Hydrocolloids at interfaces and the influence on the pro-

Food Hydrocolloids 17, 25-39

DOI: 10.1016/s0268-005x(01)00120-5

Citation Report

#	Article	IF	CITATIONS
1	Rheo-optics and food systems. Current Opinion in Colloid and Interface Science, 2003, 8, 349-358.	3.4	46
2	Colloidal destabilisation mechanisms in protein-stabilised emulsions. Current Opinion in Colloid and Interface Science, 2003, 8, 371-379.	3.4	77
3	The effects of the combined use of stabilizers containing locust bean gum and of the storage time on Kahramanmaras-type ice creams. International Journal of Dairy Technology, 2003, 56, 223-228.	1.3	40
4	Production and Characterization of Oil-in-Water Emulsions Containing Droplets Stabilized by β-Lactoglobulinâ^'Pectin Membranes. Journal of Agricultural and Food Chemistry, 2003, 51, 6612-6617.	2.4	162
5	The rheology of emulsions. Interface Science and Technology, 2004, 4, 721-759.	1.6	11
6	Using proteins as additives in foods: an introduction. , 2004, , 421-441.		5
7	Application of ultrafiltration to improve the extraction of antibiotics. Separation and Purification Technology, 2004, 34, 115-123.	3.9	35
8	Influence of different maltodextrins on properties of O/W emulsions. Food Hydrocolloids, 2004, 18, 233-239.	5.6	65
9	Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids, 2004, 18, 271-281.	5.6	89
10	Dextran-induced depletion flocculation in oil-in-water emulsions in the presence of sucrose. Food Hydrocolloids, 2004, 18, 857-863.	5.6	20
11	Interactions of polysaccharides with \hat{l}^2 -lactoglobulin spread monolayers at the airâ \in "water interface. Food Hydrocolloids, 2004, 18, 959-966.	5.6	52
12	Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin–pectin membranes. Food Hydrocolloids, 2004, 18, 967-975.	5.6	201
13	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal \hat{l}^2 -glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-998.	5.6	71
14	Effect of some hydrocolloids on the rheological properties of different formulated ketchups. Food Hydrocolloids, 2004, 18, 1015-1022.	5.6	88
15	Vitamin E Nanoparticle for Beverage Applications. Chemical Engineering Research and Design, 2004, 82, 1432-1437.	2.7	96
16	Rheology of concentrated alumina-polyelectrolyte systems. Colloid and Polymer Science, 2004, 282, 596-601.	1.0	13
17	The effects of refined barleyl2-glucan on the physico-structural properties of low-fat dairy products: curd yield, microstructure, texture and rheology. Journal of the Science of Food and Agriculture, 2004, 84, 1159-1169.	1.7	59
18	Protein-stabilized emulsions. Current Opinion in Colloid and Interface Science, 2004, 9, 305-313.	3.4	834

#	ARTICLE	IF	CITATIONS
19	Serum separation and structure of depletion- and bridging-flocculated emulsions: a comparison. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 245, 41-48.	2.3	59
20	Interfacial and foaming properties of prolylenglycol alginates. Colloids and Surfaces B: Biointerfaces, 2004, 36, 139-145.	2.5	52
21	Interfacial shear rheology of interacting carbohydrate polyelectrolytes at the water–oil interface using an adapted conventional rheometer. Carbohydrate Polymers, 2004, 57, 45-54.	5.1	27
22	Influence of ι-Carrageenan on Droplet Flocculation of β-Lactoglobulin-Stabilized Oil-in-Water Emulsions during Thermal Processing. Langmuir, 2004, 20, 9565-9570.	1.6	33
23	Influence of pH and \hat{I}^1 -Carrageenan Concentration on Physicochemical Properties and Stability of \hat{I}^2 -Lactoglobulin-Stabilized Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2004, 52, 3626-3632.	2.4	156
24	Effect of Surfactant Type on Surfactantâ^'Maltodextrin Interactions:Â Isothermal Titration Calorimetry, Surface Tensiometry, and Ultrasonic Velocimetry Study. Langmuir, 2004, 20, 3913-3919.	1.6	50
25	Ultralow Interfacial Tensions in an Aqueous Phase-Separated Gelatin/Dextran and Gelatin/Gum Arabic System:Â A Comparison. Langmuir, 2004, 20, 2292-2297.	1.6	29
26	Effect of Added Surfactant on Temperature-Induced Gelation of Emulsions. Langmuir, 2004, 20, 3107-3113.	1.6	19
27	Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal \$beta;-glucans of varying molecular size. Food Hydrocolloids, 2004, 18, 987-987.	5.6	0
28	Effect of some hydrocolloids on the rheological properties of different formulated ketchups. Food Hydrocolloids, 2004, , .	5.6	0
30	Study of the Role of the Carbohydrate and Protein Moieties of Soy Soluble Polysaccharides in Their Emulsifying Properties. Journal of Agricultural and Food Chemistry, 2004, 52, 5506-5512.	2.4	98
31	Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Research International, 2004, 37, 851-859.	2.9	158
32	Differential scanning calorimetry study of pressure/temperature processed β-lactoglobulin: The effect of dextran sulphate. Food Research International, 2004, 37, 933-940.	2.9	10
33	Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum. Journal of Colloid and Interface Science, 2005, 284, 714-728.	5.0	152
34	Effect of hydrocolloids on the thermal denaturation of proteins. Food Chemistry, 2005, 90, 621-626.	4.2	92
35	Stabilization of olive oil? lemon juice emulsion with polysaccharides. Food Chemistry, 2005, 90, 627-634.	4.2	100
36	Effect of carboxymethylcellulose and xanthan gum on the thermal, functional and rheological properties of dried nixtamalised maize masa. Carbohydrate Polymers, 2005, 62, 222-231.	5.1	31
37	Hydrophobically modified ethyl(hydroxyethyl)cellulose as stabilizer and emulsifying agent in macroemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262, 158-167.	2.3	42

#	Article	IF	CITATIONS
38	A scaling analysis of β-casein monolayers at liquid–fluid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 323-328.	2.3	10
39	Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids, 2005, 19, 209-220.	5.6	234
40	Interactions of polysaccharides with \hat{l}^2 -lactoglobulin adsorbed films at the airâ \in "water interface. Food Hydrocolloids, 2005, 19, 239-248.	5.6	90
41	Formation of milk protein–pectin conjugates with improved emulsifying properties by controlled dry heating. Food Hydrocolloids, 2005, 19, 329-340.	5.6	110
42	Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams. Food Hydrocolloids, 2005, 19, 361-369.	5.6	87
43	Effect of pH on the interactions of sodium caseinate with soy phospholipids in relation to the foaming ability of their mixtures. Food Hydrocolloids, 2005, 19, 429-440.	5.6	29
44	Calorimetric investigation of the thermodynamic basis of the effect of maltodextrins on the foaming ability of legumin in the presence of small-molecule surfactant. Food Hydrocolloids, 2005, 19, 455-466.	5 . 6	7
45	Competitive adsorption of proteins with methylcellulose and hydroxypropyl methylcellulose. Food Hydrocolloids, 2005, 19, 485-491.	5.6	108
46	Factors affecting the perception of creaminess of oil-in-water emulsions. Food Hydrocolloids, 2005, 19, 521-526.	5.6	115
47	Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 2005, 19, 583-594.	5.6	171
48	Emulsion flocculation induced by saliva and mucin. Food Hydrocolloids, 2005, 19, 915-922.	5.6	222
49	Coalescence of Protein-Stabilized Bubbles Undergoing Expansion at a Simultaneously Expanding Planar Airâ^'Water Interface. Langmuir, 2005, 21, 4622-4630.	1.6	21
50	Effect of Time on the Interfacial and Foaming Properties of \hat{l}^2 -Lactoglobulin/Acacia Gum Electrostatic Complexes and Coacervates at pH 4.2. Langmuir, 2005, 21, 7786-7795.	1.6	86
51	Theoretical Analysis of Factors Affecting the Formation and Stability of Multilayered Colloidal Dispersions. Langmuir, 2005, 21, 9777-9785.	1.6	206
52	Influence of Environmental Stresses on Stability of O/W Emulsions Containing Cationic Droplets Stabilized by SDSâ ⁻ Fish Gelatin Membranes. Journal of Agricultural and Food Chemistry, 2005, 53, 4236-4244.	2.4	68
53	Light stability of spray-dried bixin encapsulated with different edible polysaccharide preparations. Food Research International, 2005, 38, 989-994.	2.9	169
54	Influence of Droplet Characteristics on the Formation of Oil-in-Water Emulsions Stabilized by Surfactantâ°'Chitosan Layers. Langmuir, 2005, 21, 6228-6234.	1.6	134
55	Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide. Langmuir, 2006, 22, 4710-4719.	1.6	105

#	Article	IF	CITATIONS
56	Colloid science of mixed ingredients. Soft Matter, 2006, 2, 642.	1.2	160
57	Stabilization of Model Beverage Cloud Emulsions Using Proteinâ^'Polysaccharide Electrostatic Complexes Formed at the Oilâ^'Water Interface. Journal of Agricultural and Food Chemistry, 2006, 54, 5540-5547.	2.4	117
58	EFFECTS OF HYDROCOLLOIDS ON APPARENT VISCOSITY OF BATTERS AND QUALITY OF CHICKEN NUGGETS. Chemical Engineering Communications, 2006, 193, 675-682.	1.5	21
59	Conjugation of Sodium Caseinate and Gum Arabic Catalyzed by Transglutaminase. Journal of Agricultural and Food Chemistry, 2006, 54, 7305-7310.	2.4	38
60	Irreversible Thermal Denaturation of \hat{I}^2 -Lactoglobulin Retards Adsorption of Carrageenan onto \hat{I}^2 -Lactoglobulin-Coated Droplets. Langmuir, 2006, 22, 7480-7486.	1.6	13
61	Modulating Surface Rheology by Electrostatic Protein/Polysaccharide Interactions. Langmuir, 2006, 22, 10089-10096.	1.6	107
62	Thermodynamic and Dynamic Characteristics of Hydroxypropylmethylcellulose Adsorbed Films at the Airâ~Water Interface. Biomacromolecules, 2006, 7, 388-393.	2.6	41
63	Reduced-fat white fresh cheese-like products obtained from W1/O/W2 multiple emulsions: Viscoelastic and high-resolution image analyses. Food Research International, 2006, 39, 678-685.	2.9	117
64	Utilization of layer-by-layer interfacial deposition technique to improve freeze–thaw stability of oil-in-water emulsions. Food Research International, 2006, 39, 721-729.	2.9	88
65	Changes in pork and shark (Rhizopriondon terraenovae) protein emulsions due to exogenous and endogenous proteolytic activity. Food Research International, 2006, 39, 1012-1022.	2.9	14
66	Surface Properties of Foods., 2006,, 229-250.		4
67	Pasting and rheological behavior of soy protein-based pudding. LWT - Food Science and Technology, 2006, 39, 344-350.	2.5	35
68	Magnetic resonance imaging of the behaviour of oil-in-water emulsions in the gastric lumen of man. British Journal of Nutrition, 2006, 95, 331-339.	1.2	70
69	Protein Stabilization of Emulsions and Foams. Journal of Food Science, 2005, 70, R54-R66.	1.5	580
70	Influence of hydroxypropylmethyl cellulose–sodium dodecylsulfate interaction on the solution conductivity and viscosity and emulsion stability. Carbohydrate Polymers, 2006, 64, 41-49.	5.1	79
71	Interrelationship between the viscoelastic properties and effective moisture diffusivity of emulsions with the water vapor permeability of edible films stabilized by mesquite gum–chitosan complexes. Carbohydrate Polymers, 2006, 64, 355-363.	5.1	28
72	Application of emulsifiers/stabilizers in dairy products of high rheology. Advances in Colloid and Interface Science, 2006, 123-126, 433-437.	7.0	65
73	Adsorption at the air–water interface and emulsification properties of grain legume protein derivatives from pea and broad bean. Colloids and Surfaces B: Biointerfaces, 2006, 53, 203-208.	2.5	47

#	ARTICLE	IF	CITATIONS
74	Effect of \hat{I}^3 -irradiation on some physicochemical and thermal properties of cowpea (L. Walp) starch. Food Chemistry, 2006, 95, 386-393.	4.2	86
75	Thorium speciation in seawater. Marine Chemistry, 2006, 100, 250-268.	0.9	142
76	Rheological properties of some gums-salep mixed solutions. Journal of Food Engineering, 2006, 72, 261-265.	2.7	84
77	Effect of Molecular Weight and Ionic Strength on the Formation of Polyelectrolyte Complexes Based on Poly(methacrylic acid) and Chitosan. Biomacromolecules, 2006, 7, 1245-1252.	2.6	137
78	Non-Newtonian behavior of concentrated emulsions stabilized with globular protein in the presence of nonionic surfactant. Colloid Journal, 2006, 68, 700-706.	0.5	7
79	Surface Modification of Magnetic Nanoparticles Using Gum Arabic. Journal of Nanoparticle Research, 2006, 8, 749-753.	0.8	95
80	Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science, 2006, 128-130, 227-248.	7.0	729
81	Influence of Environmental Stresses on O/W Emulsions Stabilized by β-Lactoglobulin–Pectin and β-Lactoglobulin–Pectin–Chitosan Membranes Produced by the Electrostatic Layer-by-Layer Deposition Technique. Food Biophysics, 2006, 1, 30-40.	1.4	142
82	Colored Food Emulsions—Implications of Pigment Addition on the Rheological Behavior and Microstructure. Food Biophysics, 2006, 1, 216-227.	1.4	27
83	Soy soluble polysaccharide stabilization at oil–water interfaces. Food Hydrocolloids, 2006, 20, 277-283.	5.6	72
84	Effect of thickeners on the coalescence of protein-stabilized air bubbles undergoing a pressure drop. Food Hydrocolloids, 2006, 20, 114-123.	5.6	18
85	Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 2006, 20, 577-585.	5.6	291
86	Properties and stability of oil-in-water emulsions stabilized by fish gelatin. Food Hydrocolloids, 2006, 20, 596-606.	5.6	198
87	Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids, 2006, 20, 607-618.	5.6	248
88	Perception of creaminess of model oil-in-water dairy emulsions: Influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food Hydrocolloids, 2006, 20, 839-847.	5.6	91
89	Use of polysaccharides to control protein adsorption to the air–water interface. Food Hydrocolloids, 2006, 20, 872-878.	5.6	78
90	Study of emulsions stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of Arabic gum, locust bean gum and xanthan gum. Food Hydrocolloids, 2006, 20, 1141-1152.	5.6	54
91	Importance of bacterial surface properties to control the stability of emulsions. International Journal of Food Microbiology, 2006, 112, 26-34.	2.1	60

#	Article	IF	CITATIONS
92	Study of emulsions and foams stabilized with Phaseolus vulgaris or Phaseolus coccineus with the addition of xanthan gum or NaCl. Journal of the Science of Food and Agriculture, 2006, 86, 1863-1870.	1.7	14
93	Adsorption and rheological properties of biopolymers at the air-water interface. AICHE Journal, 2006, 52, 2627-2638.	1.8	40
94	Release of Five Indicator Volatiles from a Model Meat Emulsion to Study Phase Contribution to Meat Aroma. International Journal of Food Properties, 2007, 10, 807-818.	1.3	11
96	Colloidal systems in foods containing droplets and bubbles. , 2007, , 153-184.		4
97	Emulsions., 0,, 1-19.		0
98	Using of Volatile Release Measurements to Understand Polysaccharide Molecular Interactions: An Example with Guar Gum Study. Macromolecular Symposia, 2007, 251, 96-102.	0.4	0
99	Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 2007, 40, 862-873.	2.9	94
100	Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 2007, 40, 1107-1121.	2.9	1,762
101	Impact of Electrostatic Interactions on Formation and Stability of Emulsions Containing Oil Droplets Coated by Î ² -Lactoglobulinâ^'Pectin Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 475-485.	2.4	236
102	Gluten-Free Sorghum Bread Improved by Sourdough Fermentation:  Biochemical, Rheological, and Microstructural Background. Journal of Agricultural and Food Chemistry, 2007, 55, 5137-5146.	2.4	181
103	Comparison on the Effect of High-Methoxyl Pectin or Soybean-Soluble Polysaccharide on the Stability of Sodium Caseinate-Stabilized Oil/Water Emulsions. Journal of Agricultural and Food Chemistry, 2007, 55, 6270-6278.	2.4	44
104	Interfacial Rheology of Surface-Active Biopolymers: <i>Acacia senegal</i> Gum versus Hydrophobically Modifed Starch. Biomacromolecules, 2007, 8, 3458-3466.	2.6	106
105	Polysaccharide Charge Density Regulating Protein Adsorption to Air/Water Interfaces by Protein/Polysaccharide Complex Formation. Journal of Physical Chemistry B, 2007, 111, 12969-12976.	1.2	34
106	Encapsulation of Lycopene Extract from Tomato Pulp Waste with Gelatin and Poly(\hat{l}^3 -glutamic acid) as Carrier. Journal of Agricultural and Food Chemistry, 2007, 55, 5123-5130.	2.4	102
107	Colloid-Trace Element Interactions in Aquatic Systems. , 2007, , 95-157.		19
108	Formation of Hydrogel Particles by Thermal Treatment of β-Lactoglobulinâ^'Chitosan Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 5653-5660.	2.4	72
109	Emulsification and Adsorption Properties of Hydrophobically Modified Potato and Barley Starch. Journal of Agricultural and Food Chemistry, 2007, 55, 1469-1474.	2.4	76
110	Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 2007, 47, 611-649.	5.4	802

#	Article	IF	CITATIONS
111	Surface modification of \hat{I}^3 -Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization. Surface and Coatings Technology, 2007, 201, 6917-6921.	2.2	47
112	Interaction and phase separation in the system HPMC/NaCMC/SDS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 94-98.	2.3	22
113	Surface activity of commercial food grade modified starches. Colloids and Surfaces B: Biointerfaces, 2007, 60, 187-194.	2.5	57
114	Interactions between furcellaran and the globular proteins bovine serum albumin and \hat{l}^2 -lactoglobulin. Carbohydrate Polymers, 2007, 67, 116-123.	5.1	48
115	Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydrate Polymers, 2007, 70, 198-205.	5.1	43
116	Thermal denaturation and functional properties of egg proteins in the presence of hydrocolloid gums. Food Chemistry, 2007, 101, 626-633.	4.2	63
117	The effect of chitosan on the properties of emulsions stabilized by whey proteins. Food Chemistry, 2007, 102, 1048-1054.	4.2	59
118	Rheological properties of concentrated emulsions stabilized by globular protein in the presence of nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 225-234.	2.3	25
119	Surface tension of Phaseolus vulgaris and coccineus proteins and effect of polysaccharides on their foaming properties. Food Chemistry, 2007, 101, 37-48.	4.2	62
120	Limited proteolysis as a tool for the improvement of the functionality of sunflower (Helianthus) Tj ETQq1 1 0.784 2007, 104, 1728-1733.	1314 rgBT 4.2	/Overlock 10 21
121	Production of drum-dried jackfruit (Artocarpus heterophyllus) powder with different concentration of soy lecithin and gum arabic. Journal of Food Engineering, 2007, 78, 630-636.	2.7	36
122	Influence of hydrocolloids on phase separation and emulsion properties of whey protein isolate. Journal of Food Engineering, 2007, 80, 454-459.	2.7	51
123	Effect of some hydrocolloids on the serum separation of different formulated ketchups. Journal of Food Engineering, 2007, 81, 437-446.	2.7	22
124	Physical properties of a single sugar α-linked glucuronic acid-based oligosaccharide produced by a Gluconacetobacter hansenii strain. Process Biochemistry, 2007, 42, 252-257.	1.8	15
125	Factors affecting the stability of O/W emulsion in BSA solution: Stabilization by electrically neutral protein at high ionic strength. Journal of Colloid and Interface Science, 2007, 316, 779-786.	5.0	53
126	Emulsionâ€Based Delivery Systems for Lipophilic Bioactive Components. Journal of Food Science, 2007, 72, R109-24.	1.5	829
127	Improvement of Stability of Oilâ€inâ€Water Emulsions Containing Caseinateâ€Coated Droplets by Addition of Sodium Alginate. Journal of Food Science, 2007, 72, E518-24.	1.5	60
128	EFFECTS OF ADDED WEIGHTING AGENT AND XANTHAN GUM ON STABILITY AND RHEOLOGICAL PROPERTIES OF BEVERAGE CLOUD EMULSIONS FORMULATED USING MODIFIED STARCH. Journal of Food Process Engineering, 2007, 30, 204-224.	1.5	79

#	Article	IF	CITATIONS
129	A RESEARCH NOTE ON INTRINSIC VISCOSITY OF HIGH METHOXYL PECTIN IN DILUTE SOLUTION: INFLUENCE OF SWEETENERS. Journal of Texture Studies, 2007, 38, 635-644.	1.1	1
130	Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids, 2007, 21, 23-45.	5.6	50
131	Formation and characterization of amphiphilic conjugates of whey protein isolate (WPI)/xanthan to improve surface activity. Food Hydrocolloids, 2007, 21, 379-391.	5.6	136
132	Characterization and properties of Acacia senegal (L.) Willd. var. Senegal with enhanced properties (Acacia (sen) SUPER GUMâ,,¢): Part 5. Factors affecting the emulsification of Acacia senegal and Acacia (sen) SUPER GUMâ,,¢. Food Hydrocolloids, 2007, 21, 353-358.	5.6	57
133	Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 2007, 21, 555-564.	5.6	271
134	The role of electrostatics in saliva-induced emulsion flocculation. Food Hydrocolloids, 2007, 21, 596-606.	5.6	173
135	Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 2007, 21, 879-888.	5.6	77
136	Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air–water interface. Food Hydrocolloids, 2007, 21, 813-822.	5.6	62
137	Influence of pH and biopolymer ratio on sodium caseinateâ€"guar gum interactions in aqueous solutions and in O/W emulsions. Food Hydrocolloids, 2007, 21, 862-869.	5.6	62
138	Soy protein–polysaccharides interactions at the air–water interface. Food Hydrocolloids, 2007, 21, 804-812.	5.6	57
139	Lipase-catalyzed hydrolysis of fish oil in an optimum emulsion system. Biotechnology and Bioprocess Engineering, 2007, 12, 484-490.	1.4	20
140	Optimization of nano-emulsions production by microfluidization. European Food Research and Technology, 2007, 225, 733-741.	1.6	267
141	Hard-Surface Cleaning Using Lipases: Enzyme–Surfactant Interactions and Washing Tests. Journal of Surfactants and Detergents, 2007, 10, 61-70.	1.0	74
142	Modulation of pH Sensitivity of Surface Charge and Aggregation Stability of Protein-Coated Lipid Droplets by Chitosan Addition. Food Biophysics, 2007, 2, 46-55.	1.4	49
143	Physicochemical and Functional Properties of Typical Tunisian Drink: Date Palm Sap (Phoenix) Tj ETQq0 0 0 rgBT /	Oyerlock í	19.7f 50 182
144	Physico-chemical properties of surfactant and protein films. Current Opinion in Colloid and Interface Science, 2007, 12, 187-195.	3.4	54
145	Influence of mixing and temperature on the rheological properties of carboxymethyl cellulose $\hat{\mathbb{P}}$ -carrageenan mixtures. European Food Research and Technology, 2008, 227, 1397-1402.	1.6	5
146	Suppression of the oxidation of methyl linoleate encapsulated with the extract from defatted rice bran by a compressed hot water treatment. European Food Research and Technology, 2008, 228, 109-114.	1.6	13

#	Article	IF	CITATIONS
147	Emulsions Based on the Interactions Between Lactoferrin and Chitosans. Food Biophysics, 2008, 3, 169-173.	1.4	11
148	Exploiting the Functionality of Lactic Acid Bacteria in Ice Cream. Food Biophysics, 2008, 3, 295-304.	1.4	11
149	Rheology and Stability of Beverage Emulsions in the Presence and Absence of Weighting Agents: A Review. Food Biophysics, 2008, 3, 279-286.	1.4	55
150	Structure of mixed \hat{l}^2 -lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study. Journal of Colloid and Interface Science, 2008, 317, 137-147.	5.0	54
151	Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 324, 149-154.	2.3	27
152	Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: Contribution to emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 76-83.	2.3	56
153	Effect of molecular weight of dextran on the phase behavior and microstructure of preheated soy protein/dextran mixtures. Carbohydrate Polymers, 2008, 72, 160-168.	5.1	17
154	The structure and physical properties of glucuronic acid oligomers produced by a Gluconacetobacter hansenii strain using the waste from beer fermentation broth. Carbohydrate Polymers, 2008, 73, 438-445.	5.1	28
155	Implications of interfacial characteristics of food foaming agents in foam formulations. Advances in Colloid and Interface Science, 2008, 140, 95-113.	7.0	177
156	Interfacial shear rheology of protein–surfactant layers. Advances in Colloid and Interface Science, 2008, 144, 38-53.	7.0	131
157	Influence of chemical composition of polysaccharides on aroma retention. Food Hydrocolloids, 2008, 22, 1097-1104.	5.6	28
158	Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications – a review. International Journal of Food Science and Technology, 2008, 43, 406-415.	1.3	297
159	The rheological behaviour of low fat soyâ€based salad dressing. International Journal of Food Science and Technology, 2008, 43, 2204-2212.	1.3	12
160	Depletion flocculation effects in egg-based model salad dressing emulsions. Food Hydrocolloids, 2008, 22, 218-224.	5.6	27
161	Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface. Food Hydrocolloids, 2008, 22, 387-402.	5.6	67
162	Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution. Food Hydrocolloids, 2008, 22, 647-659.	5.6	181
163	Development of a model whipped cream: Effects of emulsion droplet liquid/solid character and added hydrocolloid. Food Hydrocolloids, 2008, 22, 690-699.	5.6	50
164	Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocolloids, 2008, 22, 742-751.	5.6	59

