Diagnostic utility of a modified forearm ischemic exercite relevant to exercise testing

Muscle and Nerve 27, 359-366 DOI: 10.1002/mus.10330

Citation Report

#	Article	IF	CITATIONS
1	Plasma Malondialdehyde Increases Transiently after Ischemic Forearm Exercise. Medicine and Science in Sports and Exercise, 2003, 35, 1859-1865.	0.2	31
3	Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion, 2004, 4, 529-542.	1.6	40
4	Pathology of skeletal muscle in mitochondrial disorders. Mitochondrion, 2004, 4, 441-452.	1.6	73
5	Mitochondrial Myopathies: Diagnosis, Exercise Intolerance, and Treatment Options. Medicine and Science in Sports and Exercise, 2005, 37, 2086-2093.	0.2	114
6	Pathophysiology and clinical presentations of rhabdomyolysis. Joint Bone Spine, 2005, 72, 382-391.	0.8	53
7	Physiopathologie et tableaux cliniques des rhabdomyolyses. Revue Du Rhumatisme (Edition Francaise), 2005, 72, 796-806.	0.0	7
8	What can metabolic myopathies teach us about exercise physiology?. Applied Physiology, Nutrition and Metabolism, 2006, 31, 21-30.	0.9	17
9	Increased PFK activity and GLUT4 protein content in McArdle's disease. Muscle and Nerve, 2008, 37, 431-437.	1.0	14
10	The mitochondrial cocktail: Rationale for combined nutraceutical therapy in mitochondrial cytopathies. Advanced Drug Delivery Reviews, 2008, 60, 1561-1567.	6.6	130
11	Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurologic Clinics, 2008, 26, 115-148.	0.8	4
12	Molecular diagnostics and mitochondrial dysfunction: a future perspective. Expert Review of Molecular Diagnostics, 2008, 8, 531-549.	1.5	6
13	Advances in molecular diagnostics for mitochondrial diseases. Expert Opinion on Medical Diagnostics, 2009, 3, 557-569.	1.6	0
14	Diagnostic Approach to Mitochondrial Disorders: the Need for a Reliable Biomarker. Current Molecular Medicine, 2009, 9, 1095-1107.	0.6	38
15	Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Physical Medicine and Rehabilitation Clinics of North America, 2009, 20, 101-131.	0.7	0
16	MITOCHONDRIAL CYTOPATHIES IN CHILDREN AND ADULTS. CONTINUUM Lifelong Learning in Neurology, 2009, 15, 98-125.	0.4	0
17	Metabolic Myopathies: Update 2009. Journal of Clinical Neuromuscular Disease, 2009, 10, 97-121.	0.3	85
18	Exercise Testing in Metabolic Myopathies. Physical Medicine and Rehabilitation Clinics of North America, 2012, 23, 173-186.	0.7	16
19	Blood metabolite data in response to maximal exercise in healthy subjects. Clinical Physiology and Functional Imaging, 2012, 32, 274-281.	0.5	9

#	ARTICLE Exertional Rhabdomyolysis. Current Sports Medicine Reports, 2014, 13, 113-119.	IF 0.5	Citations 28
21	Forearm Exercise Testing. , 2014, , 79-88.		1
22	Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2015, 17, 689-701.	1.1	414
23	Diagnostic power of the nonâ€ischaemic forearm exercise test in detecting glycogenosis type V. European Journal of Neurology, 2015, 22, 933-940.	1.7	22
25	Erfelijke stofwisselingsziekten bij volwassenen: wat men niet kent, herkent men niet?. Bijblijven (Amsterdam, Netherlands), 2016, 32, 558-565.	0.0	0
26	Challenging Return to Play Decisions. Sports Health, 2016, 8, 117-125.	1.3	32
27	Perspectives on Exertional Rhabdomyolysis. Sports Medicine, 2017, 47, 33-49.	3.1	94
28	The yield of diagnostic work-up of patients presenting with myalgia, exercise intolerance, or fatigue. Neuromuscular Disorders, 2017, 27, 243-250.	0.3	10
29	International Workshop:. Neuromuscular Disorders, 2017, 27, 1126-1137.	0.3	58
30	Higher oxidative stress in skeletal muscle of McArdle disease patients. Molecular Genetics and Metabolism Reports, 2017, 12, 69-75.	0.4	10
31	Myoadenylate deaminase deficiency: a frequent cause of muscle pain A case detected by exercise testing. Annales De Biologie Clinique, 2017, 75, 445-449.	0.2	1
32	Metabolic Myopathies. , 2017, , 125-131.		1
33	Metabolic Myopathies. , 2018, , 285-298.		0
34	Clinical Handbook of Neuromuscular Medicine. , 2018, , .		0
35	Diseases of Muscle. , 2018, , 9-43.		0
36	Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics, 2018, 15, 915-927.	2.1	47
37	Novel heterozygous mutations in the PGAM2 gene with negative exercise testing. Molecular Genetics and Metabolism Reports, 2018, 17, 53-55.	0.4	5
38	Exercise testing-based algorithms to diagnose McArdle disease and MAD defects. Acta Neurologica Scandinavica, 2018, 138, 301-307.	1.0	7

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	Acid-Induced Downregulation of ASS1 Contributes to the Maintenance of Intracellular pH in Cancer. Cancer Research, 2019, 79, 518-533.	0.4	36
40	PYGM mRNA expression in McArdle disease: Demographic, clinical, morphological and genetic features. PLoS ONE, 2020, 15, e0236597.	1.1	2
41	Validation and clinical performance of a combined nuclearâ€mitochondrial nextâ€generation sequencing and copy number variant analysis panel in a Canadian population. American Journal of Medical Genetics, Part A, 2020, 185, 486-499.	0.7	7
42	Clinical features of mtDNA-related syndromes in adulthood. Archives of Biochemistry and Biophysics, 2021, 697, 108689.	1.4	10
43	Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers?. Brain Sciences, 2021, 11, 398.	1.1	7
44	Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era. Neurology: Genetics, 2021, 7, e597.	0.9	13
45	Metabolic Myopathies. CONTINUUM Lifelong Learning in Neurology, 2016, 22, 1829-1851.	0.4	30
46	Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study. PLoS ONE, 2015, 10, e0132972.	1.1	6
47	Metabolic Myopathies. , 2008, , 450-457.		0
49	Exertional Rhabdomyolysis. , 2015, , 2211-2226.		2
50	Proximal and Generalized Weakness. , 2016, , 149-170.		0
51	Proximal and Generalized Weakness. , 2021, , 139-158.		0
52	Rhabdomyolysis. The role of diagnostic and prognostic factors. Muscles, Ligaments and Tendons Journal, 2013, 3, 303-12.	0.1	44
53	Metabolic Myopathies. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1752-1777.	0.4	4
55	Metabolic and Mitochondrial Myopathies. , 2023, , 249-273.		0