonated Substituted Dye: a Review. Water, Air, and Soil Pollution, 2022, 233, .	1.1	11
1221	Prospects for humic acids treatment and recovery in wastewater: A review. Chemosphere, 2023, 312, 137193.	4.2	24
1222	Parametric studies of degradation of reactive red 120 by a novel approach of hydrodynamic cavitation. Materials Today: Proceedings, 2023, 80, 744-746.	0.9	1
1223	Mixed micellar solubilization for procion blue MxR entrapment and optimization of necessary parameters for micellar enhanced ultrafiltration. Chemosphere, 2023, 313, 137320.	4.2	6
1224	Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials, 2022, 15, 8191.	1.3	9
1225	Effect of pH, Salinity, Dye, and Biomass Concentration on Decolourization of Azo Dye Methyl Orange in Denitrifying Conditions. Water (Switzerland), 2022, 14, 3747.	1.2	2

#	Article	IF	CITATIONS
1226	Synthesis of cellulose acetate, cellulose propionate and cellulose butyrate for the removal of synthetic dyes. AIP Conference Proceedings, 2022, , .	0.3	1
1227	Light-driven biodegradation of azo dyes by Shewanella decolorationis-CdS biohybrid in wastewater lacking electron donors. Applied Microbiology and Biotechnology, 2023, 107, 447-457.	1.7	3
1228	Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environmental Science and Pollution Research, 2023, 30, 9207-9242.	2.7	83
1229	A critical review on application of organic, inorganic and hybrid nanophotocatalytic assemblies for photocatalysis of methyl orange dye in aqueous medium. Reviews in Chemical Engineering, 2024, 40, 67-91.	2.3	1
1230	Role of Various Physicochemical Factors in Enhancing Microbial Potential for Bioremediation of Synthetic Dyes. , 0, , .		0
1231	Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater. Journal of Cleaner Production, 2023, 385, 135522.	4.6	20
1233	Treatment of wastewater containing organic pollutants in the presence of N-doped graphitic carbon and Co3O4/peroxymonosulfate. Carbon Letters, 2023, 33, 1445-1460.	3.3	1
1234	Bio-Remediation of Organic Dyes from Wastewater by Microbial Colony—A Short Review. Environmental Footprints and Eco-design of Products and Processes, 2023, , 61-104.	0.7	1
1235	Biosorption of methylene blue dye using a novel chitosan pectinase blend. Environmental Science and Pollution Research, 2023, 30, 48948-48961.	2.7	3
1236	Electrodeposition of One-Dimensional Nanostructures: Environmentally Friendly Method. Journal of Composites and Biodegradable Polymers, 0, 10, 19-42.	0.3	1
1237	Composite nanofiber formation using a mixture of cellulose acetate and activated carbon for oil spill treatment. Environmental Science and Pollution Research, 2023, 30, 38683-38699.	2.7	5
1238	Localization of dye degrading enzymes in Xanthomonas campestris MTCC 10, 108. Environment Conservation Journal, 2011, 12, 53-58.	0.1	0
1239	Methylene blue and Congo red removal by activated carbons: A current literature. Acta Universitatis Sapientiae: Agriculture and Environment, 2022, 14, 29-44.	0.1	2
1240	Removal of highly concentrated methylene blue dye by cellulose nanofiber biocomposites. International Journal of Biological Macromolecules, 2023, 238, 124045.	3.6	7
1241	Removal of different vat dyes by Aspergillus niger: A comparative study focusing on the molecular structure. Journal of Microbiological Methods, 2023, 208, 106720.	0.7	2
1242	Collaborative impact of Cu/TiO2 nano composites for elimination of cationic dye from aqueous solution: Kinetics and isothermal modeling. Arabian Journal of Chemistry, 2023, 16, 104815.	2.3	2
1243	Aminated Covalent Organic Polymers for Anionic Dye Adsorption in Aqueous Systems. Applied Sciences (Switzerland), 2023, 13, 2043.	1.3	4
1244	Using magnetic micelles as adsorbents to remove dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 2023, 11, 109457.	3.3	2

#	Article	IF	CITATIONS
1245	Efficient Removal of Rhodamine B in Wastewater via Activation of Persulfate by MnO2 with Different Morphologies. Water (Switzerland), 2023, 15, 735.	1.2	1
1246	Homogenous UV/Periodate Process for the Treatment of Acid Orange 10 Polluted Water. Water (Switzerland), 2023, 15, 758.	1.2	1
1247	3D Printed Functionalized Nanocellulose as an Adsorbent in Batch and Fixed-Bed Systems. Polymers, 2023, 15, 969.	2.0	1
1248	Integrated chemical and biological processes for the degradation of synthetic dyes. , 2023, , 567-600.		0
1249	Bacterial tools for the removal and degradation of synthetic dyes from the wastewater. , 2023, , 339-370.		0
1250	Pixelating Structural Color with Cholesteric Spherical Reflectors. Advanced Photonics Research, 2023, 4, .	1.7	6
1251	Impact of textile dyes on human health and bioremediation of textile industry effluent using microorganisms: current status and future prospects. Journal of Applied Microbiology, 2023, 134, .	1.4	19
1252	Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. Environmental Science and Pollution Research, 2023, 30, 58412-58427.	2.7	4
1253	Bioremediation of Textile Dyes for Sustainable Environment—A Review. , 2023, , 447-460.		0
1254	Study of microwave-assisted sequential color stripping of cellulosic fabric dyed with reactive blue black 5 and reactive turquoise CLB. Cellulose, 0, , .	2.4	1
1255	Highly stable lead-free Cs2AgBil6-GO composite photocatalysts for efficient organic pollutant degradation. Journal of Environmental Chemical Engineering, 2023, 11, 109960.	3.3	3
1258	Removal of Organic Dyes by Functionalized Nanomaterials. , 2023, , 1267-1298.		1
1273	Role of Microbes in Bioremediation. , 2023, , 549-584.		0
1279	Decolourization of Textile Dyes Using CNT-Based Hybrid Materials. , 2023, , 119-156.		0
1280	Recent trends and advances in economics and commercialization of magnetic nanoadsorbents. , 2023, , 585-622.		0
1285	Studies on Indanthrene Blue Dye Degradation Using Iron II Oxide Nanoparticles. Springer Proceedings in Energy, 2023, , 149-159.	0.2	0
1286	Decolorization of Textile Dye RR 141 Using Electrochemical Process. Springer Proceedings in Earth and Environmental Sciences, 2023, , 395-403.	0.2	0
1302	Ponds covered with Lemna minor treating dyes. , 2024, , 779-827.		0

		CITATION REPORT		
#	Article	IF	CITATIONS	
1303	Fungal enzymes in textile industry: An emerging avenue to entrepreneurship. , 2024, , 121-141.		0	