#	ARTICLE	IF	Citations
165	The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food Hydrocolloids, 2008, 22, 854-861.	5.6	21
166	Physicochemical and rheological properties of oil-in-water emulsions prepared with sodium caseinate/gellan gum mixtures. Food Hydrocolloids, 2008, 22, 934-942.	5.6	42
167	Improved viscoelastic zein–starch doughs for leavened gluten-free breads: Their rheology and microstructure. Journal of Cereal Science, 2008, 48, 755-767.	1.8	114
168	Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter, 2008, 4, 932.	1.2	482
169	Milk protein–polysaccharide interactions. , 2008, , 347-376.		10
170	Food Materials Science. , 2008, , .		28
171	Protein/Emulsifier Interactions. , 2008, , 89-171.		18
172	Interactions and functionality of milk proteins in food emulsions. , 2008, , 321-345.		8
173	Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT - Food Science and Technology, 2008, 41, 1133-1139.	2.5	220
174	Structural and textural characteristics of reduced-fat cheese-like products made from W1/O/W2 emulsions and skim milk. LWT - Food Science and Technology, 2008, 41, 1847-1856.	2.5	90
175	Stabilisation of sodium caseinate hydrolysate foams. Food Research International, 2008, 41, 43-52.	2.9	23
176	Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Research International, 2008, 41, 487-494.	2.9	72
177	Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Marine Chemistry, 2008, 112, 11-19.	0.9	93
178	Long-Term Stabilization of Foams and Emulsions with In-Situ Formed Microparticles from Hydrophobic Cellulose. Langmuir, 2008, 24, 9245-9253.	1.6	183
179	Polysaccharide/Surfactant Complexes at the Airâ [*] Water Interface â [*] Effect of the Charge Density on Interfacial and Foaming Behaviors. Langmuir, 2008, 24, 12849-12857.	1.6	42
180	Mixed protein–polysaccharide interfacial layers: a self consistent field calculation study. Faraday Discussions, 2008, 139, 161.	1.6	28
181	Molecular Dynamics Simulation of the Cooperative Adsorption of Barley Lipid Transfer Protein and <i>cis-</i> li>lsocohumulone at the Vacuumâ^*Water Interface. Biomacromolecules, 2008, 9, 3024-3032.	2.6	26
182	Interactions between Adsorbed Layers of $\hat{l}\pm < \text{sub} > S1 < / \text{sub} > -\text{Casein}$ with Covalently Bound Side Chains: A Self-Consistent Field Study. Biomacromolecules, 2008, 9, 3188-3200.	2.6	22

#	Article	IF	CITATIONS
183	Emulsion and Pasting Properties of Resistant Starch with Locust Bean Gum and their Utilization in Low Fat Cookie Formulations. International Journal of Food Properties, 2008, 11, 762-772.	1.3	7
184	Physical and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized with β-Lactoglobulin and Pectin. Journal of Agricultural and Food Chemistry, 2008, 56, 5926-5931.	2.4	92
185	Probing Food Structure., 2008,, 203-226.		3
186	Steady and Dynamic Shear Rheological Properties, and Stability of Non-Flocculated and Flocculated Beverage Cloud Emulsions. International Journal of Food Properties, 2008, 11, 24-43.	1.3	15
187	Complexes and conjugates of biopolymers for delivery of bioactive ingredients via food., 2008,, 234-250.		6
188	Food Emulsifiers and Their Applications. , 2008, , .		98
189	Whey Protein-Stabilized Emulsions. , 0, , 63-97.		2
191	Gum ghatti. , 2009, , 477-494.		10
192	Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus) Tj ETQq0 0 0 rgBT / 23, 132-145.	Overlock 1 5.6	10 Tf 50 427 129
193	Droplet characterization and stability of soybean oil/palm kernel olein O/W emulsions with the presence of selected polysaccharides. Food Hydrocolloids, 2009, 23, 233-243.	5.6	73
194	Influence of pH on linear viscoelasticity and droplet size distribution of highly concentrated O/W crayfish flour-based emulsions. Food Hydrocolloids, 2009, 23, 244-252.	5.6	37
195	Viscoelastic properties of aqueous and milk systems with carboxymethyl cellulose. Food Hydrocolloids, 2009, 23, 441-450.	5.6	56
196	Chemical composition and functional properties of Gleditsia triacanthos gum. Food Hydrocolloids, 2009, 23, 306-313.	5.6	177
197	Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloids, 2009, 23, 600-610.	5.6	72
198	Structure and physical properties of pectins with block-wise distribution of carboxylic acid groups. Food Hydrocolloids, 2009, 23, 786-794.	5.6	127
199	Application and evaluation of mesquite gum and its fractions as interfacial film formers and emulsifiers of orange peel-oil. Food Hydrocolloids, 2009, 23, 708-713.	5.6	47
200	Light scattering study of sodium caseinate+dextran sulfate in aqueous solution: Relationship to emulsion stability. Food Hydrocolloids, 2009, 23, 629-639.	5.6	39
201	Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 2009, 23, 1473-1482.	5.6	1,003

#	Article	IF	CITATIONS
202	Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocolloids, 2009, 23, 1253-1262.	5.6	119
203	Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 2009, 23, 1270-1278.	5.6	274
204	Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 2009, 23, 1096-1102.	5.6	145
205	Influence of different \hat{i}^2 -glucans on the physical and rheological properties of egg yolk stabilized oil-in-water emulsions. Food Hydrocolloids, 2009, 23, 1279-1287.	5.6	68
206	Influence of chitosan and NaCl on physicochemical properties of low-acid tuna oil-in-water emulsions stabilized by non-ionic surfactant. Food Hydrocolloids, 2009, 23, 1374-1380.	5.6	47
207	Purification and partial physicochemical characteristics of protein free fenugreek gums. Food Hydrocolloids, 2009, 23, 2049-2053.	5.6	68
208	Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, 2009, 23, 2212-2218.	5.6	95
209	Interfacial rheology of soy proteins – High methoxyl pectin films. Food Hydrocolloids, 2009, 23, 2125-2131.	5.6	41
210	Comparisons of emulsifying properties of Maillard reaction products conjugated by green, red seaweeds and various commercial proteins. Food Hydrocolloids, 2009, 23, 2270-2277.	5.6	23
211	Influence of Alyssum homolocarpum seed gum on the stability and flow properties of O/W emulsion prepared by high intensity ultrasound. Food Hydrocolloids, 2009, 23, 2416-2424.	5.6	88
213	Emulsifying properties of gum kondagogu (<i>Cochlospermum gossypium</i>), a natural biopolymer. Journal of the Science of Food and Agriculture, 2009, 89, 1271-1276.	1.7	29
214	Effect of carboxymethyl cellulose concentration on rheological behavior of milk and aqueous systems. A creep and recovery study. Journal of Applied Polymer Science, 2009, 114, 1626-1632.	1.3	19
215	Fuzzy clustering-based modeling of surface interactions and emulsions of selected whey protein concentrate combined to \hat{l}^1 -carrageenan and gum arabic solutions. Journal of Food Engineering, 2009, 91, 10-17.	2.7	25
216	Surface dilatational properties of whey protein and hydroxypropyl-methyl-cellulose mixed systems at the air–water interface. Journal of Food Engineering, 2009, 94, 274-282.	2.7	28
217	Studies on the particle size control of gelatin microspheres. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 222-228.	0.4	15
218	Interfacial and Emulsifying Characteristics of Acid-treated Pea Protein. Food Biophysics, 2009, 4, 273-280.	1.4	81
219	Biopolymer-stabilized emulsions on the basis of interactions between \hat{l}^2 -lactoglobulin and \hat{l}^1 -carrageenan. Frontiers of Chemical Engineering in China, 2009, 3, 399-406.	0.6	10
220	Roles of fucoidan, an anionic sulfated polysaccharide on BSA-stabilized oil-in-water emulsion. Macromolecular Research, 2009, 17, 128-132.	1.0	20

#	Article	IF	Citations
221	The rheological properties of ketchup as a function of different hydrocolloids and temperature. International Journal of Food Science and Technology, 2009, 44, 596-602.	1.3	96
222	Stability and rheological behaviour of salad dressing obtained with whey and different combinations of stabilizers. International Journal of Food Science and Technology, 2009, 44, 777-783.	1.3	22
223	Effects of pH and chitosan on beef emulsion properties. International Journal of Food Science and Technology, 2010, 45, 140-146.	1.3	6
224	MICROSTRUCTURAL AND RHEOLOGICAL PROPERTIES OF LOWâ€FAT STIRRED YOGHURTS MADE WITH SKIM MILK AND MULTIPLE EMULSIONS. Journal of Texture Studies, 2009, 40, 657-675.	1.1	45
225	Characterization of Phase Separation Behavior, Emulsion Stability, Rheology, and Microstructure of Egg White–Polysaccharide Mixtures. Journal of Food Science, 2009, 74, C506-12.	1.5	22
226	Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 2009, 116, 104-113.	4.2	109
227	Effects of potato starch addition and cooling rate on rheological characteristics of flaxseed protein concentrate. Journal of Food Engineering, 2009, 91, 392-401.	2.7	12
228	Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. Journal of Biotechnology, 2009, 144, 313-320.	1.9	84
229	Effect of adding anionic surfactant on the stability of Pickering emulsions. Journal of Colloid and Interface Science, 2009, 329, 173-181.	5.0	88
230	Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air–water interface. Journal of Colloid and Interface Science, 2009, 336, 485-496.	5.0	34
231	Dairy cream response in instrumental texture evaluation processed by multivariate analysis. Chemometrics and Intelligent Laboratory Systems, 2009, 96, 258-263.	1.8	3
232	Rheological approaches to food systems. Comptes Rendus Physique, 2009, 10, 740-750.	0.3	65
233	Application of hydrocolloids as baking improvers. Chemical Papers, 2009, 63, .	1.0	78
234	Preparation and Characterization of Multilayer Coated Microdroplets: Droplet Deformation Simultaneously Probed by Atomic Force Spectroscopy and Optical Detection. Langmuir, 2009, 25, 2636-2640.	1.6	26
235	Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, 2009, 42, 1099-1104.	2.9	164
236	An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International, 2009, 42, 1141-1146.	2.9	151
237	Mannans as stabilizers of oil-in-water beverage emulsions. LWT - Food Science and Technology, 2009, 42, 849-855.	2.5	74
238	Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Critical Reviews in Food Science and Nutrition, 2009, 49, 577-606.	5.4	788

#	Article	IF	CITATIONS
240	Rheological and Sensory Properties of Spray Dried Pekmez Mixtures with Wheat Starch-Gum. International Journal of Food Properties, 2009, 12, 691-704.	1.3	4
241	Hydrocolloids and emulsion stability. , 2009, , 23-49.		22
242	Intense and selective coloration of foams stabilized with functionalized particles. Journal of Materials Chemistry, 2009, 19, 7043.	6.7	23
243	Biopolymers in Food Emulsions. , 2009, , 129-166.		37
244	Protein + Polysaccharide Coacervates and Complexes. , 2009, , 327-363.		49
245	Nanostructured Encapsulation Systems. , 2009, , 425-479.		92
246	Competitive Adsorption of Mixed Anionic Polysaccharides at the Surfaces of Protein-Coated Lipid Droplets. Langmuir, 2009, 25, 2654-2660.	1.6	27
247	The influence of types of dual modified starches on the enzymatic hydrolysis in the continuous recycle membrane reactor. Desalination and Water Treatment, 2010, 14, 94-100.	1.0	1
248	Studies on the interactions between bovine β-lactoglobulin and chitosan at the solid–liquid interface. Electrochimica Acta, 2010, 55, 8779-8790.	2.6	21
249	Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids and Surfaces B: Biointerfaces, 2010, 77, 75-81.	2.5	104
250	Interactions between whey protein isolate and gum Arabic. Colloids and Surfaces B: Biointerfaces, 2010, 79, 377-383.	2.5	106
251	Flocculation of protein-stabilized oil-in-water emulsions. Colloids and Surfaces B: Biointerfaces, 2010, 81, 130-140.	2.5	351
252	Modelling surface rheology of complex interfaces with extended irreversible thermodynamics. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 673-684.	1.2	12
253	Evaluation of aging mechanisms of olive oil–lemon juice emulsion through digital image analysis. Journal of Food Engineering, 2010, 97, 335-340.	2.7	23
254	Influence of maltodextrin type and multi-layer formation on the freeze-thaw stability of model beverage emulsions stabilized with \hat{l}^2 -lactoglobulin. Food Science and Biotechnology, 2010, 19, 7-17.	1.2	17
255	Spray-dried conjugated linoleic acid encapsulated with Maillard reaction products of whey proteins and maltodextrin. Food Science and Biotechnology, 2010, 19, 957-965.	1.2	72
256	The unique behaviors of biopolymers, BSA and fucoidan, in a model emulsion system under different pH circumstances. Macromolecular Research, 2010, 18, 1103-1108.	1.0	12
257	Modifications in stability and structure of whey protein-coated o/w emulsions by interacting chitosan and gum arabic mixed dispersions. Food Hydrocolloids, 2010, 24, 8-17.	5.6	123

#	Article	IF	CITATIONS
258	Hydrocolloids with emulsifying capacity. Part 2 – Adsorption properties at the n-hexadecane–Water interface. Food Hydrocolloids, 2010, 24, 121-130.	5.6	83
259	Interactions between milk proteins and gellan gum in acidified gels. Food Hydrocolloids, 2010, 24, 502-511.	5.6	62
260	Effect of gellan, alone and in combination with high-methoxy pectin, on the structure and stability of doogh, a yogurt-based Iranian drink. Food Hydrocolloids, 2010, 24, 744-754.	5.6	77
261	Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation. Food Hydrocolloids, 2010, 24, 689-701.	5.6	72
262	Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 374-397.	5.9	234
265	Creaming of skim natural rubber latex with chitosan derivatives. Journal of Applied Polymer Science, 2010, 115, 1022-1031.	1.3	8
266	Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions. Journal of Pharmaceutical Sciences, 2010, 99, 1721-1733.	1.6	110
267	Oil-in-water emulsions stabilized by sodium caseinate: Influence of pH, high-pressure homogenization and locust bean gum addition. Journal of Food Engineering, 2010, 97, 441-448.	2.7	81
268	Fabrication of pectin-based nanoemulsions loaded with itraconazole for pharmaceutical application. Carbohydrate Polymers, 2010, 82, 384-393.	5.1	64
269	Viscosimetric behaviour of carboxymethyl cellulose – Arabic gum mixtures: A new step to modelling. Carbohydrate Polymers, 2010, 80, 26-30.	5.1	7
270	Effect of high methoxyl pectin on pea protein in aqueous solution and at oil/water interface. Carbohydrate Polymers, 2010, 80, 817-827.	5.1	82
271	Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, 2010, 122, 447-454.	4.2	87
272	Heat stability and freezeâ€"thaw stability of oil-in-water emulsions stabilised by sodium caseinateâ€"maltodextrin conjugates. Food Chemistry, 2010, 119, 182-190.	4.2	83
273	Effect of high-hydrostatic pressure and pH on the rheological properties of gum arabic. Food Chemistry, 2010, 122, 972-979.	4.2	24
274	FUZZY CLUSTERING MODELING AND EVALUATION OF SURFACE INTERACTIONS AND EMULSIONS OF SELECTED WHEAT PROTEIN COMBINED TO IOTA ARRAGEENAN AND GUM ARABIC SOLUTIONS. Journal of Food Process Engineering, 2010, 33, 131-149.	1.5	1
275	IMPROVING TEXTURAL CHARACTERISTICS OF TORTILLAS BY ADDING GUMS DURING EXTRUSION TO OBTAIN NIXTAMALIZED CORN FLOUR. Journal of Texture Studies, 2010, 41, 736-755.	1.1	34
276	MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant, Cell and Environment, 2010, 33, 418-430.	2.8	88
277	Electrospinning of Poly(vinyl alcohol) Nanofibers Loaded with Hexadecane Nanodroplets. Journal of Food Science, 2010, 75, N80-8.	1.5	50

#	Article	IF	Citations
279	Importance of Proteinâ€Rich Components in Emulsifying Properties of Corn Fiber Gum. Cereal Chemistry, 2010, 87, 89-94.	1.1	34
280	Stability and Rheological Properties of Egg Yolk Granule Stabilized Emulsions with Pectin and Guar Gum. International Journal of Food Properties, 2010, 13, 618-630.	1.3	23
281	Lipid oxidation in emulsified food products. , 2010, , 306-343.		10
282	Emulsion breakdown in foods and beverages. , 2010, , 260-295.		18
283	Formation of Protein-Rich Coatings around Lipid Droplets Using the Electrostatic Deposition Method. Langmuir, 2010, 26, 7937-7945.	1.6	17
284	Comparison of Microencapsulation Properties of Spruce Galactoglucomannans and Arabic Gum Using a Model Hydrophobic Core Compound. Journal of Agricultural and Food Chemistry, 2010, 58, 981-989.	2.4	12
285	Characterization of Galactomannan Stabilised Yogurt Drink Using Dynamic Rheology. International Journal of Food Properties, 2010, 13, 209-220.	1.3	12
286	Replacement of traditional emulsifying salts by selected hydrocolloids in processed cheese production. International Dairy Journal, 2010, 20, 336-343.	1.5	39
287	Effect of \hat{l}^{2} -carrageenan on rheological properties, microstructure, texture and oxidative stability of water-in-oil spreads. LWT - Food Science and Technology, 2010, 43, 843-848.	2.5	21
288	Influence of CaCl2 on the water vapor permeability and the surface morphology of mesquite gum based edible films. LWT - Food Science and Technology, 2010, 43, 1419-1425.	2.5	16
289	Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Research International, 2010, 43, 8-17.	2.9	79
290	Effect of pH on the functional behaviour of pea protein isolate–gum Arabic complexes. Food Research International, 2010, 43, 489-495.	2.9	181
291	Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Science, 2010, 178, 61-72.	1.7	153
292	Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annual Review of Food Science and Technology, 2010, 1, 241-269.	5.1	425
293	Impact of Interfacial Composition on Physical Stability and In Vitro Lipase Digestibility of Triacylglycerol Oil Droplets Coated with Lactoferrin and/or Caseinate. Journal of Agricultural and Food Chemistry, 2010, 58, 7962-7969.	2.4	55
294	Optimization of Hydrocolloid Extraction From Wild Sage Seed (<i>Salvia macrosiphon</i>) Using Response Surface. International Journal of Food Properties, 2010, 13, 1380-1392.	1.3	76
295	How do (fluorescent) surfactants affect particle-stabilized emulsions?. Soft Matter, 2011, 7, 7965.	1.2	32
296	Interfacial adsorption and shear flow properties of gum arabic-sodium caseinate mixtures. Procedia Food Science, 2011, 1, 12-16.	0.6	3

#	Article	IF	CITATIONS
297	Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 2011, 7, 2297-2316.	1.2	822
299	Cross-Linking of Interfacial Layers Affects the Salt and Temperature Stability of Multilayered Emulsions Consisting of Fish Gelatin and Sugar Beet Pectin. Journal of Agricultural and Food Chemistry, 2011, 59, 10546-10555.	2.4	64
300	Isolation, Purification, and Identification of Protein Associated with Corn Fiber Gum. Journal of Agricultural and Food Chemistry, 2011, 59, 13289-13294.	2.4	17
301	Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 2011, 44, 2742-2750.	2.9	530
302	Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Research International, 2011, 44, 2991-2998.	2.9	113
303	Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal, 2011, 21, 247-253.	1.5	123
304	Effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan. International Journal of Biological Macromolecules, 2011, 48, 768-772.	3.6	72
305	Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51, 285-330.	5.4	1,237
307	Soybean-based Surfactants and Their Applications. , 0, , .		13
308	Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton. PLoS ONE, 2011, 6, e21865.	1.1	80
309	APPARENT VISCOSITY OF BINARY AND TERNARY SYSTEMS OF TRAGACANTH, GUAR GUM AND METHYLCELLULOSE AT SEMIDILUTE RANGE OF CONCENTRATION. Journal of Food Process Engineering, 2011, 34, 475-490.	1.5	0
310	FLOW PROPERTIES OF CARBOXYMETHYLCELLULOSE DAIRY SYSTEMS WITH DIFFERENT FAT CONTENT. Journal of Food Process Engineering, 2011, 34, 1903-1914.	1.5	15
311	Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oilâ€inâ€Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. Journal of Food Science, 2011, 76, E165-72.	1.5	171
312	Lipase activity in biphasic media: Why interfacial area is a significant parameter?. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 8-16.	1.8	21
313	Turkey liver: Physicochemical characteristics and functional properties of protein fractions. Food and Bioproducts Processing, 2011, 89, 142-148.	1.8	15
314	Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil–water interface. Food Hydrocolloids, 2011, 25, 921-927.	5.6	83
315	Ultrasonic generation of aerated gelatin gels stabilized by whey protein \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 2011, 25, 958-967.	5.6	35
316	Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: Effects of pH, salt and heating. Food Hydrocolloids, 2011, 25, 976-982.	5.6	95

#	Article	IF	CITATIONS
317	Hydroxypropylmethylcellulose at the oil–water interface. Part II. Submicron-emulsions as affected by pH. Food Hydrocolloids, 2011, 25, 1051-1062.	5.6	57
318	Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocolloids, 2011, 25, 1285-1290.	5.6	77
319	Effect of Alyssum homolocarpum seed gum, Tween 80 and NaCl on droplets characteristics, flow properties and physical stability of ultrasonically prepared corn oil-in-water emulsions. Food Hydrocolloids, 2011, 25, 1149-1157.	5.6	69
320	Extensional flow, viscoelasticity and baking performance of gluten-free zein-starch doughs supplemented with hydrocolloids. Food Hydrocolloids, 2011, 25, 1587-1595.	5.6	57
321	Mixed biopolymers at interfaces: Competitive adsorption and multilayer structures. Food Hydrocolloids, 2011, 25, 1966-1983.	5.6	306
322	Evaluation of extrusion-modified fenugreek gum. Food Hydrocolloids, 2011, 25, 1296-1301.	5.6	55
323	Protein–polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 2011, 25, 1925-1937.	5.6	312
324	Effects of soy protein hydrolysis and polysaccharides addition on foaming properties studied by cluster analysis. Food Hydrocolloids, 2011, 25, 1667-1676.	5.6	25
325	Thermal treatment to form a complex surface layer of sodium caseinate and gum arabic on oil–water interfaces. Food Hydrocolloids, 2011, 25, 1677-1686.	5.6	28
326	Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 2011, 25, 1865-1880.	5.6	443
327	Food protein functionality: A comprehensive approach. Food Hydrocolloids, 2011, 25, 1853-1864.	5.6	318
328	Dynamic properties of interfaces in soft matter: Experiments and theory. Reviews of Modern Physics, 2011, 83, 1367-1403.	16.4	198
329	Physical characterization of rice starch spherical aggregates produced by spray-drying. Journal of Food Engineering, 2011, 104, 36-42.	2.7	29
330	The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). Journal of Food Engineering, 2011, 104, 56-62.	2.7	80
331	Behaviour of protein-stabilised emulsions under various physiological conditions. Advances in Colloid and Interface Science, 2011, 165, 47-57.	7.0	224
332	Rheology of food materials. Current Opinion in Colloid and Interface Science, 2011, 16, 36-40.	3.4	176
333	Rheology of simple and multiple emulsions. Current Opinion in Colloid and Interface Science, 2011, 16, 41-60.	3.4	253
334	Physicochemical characteristics of soy protein isolate and fenugreek gum dispersed systems. Journal of Food Science and Technology, 2011, 48, 371-377.	1.4	35

#	Article	IF	Citations
335	Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Applied Nanoscience (Switzerland), 2011, 1, 137-142.	1.6	36
336	Double Emulsions Stabilized by Food Biopolymers. Food Biophysics, 2011, 6, 1-11.	1.4	355
337	Rheological Behaviour of Instant Hot Chocolate Beverage: Part 1. Optimization of the Effect of Different Starches and Gums. Food Biophysics, 2011, 6, 512-518.	1.4	35
338	Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst. cell suspension culture: a biotechnology approach for mesquite gum production. Acta Physiologiae Plantarum, 2011, 33, 1687-1695.	1.0	10
339	Rheological and calorimetric properties of cornâ€; wheatâ€; and cassava―starches and soybean protein concentrate composites. Starch/Staerke, 2011, 63, 83-95.	1.1	29
340	The effect of tapioca maltodextrins on the stability of oilâ€inâ€water emulsions. Starch/Staerke, 2011, 63, 347-353.	1.1	20
341	Pomegranate seed oil as a functional ingredient in beverages. European Journal of Lipid Science and Technology, 2011, 113, 730-736.	1.0	39
342	Stabilization of orange oil-in-water emulsions: A new role for ester gum as an Ostwald ripening inhibitor. Food Chemistry, 2011, 128, 1023-1028.	4.2	63
343	Food colloids research: Historical perspective and outlook. Advances in Colloid and Interface Science, 2011, 165, 7-13.	7.0	35
344	Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydrate Polymers, 2011, 83, 489-494.	5.1	54
345	The influence of functional properties of different whey protein concentrates on the rheological and emulsification capacity of blends with xanthan gum. Carbohydrate Polymers, 2011, 86, 433-440.	5.1	22
346	Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 831-836.	5.1	79
347	Improving gluten-free bread quality by enrichment with acidic food additives. Food Chemistry, 2011, 1204-1209.	4.2	54
348	Encapsulation of nZVI particles using a Gum Arabic stabilized oil-in-water emulsion. Journal of Hazardous Materials, 2011, 189, 801-808.	6.5	32
349	Stabilization mechanism of oil-in-water emulsions by \hat{l}^2 -lactoglobulin and gum arabic. Journal of Colloid and Interface Science, 2011, 354, 467-477.	5.0	117
350	Fabrication, characterization and properties of food nanoemulsions., 2012,, 293-316.		6
351	An industry perspective on the advantages and disadvantages of different flavor delivery systems., 2012,, 453-487.		5
352	Biopolymeric amphiphiles and their assemblies as functional food ingredients and nutraceutical delivery systems., 2012,, 252-286.		4

