
CITATION REPORT List of articles citing

DOI: 10.1067/mpr.2003.50 Journal of Prosthetic Dentistry, 2003, 89, 268-74.

Source: https://exaly.com/paper-pdf/35006343/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
682	Intra-oral adhesive systems for ceramic repairs: a comparison. 2003 , 61, 268-72		27
681	Critical appraisal. Resin bond to dental ceramics, Part II: high-strength ceramics. <i>Journal of Esthetic and Restorative Dentistry</i> , 2004 , 16, 324-8	3.5	8
680	In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. <i>Journal of Prosthetic Dentistry</i> , 2004 , 91, 356-62	4	226
679	Annual review of selected dental literature: Report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. <i>Journal of Prosthetic Dentistry</i> , 2004 , 92, 39-71	4	7
678	Shear bond strength of different types of luting cements to an aluminum oxide-reinforced glass ceramic core material. <i>Dental Materials</i> , 2004 , 20, 901-7	5.7	24
677	Durability of the resin bond strength to the alumina ceramic Procera. <i>Dental Materials</i> , 2004 , 20, 498-50	08 _{5.7}	75
676	Effect of structural change of collagen fibrils on the durability of dentin bonding. 2005 , 26, 5021-31		64
675	Surface treatment protocols in the cementation process of ceramic and laboratory-processed composite restorations: a literature review. <i>Journal of Esthetic and Restorative Dentistry</i> , 2005 , 17, 224-	33 ^{.5}	75
674	Bond strength of composite luting cement to zirconia ceramic surfaces. <i>Dental Materials</i> , 2005 , 21, 115	8 567	184
673	In vitro retentive strength of zirconium oxide ceramic crowns using different luting agents. <i>Journal of Prosthetic Dentistry</i> , 2005 , 93, 551-8	4	165
672	Replacement of two mandibular central incisors using a zirconium resin-bonded fixed partial denture: a clinical report. <i>Journal of Prosthetic Dentistry</i> , 2005 , 94, 499-503	4	13
671	On the move?. Journal of Prosthetic Dentistry, 2005, 94, 503	4	
670	Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. 2005 , 13, 101-9		29
669	Collages en odontologie. 2005 , 1, 193-201		1
668	Effects of porcelain leucite content, types of etchants, and etching time on porcelain-composite bond. <i>Journal of Esthetic and Restorative Dentistry</i> , 2006 , 18, 47-52; discussion 53	3.5	28
667	Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. 2006, 34, 721-	6	54
666	Fracture load and marginal fit of shrinkage-free ZrSiO4 all-ceramic crowns after chewing simulation. 2006 , 33, 827-32		32

(2007-2006)

665	Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. <i>Dental Materials</i> , 2006 , 22, 283-90	5.7	165
664	Evaluation of resin adhesion to zirconia ceramic using some organosilanes. <i>Dental Materials</i> , 2006 , 22, 824-31	5.7	149
663	Fracture resistance of single-tooth implant-supported all-ceramic restorations: an in vitro study. Journal of Prosthetic Dentistry, 2006 , 95, 111-6	4	126
662	Effect of silica coating and silanization on flexural and composite-resin bond strengths of zirconia posts: An in vitro study. <i>Journal of Prosthetic Dentistry</i> , 2006 , 95, 224-9	4	79
661	In vitro evaluation of push-out bond strengths of various luting agents to tooth-colored posts. <i>Journal of Prosthetic Dentistry</i> , 2006 , 95, 302-10	4	68
660	Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. Journal of Prosthetic Dentistry, 2006 , 95, 430-6	4	259
659	Retention of zirconium oxide ceramic crowns with three types of cement. <i>Journal of Prosthetic Dentistry</i> , 2006 , 96, 104-14	4	118
658	An overview of treatment considerations for esthetic restorations: a review of the literature. <i>Journal of Prosthetic Dentistry</i> , 2006 , 96, 433-42	4	152
657	Influence of ceramic surface conditioning and resin cements on microtensile bond strength to a glass ceramic. <i>Journal of Prosthetic Dentistry</i> , 2006 , 96, 412-7	4	61
656	Bonding of resin composite luting cements to zirconium oxide by two air-particle abrasion methods. <i>Operative Dentistry</i> , 2006 , 31, 248-55	2.9	89
655	Bond strength of a composite luting agent to alumina ceramic surfaces. 2006 , 64, 227-30		8
654	Pilot evaluation of resin composite cement adhesion to zirconia using a novel silane system. 2007 , 65, 44-51		64
653	Effect of operating air pressure on tribochemical silica-coating. 2007 , 65, 241-8		72
652	Zahnfztliche Restaurationen: Reparieren statt Ersetzen?. 2007 , 1, 29-41		1
651	Influence of contamination on zirconia ceramic bonding. 2007 , 86, 749-53		63
650	Influence of light irradiation condition on microshear bond strength of dual-cured resin luting agents. <i>Dental Materials Journal</i> , 2007 , 26, 575-81	2.5	3
649	Cements for use in esthetic dentistry. 2007 , 51, 453-71, x		102
648	Fractured incisors: a judicious restorative approachPart 2. 2007 , 57, 100-8		6