#	Article	IF	Citations
353	Effect of Different Purification Techniques on the Characteristics of Heteropolysaccharide-Protein Biopolymer from Durian (Durio zibethinus) Seed. Molecules, 2012, 17, 10875-10892.	1.7	53
354	Functional and Preliminary Characterisation of Hydrocolloid from Tamarillo (Solanum betaceum) Tj ETQq1 1 0.784	1314 rgBT	/gyerlock 1
355	An Introduction to Biopolymer Applications in Food Engineering. Contemporary Food Engineering, 2012, , 1-16.	0.2	2
356	Protein–Saccharide Interaction. , 2012, , 229-262.		3
357	Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field?. International Journal of Pharmaceutics, 2012, 436, 359-378.	2.6	418
358	Structure Modification of Montmorillonite Nanoclay by Surface Coating with Soy Protein. Journal of Agricultural and Food Chemistry, 2012, 60, 11965-11971.	2.4	26
359	Utilization of interfacial engineering to produce novel emulsion properties: Pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers. Food Research International, 2012, 49, 46-52.	2.9	20
360	Functional characteristics of gelatin extracted from skin and bone of Tiger-toothed croaker (Otolithes ruber) and Pink perch (Nemipterus japonicus). Food and Bioproducts Processing, 2012, 90, 555-562.	1.8	73
361	The effects of acid hydrolysis on protein biosurfactant molecular, interfacial, and foam properties: pH responsive protein hydrolysates. Soft Matter, 2012, 8, 5131.	1.2	19
362	Nanocapsules as delivery systems in the food, beverage and nutraceutical industries. , 2012, , 208-256.		5
363	Nonlinear Viscoelasticity and Shear Localization at Complex Fluid Interfaces. Langmuir, 2012, 28, 7757-7767.	1.6	54
364	Methods for Stability Studies. SpringerBriefs in Food, Health and Nutrition, 2012, , 15-60.	0.5	O
365	Effect of Homogenization Pressure and Oil Load on the Emulsion Properties and the Oil Retention of Microencapsulated Basil Essential Oil (<i>Ocimum basilicum</i> L.). Drying Technology, 2012, 30, 1413-1421.	1.7	43
366	Foaming characteristics of \hat{l}^2 -lactoglobulin as affected by enzymatic hydrolysis and polysaccharide addition: Relationships with the bulk and interfacial properties. Journal of Food Engineering, 2012, 113, 53-60.	2.7	32
367	Assessment of physical and mechanical properties of orange oil-in-water beverage emulsions using response surface methodology. LWT - Food Science and Technology, 2012, 48, 82-88.	2.5	41
368	Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions. Meat Science, 2012, 90, 185-193.	2.7	33
369	Optimization and characterization of walnut beverage emulsions in relation to their composition and structure. International Journal of Biological Macromolecules, 2012, 50, 376-384.	3.6	44
370	An inulin-based dressing emulsion as a potential probiotic food carrier. Food Research International, 2012, 46, 260-269.	2.9	47

#	ARTICLE	IF	CITATIONS
371	Functional Replacements for Gluten. Annual Review of Food Science and Technology, 2012, 3, 227-245.	5.1	71
372	Microencapsulation of Colors by Spray Drying - A Review. International Journal of Food Engineering, 2012, 8, .	0.7	64
374	Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1. International Journal of Biological Macromolecules, 2012, 51, 618-626.	3.6	36
375	Complexation of bovine serum albumin and sugar beet pectin: Stabilising oil-in-water emulsions. Journal of Colloid and Interface Science, 2012, 388, 103-111.	5.0	81
376	Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food and Function, 2012, 3, 202-220.	2.1	265
377	Emulsifying Activity, Particle Uniformity and Rheological Properties of a Natural Polysaccharide-Protein Biopolymer from Durian Seed. Food Biophysics, 2012, 7, 317-328.	1.4	18
378	Pea (Pisum sativum, L.) Protein Isolate Stabilized Emulsions: A Novel System for Microencapsulation of Lipophilic Ingredients by Spray Drying. Food and Bioprocess Technology, 2012, 5, 2211-2221.	2.6	107
379	Improving Product Quality with Entrapped Stable Emulsions: From Theory to Industrial Application. Challenges, 2012, 3, 84-113.	0.9	20
380	Exploring emulsion science with microfluidics. Soft Matter, 2012, 8, 10549.	1.2	84
381	Effect of pentosans addition on pasting properties of flours of eight hard white spring wheat cultivars. Journal of Food Science and Technology, 2014, 51, 1066-75.	1.4	4
382	Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel. Molecules, 2012, 17, 5733-5744.	1.7	8
383	Viscoelastic and Textural Characteristics of Masa and Tortilla from Extruded Corn Flours with Xanthan Gum. , 2012 , , .		0
384	Potencial do soro de leite lÃquido como agente encapsulante de Bifidobacterium Bb-12 por spray drying: comparação com goma arábica. Ciencia Rural, 2012, 42, 1694-1700.	0.3	2
385	Complex Fluid-Fluid Interfaces: Rheology and Structure. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 519-543.	3.3	258
386	Impact of Encapsulation Within Hydrogel Microspheres on Lipid Digestion: An In Vitro Study. Food Biophysics, 2012, 7, 145-154.	1.4	47
387	Partial-Baking Process on Gluten-Free Bread: Impact of Hydrocolloid Addition. Food and Bioprocess Technology, 2012, 5, 1724-1732.	2.6	37
388	Boosting the stability of protein emulsions by the synergistic use of proteins and clays. Colloid and Polymer Science, 2012, 290, 631-640.	1.0	11
389	Inhibition of Ostwald Ripening in Model Beverage Emulsions by Addition of Poorly Water Soluble Triglyceride Oils. Journal of Food Science, 2012, 77, C33-8.	1.5	85

#	Article	IF	CITATIONS
390	Effect of Pectin, Starch, and Locust Bean Gum on the Interfacial Activity of Monostearin and Î²â€Łactoglobulin. Journal of Food Science, 2012, 77, C353-8.	1.5	2
391	DEGRADATION KINETICS AND COLOR STABILITY OF SPRAYâ€DRIED ENCAPSULATED ANTHOCYANINS FROM ⟨i>HIBISCUS SABDARIFFA⟨ i> L Journal of Food Process Engineering, 2012, 35, 522-542.	1.5	148
392	A new corn fiber gum polysaccharide isolation process that preserves functional components. Carbohydrate Polymers, 2012, 87, 1169-1175.	5.1	33
393	Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chemistry, 2012, 131, 901-906.	4.2	204
394	Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chemistry, 2012, 131, 1340-1346.	4.2	52
395	Sodium caseinate/carboxymethylcellulose interactions at oil–water interface: Relationship to emulsion stability. Food Chemistry, 2012, 132, 1822-1829.	4.2	79
396	A novel improvement in whey protein isolate emulsion stability: Generation of an enzymatically cross-linked beet pectin layer using horseradish peroxidase. Food Hydrocolloids, 2012, 26, 448-455.	5.6	46
397	Comparison of molecular and emulsifying properties of gum arabic and mesquite gum using asymmetrical flow field-flow fractionation. Food Hydrocolloids, 2012, 26, 54-62.	5.6	60
398	Hydroxypropylmethylcelluloseâ€"β-lactoglobulin mixtures at the oilâ€"water interface. Bulk, interfacial and emulsification behavior as affected by pH. Food Hydrocolloids, 2012, 27, 464-474.	5.6	40
399	Sodium caseinate/xanthan gum interactions in aqueous solution: Effect on protein adsorption at the oil–water interface. Food Hydrocolloids, 2012, 27, 339-346.	5.6	70
400	Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 2012, 27, 401-410.	5.6	102
401	Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocolloids, 2012, 28, 75-81.	5.6	112
402	Strong polyelectrolyte – Induced mixing in concentrated biopolymer aqueous emulsions. Food Hydrocolloids, 2012, 28, 213-223.	5.6	8
403	Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocolloids, 2012, 29, 185-192.	5.6	136
404	Interfacial and foaming interactions between casein glycomacropeptide (CMP) and propylene glycol alginate. Colloids and Surfaces B: Biointerfaces, 2012, 95, 214-221.	2.5	32
405	Effect of enzymatic hydrolysis and polysaccharide addition on the \hat{I}^2 -lactoglobulin adsorption at the airâ \in "water interface. Journal of Food Engineering, 2012, 109, 712-720.	2.7	27
406	Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of Food Engineering, 2012, 111, 102-109.	2.7	167
407	Fabrication and characterization of albuminâ€acacia nanoparticles based on complex coacervation as potent nanocarrier. Journal of Chemical Technology and Biotechnology, 2012, 87, 1401-1408.	1.6	34

#	Article	IF	Citations
408	Effect of Extraction Procedures on Functional Properties of Eruca sativa Seed Mucilage. Food Biophysics, 2012, 7, 84-92.	1.4	47
409	Stress Relaxation of Acid-induced Milk Gels. Food and Bioprocess Technology, 2012, 5, 508-518.	2.6	4
410	Physicochemical properties and emulsion stabilization of rice dreg glutelin conjugated with κâ€earrageenan through Maillard reaction. Journal of the Science of Food and Agriculture, 2013, 93, 125-133.	1.7	60
411	The effect of p <scp>H</scp> , salts and sugars on the rheological properties of cress seed (<i><scp>L</scp>epidium sativum</i>) gum. International Journal of Food Science and Technology, 2013, 48, 2506-2513.	1.3	50
412	Rheology of interfacial protein-polysaccharide composites. European Physical Journal: Special Topics, 2013, 222, 73-81.	1.2	25
413	Hydrophobic derivatives of guar gum hydrolyzate and gum Arabic as matrices for microencapsulation of mint oil. Carbohydrate Polymers, 2013, 95, 177-182.	5.1	63
414	Phase separation induced molecular fractionation of gum arabicâ€"Sugar beet pectin systems. Carbohydrate Polymers, 2013, 98, 699-705.	5.1	20
415	Deposition. , 2013, , 211-246.		0
416	Influence of non-ionic surfactant on electrostatic complexation of protein-coated oil droplets and ionic biopolymers (alginate and chitosan). Food Hydrocolloids, 2013, 33, 368-375.	5.6	24
417	High- and Low-Energy Emulsifications for Food Applications: A Focus on Process Parameters. Food Engineering Reviews, 2013, 5, 107-122.	3.1	134
418	Stability of CoQ10-Loaded Oil-in-Water (O/W) Emulsion: Effect of Carrier Oil and Emulsifier Type. Food Biophysics, 2013, 8, 273-281.	1.4	9
419	Comparing Carboxymethyl Cellulose and Starch as Thickeners in Oil/Water Emulsions. Implications on Rheological and Structural Properties. Food Biophysics, 2013, 8, 122-136.	1.4	40
420	Stability and in vitro digestibility of emulsions containing lecithin and whey proteins. Food and Function, 2013, 4, 1322.	2.1	69
421	Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technology, 2013, 238, 14-19.	2.1	39
422	Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology. Food Bioscience, 2013, 3, 19-28.	2.0	4
423	Rheological properties and stability of oil-in-water emulsions containing tapioca maltodextrin in the aqueous phase. Journal of Food Engineering, 2013, 116, 170-175.	2.7	26
424	The influence of carrageenan on interfacial properties and short-term stability of milk whey proteins emulsions. Food Hydrocolloids, 2013, 32, 373-382.	5.6	38
425	Production of Turmeric Oleoresin Microcapsules by Complex Coacervation with Gelatin–Gum <scp>A</scp> rabic. Journal of Food Process Engineering, 2013, 36, 364-373.	1.5	69

#	Article	IF	CITATIONS
426	Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 2013, 60, 83-92.	3.6	219
427	Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Food Research International, 2013, 50, 446-456.	2.9	178
429	Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid and Interface Science, 2013, 18, 292-301.	3.4	110
431	Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides. Radiation Physics and Chemistry, 2013, 92, 112-120.	1.4	18
432	Stability of \hat{I}^2 -Carotene in Oil-in-Water Emulsions Prepared by Mixed Layer and Bilayer of Whey Protein Isolate and Beet Pectin. Journal of Dispersion Science and Technology, 2013, 34, 785-792.	1.3	11
433	Formulation optimization of prostaglandin E1-loaded lipid emulsion: Enhanced stability and reduced biodegradation. Pharmaceutical Development and Technology, 2013, 18, 804-812.	1.1	1
434	Spray drying behaviour and functionality of emulsions with \hat{l}^2 -lactoglobulin/pectin interfacial complexes. Food Hydrocolloids, 2013, 31, 438-445.	5.6	47
435	Stabilising emulsionâ€based colloidal structures with mixed food ingredients. Journal of the Science of Food and Agriculture, 2013, 93, 710-721.	1.7	232
436	Influence of main emulsion components on the physical properties of corn oil in water emulsion: Effect of oil volume fraction, whey protein concentrate and Lepidium perfoliatum seed gum. Food Research International, 2013, 50, 457-466.	2.9	35
437	Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, 2013, 42, 469-479.	2.5	270
438	Surface-coating montmorillonite nanoclay by water-soluble proteins extracted from hominy feed. Journal of Food Engineering, 2013, 119, 687-695.	2.7	6
439	Development of a rheological prediction model for food suspensions and emulsions. Journal of Food Engineering, 2013, 115, 481-485.	2.7	6
440	Shear flow behaviour and emulsion-stabilizing effect of natural polysaccharide-protein gum in aqueous system and oil/water (O/W) emulsion. Colloids and Surfaces B: Biointerfaces, 2013, 103, 430-440.	2.5	22
441	Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocolloids, 2013, 32, 402-411.	5.6	30
442	A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochemical Engineering Journal, 2013, 73, 72-79.	1.8	51
443	Emulsifying and foaming properties of \hat{l}^2 -lactoglobulin modified by heat treatment. Food Research International, 2013, 51, 1-7.	2.9	44
444	Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydrate Polymers, 2013, 93, 266-272.	5.1	66
445	The influence of different stabilizers and salt addition on the stability of model emulsions containing olive or sesame oil. Journal of Food Engineering, 2013, 117, 124-132.	2.7	32

#	Article	IF	CITATIONS
446	Influence of particle size on lipid digestion and \hat{l}^2 -carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 2013, 141, 1472-1480.	4.2	489
447	Double interface formulation for improved αâ€ŧocopherol stabilisation in dehydration of emulsions. Journal of the Science of Food and Agriculture, 2013, 93, 2646-2653.	1.7	6
448	Comparative studies on the physicochemical properties of soy protein isolate-maltodextrin and soy protein isolate-gum acacia conjugate prepared through Maillard reaction. Food Research International, 2013, 51, 490-495.	2.9	165
449	Stabilization of oil-in-water emulsions using mixtures of denatured soy whey proteins and soluble soybean polysaccharides. Food Research International, 2013, 52, 298-307.	2.9	73
450	Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chemistry, 2013, 141, 975-984.	4.2	622
451	Physical and Chemical Stability of Gum Arabic-Stabilized Conjugated Linoleic Acid Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2013, 61, 4639-4645.	2.4	36
452	Interfacial Properties of Biopolymers, Emulsions, and Emulsifiers. , 2013, , 717-740.		3
453	Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. International Journal of Food Sciences and Nutrition, 2013, 64, 744-748.	1.3	34
454	Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 2013, 52, 409-423.	5.3	177
455	Interfacial Engineering Using Mixed Protein Systems: Emulsion-Based Delivery Systems for Encapsulation and Stabilization of \hat{I}^2 -Carotene. Journal of Agricultural and Food Chemistry, 2013, 61, 5163-5169.	2.4	51
456	Characteristics and antioxidant activity of leaf essential oil–incorporated fish gelatin films as affected by surfactants. International Journal of Food Science and Technology, 2013, 48, 2143-2149.	1.3	14
457	Î ² -Lactoglobulin, gum arabic, and xanthan gum for emulsifying sweet almond oil: Formulation and stabilization mechanisms of pharmaceutical emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433, 77-87.	2.3	53
458	Modification of emulsion properties by heteroaggregation of oppositely charged starch-coated and protein-coated fat droplets. Food Hydrocolloids, 2013, 33, 320-326.	5.6	42
459	Modulation of physicochemical properties of emulsified lipids by chitosan addition. Journal of Food Engineering, 2013, 114, 1-7.	2.7	21
460	Effect of recovery methods on the oxidative and physical stability of oil body emulsions. Food Chemistry, 2013, 139, 640-648.	4.2	48
461	Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation ofÂsugar beet pectin. Food Hydrocolloids, 2013, 30, 19-25.	5.6	32
462	Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oilÂand potato protein. Food Hydrocolloids, 2013, 30, 152-162.	5.6	109
463	Stabilization of acidic soy protein-based dispersions and emulsions by soy soluble polysaccharides. Food Hydrocolloids, 2013, 30, 382-392.	5.6	93

#	Article	IF	CITATIONS
464	Emulsion properties of algae soluble protein isolate from Tetraselmis sp Food Hydrocolloids, 2013, 30, 258-263.	5.6	73
465	Effect of Lepidium perfoliatum seed gum addition on whey protein concentrate stabilized emulsions stored at cold and ambient temperature. Food Hydrocolloids, 2013, 30, 292-301.	5.6	46
466	Complex coacervates obtained from interaction egg yolk lipoprotein and polysaccharides. Food Hydrocolloids, 2013, 30, 375-381.	5.6	36
467	Acid-induced gelation of aqueous WPI–CMC solutions: Effect on orange oil aroma compounds retention. Food Hydrocolloids, 2013, 30, 368-374.	5.6	13
468	Developing a three component stabilizer system for producing astaxanthin nanodispersions. Food Hydrocolloids, 2013, 30, 437-447.	5.6	57
469	Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 2013, 30, 401-407.	5.6	180
470	Protective effect of polysaccharides on the stability of parenteral emulsions. Drug Development and Industrial Pharmacy, 2013, 39, 646-656.	0.9	1
471	Efecto del pH en emulsiones o/w formuladas con proteÃna de patata y quitosano. Grasas Y Aceites, 2013, 64, 15-21.	0.3	4
472	The Influence of Pectin from Apple and Gum Arabic from Acacia Tree on the Quality of Pizza. International Journal of Food Properties, 2013, 16, 1417-1428.	1.3	10
473	Effects of Locust Bean Gum and Mono―and Diglyceride Concentrations on Particle Size and Melting Rates of Ice Cream. Journal of Food Science, 2013, 78, C811-6.	1.5	17
474	Stabilization of omega-3 oils and enriched foods using emulsifiers., 2013, , 150-193.		24
475	The Role of Chitosan in Emulsion Formation and Stabilization. Food Reviews International, 2013, 29, 371-393.	4.3	111
476	Effect of Hydrocolloid Pre-Treatment on Instrumental and Sensory Texture Attributes of Frozen Carrot (Daucus carota). International Journal of Food Properties, 2013, 16, 461-474.	1.3	10
477	Modulation of food texture using controlled heteroaggregation of lipid droplets: Principles and applications. Journal of Applied Polymer Science, 2013, 130, 3833-3841.	1.3	18
478	Application of a Laser Diffraction Method for Determination of Stability of Dispersion Systems in Food and Chemical Industry. Journal of Dispersion Science and Technology, 2013, 34, 1447-1453.	1.3	11
479	Effects of Emulsifiers on the Photostability of Lycopene. Food Science and Technology Research, 2013, 19, 983-987.	0.3	3
480	Implications of Partial Conjugation of Whey Protein Isolate to Durian Seed Gum through Maillard Reactions: Foaming Properties, Water Holding Capacity and Interfacial Activity. Molecules, 2013, 18, 15110-15125.	1.7	32
481	EFEITO DO SORO DO LEITE E GOMA GUAR NOS TEORES DE LACTOSE, ÃCIDO LÃTICO E TEMPO DE FERMENTAÇÃO DE BEBIDAS LÃCTEAS. Boletim Centro De Pesquisa De Processamento De Alimentos, 2013, 31, .	0.2	1

#	Article	IF	CITATIONS
482	Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin. International Journal of Polymer Science, 2014, 2014, 1-8.	1.2	83
483	Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems. Molecules, 2014, 19, 14257-14265.	1.7	35
484	Feasibility study of Using Liquid Gel in Stabilizing Doogh by Hydrocolloids of Psyllium Husk and Guar Gum. International Journal of Science and Engineering, 2014, 6, .	0.1	2
486	Effects of pH-Shift Processing and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar System. Korean Journal for Food Science of Animal Resources, 2014, 34, 207-213.	1.5	6
487	Gum Arabic and Fe ²⁺ Synergistically Improve the Heat and Acid Stability of Norbixin at pH 3.0–5.0. Journal of Agricultural and Food Chemistry, 2014, 62, 12668-12677.	2.4	15
489	Nonlinear stress deformation behavior of interfaces stabilized by food-based ingredients. Journal of Physics Condensed Matter, 2014, 26, 464105.	0.7	29
491	Interfacial Properties of Methylcelluloses: The Influence of Molar Mass. Polymers, 2014, 6, 2961-2973.	2.0	23
492	Understanding Food Structures. , 2014, , 3-49.		9
493	Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers, 2014, 101, 945-958.	1.2	13
494	Milk Protein–Polysaccharide Interactions. , 2014, , 387-419.		3
495	Adsorption at the biocompatible α-pinene–water interface and emulsifying properties of two eco-friendly surfactants. Colloids and Surfaces B: Biointerfaces, 2014, 122, 623-629.	2.5	27
497	Microencapsulation of Gac Oil by Spray Drying: Optimization of Wall Material Concentration and Oil Load Using Response Surface Methodology. Drying Technology, 2014, 32, 385-397.	1.7	62
498	Interactions and Functionality of Milk Proteins in Food Emulsions. , 2014, , 359-386.		2
499	Crossâ€inking of bovine and caprine caseins by microbial transglutaminase and their use as microencapsulating agents for n â€3 fatty acids. International Journal of Food Science and Technology, 2014, 49, 1530-1543.	1.3	10
500	Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food and Function, 2014, 5, 2743-2750.	2.1	139
501	Seed meals as source of fractions with different effects on pancreatic lipase activity. European Journal of Lipid Science and Technology, 2014, 116, 291-299.	1.0	0
502	New View to Obtain Dryer Food Foams with Different Polysaccharides and Soy Protein by High Ultrasound. International Journal of Carbohydrate Chemistry, 2014, 2014, 1-6.	1.5	1
503	Role of Polysaccharides in Complex Mixtures with Soy Protein Hydrolysate on Foaming Properties Studied by Response Surface Methodology. International Journal of Carbohydrate Chemistry, 2014, 2014, 1-7.	1.5	1

#	Article	IF	CITATIONS
504	The influence of polysaccharide on the stability of protein stabilized oil-in-water emulsion prepared by microchannel emulsification technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 440, 136-144.	2.3	36
505	Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: A comparative study. Food Hydrocolloids, 2014, 35, 217-225.	5.6	83
506	Interactions between polyglycerol polyricinoleate (PGPR) and pectins at the oil–water interface and their influence on the stability of water-in-oil emulsions. Food Hydrocolloids, 2014, 34, 154-160.	5.6	64
507	Evaluation of cashew tree gum (Anacardium occidentale L.) emulsifying properties. LWT - Food Science and Technology, 2014, 59, 1325-1331.	2.5	41
508	Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates. International Journal of Biological Macromolecules, 2014, 67, 503-511.	3.6	53
509	Comparative studies on the physicochemical properties of peanut protein isolate–polysaccharide conjugates prepared by ultrasonic treatment or classical heating. Food Research International, 2014, 57, 1-7.	2.9	143
510	Alterations in nanoparticle protein corona by biological surfactants: Impact of bile salts on β-lactoglobulin-coated gold nanoparticles. Journal of Colloid and Interface Science, 2014, 426, 333-340.	5.0	33
511	Pectin as a bioactive polysaccharide – Extracting tailored function from less. Food Hydrocolloids, 2014, 42, 251-259.	5.6	116
512	Antimicrobial delivery systems based on electrostatic complexes ofÂcationic É-polylysine and anionic gum arabic. Food Hydrocolloids, 2014, 35, 137-143.	5.6	39
513	Electrostatic adsorption and stability of whey protein–pectin complexes on emulsion interfaces. Food Hydrocolloids, 2014, 35, 410-419.	5.6	93
514	The effect of seaweed composite flour on the textural properties of dough and bread. Journal of Applied Phycology, 2014, 26, 1057-1062.	1.5	73
515	Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 2014, 42, 5-41.	5.6	305
516	Some physicochemical properties of sage (Salvia macrosiphon) seedÂgum. Food Hydrocolloids, 2014, 35, 453-462.	5.6	150
517	Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications. Amino Acids, 2014, 46, 767-776.	1.2	22
518	Competitive adsorption behavior of \hat{l}^2 -lactoglobulin, \hat{l}_2 -lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocolloids, 2014, 35, 189-197.	5.6	19
519	Quercetin-Loaded Lecithin/Chitosan Nanoparticles for Functional Food Applications. Food and Bioprocess Technology, 2014, 7, 1149-1159.	2.6	129
520	The Effect of pH and NaCl Levels on the Physicochemical and Emulsifying Properties of a Cruciferin Protein Isolate. Food Biophysics, 2014, 9, 105-113.	1.4	56
521	Flavour encapsulation in milk proteins – CMC coacervate-type complexes. Food Hydrocolloids, 2014, 37, 134-142.	5.6	81

#	Article	IF	CITATIONS
522	Optimization of extraction, antioxidant activity and functional properties of quince seed mucilage by RSM. International Journal of Biological Macromolecules, 2014, 66, 113-124.	3.6	110
523	Effect of cross-linked acetylated starch content on the structure and stability of set yoghurt. Food Hydrocolloids, 2014, 35, 576-582.	5.6	68
524	The effect of hydrocolloids on producing stable foams based on the whey protein concentrate (WPC). Journal of Food Engineering, 2014, 129, 1-11.	2.7	20
525	Influence of protein–pectin electrostatic interaction on the foam stability mechanism. Carbohydrate Polymers, 2014, 103, 55-61.	5.1	27
526	Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 2014, 101, 524-532.	5.1	415
527	Spectroscopic studies of conformational changes of \hat{l}^2 -lactoglobulin adsorbed on gold nanoparticle surfaces. Journal of Colloid and Interface Science, 2014, 416, 184-189.	5.0	18
528	Designing nanoemulsion templates for fabrication of dextrin nanoparticles via emulsion cross-linking technique. Carbohydrate Polymers, 2014, 101, 650-655.	5.1	33
529	Stability of Cardamom (<i>Elettaria Cardamomum</i>) Essential Oil in Microcapsules Made of Whey Protein Isolate, Guar Gum, and Carrageenan. Journal of Food Science, 2014, 79, C1939-49.	1.5	43
530	Influence of cassia gum on rheological and textural properties of native potato and corn starch. Starch/Staerke, 2014, 66, 1060-1070.	1.1	50
531	Physical characteristics of submicron emulsions upon partial displacement of whey protein by a small molecular weight surfactant and pectin addition. Food Research International, 2014, 66, 401-408.	2.9	31
532	Bridging the Gap between the Nanostructural Organization and Macroscopic Interfacial Rheology of Amyloid Fibrils at Liquid Interfaces. Langmuir, 2014, 30, 10090-10097.	1.6	61
533	Hydrocolloids in human digestion: Dynamic in-vitro assessment of the effect of food formulation on mass transfer. Food Hydrocolloids, 2014, 42, 378-385.	5.6	40
534	Response surface optimization of mucilage aqueous extraction from flixweed (Descurainia sophia) seeds. International Journal of Biological Macromolecules, 2014, 70, 444-449.	3.6	30
535	Microencapsulation of \hat{l}^2 -galactosidase with different biopolymers by a spray-drying process. Food Research International, 2014, 64, 134-140.	2.9	82
536	Study of the phase separation behaviour of native or preheated WPI with polysaccharides. Polymer, 2014, 55, 4379-4384.	1.8	34
537	Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate. Food Hydrocolloids, 2014, 35, 358-366.	5.6	133
538	Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation. Carbohydrate Polymers, 2014, 101, 544-553.	5.1	38
539	Physicochemical Properties and Surface Activities of Collagen Hydrolysate-Based Surfactants with Varied Oleoyl Group Grafting Degree. Industrial & Engineering Chemistry Research, 2014, 53, 8501-8508.	1.8	12

#	Article	IF	CITATIONS
540	Phase behavior of ovalbumin and carboxymethylcellulose composite system. Carbohydrate Polymers, 2014, 109, 64-70.	5.1	25
541	Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocolloids, 2014, 35, 181-188.	5.6	8
542	Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT - Food Science and Technology, 2014, 58, 396-403.	2.5	53
543	Preparation of and studies on the functional properties and bactericidal activity of the lysozyme–xanthan gum conjugate. LWT - Food Science and Technology, 2014, 57, 594-602.	2.5	49
544	Colloidal interactions induced by overlap of mixed protein+polysaccharide interfacial layers. Food Hydrocolloids, 2014, 42, 106-117.	5.6	22
545	Functional properties of ovalbumin glycosylated with carboxymethyl cellulose of different substitution degree. Food Hydrocolloids, 2014, 40, 1-8.	5.6	62
546	Encapsulation of citral in formulations containing sucrose or trehalose: Emulsions properties and stability. Food and Bioproducts Processing, 2014, 92, 266-274.	1.8	25
547	Role of water soluble and water swellable fractions of gum tragacanth on stability and characteristic of model oil in water emulsion. Food Hydrocolloids, 2014, 37, 124-133.	5.6	46
548	Dilational rheology of air/water interfaces covered by nonionic amphiphilic polysaccharides. Correlation with stability of oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 312-318.	2.3	13
549	Stability and physicochemical properties of model salad dressings prepared with pregelatinized potato starch. Carbohydrate Polymers, 2014, 111, 624-632.	5.1	46
550	Drainage of water droplets in a bounded paraffin oil continuous phase: Role of temperature, size and boundary walls. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 342-350.	2.3	3
551	Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 2014, 1, 106-126.	2.3	79
552	Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties. International Journal of Biological Macromolecules, 2014, 69, 236-243.	3.6	92
553	Aqueous thermostabilization of Pleurotus florida NCIM 1243 laccase and its potential application in Acid Black 10BX dye decolorization: process optimization. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2403-2410.	2.7	3
554	Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocolloids, 2014, 37, 40-48.	5.6	113
555	Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolloids, 2014, 37, 49-59.	5.6	72
556	Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions. Food Hydrocolloids, 2014, 36, 229-237.	5.6	63
557	Physicochemical and rheological characterization of Prosopis juliflora seed gum aqueous dispersions. Food Hydrocolloids, 2014, 35, 348-357.	5.6	70

#	Article	IF	CITATIONS
558	Stabilizers: Indispensable Substances in Dairy Products of High Rheology. Critical Reviews in Food Science and Nutrition, 2014, 54, 869-879.	5.4	41
559	Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions. Molecules, 2014, 19, 8691-8706.	1.7	16
560	Emulsifying properties of maillard conjugates produced from sodium caseinate and locust bean gum. Brazilian Journal of Chemical Engineering, 2014, 31, 429-438.	0.7	17
563	Mechanical Particle Fabrication Methods. , 2014, , 150-175.		1
564	Particle Characteristics and Their Impact on Physicochemical Properties of Delivery Systems. , 2014, , 106-149.		1
565	The physicochemical properties of microwaveâ€assisted encapsulated anthocyanins from <i>lpomoea batatas</i>) as affected by different wall materials. Food Science and Nutrition, 2015, 3, 91-99.	1.5	40
566	The Emulsifying and Emulsionâ€Stabilizing Properties of Pectin: A Review. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 705-718.	5.9	253
567	Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 824-847.	5.9	108
574	Effects of Emulsifiers, Precooking and Washing Treatments on the Quality of Retorted Ginseng Chicken Soup. Journal of Food Processing and Preservation, 2015, 39, 1770-1777.	0.9	6
575	Formulation development and physicochemical characterisation of model beverage emulsions stabilised by guar gum and carboxymethyl cellulose. Quality Assurance and Safety of Crops and Foods, 2015, 7, 697-705.	1.8	2
576	Foaming Properties of Whey Protein Isolate and λâ€Carrageenan Mixed Systems. Journal of Food Science, 2015, 80, N1893-902.	1.5	25
577	Optimization of Egg Tofu Formulations Containing Carrageenan, Gum Arabic and Corn Starch by Descriptive Sensory Analysis. American Journal of Applied Sciences, 2015, 12, 47-57.	0.1	1
579	Biodegradability of Blended Polymers: A Comparison of Various Properties. Critical Reviews in Environmental Science and Technology, 2015, 45, 1801-1825.	6.6	38
580	Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Research International, 2015, 72, 91-97.	2.9	67
581	Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. Journal of Food Engineering, 2015, 163, 37-44.	2.7	17
582	Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying. International Journal of Food Engineering, 2015, 11, 61-69.	0.7	22
583	Simulated gastrointestinal fate of lipids encapsulated in starch hydrogels: Impact of normal and high amylose corn starch. Food Research International, 2015, 78, 79-87.	2.9	26
584	Foam formation in biogas plants caused by anaerobic digestion of sugar beet. Bioresource Technology, 2015, 178, 270-277.	4.8	42

#	Article	IF	CITATIONS
585	Pectins of different origin and their performance in forming andÂstabilizing oil-in-water-emulsions. Food Hydrocolloids, 2015, 46, 59-66.	5.6	117
586	Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocolloids, 2015, 46, 84-92.	5.6	65
587	Emulsifying properties of water soluble yellow mustard mucilage: A comparative study with gum Arabic and citrus pectin. Food Hydrocolloids, 2015, 47, 191-196.	5.6	51
588	Gum Arabic-stabilized conjugated linoleic acid emulsions: Emulsion properties in relation to interfacial adsorption behaviors. Food Hydrocolloids, 2015, 48, 110-116.	5.6	48
589	Emulsifying and stabilizing properties of functionalized orange pulp fibers. Food Hydrocolloids, 2015, 47, 115-123.	5.6	52
590	Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Research International, 2015, 70, 7-14.	2.9	71
591	Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 2015, 47, 168-177.	5.6	471
593	Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. Journal of Colloid and Interface Science, 2015, 445, 166-173.	5.0	56
594	Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer. Food Hydrocolloids, 2015, 47, 69-78.	5.6	32
595	Utilizing Food Matrix Effects To Enhance Nutraceutical Bioavailability: Increase of Curcumin Bioaccessibility Using Excipient Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 2052-2062.	2.4	107
596	Relationship between the chemical components of taro rhizome mucilage and its emulsifying property. Food Chemistry, 2015, 178, 331-338.	4.2	60
597	Isolation and structural features of an antiradical polysaccharide of Capsicum annuum that interacts with BSA. International Journal of Biological Macromolecules, 2015, 75, 144-151.	3.6	11
598	Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 2015, 47, 1-13.	5.6	108
599	Effect of hydrocolloid on rheology and microstructure of high-protein soy desserts. Journal of Food Science and Technology, 2015, 52, 6435-6444.	1.4	15
600	A Raman spectroscopic study of meat protein/lipid interactions at protein/oil or protein/fat interfaces. International Journal of Food Science and Technology, 2015, 50, 982-989.	1.3	22
601	Physicochemical, shear flow behaviour and emulsifying properties of Acacia cochliacantha and Acacia farnesiana gums. Industrial Crops and Products, 2015, 67, 161-168.	2.5	36
602	Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers, 2015, 7, 777-803.	2.0	345
603	Stability and the Distribution of Droplets in Walnut Oil Water-Based Emulsions Formed at Different pH. Journal of Dispersion Science and Technology, 2015, 36, 740-746.	1.3	5

#	Article	IF	CITATIONS
604	Chitosan: Gels and Interfacial Properties. Polymers, 2015, 7, 552-579.	2.0	231
605	Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Food Engineering Series, 2015,	0.3	6
606	Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate. Food Research International, 2015, 75, 244-251.	2.9	42
607	Study of the dynamical behavior of sodium alginate/myoglobin aqueous solutions: A dynamic light scattering study. Journal of Molecular Liquids, 2015, 209, 294-300.	2.3	13
608	Extension shelf life of batte by using hydrocolloids and gamma irradiation. Journal of Radiation Research and Applied Sciences, 2015, 8, 570-577.	0.7	1
609	Suspension "click―polymerizations: thiol-ene polymer particles prepared with natural gum stabilizers. Colloid and Polymer Science, 2015, 293, 2385-2394.	1.0	15
610	Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food and Function, 2015, 6, 2475-2486.	2.1	84
611	Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 2015, 165, 179-188.	2.7	157
612	Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technology, 2015, 285, 25-33.	2.1	23
613	Casein/pectin nanocomplexes as potential oral delivery vehicles. International Journal of Pharmaceutics, 2015, 486, 59-68.	2.6	169
614	Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion. Food Research International, 2015, 74, 131-139.	2.9	76
615	Improving dietary red seaweed Kappaphycus alvarezii (Doty) Doty ex. P. Silva meal utilization in Asian seabass Lates calcarifer. Journal of Applied Phycology, 2015, 27, 1681-1688.	1.5	16
616	Protein-Polysaccharide Interactions to Alter Texture. Annual Review of Food Science and Technology, 2015, 6, 371-388.	5.1	83
617	Stability and the rheological properties of concentrated emulsions containing gelatin–κ-carrageenan polyelectrolyte complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 216-223.	2.3	19
618	Improvement of emulsifying properties of oat protein isolate–dextran conjugates by glycation. Carbohydrate Polymers, 2015, 127, 168-175.	5.1	90
619	Microgels â€" An alternative colloidal ingredient for stabilization of food emulsions. Trends in Food Science and Technology, 2015, 43, 178-188.	7.8	163
620	Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles. Langmuir, 2015, 31, 6282-6288.	1.6	56
621	Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 2015, 105, 8-16.	2.9	282

#	Article	IF	CITATIONS
622	Emulsion film based on fish skin gelatin and palm oil: Physical, structural and thermal properties. Food Hydrocolloids, 2015, 48, 248-259.	5.6	145
623	Development of shrikhand premix using microencapsulated rice bran oil as fat alternative and hydrocolloids as texture modifier. Food Hydrocolloids, 2015, 48, 220-227.	5.6	17
624	Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties. Carbohydrate Polymers, 2015, 125, 26-34.	5.1	29
625	Viscoelasticity of chia (Salvia hispanica L.) seed mucilage dispersion inÂthe vicinity of an oil-water interface. Food Hydrocolloids, 2015, 49, 200-207.	5.6	40
626	Effects of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic. Food Chemistry, 2015, 184, 114-121.	4.2	27
627	Characterization of Ultrasonically Prepared Flaxseed oil Enriched Beverage/Carrot Juice Emulsions and Process-Induced Changes to the Functional Properties of Carrot Juice. Food and Bioprocess Technology, 2015, 8, 1258-1266.	2.6	29
628	Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation. Advances in Colloid and Interface Science, 2015, 226, 86-100.	7.0	19
629	Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science and Emerging Technologies, 2015, 32, 79-90.	2.7	96
630	Development of an Improved Electrical Resistance Method for Determining Emulsifying Capacity of Pulse and Soy Materials. Cereal Chemistry, 2015, 92, 253-257.	1.1	7
631	Olive oil emulsions formed by catastrophic phase inversion using bacterial cellulose and whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 203-210.	2.3	14
632	Effects of milk protein-polysaccharide interactions on the stability ofÂice cream mix model systems. Food Hydrocolloids, 2015, 45, 327-336.	5.6	58
633	Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocolloids, 2015, 45, 175-185.	5.6	201
634	Microencapsulation of Turmeric Oleoresin by Spray Drying and <i>In Vitro</i> Release Studies of Microcapsules. Journal of Food Process Engineering, 2015, 38, 37-48.	1.5	49
635	Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocolloids, 2015, 45, 9-17.	5.6	116
636	Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. Journal of Colloid and Interface Science, 2015, 449, 38-45.	5.0	75
637	Emulsification properties of sugar beet pectin after modification withÂhorseradish peroxidase. Food Hydrocolloids, 2015, 43, 107-113.	5.6	45
638	Foaming and rheological properties of the liquid phase extracted fromÂwheat flour dough. Food Hydrocolloids, 2015, 43, 114-124.	5.6	23
639	Microencapsulation of Anchovy (<i>E ngraulis encrasicolus</i> â€L.) Oil: Emulsion Characterization and Optimization by Response Surface Methodology. Journal of Food Processing and Preservation, 2015, 39, 624-633.	0.9	13

#	Article	IF	CITATIONS
640	Formulation and Characterization of Double Emulsions Stabilized by Sodium Caseinate–Xanthan Mixtures. Effect of pH and Biopolymer Concentration. Journal of Dispersion Science and Technology, 2015, 36, 51-60.	1.3	18
641	Optimization of formulation and influence of environmental stresses on stability of lycopene-microemulsion. LWT - Food Science and Technology, 2015, 60, 999-1008.	2.5	26
642	Evaluation of cress seed gum and xanthan gum effect on macrostructure properties of gluten-free bread by image processing. Journal of Food Measurement and Characterization, 2015, 9, 110-119.	1.6	32
643	Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Materials Science and Engineering C, 2015, 47, 313-324.	3.8	59
644	The linkages between deforestation, energy and growth for environmental degradation in Pakistan. Ecological Indicators, 2015, 49, 95-103.	2.6	176
645	Effects of high hydrostatic pressure and chemical reduction on the emulsification properties of gum arabic. Food Chemistry, 2015, 173, 569-576.	4.2	14
646	Multiple-layered coatings on l-glutamine solid microparticles for the retention during storage and enteric delivery during inÂvitro digestions. Food Hydrocolloids, 2015, 43, 584-592.	5.6	21
647	Chemical structure of the arabinogalactan protein from gum ghatti and its interaction with bovine serum albumin. Carbohydrate Polymers, 2015, 117, 370-376.	5.1	20
648	Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocolloids, 2015, 44, 109-114.	5.6	48
649	The effect of pectins and xanthan gum on physicochemical properties of egg white protein foams. Journal of Food Engineering, 2015, 144, 129-137.	2.7	28
650	Microbial Polysaccharides and Their Modification Approaches: A Review. International Journal of Food Properties, 2015, 18, 332-347.	1.3	104
651	A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocolloids, 2015, 43, 593-602.	5.6	162
652	Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 2015, 43, 547-556.	5.6	299
653	Î ² -lactoglobulin-Angum Gum (<i>Amygdalus scoparia Spach</i>) Complexes: Preparation and Emulsion Stabilization. Journal of Dispersion Science and Technology, 2015, 36, 685-694.	1.3	34
654	Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition. Food Hydrocolloids, 2015, 43, 377-387.	5.6	133
655	Oscillatory and steady shear rheology of gellan/dextran blends. Journal of Food Science and Technology, 2015, 52, 2902-2909.	1.4	16
656	Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. Journal of Food Engineering, 2015, 149, 70-77.	2.7	139
657	Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloids, 2015, 43, 690-699.	5.6	158

#	Article	IF	CITATIONS
658	Rheological properties of oil-in-water emulsions prepared with oil and protein isolates from sesame (Sesamum Indicum). Food Science and Technology, 2016, 36, 64-69.	0.8	33
659	Application of CMC as Thickener on Nanoemulsions Based on Olive Oil: Physical Properties and Stability. International Journal of Polymer Science, 2016, 2016, 1-10.	1.2	54
660	Application of nanoemulsion technology for encapsulation and release of lipophilic bioactive compounds in food., 2016,, 227-255.		10
661	Nanoemulsions for food: properties, production, characterization, and applications. , 2016, , 1-36.		19
662	Production, stability and application of micro- and nanoemulsion in food production and the food processing industry., 2016,, 405-442.		19
663	Wet-Laid Nonwovens Manufacture – Chemical Approaches Using Synthetic and Cellulosic Fibers. BioResources, 2016, 11, .	0.5	30
664	Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Proteinâ€Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. Journal of Food Science, 2016, 81, C1636-45.	1.5	42
665	Effects of cereal soluble dietary fibres on hydrolysis of p-nitrophenyl laurate by pancreatin. Food and Function, 2016, 7, 3382-3389.	2.1	11
666	Recent Progress on the Design and Applications of Polysaccharideâ€Based Graft Copolymer Hydrogels as Adsorbents for Wastewater Purification. Macromolecular Materials and Engineering, 2016, 301, 496-522.	1.7	114
667	Micronized natural talc with a low particle size and a high carbonate rate is more effective at breaking down oilâ€inâ€water emulsion. European Journal of Lipid Science and Technology, 2016, 118, 545-552.	1.0	11
668	Design and development of a nanoemulsion system containing extract of Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances, 2016, 6, 67378-67388.	1.7	27
669	Nanoencapsulation of synergistic combinations of acai berry concentrate to improve antioxidant stability. Food Science and Biotechnology, 2016, 25, 1597-1603.	1.2	5
670	Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil-in-water emulsions. Food Hydrocolloids, 2016, 60, 252-264.	5.6	70
671	Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Carbohydrate Polymers, 2016, 144, 531-540.	5.1	71
672	Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface. Advances in Colloid and Interface Science, 2016, 234, 80-88.	7.0	5
673	New studies on basil (Ocimum bacilicum L.) seed gum: Part IIâ€"Emulsifying and foaming characterization. Carbohydrate Polymers, 2016, 149, 140-150.	5.1	81
674	Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA). International Journal of Biological Macromolecules, 2016, 89, 396-405.	3.6	42
675	Physicochemical characterisation of hawthorn pectins and their performing in stabilising oil-in-water emulsions. Reactive and Functional Polymers, 2016, 103, 63-71.	2.0	56

#	Article	IF	CITATIONS
676	Stepwise extraction of Lepidium sativum seed gum: Physicochemical characterization and functional properties. International Journal of Biological Macromolecules, 2016, 88, 553-564.	3.6	24
677	Physical and Oxidative Stabilities of O/W Emulsions Formed with Rice Dreg Protein Hydrolysate: Effect of Xanthan Gum Rheology. Food and Bioprocess Technology, 2016, 9, 1380-1390.	2.6	29
678	Impact of melting point of palm oil on mechanical and water barrier properties of gelatin-palm oil emulsion film. Food Hydrocolloids, 2016, 60, 243-251.	5.6	56
679	Etherification of Wood-Based Hemicelluloses for Interfacial Activity. Biomacromolecules, 2016, 17, 1894-1901.	2.6	41
680	Interaction of starch and casein. Food Hydrocolloids, 2016, 60, 572-579.	5.6	67
681	Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers. Journal of Food Engineering, 2016, 187, 92-105.	2.7	79
682	Natural emulsifiers â€" Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 2016, 234, 3-26.	7.0	676
683	Functional Properties of Traditional Foods., 2016,,.		11
684	The Impact of Polyoxyethylene Sorbitan Surfactants in the Microstructure and Rheological Behaviour of Emulsions Made With Melted Fat From Cupuassu (<i>Theobroma grandiflorum</i>). Journal of Surfactants and Detergents, 2016, 19, 725-738.	1.0	11
685	Use of Hydrocolloids as Cryoprotectant for Frozen Foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 00-00.	5.4	26
686	Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions. Journal of Dairy Science, 2016, 99, 3305-3315.	1.4	25
687	Nanocomposites: Thermal Analysis and Functional Statistics on Nanocomposite Characterization. , 2016, , 680-701.		0
688	Drying and Preservation of Polyphenols. Contemporary Food Engineering, 2016, , 281-302.	0.2	0
689	Three interval thixotropy test to determine structural regeneration of a glucomannan based hydrocolloid film at air/water interface: Interfacial, molecular, thermal and surface characterization. Food Hydrocolloids, 2016, 61, 458-468.	5.6	19
690	Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System. Langmuir, 2016, 32, 8092-8101.	1.6	98
691	Development and characterization of functional O/W emulsions with chia seed (Salvia hispanica L.) by-products. Journal of Food Science and Technology, 2016, 53, 3206-3214.	1.4	30
692	Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein. Food Chemistry, 2016, 213, 700-707.	4.2	50
693	The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnology and Oceanography Letters, 2016, 1, 3-26.	1.6	105

#	ARTICLE	IF	CITATIONS
694	Polydextrose as Wall Material for Microencapsulation of Yacon Juice by Spray Drying. Food and Bioprocess Technology, 2016, 9, 2103-2113.	2.6	10
695	Protein-free cress seed (Lepidium sativum) gum: Physicochemical characterization and rheological properties. Carbohydrate Polymers, 2016, 153, 14-24.	5.1	20
696	Antimicrobials from herbs, spices, and plants. , 2016, , 269-293.		1
697	Biocompatible microemulsions for the nanoencapsulation of essential oils and nutraceuticals. , 2016, , 503-558.		3
698	Protein Selectivity Controlled by Polymer Charge Density and Protein Yield: Carboxylated Polysaccharides versus Sulfated Polysaccharides. Journal of Agricultural and Food Chemistry, 2016, 64, 9054-9062.	2.4	17
699	Stability of rice bran oil-in-water emulsions stabilized by pectin–zein complexes: Effect of composition and order of mixing. Food Hydrocolloids, 2016, 61, 589-598.	5.6	37
700	Stability and physical properties of model macro- and nano/submicron emulsions containing fenugreek gum. Food Hydrocolloids, 2016, 61, 625-632.	5.6	17
701	Functional Components and Medicinal Properties of Cactus Products. , 2016, , 251-269.		2
702	Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate. Carbohydrate Polymers, 2016, 151, 947-956.	5.1	73
703	Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocolloids, 2016, 61, 251-260.	5.6	164
704	Stability of oil-in-water (O/W) emulsions with chia (Salvia hispanica L.) mucilage. Food Hydrocolloids, 2016, 61, 537-546.	5 . 6	71
705	A Further Step in the Development of Oil-in-Water Emulsions Formulated with a Mixture of Green Solvents. Industrial & Development of Chemistry Research, 2016, 55, 7259-7266.	1.8	27
706	The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 2016, 53, 46-61.	5 . 6	300
707	Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloids, 2016, 53, 199-208.	5 . 6	40
708	Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocolloids, 2016, 56, 227-235.	5.6	43
709	Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. LWT - Food Science and Technology, 2016, 68, 432-438.	2.5	45
710	Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis) Tj ETQq0 0) 0,rgBT /O	verlock 10 Tf 48
711	Fabrication of a nutrient delivery system of docosahexaenoic acid nanoemulsions via high energy techniques. RSC Advances, 2016, 6, 3501-3513.	1.7	36

#	Article	IF	CITATIONS
713	Effect of esterified oligosaccharides on the formation and stability of oil-in-water emulsions. Carbohydrate Polymers, 2016, 143, 44-50.	5.1	17
714	Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocolloids, 2016, 58, 1-10.	5. 6	60
715	Nematic field transfer in a two-dimensional protein fibril assembly. Soft Matter, 2016, 12, 1830-1835.	1.2	6
716	Steric stabilising properties of hydrophobically modified starch: Amylose vs. amylopectin. Food Hydrocolloids, 2016, 58, 364-377.	5.6	27
717	Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chemistry, 2016, 205, 97-105.	4.2	252
718	High acyl gellan as an emulsion stabilizer. Carbohydrate Polymers, 2016, 139, 115-124.	5.1	28
719	Polysaccharide with antioxidant, \hat{l} ±-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International Journal of Biological Macromolecules, 2016, 85, 487-496.	3.6	91
720	Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids, 2016, 56, 405-416.	5.6	109
721	Assessment of soy soluble polysaccharide, gum arabic and OSA-Starch as emulsifiers for mayonnaise-like emulsions. LWT - Food Science and Technology, 2016, 69, 59-66.	2.5	81
722	Characterization of mucin – lipid droplet interactions: Influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocolloids, 2016, 56, 425-433.	5.6	45
723	Gelation of oil-in-water emulsions stabilized by whey protein. Journal of Food Engineering, 2016, 175, 108-116.	2.7	38
724	Compositional characterization and rheological properties of an anionic gum from Alyssum homolocarpum seeds. Food Hydrocolloids, 2016, 52, 766-773.	5.6	124
725	Rheological and emulsifying properties of a gel-like exopolysaccharide produced by Pseudomonas stutzeri AS22. Food Hydrocolloids, 2016, 52, 634-647.	5.6	50
726	The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear method. Food Hydrocolloids, 2016, 54, 293-301.	5.6	41
727	Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules, 2016, 82, 816-822.	3.6	188
728	Emulsifying properties of basil seed gum: Effect of pH and ionic strength. Food Hydrocolloids, 2016, 52, 838-847.	5. 6	57
729	Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids, 2016, 52, 690-698.	5 . 6	68
730	Rheological Properties and Emulsifying Activity of Gum Karaya (<i>Sterculia Urens</i>) in Aqueous System and Oil in Water Emulsion: Heat Treatment and Microwave Modification. International Journal of Food Properties, 2016, 19, 662-679.	1.3	19

#	Article	IF	Citations
731	Influences of Ulva fasciata polysaccharide on the rheology and stabilization of cinnamaldehyde emulsions. Carbohydrate Polymers, 2016, 135, 27-34.	5.1	30
732	Optimized extraction and molecular characterization of polysaccharides from Sophora alopecuroides L. seeds. International Journal of Biological Macromolecules, 2016, 82, 231-242.	3.6	26
733	Effect of molecular structure on emulsifying properties of sugar beet pulp pectin. Food Hydrocolloids, 2016, 54, 99-106.	5.6	120
734	Ovalbumin/gum arabic-stabilized emulsion: Rheology, emulsion characteristics, and Raman spectroscopic study. Food Hydrocolloids, 2016, 52, 607-614.	5.6	103
735	Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian Journal of Pharmaceutical Sciences, 2016, 11, 365-375.	4.3	51
736	Double Emulsions Stabilized by Xanthan in the Absence of Hydrophilic Surfactant. Journal of Dispersion Science and Technology, 2016, 37, 530-535.	1.3	7
737	Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 2016, 7, 1-6.	4.1	336
738	Stability properties of different fenugreek galactomannans in emulsions prepared by high-shear and ultrasonic method. Food Hydrocolloids, 2016, 52, 487-496.	5.6	20
739	Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocolloids, 2016, 52, 497-509.	5.6	75
740	Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic. Food Science and Technology International, 2016, 22, 277-287.	1.1	3
741	Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Critical Reviews in Food Science and Nutrition, 2016, 56, 650-685.	5.4	61
742	Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 2017, 57, 1133-1152.	5.4	398
743	The Influence of Maltodextrin on the Physicochemical Properties and Stabilization of Beta-carotene Emulsions. AAPS PharmSciTech, 2017, 18, 821-828.	1.5	13
744	Effect of process parameters and methylcellulose supplementation on the properties of n-undecane emulsions. Journal of Dispersion Science and Technology, 2017, 38, 775-781.	1.3	2
745	Improving the emulsifying properties of <i>β</i> â€lactoglobulin–wild almond gum (<i>Amygdalus) Tj ETQq0 (97, 341-349.</i>	0 0 rgBT /0 1.7	Overlock 10 T 11
746	Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annual Review of Food Science and Technology, 2017, 8, 439-466.	5.1	207
747	Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 2017, 8, 205-236.	5.1	363
748	Thermal, microscopic, and quality properties of low-fat frankfurters and emulsions produced by addition of different hydrocolloids. International Journal of Food Properties, 2017, 20, 1987-2002.	1.3	17

#	Article	IF	CITATIONS
749	GG decreases in vitro digestive lipolysis and carotenoid bioaccessibility from a pre-formed protein-stabilized emulsion. Bioactive Carbohydrates and Dietary Fibre, 2017, 9, 21-27.	1.5	11
750	Effects of flaxseed gum concentrations and pH values on the stability of oil-in-water emulsions. Food Hydrocolloids, 2017, 67, 54-62.	5.6	44
751	Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Annual Review of Food Science and Technology, 2017, 8, 75-96.	5.1	117
752	Chemical components and emulsification properties of mucilage from Dioscorea opposita Thunb. Food Chemistry, 2017, 228, 315-322.	4.2	49
753	Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annual Review of Food Science and Technology, 2017, 8, 467-492.	5.1	69
7 54	Stabilizing zein nanoparticle dispersions with \hat{l}^1 -carrageenan. Food Hydrocolloids, 2017, 69, 28-35.	5 . 6	120
755	A novel emulsifier prepared from Acacia seyal polysaccharide through Maillard reaction with casein peptides. Food Hydrocolloids, 2017, 69, 236-241.	5.6	35
756	Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil. Bioscience, Biotechnology and Biochemistry, 2017, 81, 625-633.	0.6	13
757	Prosopis alba exudate gum as novel excipient for fish oil encapsulation in polyelectrolyte bead system. Carbohydrate Polymers, 2017, 166, 309-319.	5.1	17
758	Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 2017, 101, 254-272.	3.6	228
759	Characterisation of curcuminâ€loaded proliposomes produced by coating of micronised sucrose and hydration of phospholipid powders to obtain multilamellar liposomes. International Journal of Food Science and Technology, 2017, 52, 772-780.	1.3	19
760	Rheological behavior and antioxidant activity of a highly acidic gum from Althaea officinalis flower. Food Hydrocolloids, 2017, 69, 432-439.	5.6	49
761	Encapsulation of Betaâ€carotene in Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate: Production Parameters, Alphaâ€tocopherol Coencapsulation and Stability Under Stress Conditions. Journal of Food Science, 2017, 82, 659-669.	1.5	30
762	Impact of laccase on the colour stability of structured oil-in-water emulsions. Food Research International, 2017, 97, 223-230.	2.9	16
763	Evaluation of mageu-based gluten-free bread loaf characteristics. African Journal of Science, Technology, Innovation and Development, 2017, 9, 147-156.	0.8	0
764	Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 2017, 246, 165-180.	7.0	100
765	Retention of polyphenols in encapsulated sour cherry juice in dependence of drying temperature and wall material. LWT - Food Science and Technology, 2017, 83, 110-117.	2.5	30
766	Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 2017, 83, 86-94.	2.5	73

#	Article	IF	CITATIONS
767	The effect of pH and heat treatments on the foaming properties of purified \hat{l}_{\pm} -lactalbumin from camel milk. Colloids and Surfaces B: Biointerfaces, 2017, 156, 55-61.	2.5	31
768	Predicting the optimum compositions of a transdermal nanoemulsion system containing an extract of <i>Clinacanthus nutans</i> leaves (<scp>L</scp> .) for skin antiaging by artificial neural network model. Journal of Chemometrics, 2017, 31, e2894.	0.7	8
769	A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: Interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms. Food Hydrocolloids, 2017, 70, 329-344.	5 . 6	90
770	Interfacial properties of green leaf cellulosic particles. Food Hydrocolloids, 2017, 71, 8-16.	5.6	43
771	Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying. Food Chemistry, 2017, 236, 32-40.	4.2	39
772	Substitution of modified starch with hydrogen peroxideâ€modified rice bran in salad dressing formulation: physicochemical, texture, rheological and sensory properties. Journal of Texture Studies, 2017, 48, 205-214.	1.1	10
773	Effect of carrier agents on chemical properties and sensory evaluation of spray-dried <i>Nigella sativa </i> . CYTA - Journal of Food, 2017, 15, 448-456.	0.9	4
774	Influence of anionic polysaccharides on the physical and oxidative stability of hydrolyzed rice glutelin emulsions: Impact of polysaccharide type and pH. Food Hydrocolloids, 2017, 72, 185-194.	5.6	49
775	A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Bioscience, 2017, 19, 110-120.	2.0	172
776	Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocolloids, 2017, 71, 207-215.	5.6	62
777	Physical–Mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties. International Journal of Cosmetic Science, 2017, 39, 527-534.	1.2	38
778	Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. Journal of Food Engineering, 2017, 213, 47-53.	2.7	89
779	The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. Journal of Supercritical Fluids, 2017, 128, 227-234.	1.6	45
780	Molecular structural properties of extracted gelatin from Yak skin as analysed based on molecular weight. International Journal of Food Properties, 2017, 20, S543-S555.	1.3	10
781	Gastrointestinal fate of emulsion-based ω-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering, 2017, 207, 90-98.	2.7	60
782	Effect of roller milled fenugreek fiber incorporation on functional, thermal and rheological characteristics of whole wheat flour. Journal of Food Measurement and Characterization, 2017, 11, 1315-1325.	1.6	3
783	Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 2017, 207, 35-45.	2.7	97
785	Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International, 2017, 96, 103-112.	2.9	58

#	Article	IF	CITATIONS
786	Challenges towards characterization and applications of a novel hydrocolloid: Persian gum. Current Opinion in Colloid and Interface Science, 2017, 28, 37-45.	3.4	70
787	High solids emulsions produced by ultrasound as a function of energy density. Ultrasonics Sonochemistry, 2017, 38, 772-782.	3.8	29
788	Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface. Colloids and Surfaces B: Biointerfaces, 2017, 151, 287-294.	2.5	28
789	Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 2017, 66, 144-153.	5.6	225
790	Emulsification properties of polysaccharides from Dioscorea opposita Thunb Food Chemistry, 2017, 221, 919-925.	4.2	24
791	Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 2017, 102, 1-7.	2.9	48
792	Modulating fat digestion through food structure design. Progress in Lipid Research, 2017, 68, 109-118.	5.3	138
793	Graphene oxide@gold nanorods for chemo-photothermal treatment and controlled release of doxorubicin in mice Tumor. Colloids and Surfaces B: Biointerfaces, 2017, 160, 543-552.	2.5	32
794	Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from <i>Vitis riparia Michx</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 8754-8762.	2.4	7
795	Flow-induced nanostructuring of gelled emulsions. Soft Matter, 2017, 13, 5696-5703.	1.2	19
796	Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocolloids, 2017, 73, 243-254.	5.6	32
797	Physicochemical stability of curcumin emulsions stabilized by Ulva fasciata polysaccharide under different metallic ions. International Journal of Biological Macromolecules, 2017, 105, 154-162.	3.6	25
798	A diffusing wave spectroscopy study of pharmaceutical emulsions for physical stability assessment. International Journal of Pharmaceutics, 2017, 530, 213-223.	2.6	17
799	Insights into physicochemical and functional properties of polysaccharides sequentially extracted from onion (Allium cepa L.). International Journal of Biological Macromolecules, 2017, 105, 1192-1201.	3.6	42
800	Porous lightweight composites reinforced with fibrous structures. , 2017, , .		4
801	Porous Structures from Bio-Based Polymers via Supercritical Drying. , 2017, , 207-243.		1
804	Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science and Emerging Technologies, 2017, 42, 138-150.	2.7	128
805	Formation of stable adhesive water-in-oil emulsions using a phospholipid and cosurfactants. Journal of Industrial and Engineering Chemistry, 2017, 55, 198-203.	2.9	10

#	Article	IF	CITATIONS
806	Characteristics of soy protein isolate/gum arabic-stabilized oil-in-water emulsions: influence of different preparation routes and pH. RSC Advances, 2017, 7, 31875-31885.	1.7	28
807	Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry, 2017, 221, 395-403.	4.2	91
808	Inhibition of Escherichia coli O157:H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin. Food Control, 2017, 73, 1499-1506.	2.8	44
809	Effect of glycosylation with gum Arabic by Maillard reaction in a liquid system on the emulsifying properties of canola protein isolate. Carbohydrate Polymers, 2017, 157, 1620-1627.	5.1	104
810	Effect of enzymatic hydrolysis on characteristics and synergistic efficiency of pectin on emulsifying properties of egg white protein. Food Hydrocolloids, 2017, 65, 87-95.	5.6	46
811	Characterization and emulsifying properties of octenyl succinate anhydride modified Acacia seyal gum (gum arabic). Food Hydrocolloids, 2017, 65, 10-16.	5.6	61
812	Viscoelastic properties, microstructure and stability of high-oleic O/W emulsions stabilised by crayfish protein concentrate and xanthan gum. Food Hydrocolloids, 2017, 64, 9-17.	5.6	46
813	Emulsification process controlled by a mixer type rheometer in O/W protein-based emulsions. LWT - Food Science and Technology, 2017, 76, 26-32.	2.5	5
814	Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocolloids, 2017, 65, 57-67.	5.6	150
815	Designing emulsion droplets of foods and beverages to enhance delivery of lipophilic bioactive components $\hat{a} \in a$ review of recent advances. International Journal of Food Science and Technology, 2017, 52, 68-80.	1.3	71
816	Palmyra palm (<i>Borassus aethiopum</i> Mart.) fruits: novel raw materials for the pectin industry. Journal of the Science of Food and Agriculture, 2017, 97, 2057-2067.	1.7	6
817	Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces. Food Hydrocolloids, 2017, 64, 85-98.	5.6	48
818	Comparison of homogenization processes for the development of green O/W emulsions formulated with N,N-dimethyldecanamide. Journal of Industrial and Engineering Chemistry, 2017, 46, 54-61.	2.9	11
819	Effect of Angum gum in combination with tragacanth gum on rheological and sensory properties of ketchup. Journal of Texture Studies, 2017, 48, 114-123.	1.1	13
820	A Critical Review on Hemicellulose Pyrolysis. Energy Technology, 2017, 5, 52-79.	1.8	266
821	Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chemistry, 2017, 215, 417-424.	4.2	93
822	The impact of HPMC structure in the modulation of inÂvitro lipolysis: The role of bile salts. Food Hydrocolloids, 2017, 62, 251-261.	5.6	40
823	Virgin olive oil yield as affected by physicochemical talc properties and dosage. European Journal of Lipid Science and Technology, 2017, 119, 1600112.	1.0	5

#	Article	IF	Citations
824	Plantago major seed mucilage: Optimization of extraction and some physicochemical and rheological aspects. Carbohydrate Polymers, 2017, 155, 68-77.	5.1	82
825	Interfacial and emulsifying properties of citrus pectin: Interaction of pH, ionic strength and degree of esterification. Food Hydrocolloids, 2017, 62, 288-298.	5.6	109
826	Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chemistry, 2017, 216, 355-364.	4.2	181
827	Effect of high-pressure homogenization on stability of emulsions containing zein and pectin. Asian Journal of Pharmaceutical Sciences, 2017, 12, 21-27.	4.3	71
828	Influence of phosphorylation on the foamability and stability of bovine serum albumin and citrus peel pectin mixed foams. Journal of Dispersion Science and Technology, 2017, 38, 1266-1275.	1.3	1
829	Rheology of Emulsions. , 2017, , 437-457.		13
830	Foodâ€Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 76-95.	5.9	246
831	Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocolloids, 2017, 68, 178-185.	5.6	60
832	Emulsifier functionality and process engineering: Progress and challenges. Food Hydrocolloids, 2017, 68, 69-80.	5.6	21
833	Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 2017, 305, 411-417.	2.1	60
834	High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration. Food and Function, 2017, 8, 584-594.	2.1	147
835	Emulsifying properties of \hat{l}^2 -lactoglobulin and <i>Quillaja</i> bark saponin mixtures: Effects of number of homogenization passes, pH, and NaCl concentration. International Journal of Food Properties, 2017, 20, 1643-1654.	1.3	9
836	Emulsions stabilized by high acyl gellan and KCl. Food Research International, 2017, 91, 47-54.	2.9	12
837	Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio. Food Hydrocolloids, 2017, 66, 268-275.	5.6	120
838	Ferrofluid Droplet Based Micro-Magnetic Sensors and Actuators. , 2017, , .		1
839	Encapsulation by nanoemulsions. , 2017, , 36-73.		35
840	Characterization of Native and Graft Copolymerized (i) Albizia (i) Gums and Their Application as a Flocculant. Journal of Polymers, 2017, 2017, 1-8.	0.9	9
841	Antioxidant Potential and Emulsifying Properties of Neem (Azadirachita indica, Family Meliaceae) Gum Polysaccharide. Pharmaceutica Analytica Acta, 2017, 08, .	0.2	11

#	Article	IF	CITATIONS
842	Osmotic Properties of Polysaccharides Solutions. , 0, , .		3
844	Biopolymer assisted synthesis of silica-carbon composite by spray drying. Colloids and Surfaces B: Biointerfaces, 2018, 165, 182-190.	2.5	4
845	Effect of outer water phase composition on oil droplet size and yield of (w $1\/o/w\/o/w\/o/w\/o/w$) double emulsions. Food Research International, 2018, 107, 148-157.	2.9	35
846	Process-induced water-soluble biopolymers from broccoli and tomato purées: Their molecular structure in relation to their emulsion stabilizing capacity. Food Hydrocolloids, 2018, 81, 312-327.	5.6	12
847	Surface properties of Acacia senegal vs Acacia seyal films and impact on specific functionalities. Food Hydrocolloids, 2018, 82, 519-533.	5.6	22
848	Determination of the â€~apparent pKa' of selected food hydrocolloids using ortho-toluidine blue. Food Hydrocolloids, 2018, 81, 273-283.	5.6	21
849	Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 112-121.	2.3	43
850	Rheological behavior and stability of emulsions obtained from <i>Pereskia aculeata</i> Miller via different drying methods. International Journal of Food Properties, 2018, 21, 21-35.	1.3	26
851	Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties. Food Hydrocolloids, 2018, 79, 391-398.	5.6	79
852	Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features. Colloids and Surfaces B: Biointerfaces, 2018, 164, 272-280.	2.5	110
853	Effect of dynamic high pressure on emulsifying and encapsulant properties of cashew tree gum. Carbohydrate Polymers, 2018, 186, 350-357.	5.1	10
854	Improving the stability of wheat gliadin nanoparticles – Effect of gum arabic addition. Food Hydrocolloids, 2018, 80, 78-87.	5.6	91
855	Encapsulation templated approach to valorization of cocoa husk, poppy and hemp macrostructural and bioactive constituents. Industrial Crops and Products, 2018, 112, 402-411.	2.5	14
856	Optimization of coconut protein deamidation using protein-glutaminase and its effect on solubility, emulsification, and foaming properties of the proteins. Food Hydrocolloids, 2018, 79, 197-207.	5.6	67
857	Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry, 2018, 252, 181-188.	4.2	129
858	Interpolymer complexation of egg white proteins and carrageenan: Phase behavior, thermodynamics and rheological properties. International Journal of Biological Macromolecules, 2018, 109, 467-475.	3.6	48
859	Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. International Journal of Biological Macromolecules, 2018, 111, 11-18.	3.6	36
860	Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. Ultrasonics Sonochemistry, 2018, 47, 114-121.	3.8	22

#	Article	IF	CITATIONS
861	The emulsifying properties of Persian gum (Amygdalus scoparia Spach) as compared with gum Arabic. International Journal of Food Properties, 2018, 21, 416-436.	1.3	25
862	Study of interactions between anionic exopolysaccharides produced by newly isolated probiotic bacteria and sodium caseinate. Colloids and Surfaces B: Biointerfaces, 2018, 167, 516-523.	2.5	23
863	Enhancing emulsification and antioxidant ability of egg albumin by moderately acid hydrolysis: Modulating an emulsion-based system for mulberry seed oil. Food Research International, 2018, 109, 334-342.	2.9	11
864	Influences of the different chemical components of sugar beet pectin on the emulsifying performance of conjugates formed between sugar beet pectin and whey protein isolate. Food Hydrocolloids, 2018, 82, 1-10.	5.6	48
865	Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 43-52.	1.5	28
866	Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Food Hydrocolloids, 2018, 76, 158-163.	5.6	18
867	Acacia gum: History of the future. Food Hydrocolloids, 2018, 78, 140-160.	5.6	120
868	Effects of soluble soy polysaccharides and gum arabic on the interfacial shear rheology of soy \hat{l}^2 -conglycinin at the air/water and oil/water interfaces. Food Hydrocolloids, 2018, 76, 123-130.	5.6	15
869	Hydrocolloids acting as emulsifying agents – How do they do it?. Food Hydrocolloids, 2018, 78, 2-14.	5.6	149
870	Creaming and oxidative stability of fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes: Impact of pH. Food Chemistry, 2018, 239, 314-322.	4.2	63
871	Ultrasound impact on whey protein concentrate-pectin complexes and in the O/W emulsions with low oil soybean content stabilization. Ultrasonics Sonochemistry, 2018, 41, 562-571.	3.8	80
872	Physicochemical and rheological properties of mucilage extracted from Opuntia ficus indica (L.) Tj ETQq1 1 0.7 Characterization, 2018, 12, 459-470.	84314 rgBT , 1.6	/Overlock 10 20
873	Emulsion stability of sugar beet pectin fractions obtained by isopropanol fractionation. Food Hydrocolloids, 2018, 74, 249-254.	5.6	28
874	Quantification of food polysaccharide mixtures by 1H NMR. Carbohydrate Polymers, 2018, 179, 379-385.	5.1	37
875	Production and Application of Lysozyme-Gum Arabic Conjugate in Mayonnaise as a Natural Preservative and Emulsifier. Polish Journal of Food and Nutrition Sciences, 2018, 68, 33-43.	0.6	15
876	Characterization of different double-emulsion formulations based on food-grade emulsifiers and stabilizers. Journal of Dispersion Science and Technology, 2018, 39, 996-1002.	1.3	21
877	Flotation removal of the microalga Nannochloropsis sp. using Moringa protein–oil emulsion: A novel green approach. Bioresource Technology, 2018, 247, 327-331.	4.8	20
878	Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions. Food Chemistry, 2018, 241, 86-96.	4.2	46

#	ARTICLE	IF	CITATIONS
879	Phenolic residues in spruce galactoglucomannans improve stabilization of oil-in-water emulsions. Journal of Colloid and Interface Science, 2018, 512, 536-547.	5.0	39
880	Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex. Food Research International, 2018, 105, 482-491.	2.9	36
881	Microstructure, composition, and their relationship with emulsion stability., 2018,, 97-122.		4
882	Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids, 2018, 79, 40-47.	5.6	21
883	Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, 2018, 251, 55-79.	7.0	631
884	Influence of pH on foaming and rheological properties of aerated high sugar system with egg white protein and hydroxypropylmethylcellulose. LWT - Food Science and Technology, 2018, 89, 350-357.	2.5	50
885	Functional emulsion gels with potential application in meat products. Journal of Food Engineering, 2018, 222, 29-37.	2.7	100
886	Effects of sulfated polysaccharides from green alga Ulva intestinalis on physicochemical properties and microstructure of silver carp surimi. Food Hydrocolloids, 2018, 74, 87-96.	5.6	70
887	Effect of gamma irradiation on the physicochemical and structural properties of plant seed gums. International Journal of Biological Macromolecules, 2018, 106, 507-515.	3.6	24
888	Physicochemical and rheological properties of gum seed and pulp from <i>Hymenaea courbaril</i> L CYTA - Journal of Food, 2018, 16, 986-994.	0.9	3
889	Stabilization of guava nectar with hydrocolloids and pectinases. Polimeros, 2018, 28, 53-60.	0.2	3
890	Extraction of hydrocolloids from Pereskia Aculeata Miller: reuse of process residue as activated carbon for the pigment-removal phase. Food Science and Technology, 2018, 38, 77-85.	0.8	5
891	Effects of Cellulose Gums on Rheological Interactions in Binary Mixtures of Xanthan Gum and Locust Bean Gum. Preventive Nutrition and Food Science, 2018, 23, 269-274.	0.7	5
892	Physical and Electrical Properties of Gum Arabic. , 2018, , 75-91.		1
893	Linear Viscoelastic Properties of Selected Polysaccharide Gums as Function of Concentration, pH, and Temperature. Journal of Food Science, 2019, 84, 65-72.	1.5	22
894	Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico. PLoS ONE, 2018, 13, e0208406.	1.1	53
895	Beverage Emulsions: Key Aspects of Their Formulation and Physicochemical Stability. Beverages, 2018, 4, 70.	1.3	22
896	Unravelling the Mechanism of Stabilization and Microstructure of Oil-in-Water Emulsions by Native Cellulose Microfibrils in Primary Plant Cells Dispersions. ACS Applied Bio Materials, 2018, 1, 1440-1447.	2.3	19

#	Article	IF	CITATIONS
897	Factors Affecting the Stability of Emulsions Stabilised by Biopolymers., 0,,.		37
898	Dielectric properties for selected wall material in the development of microwave-encapsulation-drying. Journal of Food Science and Technology, 2018, 55, 5161-5165.	1.4	5
899	Influence of Pectin Structural Properties on Interactions with Divalent Cations and Its Associated Functionalities. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 1576-1594.	5.9	127
900	Foaming characteristics of oat protein and modification by partial hydrolysis. European Food Research and Technology, 2018, 244, 2095-2106.	1.6	50
901	Rheological behaviour in the interaction of lecithin and guar gum for oil-in-water emulsions. Czech Journal of Food Sciences, 2018, 36, 73-80.	0.6	19
902	Effect of the Yam Starch (Dioscorea spp.) and Pectin on the Rheological Properties of Stirred Yogurt. Advance Journal of Food Science and Technology, 2018, 16, 207-213.	0.1	0
903	Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Research International, 2018, 111, 178-186.	2.9	81
904	Physicochemical properties of water-soluble polysaccharides from black cumin seeds. International Journal of Biological Macromolecules, 2018, 117, 937-946.	3.6	48
905	Application of complex coacervates in controlled delivery., 2018,, 475-507.		5
906	Extending Cloud Stability of Tamarindus indica L. Juice Using Sodium Alginate and Gum Arabic During Storage in the Refrigerator., 2018, , 173-180.		0
907	Rheological and functional properties of asafoetida gum. International Journal of Biological Macromolecules, 2018, 118, 1168-1173.	3.6	15
908	The Influence of Chemically Modified Potato Maltodextrins on Stability and Rheological Properties of Model Oil-in-Water Emulsions. Polymers, 2018, 10, 67.	2.0	11
909	Effect of green spinach (Amaranthus tricolorL.) and tomato (Solanum lycopersicum) addition in physical, chemical, and sensory properties of marshmallow as an alternative prevention of iron deficiency anemia. IOP Conference Series: Earth and Environmental Science, 2018, 102, 012007.	0.2	3
910	Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocolloids, 2018, 85, 222-228.	5.6	28
911	Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocolloids, 2018, 85, 144-157.	5.6	116
912	Characterization of rheological and structural properties of a gum from Balangu seeds. International Journal of Biological Macromolecules, 2018, 117, 294-300.	3.6	17
913	Foams for Food Applications. , 2018, , 271-327.		7
914	Composition and Functional Properties of Salineâ€Soluble Protein Concentrates Prepared from Four Common Dry Beans (<scp><i>Phaseolus vulgaris</i> i></scp> L.). JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1001-1012.	0.8	15

#	Article	IF	CITATIONS
915	Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohydrate Polymers, 2018, 201, 591-598.	5.1	34
916	Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 9087-9096.	2.4	44
917	Assessing the stabilizing effect of xanthan gum on vitamin D-enriched pecan oil in oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 646-652.	2.3	5
918	Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science and Technology, 2018, 80, 175-186.	7.8	184
919	Microgelation imparts emulsifying ability to surface-inactive polysaccharides—bottom-up vs top-down approaches. Npj Science of Food, 2018, 2, 15.	2.5	33
920	Stability and rheology properties of oil-in-water emulsions prepared with mucilage extracted from Opuntia ficus-indica (L). Miller. Food Hydrocolloids, 2018, 84, 154-165.	5.6	27
921	Functionality of spruce galactoglucomannans in oil-in-water emulsions. Food Hydrocolloids, 2019, 86, 154-161.	5.6	33
922	O/W Emulsions Stabilized by Interactions Between Proteins and Polysaccharides. , 2019, , 494-498.		6
923	Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. Food Hydrocolloids, 2019, 87, 108-118.	5.6	63
924	Characterization of prebiotic emulsions stabilized by inulin and \hat{l}^2 -lactoglobulin. Food Hydrocolloids, 2019, 87, 382-393.	5.6	44
925	Protein-Stabilised Emulsions., 2019,, 404-409.		3
926	Hydroxypropyl methylcellulose enhances the stability of o/w Pickering emulsions stabilized with chitosan and the whole cells of Lactococcus lactis IO-1. Food Research International, 2019, 116, 559-565.	2.9	15
927	Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum. Journal of Food Engineering, 2019, 242, 141-152.	2.7	114
928	Protein recovery and anti-nutritional factor removal from soybean wastewater by complexing with a high concentration of polysaccharides in a novel quick-shearing system. Journal of Food Engineering, 2019, 241, 1-9.	2.7	16
929	Impact of sol-gel transition on the ultrasonic properties of complex model foods: Application to agar/gelatin gels and emulsion filled gels. Food Hydrocolloids, 2019, 87, 506-518.	5.6	16
930	Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization. Food Reviews International, 2019, 35, 54-89.	4.3	80
931	Emulsifying Properties of Polysaccharide Conjugates Prepared from Chin-Brick Tea. Journal of Agricultural and Food Chemistry, 2019, 67, 10165-10173.	2.4	48
932	Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions. Carbohydrate Polymers, 2019, 224, 115190.	5.1	78

#	Article	IF	CITATIONS
933	Classification and Uses of Emulsions in Food and Agro Applications. , 2019, , 143-158.		1
934	Oral behaviour of emulsions stabilized by mixed monolayer. Food Research International, 2019, 125, 108603.	2.9	14
935	Preparation and properties of ferulic acid-sugar beet pulp pectin ester and its application as a physical and antioxidative stabilizer in a fish oil-water emulsion. International Journal of Biological Macromolecules, 2019, 139, 290-297.	3.6	19
936	Hydrocolloids as Emulsifiers and Stabilizers in Beverage Preservation. , 2019, , 427-465.		12
937	Effect of Chitosan/BSA Addition on the Physical Stability of Sunflower Oil Emulsions. Journal of Food Quality, 2019, 2019, 1-8.	1.4	2
938	Impact of proteins and polysaccharides on flavor release from oil-in-water emulsions during simulated cooking. Food Research International, 2019, 125, 108549.	2.9	9
939	Fenugreek seed gum: Biological properties, chemical modifications, and structural analysis– A review. International Journal of Biological Macromolecules, 2019, 138, 386-393.	3.6	49
940	Turning proteins into hydrophobic floatable materials with multiple potential applications. Journal of Colloid and Interface Science, 2019, 554, 166-176.	5.0	3
941	Nanoemulsions: A Promising Tool for Dairy Sector. Nanotechnology in the Life Sciences, 2019, , 99-117.	0.4	7
942	Use of molecular interactions and mesoscopic scale transitions to modulate protein-polysaccharide structures. Advances in Colloid and Interface Science, 2019, 271, 101987.	7.0	62
943	Development of ulvanâ€based emulsions containing flavour and fragrances for food and cosmetic applications. Flavour and Fragrance Journal, 2019, 34, 411-425.	1.2	21
944	Role of hydrocolloids in gluten free noodles made with tiger nut flour as non-conventional powder. Food Hydrocolloids, 2019, 97, 105194.	5.6	42
945	Effect of ball milling time on physicochemical properties of Cordyceps militaris ultrafine particles. Journal of Food Process Engineering, 2019, 42, e13065.	1.5	5
946	Properties of biobased packaging material. , 2019, , 25-111.		2
947	Antioxidant and anti-cancer activity of Dunaliella salina extract and oral drug delivery potential via nano-based formulations of gum Arabic coated magnetite nanoparticles. Journal of Drug Delivery Science and Technology, 2019, 54, 101278.	1.4	20
948	Effect of arabinogalactan protein complex content on emulsification performance of gum arabic. Carbohydrate Polymers, 2019, 224, 115170.	5.1	20
949	Improving Emulsion Stability Through Selection of Emulsifiers and Stabilizers. , 2019, , .		7
950	Encapsulation of Vitamin D ₃ in Pickering Emulsion Stabilized by Nanofibrillated Mangosteen Cellulose: Effect of Environmental Stresses. Journal of Food Science, 2019, 84, 3213-3221.	1.5	34

#	Article	IF	CITATIONS
951	Amylose Inclusion Complexes as Emulsifiers for Garlic and Asafoetida Essential Oils for Mosquito Control. Insects, 2019, 10, 337.	1.0	7
952	Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Current Medicinal Chemistry, 2019, 26, 2485-2501.	1.2	120
953	Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins. Industrial Crops and Products, 2019, 140, 111611.	2.5	48
954	Effect of different stabilizers on rheological properties, fat globule size and sensory attributes of novel spreadable processed whey cheese. European Food Research and Technology, 2019, 245, 2401-2412.	1.6	12
955	Enhancing the stability of oil-in-water emulsion using pectin-lactoferrin complexes. International Journal of Biological Macromolecules, 2019, 139, 421-430.	3.6	19
956	Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol. Carbohydrate Polymers, 2019, 226, 115309.	5.1	7
957	Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 2019, 11, 1570.	2.0	111
958	Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Bioscience, 2019, 28, 49-56.	2.0	56
959	The colloidal stabilization of young red wine by Acacia senegal gum: The involvement of the protein backbone from the protein-rich arabinogalactan-proteins. Food Hydrocolloids, 2019, 97, 105176.	5.6	5
960	Effect of different encapsulating agent combinations on viability of <i>Lactobacillus casei</i> Shirota during storage, in simulated gastrointestinal conditions and dairy dessert. Food Science and Technology International, 2019, 25, 608-617.	1.1	8
961	Effect of ultrasound-assisted extraction on physicochemical properties and TLR2-affinity binding of the polysaccharides from Pholiota nameko. International Journal of Biological Macromolecules, 2019, 135, 1020-1027.	3.6	10
962	Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents. Journal of Food Science, 2019, 84, 1281-1287.	1.5	13
963	Effect of Emulsifier Type, Maltodextrin, and βâ€Cyclodextrin on Physical and Oxidative Stability of Oilâ€Inâ€Water Emulsions. Journal of Food Science, 2019, 84, 1273-1280.	1.5	19
964	Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. International Journal of Biological Macromolecules, 2019, 133, 1156-1163.	3.6	69
965	A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies, 2020, 51, 45-55.	1.1	72
966	Introductory Chapter: Some New Aspects of Colloidal Systems in Foods., 2019,,.		3
967	Emulsifying and structural properties of polysaccharides extracted from Chinese yam by an enzyme-assisted method. LWT - Food Science and Technology, 2019, 111, 242-251.	2.5	36
968	Impact of Food Emulsions on the Bioaccessibility of Hydrophobic Pesticide Residues in Co-Ingested Natural Products: Influence of Emulsifier and Dietary Fiber Type. Journal of Agricultural and Food Chemistry, 2019, 67, 6032-6040.	2.4	18

#	Article	IF	CITATIONS
969	Sacha inchi oil encapsulation: Emulsion and alginate beads characterization. Food and Bioproducts Processing, 2019, 116, 118-129.	1.8	24
970	Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocolloids, 2019, 96, 209-223.	5.6	140
971	Characteristics of freeze-dried nanoencapsulated fish oil with whey protein concentrate and gum arabic as wall materials. Food Science and Technology, 2019, 39, 475-481.	0.8	12
972	Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and \hat{l}^2 -glucan. Food Research International, 2019, 123, 266-275.	2.9	40
973	Development of muco-adhesive orally disintegrating tablets containing tamarind gum-coated tea powders for oral care. International Journal of Pharmaceutics: X, 2019, 1, 100012.	1.2	8
974	Improved emulsion stability and resveratrol encapsulation by whey protein/gum arabic interaction at oil-water interface. International Journal of Biological Macromolecules, 2019, 133, 466-472.	3.6	38
975	Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydrate Polymers, 2019, 216, 303-311.	5.1	69
976	Some physical characteristics of the O/W macroemulsion of oleoresin of astaxanthin obtained from biomass of Haematococcus pluvialis. DYNA (Colombia), 2019, 86, 136-142.	0.2	5
977	Characterization of the properties of amphiphilic, alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloids, 2019, 94, 199-209.	5.6	31
978	Performance of Acacia Gum as a Novel Additive in Thin Film Composite Polyamide RO Membranes. Membranes, 2019, 9, 30.	1.4	7
979	Development of a dehydrated dressing-type emulsion with instant powder characteristics. Food Structure, 2019, 20, 100110.	2.3	7
980	Effect of lactose-to-maltodextrin ratio on emulsion stability and physicochemical properties of spray-dried infant milk formula powders. Journal of Food Engineering, 2019, 254, 34-41.	2.7	51
981	Mucilage powder from cactus pears as functional ingredient: influence of cultivar and harvest month on the physicochemical and technological properties. Journal of Food Science and Technology, 2019, 56, 2404-2416.	1.4	24
982	Functional properties of endosperm protein from sizeâ€fractionated broken rice kernels generated after milling of parboiled and nonparboiled rice. Cereal Chemistry, 2019, 96, 590-604.	1.1	8
983	Emulsion stabilizing capacity of sugar beet fibers compared to sugar beet pectin and octenyl succinate modified maltodextrin in the production of O/W emulsions: individual and combined impact. LWT - Food Science and Technology, 2019, 108, 392-399.	2.5	20
984	Characterization of Emulsion Stabilization Properties of Gum Tragacanth, Xanthan Gum and Sucrose Monopalmitate: A Comparative Study. Journal of Food Science, 2019, 84, 1087-1093.	1.5	19
985	Multilayer Bixin Microcapsules: The Impact of Native Carbohydrates on the Microencapsulation Efficiency and Dispersion Stability. Foods, 2019, 8, 108.	1.9	10
986	Emulsification properties of garlic aqueous extract. Food Hydrocolloids, 2019, 93, 111-119.	5.6	6

#	ARTICLE	IF	CITATIONS
987	Cellulose microfibril networks in hydrolysed soy protein isolate solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 277-283.	2.3	8
992	Protein aggregates modulate the texture of emulsified and acidified acid milk gels. Food Hydrocolloids, 2019, 93, 176-188.	5.6	9
993	Influence of purification on physicochemical and emulsifying properties of tamarind (Tamarindus) Tj ETQq0 0 0 r	gBT /Overl	lock 10 Tf 50
994	Effect of extraction pH on the yield and physicochemical properties of polysaccharides extracts from peanut sediment of aqueous extraction process. LWT - Food Science and Technology, 2019, 106, 137-144.	2.5	27
998	Production of food bioactive-loaded nanostructures by microfluidization., 2019,, 341-390.		0
999	Saccharide Transfer to Sea Spray Aerosol Enhanced by Surface Activity, Calcium, and Protein Interactions. ACS Earth and Space Chemistry, 2019, 3, 2539-2548.	1.2	27
1000	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate, Part 1: Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1197-1208.	2.4	58
1001	Effects of basal seed gum and carboxymethyl cellulose gum on rheological properties and flow behavior of pomegranate paste. Journal of Food Measurement and Characterization, 2019, 13, 87-96.	1.6	6
1002	Oil in water emulsions stabilized by maillard conjugates of sodium caseinate-locust bean gum. Journal of Dispersion Science and Technology, 2019, 40, 634-645.	1.3	22
1003	Interfacial competitive adsorption of different amphipathicity emulsifiers and milk protein affect fat crystallization, physical properties, and morphology of frozen aerated emulsion. Food Hydrocolloids, 2019, 87, 670-678.	5.6	46
1004	Emulsifying properties of hemp proteins: Effect of isolation technique. Food Hydrocolloids, 2019, 89, 912-920.	5.6	56
1005	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 1209-1221.	2.4	56
1006	Emulsification properties of amylose-fatty sodium salt inclusion complexes. Food Hydrocolloids, 2019, 90, 490-499.	5.6	14
1007	An arabinogalactan isolated from Boswellia carterii: Purification, structural elucidation and macrophage stimulation via NF-κB and MAPK pathways. Journal of Functional Foods, 2019, 52, 450-458.	1.6	24
1008	The effects of extrusion processing on rheological and physicochemical properties of sesbania gum. Food Hydrocolloids, 2019, 90, 35-40.	5.6	38
1009	Polysaccharide assisted microencapsulation for volatile phase change materials with a fluorescent retention indicator. Chemical Engineering Journal, 2019, 359, 1234-1243.	6.6	24
1010	Physical and chemical stability of sweet walnut oil emulsion: Influence of homogenization conditions and stabilizer ratio. Journal of Food Process Engineering, 2019, 42, e12945.	1.5	5
1011	Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chemistry, 2019, 278, 357-363.	4.2	56

#	Article	IF	Citations
1012	The surface characteristics of biopolymer-coated tomato and cucumber epicarps: effect of guar, Persian and tragacanth gums. Journal of Food Measurement and Characterization, 2019, 13, 840-847.	1.6	13
1013	Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. Powder Technology, 2019, 343, 644-651.	2.1	42
1014	Chinese quince seed gum: Flow behaviour, thixotropy and viscoelasticity. Carbohydrate Polymers, 2019, 209, 230-238.	5.1	41
1015	Recovery, structure and physicochemical properties of an aggregate-rich fraction from Acacia senegal gum. Food Hydrocolloids, 2019, 89, 864-873.	5.6	12
1016	Rheological and structural characterization of gels from albumin and low methoxyl amidated pectin mixtures. Food Hydrocolloids, 2019, 92, 60-68.	5.6	34
1017	Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids, 2019, 95, 298-307.	5.6	156
1018	Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering, 2019, 245, 139-148.	2.7	90
1019	Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chemistry, 2019, 277, 205-212.	4.2	46
1020	Equilibrium in Colloidal Systems. , 2019, , 507-528.		0
1021	Hydrophobically modified xanthan: Thickening and surface active agent for highly stable oil in water emulsions. Carbohydrate Polymers, 2019, 205, 362-370.	5.1	17
1022	Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids, 2019, 89, 44-55.	5.6	76
1023	Dispersion characteristics of pregelatinized waxy rice starch and its performance as an emulsifier for oil-in-water emulsions: Effect of gelatinization temperature and starch concentration. Food Hydrocolloids, 2019, 95, 476-486.	5.6	21
1024	Review article: emulsifiers in the food supply and implications for gastrointestinal disease. Alimentary Pharmacology and Therapeutics, 2019, 49, 41-50.	1.9	63
1025	Exploring potential new galactomannan source of Retama reatam seeds for food, cosmetic and pharmaceuticals: Characterization and physical, emulsifying and antidiabetic properties. International Journal of Biological Macromolecules, 2019, 124, 1167-1176.	3.6	17
1026	Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocolloids, 2019, 88, 119-126.	5.6	24
1027	pH-induced cold gelation of caseinglycomacropeptide emulsions. Food Hydrocolloids, 2019, 87, 805-813.	5.6	5
1028	Preparation and emulsifying properties of trace elements fortified gum arabic. Food Hydrocolloids, 2019, 88, 43-49.	5.6	27
1029	Polysaccharides. , 2019, , 103-157.		5

#	Article	IF	CITATIONS
1030	A study on the structure formation and properties of noni juice microencapsulated with maltodextrin and gum acacia using single droplet drying. Food Hydrocolloids, 2019, 88, 199-209.	5.6	23
1031	Experimental study of quercetin microencapsulation using water-in-oil-in-water (W1/O/W2) double emulsion. Journal of Molecular Liquids, 2019, 273, 183-191.	2.3	36
1032	Characterization of the structural and emulsifying properties of sugar beet pectins obtained by sequential extraction. Food Hydrocolloids, 2019, 88, 31-42.	5.6	73
1033	Chemical and physicochemical characterizations of the water-soluble fraction of the Commiphora Africana exudate. Food Hydrocolloids, 2019, 86, 2-10.	5.6	2
1034	Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocolloids, 2019, 95, 571-579.	5.6	55
1035	Interactions of salivary mucins and saliva with food proteins: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 64-83.	5.4	41
1036	Effect of addition of a marine algae (<i>Chlorella protothecoides</i>) protein preparation on stability of model emulsion systems. Journal of Dispersion Science and Technology, 2020, 41, 699-707.	1.3	9
1037	Physicochemical characterization and emulsifying properties of a novel exopolysaccharide produced by haloarchaeon Haloferax mucosum. International Journal of Biological Macromolecules, 2020, 142, 152-162.	3.6	28
1038	Simultaneous use of low methylesterified citrus pectin and EDTA as antioxidants in linseed/sunflower oil-in-water emulsions. Food Hydrocolloids, 2020, 100, 105386.	5.6	6
1039	Improving the Delivery System and Bioavailability of Beverages Through Nanoencapsulation. , 2020, , 301-332.		2
1040	Effect of dry-heat and guar gum on properties of egg white powder: Analysis of forming capacity and baking performance. Food Hydrocolloids, 2020, 99, 105333.	5.6	25
1041	Emulsifying properties of pectic polysaccharides obtained by sequential extraction from black tomato pomace. Food Hydrocolloids, 2020, 100, 105454.	5.6	28
1042	Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocolloids, 2020, 100, 105428.	5.6	105
1044	Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 2020, 60, 2593-2605.	5.4	179
1045	Formulation and characterisation of O/W emulsions stabilised with modified seaweed polysaccharides. International Journal of Food Science and Technology, 2020, 55, 211-221.	1.3	32
1046	Development, physical stability and bioaccessibility of \hat{l}^2 -carotene-enriched tertiary emulsions. Journal of Functional Foods, 2020, 64, 103615.	1.6	23
1047	Rheology of colloidal particle suspensions. , 2020, , 49-71.		0
1048	Comparative study on emulsifying and physico-chemical properties of bovine and camel acid and sweet wheys. Journal of Food Engineering, 2020, 268, 109741.	2.7	18

#	Article	IF	CITATIONS
1049	Effect of enzymolysis and glycosylation on the curcumin nanoemulsions stabilized by \hat{l}^2 -conglycinin: Formation, stability and in vitro digestion. International Journal of Biological Macromolecules, 2020, 142, 658-667.	3.6	33
1050	Food-Grade Emulsions and Emulsion Gels Prepared by Soy Protein–Pectin Complex Nanoparticles and Glycyrrhizic Acid Nanofibrils. Journal of Agricultural and Food Chemistry, 2020, 68, 1051-1063.	2.4	75
1051	Digestion behavior and gastrointestinal fate of oil-in-water emulsions stabilized by different modified rice starches. Food and Function, 2020, 11, 1087-1097.	2.1	19
1052	Time-dependent self-association of spruce galactoglucomannans depends on pH and mechanical shearing. Food Hydrocolloids, 2020, 102, 105607.	5.6	17
1053	Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocolloids, 2020, 102, 105579.	5.6	23
1054	Using a three-ball-on-plate configuration for soft tribology applications. Journal of Food Engineering, 2020, 274, 109838.	2.7	9
1055	Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes. Food and Bioprocess Technology, 2020, 13, 1893-1907.	2.6	9
1056	Physiochemical and rheological characterization of pithecellobium dulce (Roxb.) benth gum exudate as a potential wall material for the encapsulation of rosemary oil Carbohydrate Polymer Technologies and Applications, 2020, 1, 100005.	1.6	9
1057	Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Critical Reviews in Food Science and Nutrition, 2022, 62, 693-725.	5.4	23
1058	Interfacial and molecular interactions between fractions of heavy oil and surfactants in porous media: Comprehensive review. Advances in Colloid and Interface Science, 2020, 283, 102242.	7.0	46
1059	Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 8937-8942.	1.2	5
1060	Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Critical Reviews in Food Science and Nutrition, 2022, 62, 640-655.	5.4	36
1061	Functional properties of roller mill processed fenugreek fractions. Journal of Food Measurement and Characterization, 2020, 14, 3103-3111.	1.6	3
1062	Formation and stability of emulsions using crude extracts as natural emulsifiers from Argan shells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124536.	2.3	23
1063	Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices. International Journal of Food Microbiology, 2020, 331, 108786.	2.1	34
1064	Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 2. Flotation of chalcopyrite and Cu-containing tailings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125298.	2.3	8
1065	The role of breadfruit OSA starch and surfactant in stabilizing high-oil-load emulsions using high-pressure homogenization and low-frequency ultrasonication. Heliyon, 2020, 6, e04341.	1.4	10
1066	Interfacial and emulsion characterisation of chemically modified polysaccharides through a multiscale approach. Journal of Colloid and Interface Science, 2020, 580, 480-492.	5.0	85

#	Article	IF	CITATIONS
1067	Impact of flocculant addition in oil recovery from multiphasic fermentations. Food and Bioproducts Processing, 2020, 123, 150-163.	1.8	0
1068	Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Science and Nutrition, 2020, 8, 3099-3109.	1.5	12
1069	Impact of Phytic Acid on the Physical and Oxidative Stability of Protein-Stabilized Oil-in-Water Emulsions. Food Biophysics, 2020, 15, 433-441.	1.4	11
1070	Influence of hydrocolloid addition on physical properties and rheology of olive oil in bitter orange juice (O/W) nano-emulsions prepared with blends of different surfactants. Journal of Dispersion Science and Technology, 2022, 43, 1048-1060.	1.3	2
1071	Isolation, structural features, in vitro antioxidant activity and assessment of complexation ability with \hat{l}^2 -lactoglobulin of a polysaccharide from Borassus flabellifer fruit. Heliyon, 2020, 6, e05499.	1.4	10
1072	Structure and Rheological Properties of Glycerol Monolaurate-Induced Organogels: Influence of Hydrocolloids with Different Surface Charge. Molecules, 2020, 25, 5117.	1.7	4
1073	Chicken egg white: Hatching of a new old biomaterial. Materials Today, 2020, 40, 193-214.	8.3	60
1074	Effect of concentration of porang flour and temperature on rheological properties of tomato ketchup. IOP Conference Series: Earth and Environmental Science, 2020, 475, 012034.	0.2	2
1076	NMR Relaxometry and magnetic resonance imaging as tools to determine the emulsifying characteristics of quince seed powder in emulsions and hydrogels. International Journal of Biological Macromolecules, 2020, 164, 2051-2061.	3.6	10
1077	The interaction between sodium alginate and myofibrillar proteins: The rheological and emulsifying properties of their mixture. International Journal of Biological Macromolecules, 2020, 161, 1545-1551.	3.6	53
1078	Complex coacervation between oak protein isolate and gum Arabic: optimization & Emp; functional characterization. International Journal of Food Properties, 2020, 23, 1854-1873.	1.3	21
1079	Hybrid oil-in-water emulsions applying wax(lecithin)-based structured oils: Tailoring interface properties. Food Research International, 2020, 138, 109798.	2.9	11
1080	Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Research International, 2020, 137, 109739.	2.9	48
1081	Design principles of oilâ€inâ€water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3159-3190.	5.9	59
1082	Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of <i>Alyssum homolocarpum</i> seed gum. Food Science and Nutrition, 2020, 8, 5571-5579.	1.5	8
1083	Preparation of isocyanate microcapsules as a high-performance adhesive for PLA/WF. Construction and Building Materials, 2020, 260, 120483.	3.2	10
1084	Physicochemical properties and surface activity characterization of water-soluble polysaccharide isolated from Balangu seed (Lallemantia royleana) gum. Journal of Food Measurement and Characterization, 2020, 14, 3625-3632.	1.6	4
1086	Emulsifiers Impact Colonic Length in Mice and Emulsifier Restriction is Feasible in People with Crohn's Disease. Nutrients, 2020, 12, 2827.	1.7	34

#	ARTICLE	IF	CITATIONS
1087	A deeper insight into the characteristics of double-layer oil-in-water emulsions stabilized by Persian gum and whey protein isolate. Journal of Dispersion Science and Technology, 2022, 43, 70-79.	1.3	9
1088	Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food and Function, 2020, 11, 8331-8341.	2.1	8
1089	Microparticles obtained by spray-drying technique containing ginger essential oil with the addition of cellulose nanofibrils extracted from the ginger vegetable fiber. Drying Technology, 2021, 39, 1912-1926.	1.7	10
1090	Impact of Pleurotus ostreatus \hat{l}^2 -Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion. Antioxidants, 2020, 9, 1219.	2.2	2
1091	Development and Characterization of Functional O/W Emulsions with Chia Seed (Salvia hispanica L.) by-Products. Proceedings (mdpi), 2020, 53, 20.	0.2	0
1092	Simultaneous measurement of rheological properties in a microfluidic rheometer. Physics of Fluids, 2020, 32, 052001.	1.6	10
1093	Water-Soluble Polysaccharides from Ephedra alata Stems: Structural Characterization, Functional Properties, and Antioxidant Activity. Molecules, 2020, 25, 2210.	1.7	20
1094	Microencapsulation of rice bran oil using pea protein and maltodextrin mixtures as wall material. Heliyon, 2020, 6, e03615.	1.4	10
1095	Ultrasound-assisted production and characterization of rice bran lecithin-based nanoemulsions. Journal of Dispersion Science and Technology, 2021, 42, 1368-1375.	1.3	4
1096	Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 2020, 44, e14588.	0.9	8
1097	Synthesis of Gum Arabic-g-polyaniline using diode laser. International Journal of Biological Macromolecules, 2020, 161, 848-853.	3.6	4
1098	Morphological and structural heterogeneity of solid gliadin food foams modified with transglutaminase and food grade dispersants. Food Hydrocolloids, 2020, 108, 105995.	5.6	20
1099	Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International, 2020, 137, 109376.	2.9	160
1100	Flaxseed Gum Solution Functional Properties. Foods, 2020, 9, 681.	1.9	39
1101	Emulsifying properties of acid-hydrolyzed insoluble protein fraction from Chlorella protothecoides: Formation and storage stability of emulsions. Food Hydrocolloids, 2020, 108, 105954.	5.6	25
1102	The emulsifying and foaming properties of Amuniacum gum (<i>Dorema ammoniacum</i>) in comparison with gum Arabic. Food Science and Nutrition, 2020, 8, 3716-3730.	1.5	12
1103	Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review. Ultrasonics Sonochemistry, 2020, 65, 105057.	3.8	45
1104	Effect of utilization of alternative hydrocolloid-based stabilizers on rheology of oil-in-water beverage emulsions. Journal of Food Measurement and Characterization, 2020, 14, 1744-1753.	1.6	4

#	Article	IF	CITATIONS
1105	Ultrasonication of Polysaccharides from Tunisian Zizyphus lotus Fruit: Emulsifying Capacities, Rheological Properties and Antioxidant activities. Chemistry Africa, 2020, 3, 667-678.	1.2	6
1106	Protein–polysaccharide interactions and aggregates in food formulations. Current Opinion in Colloid and Interface Science, 2020, 48, 18-27.	3.4	108
1107	Obtainment and characterisation of pectin from sunflower heads purified by membrane separation techniques. Food Chemistry, 2020, 318, 126476.	4.2	27
1108	Extraction of a novel water-soluble gum from nettle (Urtica dioica) seeds: Optimization and characterization. International Journal of Biological Macromolecules, 2020, 162, 480-489.	3.6	19
1109	Physicochemical, structural and functional properties of water-soluble polysaccharides extracted from Egyptian agricultural by-products. Annals of Agricultural Sciences, 2020, 65, 21-27.	1.1	22
1110	A comparison of properties between the citric acid monohydrate and deep eutectic solvent extracted Averrhoa bilimbi pectins. Journal of Food Measurement and Characterization, 2020, 14, 2889-2897.	1.6	4
1111	Subunit composition affects formation and stabilization of o/w emulsions by 11S seed storage protein cruciferin. Food Research International, 2020, 137, 109387.	2.9	8
1112	Exudate gums: chemistry, properties and food applications – a review. Journal of the Science of Food and Agriculture, 2020, 100, 2828-2835.	1.7	93
1113	Could choline chloride-citric acid monohydrate molar ratio in deep eutectic solvent affect structural, functional and antioxidant properties of pectin?. International Journal of Biological Macromolecules, 2020, 149, 835-843.	3.6	27
1114	Assessment of the potential of <i>Arabic</i> gum as an antimicrobial and antioxidant agent in developing vegan "eggâ€free―mayonnaise. Journal of Food Safety, 2020, 40, e12771.	1.1	24
1115	Colloidal characteristics, emulsifying activities, and interfacial properties of α-lactalbumin–chitosan electrostatic complexes: effects of mass ratio and pH. Food and Function, 2020, 11, 1740-1753.	2.1	17
1116	Effects of pectin, sugar and pH on the \hat{l}^2 -Carotene bioaccessibility in simulated juice systems. LWT - Food Science and Technology, 2020, 124, 109125.	2.5	12
1117	Improved foaming properties and interfacial observation of sodium caseinate-based complexes: Effect of carboxymethyl cellulose. Food Hydrocolloids, 2020, 105, 105758.	5.6	40
1118	Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation. Separation and Purification Technology, 2020, 239, 116537.	3.9	69
1119	Effect of thermomechanical treatment on the aggregation behaviour and colloidal functionality of \hat{l}^2 -Lactoglobulin at high concentrations. International Dairy Journal, 2020, 104, 104654.	1.5	8
1120	Application of dielectric barrier discharge plasma to hydrophobically modification of gum arabic with enhanced surface properties. Food Hydrocolloids, 2020, 104, 105724.	5.6	39
1121	Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. International Journal of Biological Macromolecules, 2020, 150, 546-558.	3.6	26
1122	Interactions and functionality of milk proteins in food emulsions. , 2020, , 467-497.		4

#	Article	IF	CITATIONS
1123	Milk protein-polysaccharide interactions. , 2020, , 499-535.		10
1124	Development and optimization of complex coacervates based on zedo gum, cress seed gum and gelatin. International Journal of Biological Macromolecules, 2020, 148, 31-40.	3.6	28
1125	An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials, 2020, 10, 135.	1.9	242
1126	Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 2020, 29, 149-168.	1.2	131
1127	Tamarind seed polysaccharide. , 2020, , 445-461.		6
1128	Role of Pectin in Food Processing and Food Packaging., 0, , .		29
1129	Strategies for structuring diverse emulsion systems by using wood lignocellulose-derived stabilizers. Green Chemistry, 2020, 22, 1019-1037.	4.6	40
1130	Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids. Biomolecules, 2020, 10, 115.	1.8	14
1131	Extraction of protein and carbohydrates from soybean meal using acidic and alkaline solutions produced by electroâ€activation. Food Science and Nutrition, 2020, 8, 1125-1138.	1.5	11
1132	Rapid determination of emulsion stability by rheology-based thermal loop test. LWT - Food Science and Technology, 2020, 122, 109037.	2.5	23
1133	Effect of different heating temperatures on foaming properties of camel milk proteins: A comparison with bovine milk proteins. International Dairy Journal, 2020, 104, 104643.	1.5	19
1134	Functional properties of chickpea protein-pectin interfacial complex in buriti oil emulsions and spray dried microcapsules. Food Hydrocolloids, 2020, 107, 105929.	5.6	33
1135	Development of recycled polylactic acid/oyster shell/biomass waste composite for green packaging materials with pure natural glue and nano-fluid. Environmental Science and Pollution Research, 2020, 27, 26276-26304.	2.7	4
1137	Flaxseed Oil Microcapsules Prepared Using Soy Protein Isolate and Modified Starch: Process Optimization, Characterization and In Vitro Release Behaviour. Agricultural Research, 2020, 9, 652-662.	0.9	10
1138	Relationship between the molecular characteristics of Acacia gum and its functional properties. Food Chemistry, 2020, 328, 126860.	4.2	7
1139	Comparison of emulsifying capacity of two hemicelluloses from moso bamboo in soy oil-in-water emulsions. RSC Advances, 2020, 10, 4657-4663.	1.7	7
1140	Physical and rheological properties of mixed-component emulsion-based products: Influence of flaxseed gum concentration and pH on the aggregation of lipid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124818.	2.3	5
1141	Unlocking the potential of sustainable chemicals in mineral processing: Improving sphalerite flotation using amphiphilic cellulose and frother mixtures. Journal of Cleaner Production, 2020, 261, 121143.	4.6	14

#	Article	IF	CITATIONS
1142	Prebiotic emulsions stabilised by whey protein and kefiran. International Journal of Food Science and Technology, 2021, 56, 76-85.	1.3	6
1143	Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutrition Reviews, 2021, 79, 726-741.	2.6	71
1144	Papaya by-products for providing stability and antioxidant activity to oil in water emulsions. Journal of Food Science and Technology, 2021, 58, 1693-1702.	1.4	5
1145	The stability of aerated emulsions: Effects of emulsifier synergy on partial coalescence and crystallization of milk fat. Journal of Food Engineering, 2021, 291, 110257.	2.7	26
1146	Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions. Food Hydrocolloids, 2021, 111, 106365.	5.6	45
1147	Foaming and rheological properties of hydroxypropyl methylcellulose and welan gum composite system: The stabilizing mechanism. Food Hydrocolloids, 2021, 112, 106275.	5.6	29
1148	The interactions between the two negatively charged polysaccharides: Gum Arabic and alginate. Food Hydrocolloids, 2021, 112, 106343.	5.6	43
1149	High stability of bilayer nano-emulsions fabricated by Tween 20 and specific interfacial peptides. Food Chemistry, 2021, 340, 127877.	4.2	20
1150	Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids, 2021, 111, 106404.	5.6	63
1151	Effects of crude fucoidan on physicochemical properties, antioxidation and bacteriostasis of surimi products. Food Control, 2021, 122, 107806.	2.8	36
1152	Pressurized hot water crosslinking of gelatin-alginate for the enhancement of spent coffee oil emulsion stability. Journal of Supercritical Fluids, 2021, 169, 105120.	1.6	5
1153	Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environmental Chemistry Letters, 2021, 19, 1153-1171.	8.3	85
1154	Physical characterization of high methoxyl pectin and sunflower oil wax emulsions: A lowâ€field ¹ H NMR relaxometry study. Journal of Food Science, 2021, 86, 120-128.	1.5	13
1155	Pilot scale isolation of exopolysaccharides from <i>Streptococcus thermophilus</i> Impact of methodical details on macromolecular properties and technofunctionality. Engineering in Life Sciences, 2021, 21, 220-232.	2.0	6
1156	Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate Polymers, 2021, 256, 117523.	5.1	28
1157	Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocolloids, 2021, 112, 106289.	5.6	29
1158	Influence of molecular weight of an anionic marine polysaccharide (sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships. Food Hydrocolloids, 2021, 113, 106418.	5.6	19
1159	Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innovative Food Science and Emerging Technologies, 2021, 67, 102525.	2.7	23

#	Article	IF	CITATIONS
1160	Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. Journal of Colloid and Interface Science, 2021, 584, 344-353.	5.0	47
1161	Effect of cosolutes on the rheological and thermal properties of Tara gum aqueous solutions. Journal of Food Science and Technology, 2021, 58, 2773-2782.	1.4	7
1162	Parametric analysis of the spray drying process for the production of starch molecular inclusion complexes with fatty acids. Drying Technology, 2021, 39, 580-595.	1.7	6
1163	Nanoemulsion design for the delivery of omega-3 fatty acids. , 2021, , 295-319.		1
1164	Fabrication of Soy Protein Nanoparticles via Partial Enzymatic Hydrolysis and Their Role in Controlling Lipid Digestion of Oil-in-Water Emulsions. ACS Food Science & Technology, 2021, 1, 193-204.	1.3	20
1165	Physicochemical properties and enzymatic activity of wheat germ extract microencapsulated with spray and freeze drying. Food Science and Nutrition, 2021, 9, 1192-1201.	1.5	9
1166	Effluent treatment using polysaccharide. , 2021, , 443-485.		1
1167	Formulation and Evaluation of Spray-Dried Reconstituted Flaxseed Oil-in-Water Emulsions Based on Flaxseed Oil Cake Extract as Emulsifying and Stabilizing Agent. Foods, 2021, 10, 256.	1.9	18
1168	Geotechnical Properties of \hat{l}^2 -Glucan Treated High Swelling Clay. Lecture Notes in Civil Engineering, 2021, , 171-181.	0.3	0
1169	Gum ghatti. , 2021, , 653-672.		3
1170	Natural polysaccharides for wound healing. , 2021, , 341-379.		1
1171	Effect of polysaccharides on the functional properties of egg white protein: A review. Journal of Food Science, 2021, 86, 656-666.	1.5	35
1172	Influence of gum arabic and homogenization process on the physicochemical stability of strawberry suspensions. Food Science and Technology, 0, 42, .	0.8	3
1173	An overview of nanoemulsion characterization <i>via</i> atomic force microscopy. Critical Reviews in Food Science and Nutrition, 2022, 62, 4908-4928.	5.4	23
1174	The Effect of Microencapsulation of Phenolic Compounds from Lemon Waste by Persian and Basil Seed Gums on the Chemical and Microbiological Properties of Mayonnaise. Preventive Nutrition and Food Science, 2021, 26, 82-91.	0.7	22
1175	Stability Aspects of Non-Dairy Milk Alternatives., 0,,.		5
1176	Hypotensive and Hepatoprotective Properties of the Polysaccharide-Stabilized Foaming Composition Containing Hydrolysate of Whey Proteins. Nutrients, 2021, 13, 1031.	1.7	6
1177	Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules, 2021, 26, 1547.	1.7	138

#	Article	IF	CITATIONS
1178	Lupin Protein Isolate Structure Diversity in Frozen-Cast Foams: Effects of Transglutaminases and Edible Fats. Molecules, 2021, 26, 1717.	1.7	4
1179	Properties of binary complexes of whey protein fibril and gum arabic and their functions of stabilizing emulsions and simulating mayonnaise. Innovative Food Science and Emerging Technologies, 2021, 68, 102609.	2.7	24
1180	Synergistic gelation in the hybrid gel of scallop (<i>Patinopecten yessoensis</i>) male gonad hydrolysates and xanthan gum. Journal of Food Science, 2021, 86, 2024-2034.	1.5	8
1181	Incorporation of antimicrobial nanoemulsions into complex foods: A case study in an apple juice-based beverage. LWT - Food Science and Technology, 2021, 141, 110926.	2.5	9
1182	Ultrasound-assisted Maillard reaction of ovalbumin/xylose: The enhancement of functional properties and its mechanism. Ultrasonics Sonochemistry, 2021, 73, 105477.	3.8	55
1184	Ultrasoundâ€Assisted Extraction of Waterâ€Soluble Polysaccharides from the Fruit of Acanthopanaxbrachypus: Physicochemical, Structural and Functional Properties. Chemistry and Biodiversity, 2021, 18, e2000947.	1.0	4
1185	Effects of Xanthan gum on rheological properties of Aloe vera-Moringa leaf juice blends. Tanzania Journal of Science, 2021, 47, 583-596.	0.2	3
1186	Foam-Resilient Distillation Processesâ€"Influence of Pentosan and Thermal Energy Input on Foam Accumulation in Rye Mash Distillation. Food and Bioprocess Technology, 2021, 14, 1640-1647.	2.6	4
1187	The effect of coating material combination and encapsulation method on propolis powder properties. Powder Technology, 2021, 384, 332-341.	2.1	23
1188	Hyaluronic Acid-Based Nanocapsules as Efficient Delivery Systems of Garlic Oil Active Components with Anticancer Activity. Nanomaterials, 2021, 11, 1354.	1.9	13
1189	Rocket seed (Eruca sativa Mill) gum: physicochemical and comprehensive rheological characterization. Food Science and Technology, 0, 42, .	0.8	8
1190	Mucilages of cacti from Brazilian biodiversity: Extraction, physicochemical and technological properties. Food Chemistry, 2021, 346, 128892.	4.2	29
1191	Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation, 2021, 45, e15646.	0.9	15
1192	Microwave-Assisted Extraction of Ocimum basilicum L. Seed, Trigonella foenum-graecum Seed, and Plantago ovata Forsk Seed Husk Hydrocolloids Compared with Conventional Heating Extraction at Optimum Extraction Conditions. Arabian Journal for Science and Engineering, 2022, 47, 5859-5874.	1.7	2
1193	Effect of process parameters on emulsion stability and droplet size of pomegranate oil-in-water. Grasas Y Aceites, 2021, 72, e410.	0.3	14
1194	Influence of \hat{l}^2 -glucan extracted from hull-less barley on droplet characterization, stability and rheological properties of soy protein isolate stabilized oil-in-water emulsions. Journal of Food Science and Technology, 2022, 59, 1781-1791.	1.4	5
1195	Physical properties of UHT light cream: impact of the high-pressure homogenization and addition of hydrocolloids. Journal of Dairy Research, 2021, 88, 343-350.	0.7	1
1196	Extraction, Characterization, and Applications of Pectins from Plant By-Products. Applied Sciences (Switzerland), 2021, 11, 6596.	1.3	57

#	Article	IF	CITATIONS
1197	Impact of sodium alginate gelling and ingredient amalgamating order on ingredient interactions and structural stability of ice cream. LWT - Food Science and Technology, 2021, 147, 111558.	2.5	6
1198	Cryoconcentrated soymilk and xanthan gum acted in stability of creamy sauce during storage. Research, Society and Development, 2021, 10, e0510917712.	0.0	1
1199	Storage Stability and Physicochemical Properties of Flaxseed Oil Microencapsulated with Chinese Quince Seed Gum. ACS Food Science & Technology, 2021, 1, 1254-1261.	1.3	0
1200	Preparation and characterization of konjac glucomannan and gum arabic composite gel. International Journal of Biological Macromolecules, 2021, 183, 2121-2130.	3.6	43
1201	Effects of different alcohol and ultrasonic treatments on thermal and structural properties of zeinâ€starch sodium octenyl succinate composite nanoparticles. Journal of Food Science, 2021, 86, 3574-3588.	1.5	10
1202	Active packaging gelatin films based on chitosan/Arabic gum/coconut oil Pickering nano emulsions. Journal of Applied Polymer Science, 2022, 139, 51442.	1.3	31
1203	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	5.6	21
1204	Modification of EDC method for increased labeling efficiency and characterization of low-content protein in gum acacia using asymmetrical flow field-flow fractionation coupled with multiple detectors. Analytical and Bioanalytical Chemistry, 2021, 413, 6313-6320.	1.9	2
1205	Functional and structural properties of gum arabic complexes with casein and hydrolyzed casein achieved by Maillard reaction. Journal of Dispersion Science and Technology, 2023, 44, 639-650.	1.3	7
1206	Sprayâ€drying microencapsulation of anthocyanins of black seedless barberry (Berberis vulgaris). Journal of Food Processing and Preservation, 2021, 45, e15858.	0.9	1
1207	Cellulose as a Natural Emulsifier: From Nanocelluloses to Macromolecules. , 0, , .		2
1208	Recent Developments in the Formulation and Use of Polymers and Particles of Plantâ€based Origin for Emulsion Stabilizations. ChemSusChem, 2021, 14, 4850-4877.	3.6	10
1209	Promising Food Ingredients: Milk Proteins. , 0, , .		0
1210	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
1211	The emulsifying stability of soy hull polysaccharides with different molecular weight obtained from membrane-separation technology. International Journal of Food Engineering, 2021, 17, 693-701.	0.7	3
1212	Pharmaceutical Applications of Pectin. , 0, , .		7
1213	Seasonal variation of carrageenan yield, gel strength and viscosity in <i><scp>Sarcopeltis</scp> (ex) Tj ETQq0 0 C</i>	0 rgBT /Ov	verlock 10 Tf
1214	Octenyl succinate esterified gum arabic stabilized emulsions: Preparation, stability and in vitro gastrointestinal digestion. LWT - Food Science and Technology, 2021, 149, 112022.	2.5	15

#	Article	IF	CITATIONS
1215	Emulsifying Performance of Crude Surface-Active Extracts from Liquorice Root (Glycyrrhiza Glabra). ACS Food Science & Technology, 2021, 1, 1472-1480.	1.3	4
1216	Effect of pH on the stability of W/O/W double emulsions prepared by the mixture of biopolymers using direct method. Materials Today: Proceedings, 2022, 49, 1030-1034.	0.9	4
1217	Positive effects of ultrasound pretreatment on the bioaccessibility and cellular uptake of bioactive compounds from broccoli: Effect on cell wall, cellular matrix and digesta. LWT - Food Science and Technology, 2021, 149, 112052.	2.5	7
1218	Effects of protein concentration, pH, and NaCl concentration on the physicochemical, interfacial, and emulsifying properties of \hat{l}^2 -conglycinin. Food Hydrocolloids, 2021, 118, 106784.	5.6	34
1219	Kinetic stability of the oil-in-water emulsions and dynamic interfacial properties of mixtures of sucrose esters and polysaccharides. Food Chemistry, 2021, 357, 129693.	4.2	8
1220	The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocolloids, 2021, 118, 106770.	5.6	26
1221	The effect of sodium hexametaphosphate on the efficiency of pectin in stabilizing acidified milk drinks. Food Hydrocolloids, 2021, 118, 106767.	5.6	7
1222	Effects of concentrations, temperature, pH and co-solutes on the rheological properties of mucilage from Dioscorea opposita Thunb. and its antioxidant activity. Food Chemistry, 2021, 360, 130022.	4.2	13
1223	Influence of thermal treatment on the physicochemical and functional properties of tea polysaccharide conjugates. LWT - Food Science and Technology, 2021, 150, 111967.	2.5	9
1224	Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 2021, 119, 106812.	5.6	119
1225	Interfacial adsorption behavior of ovalbumin/ sodium carboxymethyl cellulose colloidal particles: The effects of preparation methods. Food Hydrocolloids, 2021, 120, 106969.	5.6	9
1226	Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions. LWT - Food Science and Technology, 2021, 151, 112121.	2.5	15
1227	Influence of interfacial characteristics and dielectric properties on foam structure preservation during microwave-assisted vacuum drying of whey protein isolate-maltodextrin dispersions. Journal of Food Engineering, 2021, 308, 110691.	2.7	6
1228	Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocolloids, 2021, 121, 106968.	5.6	36
1229	Gel casting of silicon nitride foams using biopolymers as gelling agents. Open Ceramics, 2021, 8, 100183.	1.0	4
1230	Binary blend of maltodextrin and whey protein outperforms gum Arabic as superior wall material for squalene encapsulation. Food Hydrocolloids, 2021, 121, 106976.	5.6	20
1231	Physicochemical and functional properties of soluble fiber extracted from two phenotypes of chia (Salvia hispanica L.) seeds. Journal of Food Composition and Analysis, 2021, 104, 104138.	1.9	11
1232	Examination of interfacial properties of quince seed extract on a sunflower oil-water interface. Chemical Engineering Science, 2021, 245, 116951.	1.9	3

#	Article	IF	CITATIONS
1233	Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocolloids, 2022, 124, 107217.	5.6	28
1234	Improvement of solubility, foaming, and emulsification properties of coconut (Cocos nucifera L.) protein by non-enzymatic deamidation. LWT - Food Science and Technology, 2022, 153, 112493.	2.5	12
1235	Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocolloids, 2022, 122, 107069.	5.6	24
1236	Alkaline conjugation of caseinate and propylene glycol alginate to prepare biopolymer complexes stabilizing oil-in-water emulsion gels. Food Hydrocolloids, 2022, 123, 107192.	5.6	4
1237	Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 2022, 123, 107185.	5.6	13
1238	Lipid Nanoparticles for Edible Food Packaging. Materials Horizons, 2021, , 191-213.	0.3	0
1239	Hawthorn pectin: Extraction, function and utilization. Current Research in Food Science, 2021, 4, 429-435.	2.7	24
1240	Rheology, structure, and sensory perception of hydrocolloids. , 2021, , 23-47.		8
1241	Functional hydrocolloids, gut microbiota and health: picking food additives for personalized nutrition. FEMS Microbiology Reviews, 2021, 45, .	3.9	13
1243	Emulsions and Foams Stabilised by Milk Proteins. , 2016, , 133-153.		11
1244	Nanoemulsions as Optimized Vehicles for Essential Oils. Sustainable Agriculture Reviews, 2020, , 115-167.	0.6	13
1245	Physico-Chemical Interactions in the Flavor-Release Process. , 2017, , 35-36.		4
1246	Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 2017, 171, 252-258.	5.1	20
1247	Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers, 2020, 242, 116388.	5.1	105
1248	Physico-chemical characterization of protein stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125045.	2.3	22
1249	Emulsifying properties of Acacia senegal gum: Impact of high molar mass protein-rich AGPs. Food Chemistry: X, 2020, 6, 100090.	1.8	6
1250	Experimental techniques for the extraction of taro mucilage with enhanced emulsifier properties using chemical characterization. Food Chemistry, 2020, 327, 127095.	4.2	27
1251	Functional, thermal and rheological behavior of fenugreek (Trigonella foenum–graecum L.) gums from different cultivars: A comparative study. International Journal of Biological Macromolecules, 2020, 159, 406-414.	3.6	27

#	Article	IF	Citations
1252	A comparative study of the gelation properties of whey protein concentrate and whey protein isolate. Dairy Science and Technology, 2006, 86, 259-271.	0.9	38
1253	Effect of meat enhancement solutions with hydroxypropyl methylcellulose and konjac flour on texture and quality attributes of pale, soft, and exudative pork. Journal of Texture Studies, 2017, 48, 403-414.	1.1	5
1254	Usage of hydrocolloids in cereal technology. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 59, 325-334.	0.2	17
1255	Understanding the Physical Properties of Food Polysaccharides., 2005,,.		4
1256	Pectins., 2006,, 353-411.		16
1257	Formulation of Emulsions. Contemporary Food Engineering, 2015, , 51-100.	0.2	1
1259	Optimization of Gelatin Extraction and Physico-chemical Properties of Fish Skin and Bone Gelatin: Its Application to Panna Cotta Formulas. Current Research in Nutrition and Food Science, 2017, 5, 263-273.	0.3	18
1260	Essential Oil Nanoemulsions and their Antimicrobial and Food Applications. Current Research in Nutrition and Food Science, 2018, 6, 626-643.	0.3	53
1263	Some Qualitative and Rheological Properties of Virgin Olive Oil- Apple Vinegar Salad Dressing Stabilized With Xanthan Gum. Advanced Pharmaceutical Bulletin, 2016, 6, 597-606.	0.6	8
1264	Handbook of hydrocolloids. , 2009, , .		282
1265	Nanotechnology in Food Systems: A Review. Acta Alimentaria, 2020, 49, 460-474.	0.3	18
1266	How drying methods can influence the characteristics of mucilage obtained from chia seed and psyllium husk. Ciencia Rural, 2020, 50, .	0.3	4
1268	OPTIMIZATION OF ISOLATION FLAXSEED MUCILAGE FROM METHANOLIC EXTRACT AND ITS FUNCTIONAL CHARACTERISTICS. Journal of Food and Dairy Sciences, 2013, 4, 539-556.	0.1	2
1269	Influence of maltodextrin dextrose equivalent value on rheological and dispersion properties of sunflower oil in water emulsions. Acta Periodica Technologica, 2004, , 17-24.	0.5	10
1270	Design of pectin beads for oral protein delivery. Chemical Industry and Chemical Engineering Quarterly, 2006, 12, 24-30.	0.4	2
1271	Study of Some Functional Properties and Antioxidant Activity of Two Types of Cherry Trees (Prunus) Tj ETQq1 1 (D.784314 O.3	rgBT /Overlo
1272	Perspective on the control of invasive mesquite trees and possible alternative uses. IForest, 2018, 11, 577-585.	0.5	8
1273	Enhancing the Nutritive Values of Ice Milk Based on Dry Leaves and Oil of Moringa oleifera. American Journal of Food Technology, 2017, 12, 86-95.	0.2	8

#	Article	IF	CITATIONS
1274	Effect of Flaxseed Mucilage, Sodium Chloride and Their Combination on Some Functional Properties of Sodium Caseinate Solution. International Journal of Dairy Science, 2020, 15, 62-71.	0.4	1
1276	Progress in emulsion formulation. Grasas Y Aceites, 2007, 58, .	0.3	5
1277	Studies on the Addition of Hydrocolloids to Tomato-Carrot Juice Blend. Journal of Nutrition $\&$ Food Sciences, 2013, 03, .	1.0	1
1278	Rheological properties of low fat yogurt containing cress seed gum. Agricultural Sciences, 2013, 04, 29-32.	0.2	10
1279	Hydrocolloids in Food Industry. , 0, , .		50
1280	KARAKTERISTIK MIKROKAPSUL MINYAK ATSIRI LENGKUAS DENGAN MALTODEKSTRIN SEBAGAI ENKAPSULAN. Jurnal Teknologi Dan Industri Pangan, 2013, 24, 201-208.	0.1	16
1281	A Study on Applying the Biopolymer (hydroxyethyl methylcellulose) to Prepare Quick Bread Rice Muffins. Korean Journal of Food and Cookery Science, 2012, 28, 423-429.	0.2	4
1282	Evaluation of Violet Plant (Securidaca longepedunculata) Roots as an Emulsifying Agent IOSR Journal of Applied Chemistry, 2013, 4, 5-9.	0.2	1
1283	Scientific information about sugar-based emulsifiers: a comprehensive review. RSC Advances, 2021, 11, 33004-33016.	1.7	16
1284	Crosslinkable dextrin-coated latex via surfactant-free emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127776.	2.3	7
1285	Protein Transport upon Advection at the Air/Water Interface: When Charge Matters. Langmuir, 2021, 37, 12278-12289.	1.6	5
1286	Influence of calcium chloride and pH on soluble complex of whey proteinâ€basil seed gum and xanthan gum. Food Science and Nutrition, 2021, 9, 6728-6736.	1.5	10
1287	Physicochemical and functional properties of carbohydrate–protein gum extracted from kenaf () Tj ETQq0 0 0	rgBT/Ovei	rlock 10 Tf 50
1288	Structural and Emulsifying Properties of Citric Acid Extracted Satsuma Mandarin Peel Pectin. Foods, 2021, 10, 2459.	1.9	13
1289	Formulation of Chitosan/Gelatin/Pequi Oil Emulsions: Rheological, Thermal, and Antimicrobial Properties. ACS Applied Polymer Materials, 0, , .	2.0	2
1290	Sugar beet pectin as a natural carrier for curcumin, a water-insoluble bioactive for food and beverage enrichment: Formation and characterization. Innovative Food Science and Emerging Technologies, 2021, 74, 102858.	2.7	13
1291	Interaction between components of plant-based biopolymer systems. Current Opinion in Colloid and Interface Science, 2021, 56, 101524.	3.4	7
1292	Dry fractionation of lentils by air classification - Composition, interfacial properties and behavior in concentrated O/W emulsions. LWT - Food Science and Technology, 2022, 154, 112718.	2.5	16

#	Article	IF	CITATIONS
1293	Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Research International, 2021, 150, 110740.	2.9	74
1294	Transport Of Materials And Chemicals By Nanoscale Colloids And Micro- To Macro- Scale Flocs In Marine, Freshwater, And Engineered Systems. , 2004, , 191-210.		1
1295	Various Models to Evaluate the Rheological Property of Hydrocolloid and Sweeteners Mixtures. Trends in Applied Sciences Research, 2007, 2, 522-528.	0.4	0
1296	STUDIES ON PARTICLE SIZE CONTROL OF GELATION MICROSPHERES. Acta Polymerica Sinica, 2009, 008, 779-784.	0.0	0
1297	Effect of Galactomannans and Low Esterified Pectin Combinations on Fruit Preparation Synersis, Rheology and Stability on Storage. Food and Public Health, 2012, 2, 6-11.	1.0	3
1298	A Comparative Study of the Processing Aptitudes of the Muffins Produced by Rice Cultivars. Korean Journal of Food and Cookery Science, 2012, 28, 541-547.	0.2	4
1299	Improved Lactose Powder Properties by In-situ Coating with Additives during Spray Drying. Journal of Medical and Bioengineering, 2013, 2, 207-213.	0.5	4
1300	Refined Hemisphaericin Stabilization by Microencapsulation with Arabic Gum and Spray Drying. Food Engineering Series, 2015, , 575-583.	0.3	0
1301	Encapsulation of Michelia alba D.C. Extract Using Spray Drying and Freeze Drying and Application on Thai Dessert from Rice Flour. International Journal of Electrical Energy, 2015, 1, .	0.4	2
1302	Microbiological and Physicochemical Properties of Mayonnaise Using Biopolymer of Whey Protein-Gelatin-Chitosan during Storage. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 191-199.	0.0	4
1303	An Insight on the Texture and Electrical Properties of Tomato Ketchup on a Temperature Scale. Advances in Logistics, Operations, and Management Science Book Series, 2017, , 399-417.	0.3	0
1304	Lactic Acid Bacteria (Lab)Bacteriocins: An Ecologicaland Sustainable Biopreservativeapproach to Improve The Safety and Shelf Life of Foods., 2017,, 197-257.		0
1305	Soğuk Pres Üzüm Çekirdeği Yağı Atığının Düşük Yağlı Yağ/ Su Emülsiyonların I Akademik Gıda, 0, , 27-32.	Reolojik Ã-	-zelliklerine E O
1306	DETERMINATION OF INTERACTIONS BETWEEN MEAT PROTEINS AND CARRAGEENANS WITH DIFFERANTIAL SCANNIND CALORIMETRY. Gıda, 0, , 776-786.	0.1	0
1307	Protein/Emulsifier Interactions. , 2019, , 101-192.		1
1308	Effect of the Addition of Polysaccharide Hydrocolloids on Sensory Quality, Color Parameters, and Anthocyanin Stabilization in Cloudy Strawberry Beverages. M. Teleszko, P. Nowicka, A. WojdyÅ,o. Polish Journal of Food and Nutrition Sciences, 2019, 69, 167-178.	0.6	5
1309	Effect of combination of hydrocolloid and emulsifiers on micro visco - amylograph, physical and storage qualities of eggless cake. Food Science Research Journal, 2019, 10, 70-80.	0.0	0
1310	Interfacial and Bulk Rheology of Food Emulsions Containing Inulin. Springer Proceedings in Materials, 2020, , 16-19.	0.1	O

#	Article	IF	Citations
1311	Gel Extraction from Caper Fruits (Capparies spinosa L.) and Assess its Effectiveness as Antioxidants. Basrah Journal of Agricultural Sciences, 2019, 32, 74-84.	0.2	3
1312	Rheological properties of soy protein isolate – carboxymethyl flaxseed gum mixed dispersions under large amplitude oscillatory shear. International Journal of Food Engineering, 2020, 16, .	0.7	2
1313	Influence of Grewia polysaccharides on the stability of oil-in-water emulsions. British Journal of Pharmacy, 2020, 5 , .	0.1	0
1314	Effect of emulsion formulation on characteristics of pea protein-stabilized oil-in-water emulsions. Celal Bayar Universitesi Fen Bilimleri Dergisi, 2020, 16, 257-261.	0.1	1
1315	Exploring the Utility of Diffusing Wave Spectroscopy (DWS) as a Novel Tool for Early Detection of Stability Issues in Cosmetic Emulsions. Cosmetics, 2021, 8, 99.	1.5	3
1316	Rheology of oil-in-water emulsions stabilised by native cellulose microfibrils in primary plant cells dispersions. Food Structure, 2021, 30, 100239.	2.3	3
1317	Soaking Water Functional Properties. , 2020, , 41-54.		0
1318	Utilization of mucilage extracted from taro tubers (Colocasia esculenta) in canned beef. Al-Azhar Journal of Agricultural Research, 2020, 45, 114-125.	0.1	1
1319	The heteropolysaccharide of Mangifera indica fruit: Isolation, chemical profile, complexation with \hat{l}^2 -lactoglobulin and antioxidant activity. International Journal of Biological Macromolecules, 2020, 165, 93-99.	3.6	10
1320	Utilization of stalk waste separated during processing of sun-dried figs (Ficus carica) as a source of pectin: Extraction and determination of molecular and functional properties. LWT - Food Science and Technology, 2022, 154, 112624.	2.5	10
1321	Principles and Potential Applications of Cavitation Technology for Nano-Foods. Food Engineering Series, 2020, , 125-152.	0.3	1
1322	Functional and Nutritional Aspects of Hydrocolloids and Lipids. , 2020, , 169-189.		2
1323	Strategies for development of new ingredients and food products based on HPP-induced changes in rheology., 2020,, 353-380.		0
1324	Biological macromolecules for nutrients delivery. , 2022, , 455-477.		4
1325	Effects of psyllium husk powder on the emulsifying stability, rheological properties, microstructure, and oxidative stability of oil-in-water emulsions. Food Control, 2022, 134, 108716.	2.8	9
1326	Adsorption of arabinogalactan-proteins from Acacia gums (senegal and seyal) and its molecular fractions onto latex particles. Food Hydrocolloids, 2022, 125, 107360.	5.6	6
1327	"Extracellular Polysaccharide Synthesized by the Halophilic Bacterium Salibacterium halochares STm, Isolated from Gypsum Dunes: Production, Physicochemical Characterization and Emulsifying Properties― Journal of Polymers and the Environment, 2022, 30, 2050.	2.4	1
1328	Influence of polymeric complexes on the stability and releasing behavior of phenol-loaded nano-emulsions: Modeling and optimization. Journal of Molecular Liquids, 2021, , 118089.	2.3	0

#	Article	IF	CITATIONS
1329	Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocolloids, 2022, 125, 107435.	5.6	30
1330	The impact of konjac glucomannan on the physical and chemical stability of walnut oilâ€inâ€water emulsions coated by whey proteins. Journal of the Science of Food and Agriculture, 2022, 102, 4003-4011.	1.7	7
1331	Impacts of preparation conditions on the structure and emulsifying properties of casein-alginate conjugates produced by transacylation reaction. International Journal of Biological Macromolecules, 2022, 201, 242-253.	3.6	6
1332	Heat-induced glycosylation with dextran to enhance solubility and interfacial properties of enzymatically hydrolyzed zein. Journal of Food Engineering, 2022, 321, 110946.	2.7	7
1333	Shear and dilatational rheological properties of vegetable proteins at the air/water interface. Food Hydrocolloids, 2022, 126, 107472.	5.6	13
1334	Foaming and air-water interfacial properties of camel milk proteins compared to bovine milk proteins. Food Hydrocolloids, 2022, 126, 107470.	5.6	11
1335	Spanlastics nanovesicular ocular insert as a novel ocular delivery of travoprost: optimization using Box–Behnken design and inÂvivo evaluation. Journal of Liposome Research, 2022, , 1-11.	1.5	6
1336	Interfacial rheology of sodium caseinate/high acyl gellan gum complexes: Stabilizing oil-in-water emulsions. Current Research in Food Science, 2022, 5, 234-242.	2.7	12
1337	Structure-property relations of \hat{l}^2 -lactoglobulin/ \hat{l}^2 -carrageenan mixtures in aqueous foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128267.	2.3	10
1338	Formulation of Rosemary Extracts through Spray-Drying Encapsulation or Emulsification. Nutraceuticals, 2022, 2, 1-21.	0.6	8
1339	Effect of hydrocolloids on physicochemical properties, stability, and digestibility of Pickering emulsions stabilized by nanofibrillated cellulose. Food and Function, 2022, 13, 990-999.	2.1	12
1340	Role of Flaxseed Gum and Whey Protein Microparticles in Formulating Low-Fat Model Mayonnaises. Foods, 2022, 11, 282.	1.9	5
1341	Kinetic Study of Encapsulated Î ² -Carotene Degradation in Dried Systems: A Review. Foods, 2022, 11, 437.	1.9	11
1344	Tetrahydrocurcumin Lipid Nanoparticle Based Gel Promotes Penetration into Deeper Skin Layers and Alleviates Atopic Dermatitis in 2,4-Dinitrochlorobenzene (DNCB) Mouse Model. Nanomaterials, 2022, 12, 636.	1.9	15
1345	The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods, 2022, 11, 738.	1.9	6
1346	Improving the Performance of Deep Soil Mixing in Clay with Chemical Additives. , 2022, , .		1
1347	Development of Dressing-Type Emulsion with Hydrocolloids from Butternut Squash Seed: Effect of Additives on Emulsion Stability. Gels, 2022, 8, 209.	2.1	2
1348	A novel polysaccharide prepared from <i>Chrysanthemum morifolium</i> cv. Fubaiju tea and its emulsifying properties. International Journal of Food Science and Technology, 2022, 57, 3385-3399.	1.3	2

#	Article	IF	CITATIONS
1349	Tackling Foam-Based Process Disruptions in Spirit Distillation by Thermal Energy Input Adaptations. Food and Bioprocess Technology, 2022, 15, 821-832.	2.6	2
1350	Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. Colloids and Interfaces, 2022, 6, 19.	0.9	25
1351	Food physics insight: the structural design of foods. Journal of Food Science and Technology, 0 , , 1 .	1.4	0
1352	Conditioning clayey soils with a dispersant agent for Deep Soil Mixing application: laboratory experiments and artificial neural network interpretation. Acta Geotechnica, 2022, 17, 5073-5087.	2.9	5
1353	Emulsifying and emulsion stabilization mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds: Comparison with apple and citrus pectin. Food Hydrocolloids, 2022, 130, 107674.	5.6	24
1354	Green decoration of graphene oxide Nano sheets with gelatin and gum Arabic for targeted delivery of doxorubicin. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00722.	2.1	17
1355	Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chemistry, 2022, 386, 132749.	4.2	13
1356	Effect of pumping and atomisation on the stability of oil/water emulsions. Journal of Food Engineering, 2022, 327, 111056.	2.7	7
1357	Chemical composition, structural properties, rheological behavior and functionality of Melissa officinalis seed gum. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100315.	1.5	1
1358	Formation of Antioxidant Multilayered Coatings for the Prevention of Lipid and Protein Oxidation in Oil-in-Water Emulsions: <i>Lycium barbarum</i> Polysaccharides and Whey Proteins. Journal of Agricultural and Food Chemistry, 2021, 69, 15691-15698.	2.4	8
1359	Pharmacological Importance of Peach Gum Polysaccharide: A Review. Current Bioactive Compounds, 2021, 18, .	0.2	0
1360	Evaluation of Selected Quality Parameters of "Agristigna―Monovarietal Extra Virgin Olive Oil and Its Apple Vinegar-Based Dressing during Storage. Foods, 2022, 11, 1113.	1.9	2
1361	Influence of xanthan gum on properties and stability of oil-in-water Pickering emulsions stabilized by zein colloidal particles. Journal of Food Measurement and Characterization, 0 , , 1 .	1.6	3
1362	Effects of Glucose and Corn Syrup on the Physical Characteristics and Whipping Properties of Vegetable-Fat Based Whipped Creams. Foods, 2022, 11, 1195.	1.9	4
1363	Impacts of Gum Arabic and Polyvinylpyrrolidone (PVP) with Salicylic Acid on Peach Fruit (Prunus) Tj ETQq0 0 0 rgt	3T_/Overloo	ck ₁ 90 Tf 50 1
1365	Deforestation and Forests Degradation Impacts on the Environment. Water Science and Technology Library, 2022, , 19-46.	0.2	3
1366	Limnophila aromatica Crude Extracts as Natural Emulsifiers for Formation and Stabilizing of Oil-in-Water (O/W) Emulsions. Colloids and Interfaces, 2022, 6, 26.	0.9	0
1367	Pectin degree of esterification influences rheology and digestibility of whey protein isolate-pectin stabilized bilayer oil-in-water nanoemulsions. Food Hydrocolloids, 2022, 131, 107789.	5.6	14

#	Article	IF	CITATIONS
1368	Effect of heat treatments on camel milk proteins – A review. International Dairy Journal, 2022, 133, 105404.	1.5	12
1369	Application of single and binary mixtures of novel seed hydrocolloids for stabilization of O/W emulsions compared with commercialized emulsifying agents. Journal of the Iranian Chemical Society, 2022, 19, 3673-3685.	1.2	1
1370	Nanoemulsions with sea buckthorn oil and \hat{l}^2 -carrageenan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129149.	2.3	0
1371	A review on Brazilian baru plant (Dipteryx alata Vogel): morphology, chemical composition, health effects, and technological potential. Future Foods, 2022, 5, 100146.	2.4	9
1372	Effect of short-term frozen storage of raw meat on aroma retention of chicken broth: A perspective on physicochemical properties of broth. LWT - Food Science and Technology, 2022, 162, 113480.	2.5	4
1373	Production of rice bran oil (<i>Oryza sativa</i> L.) microparticles by spray drying taking advantage of the technological properties of cereal co-products. Journal of Microencapsulation, 2022, , 1-13.	1.2	4
1374	Influence of peroxyl radical-induced oxidation on structural characteristics, emulsifying, and foaming properties of α-lactalbumin. LWT - Food Science and Technology, 2022, 163, 113590.	2.5	5
1375	Hydrocolloid and water soluble polymers used in the food industry and their functional properties: a review. Polymer Bulletin, 2023, 80, 3585-3610.	1.7	7
1376	Engineering cell-based microstructures to study the effect of structural complexity on <i>in vitro</i> bioaccessibility of a lipophilic bioactive compound. Food and Function, 2022, 13, 6560-6573.	2.1	1
1377	Functional alteration of soybean 11S globulin through glycation. Food Science and Technology Research, 2022, , .	0.3	2
1378	Enhancement of the Digestion of Virgin Silkworm Pupae Oil (Bombyx mori) by Forming a Two-Layer Emulsion Using Lecithin and Whey Protein Isolate. Food Biophysics, 0, , .	1.4	1
1380	Pistachio hull as an alternative pectin source: its extraction and use in oil in water emulsion system. Preparative Biochemistry and Biotechnology, 2023, 53, 433-442.	1.0	3
1381	Advances in the Utilization of Tea Polysaccharides: Preparation, Physicochemical Properties, and Health Benefits. Polymers, 2022, 14, 2775.	2.0	7
1382	Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis). Food Chemistry, 2022, 395, 133625.	4.2	13
1383	Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocolloids, 2022, 133, 107938.	5.6	11
1384	Fabrication, characterization, and oxidative stability of perilla seed oil emulsions and microcapsules stabilized by protein and polysaccharides. Journal of Food Processing and Preservation, 2022, 46, .	0.9	2
1385	Chemical, technological, and rheological properties of hydrocolloids from sesame (Sesamum) Tj ETQq0 0 0 rgBT /	/Oyerlock	10 ₄ Tf 50 102
1386	The application of the aqueous extract of milona leaves (Cissampelos sympodialis Eichl) in a cosmetic formulation. International Journal of Phytocosmetics and Natural Ingredients, 0, 7, e11.	0.3	0

#	Article	IF	CITATIONS
1387	Preparing a Personalized Meal by Using Soy, Cricket, and Egg Albumin Protein Based on 3D Printing. Foods, 2022, 11, 2244.	1.9	6
1388	Antibacterial and biodegradable keratin-based quaternary ammonium salt surfactant potential as hair care additive. Journal of Dispersion Science and Technology, 0, , 1-10.	1.3	1
1389	A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Critical Reviews in Food Science and Nutrition, 2024, 64, 852-872.	5.4	5
1390	Biodegradabilidade de filmes baseados em biopol \tilde{A} mero e \tilde{A}^3 leo essencial de erva-doce. Research, Society and Development, 2022, 11, e351111032257.	0.0	O
1391	Microencapsulation of Gac Aril Oil. , 2022, , 123-142.		0
1392	Onion and garlic polysaccharides: A review on extraction, characterization, bioactivity, and modifications. International Journal of Biological Macromolecules, 2022, 219, 1047-1061.	3.6	18
1394	Encapsulation of amino acids in water-in-oil-in-water emulsions stabilized by gum arabic and xanthan gum. International Journal of Biological Macromolecules, 2022, 220, 1493-1500.	3.6	9
1395	W/o/w multiple emulsions: A novel trend in functional ice cream preparations?. Food Chemistry: X, 2022, 16, 100451.	1.8	2
1396	Pest management with green nanoemulsions. , 2022, , 177-195.		0
1397	Interfacial rheology of food: protein as a model food. , 2023, , 3-26.		1
1398	Emulsion rheology. , 2023, , 633-655.		0
1399	Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules, 2022, 27, 6305.	1.7	34
1400	Resistant starch: A functional ingredient in dairy products. Journal of Food Processing and Preservation, 2022, 46, .	0.9	1
1401	Development of flaxseed gum/konjac glucomannan with agar as gelling agents with enhanced elastic properties. Food Science and Biotechnology, 2023, 32, 181-192.	1.2	1
1402	Low-Field NMR Analyses of Gels and Starch-Stabilized Emulsions with Modified Potato Starches. Processes, 2022, 10, 2109.	1.3	5
1403	Design of functional foods with targeted health functionality and nutrition by using microencapsulation technologies. , 2023, , 159-185.		0
1404	Heteroprotein complex coacervation of lactoferrin and osteopontin: Phase behaviour and thermodynamics of formation. Food Hydrocolloids, 2023, 136, 108216.	5.6	7
1405	Chickpea cooking water (Aquafaba): Technological properties and application in a model confectionery product. Food Hydrocolloids, 2023, 136, 108231.	5.6	9

#	Article	IF	CITATIONS
1406	Nutritional, biochemical, and functional characteristics of black cumin seeds., 2023,, 27-41.		1
1407	Synergistic studies of Cassia tora gum with xanthan and guar gum: Carboxymethyl synthesis of cassia gum-xanthan synergistic blend and characterization. Carbohydrate Research, 2023, 523, 108723.	1.1	3
1408	Preparation of vitamin D3-loaded oil-in-water-in-oil double emulsions using psyllium gum: optimization using response surface methodology. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	1
1409	Emulsifying properties of sugar beet pectin microgels. Food Hydrocolloids, 2023, 137, 108291.	5.6	6
1410	Structural diversity and physicochemical properties of polysaccharides isolated from pumpkin (Cucurbita moschata) by different methods. Food Research International, 2023, 163, 112157.	2.9	15
1411	Emulsifying properties of glucose-conjugated soybean 11S globulin with maximum antioxidant capacity, obtained under optimal preparatory conditions identified by random-centroid optimization. Food Science and Technology Research, 2023, , .	0.3	1
1412	Effect of hydrocolloids on gluten proteins, dough, and flour products: A review. Food Research International, 2023, 164, 112292.	2.9	6
1413	Impact of polyelectrolyte complex layer on the stability of palm oil multiple emulsions encapsulating a water-soluble compound during heating, cooling, and storage processes. Food Hydrocolloids, 2023, 137, 108335.	5.6	1
1414	Effect of deacetylation degree and molecular weight on surface properties of chitosan obtained from biowastes. Food Hydrocolloids, 2023, 137, 108383.	5.6	6
1415	Estabilidad en cremas con ingredientes de origen vegetal Anales De Veterinaria De Murcia, 0, 36, .	0.0	0
1416	Influence of Cellulose Nanofibers on the Behavior of Pickering Emulsions. Part 1. Microscopy and Startup Flow Test. Materials, 2022, 15, 8285.	1.3	1
1417	Using dietary fiber as stabilizer in dairy products: β-glucan and inulin-type fructans. Journal of Food Science and Technology, 2023, 60, 2945-2954.	1.4	0
1418	Prophylactic supplementation of microencapsulated Boswellia serrata and probiotic bacteria in metabolic syndrome rats. Food Bioscience, 2023, 51, 102325.	2.0	4
1419	Properties of galactomannans and their textile-related applications—A concise review. International Journal of Biological Macromolecules, 2023, 227, 1001-1014.	3.6	9
1420	Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. International Journal of Food Engineering, 2022, 18, 761-773.	0.7	1
1421	A Comprehensive Review of Food Hydrogels: Principles, Formation Mechanisms, Microstructure, and Its Applications. Gels, 2023, 9, 1.	2.1	17
1422	Interaction of HPC with CTAB and Tween 40 at Water/Air and Water/Soya Oil Interfaces. Langmuir, 0, , .	1.6	0
1423	Mechanism of adsorption for design of role-specific polymeric surfactants. Chemical Papers, 2023, 77, 2343-2361.	1.0	3

#	Article	IF	CITATIONS
1424	The rheological/interfacial behavior and stability properties of nanoemulsions prepared using whey protein-carboxymethyl chitosan conjugates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 130924.	2.3	4
1425	Influence of the type and concentration of hydrocolloids on Ostwald ripening of emulsions stabilized with small molecular and non-ionic surfactants. Food Chemistry, 2023, 411, 135504.	4.2	5
1426	An On-Chip Viscoelasticity Sensor for Biological Fluids. Cyborg and Bionic Systems, 2023, 4, .	3.7	6
1427	Fabrication of bilayer emulsion by ultrasonic emulsification: Effects of chitosan on the interfacial stability of emulsion. Ultrasonics Sonochemistry, 2023, 93, 106296.	3.8	8
1428	Technological properties and biological activities of camel α-lactalbumin – A review. International Dairy Journal, 2023, 139, 105563.	1.5	7
1429	Functional Properties of Maillard Conjugates Made from Whey Protein Isolate and Inulin. Journal of Dairy Science and Biotechnology, 2022, 40, 143-150.	0.5	O
1430	Microencapsulation: Coacervation phase separation. , 2023, , 323-376.		0
1431	Emulsion Properties of Synbiotic Yoghurt Red Dragon Fruit Peel Extract (Hylocereus polyrhizus) Evaporation with Honey. Asian Food Science Journal, 0, , 19-24.	0.3	0
1432	Coffee melanoidins as emulsion stabilizers. Food Hydrocolloids, 2023, 139, 108522.	5.6	5
1433	Phospholipids molecular species, proteins secondary structure, and emulsion microstructure of egg yolk with reduced polar and/or nonpolar lipids. International Journal of Biological Macromolecules, 2023, 233, 123529.	3.6	3
1434	Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocolloids, 2023, 139, 108537.	5.6	10
1435	Potential of Wood Hemicelluloses and Their Derivates as Food Ingredients. Journal of Agricultural and Food Chemistry, 2023, 71, 2667-2683.	2.4	5
1436	Cation-responsive food polysaccharides and their usage in food and pharmaceutical products for improved quality of life. Food Hydrocolloids, 2023, 141, 108675.	5.6	1
1437	Impact of chitosan and/or transglutaminase treatment on the colloidal stability and air-water interfacial properties of gliadin based nanoparticles. Food Hydrocolloids, 2023, 141, 108734.	5.6	2
1438	Conformation-emulsification property relationship of partially depolymerized water soluble yellow mustard mucilage. Food Hydrocolloids, 2023, 141, 108669.	5.6	1
1439	Emulsion-Based Coatings for Preservation of Meat and Related Products. Foods, 2023, 12, 832.	1.9	7
1440	Arap Zamkı, Karboksimetil Selüloz ve Maltodekstrin ile Stabilize Edilmiş Su İçinde Yağ Bazlı Emülsiy Sistemlerinin Stabilite Davranışları. Journal of the Institute of Science and Technology, 0, , 341-351.	on 0.3	0
1441	Eco-Oriented Formulation and Stabilization of Oil–Colloidal Biodelivery Systems Based on GC-MS/MS-Profiled Phytochemicals from Wild Tomato for Long-Term Retention and Penetration on Applied Surfaces for Effective Crop Protection. Journal of Agricultural and Food Chemistry, 2023, 71, 3719-3731.	2.4	3

#	Article	IF	CITATIONS
1442	Effect of interfacial rheology on fingering patterns in rotating Hele-Shaw cells. Physical Review E, 2023, 107, .	0.8	3
1443	Correlation between interfacial layer properties and physical stability of food emulsions: current trends, challenges, strategies, and further perspectives. Advances in Colloid and Interface Science, 2023, 313, 102863.	7. 0	27
1445	Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. Journal of Pharmaceutical Sciences, 2023, 112, 1772-1793.	1.6	9
1446	Tremella fuciform Polysaccharides: Extraction, Physicochemical, and Emulsion Properties at Different pHs. Polymers, 2023, 15, 1771.	2.0	1
1447	Soluble complexes of ovalbumin with fucoidan: Energetics of binding, protein stability and functional properties. Food Hydrocolloids, 2023, 142, 108767.	5.6	0
1448	A review of oil and water retention in emulsified meat products: The mechanisms of gelation and emulsification, the application of multi-layer hydrogels. Critical Reviews in Food Science and Nutrition, 0, , 1-17.	5.4	2
1449	Characteristics of O/W emulsion gels stabilized by soy proteinâ€xanthan gum complex for plantâ€based processed meat products. Journal of Texture Studies, 2023, 54, 428-439.	1.1	3
1456	Chemistry of Camel Milk Proteins in Food Processing. , 0, , .		1
1457	Hydrogel-based Systems. , 2023, , 421-443.		0
1459	Walnut Protein: A Rising Source of High-Quality Protein and Its Updated Comprehensive Review. Journal of Agricultural and Food Chemistry, 2023, 71, 10525-10542.	2.4	5
1461	Natural food gums, their interactions and synergism effects. , 2023, , 163-182.		0
1489	Polymer/organic nanoparticle composites for food packaging. , 2024, , 367-408.		0
1492	Impact of drying temperature on textural, cooking quality, and microstructure of gluten-free pasta. , 2024, , 65-110.		0