647	The effect of surface preparation and luting agent on bond strength to a zirconium-based ceramic. <i>Operative Dentistry</i> , 2007 , 32, 623-30	2.9	48
646	Marginal Integrity of CAD/CAM Fixed Partial Dentures. European Journal of Dentistry, 2007, 01, 025-030	2.6	10
645	Influence of contamination on bonding to zirconia ceramic. 2007 , 81, 283-90		39
644	Bonding of resin composites to etchable ceramic surfaces - an insight review of the chemical aspects on surface conditioning. 2007 , 34, 622-30		113
643	Effect of light-curing method and cement activation mode on resin cement knoop hardness. Journal of Prosthodontics, 2007 , 16, 480-4	3.9	15
642	Adhesive cementation of high-strength ceramics. <i>Journal of Esthetic and Restorative Dentistry</i> , 2007 , 19, 238-9	3.5	11
641	Panavia F 2.0 bonding to contaminated zirconia ceramic after different cleaning procedures. <i>Dental Materials</i> , 2007 , 23, 506-12	5.7	89
640	Extrusion shear strength between an alumina-based ceramic and three different cements. <i>Journal of Prosthetic Dentistry</i> , 2007 , 98, 208-15	4	18
639	Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. <i>Journal of Prosthetic Dentistry</i> , 2007 , 98, 379-88	4	223
638	Orthodontic bonding to several ceramic surfaces: are there acceptable alternatives to conventional methods?. 2007 , 132, 144.e7-14		36
637	Proximal direct composite restorations and chairside CAD/CAM inlays: marginal adaptation of a two-step self-etch adhesive with and without selective enamel conditioning. <i>Clinical Oral Investigations</i> , 2007 , 11, 35-43	4.2	34
636	Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets. 2008 , 134, 181.e1-181.e7		8
635	Marginal adaptation of all-ceramic crowns on implant abutments. 2008 , 10, 218-25		17
634	Evaluation of load at fracture of Procera AllCeram copings using different luting cements. <i>Journal of Prosthodontics</i> , 2008 , 17, 120-124	3.9	20
633	Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements. <i>Journal of Prosthodontics</i> , 2008 , 17, 294-9	3.9	15
632	Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. <i>Journal of Prosthodontics</i> , 2008 , 17, 370-7	3.9	77
631	The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings. <i>Journal of Prosthetic Dentistry</i> , 2008 , 99, 369-76	4	59
630	Influence of saliva contamination on zirconia ceramic bonding. <i>Dental Materials</i> , 2008 , 24, 508-13	5.7	92

(2009-2008)

629	Fabrication of a retrievable cement- and screw-retained implant-supported zirconium fixed partial denture: a case report. 2008 , 34, 59-62		15
628	Porcelain refinishing with two different polishing systems after orthodontic debonding. 2008 , 78, 947-	53	23
627	Effect of surface treatments and aging in water on bond strength to zirconia. <i>Operative Dentistry</i> , 2008 , 33, 675-81	2.9	30
626	Effect of Various Surface Conditioning Methods on the Adhesion of Dual-cure Resin Cement with MDP Functional Monomer to Zirconia after Thermal Aging. <i>Dental Materials Journal</i> , 2008 , 27, 99-104	2.5	152
625	In vitro experimental study of bonding between aluminium oxide ceramics and resin cements. 2010 , 15, e95-100		6
624	Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness. 2009 , 20, 410-3		14
623	Physical properties of different self-adhesive resin cements and their shear bond strength on lithium disilicate ceramic and dentin. 2009 , 34, 184		4
622	Important Aspects of Bonding Resin to Dental Ceramics. 2009 , 23, 1163-1176		12
621	The effect of surface treatments on the micro-shear bond strength of a resin luting agent and four all-ceramic systems. <i>Operative Dentistry</i> , 2009 , 34, 399-407	2.9	20
620	In vitro shear bond strength of dual-curing resin cements to two different high-strength ceramic materials with different surface texture. 2009 , 67, 346-54		8
619	An in vitro evaluation of the long-term resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. <i>Journal of Prosthetic Dentistry</i> , 2009 , 101, 29-38	4	119
618	Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. Journal of Prosthetic Dentistry, 2009 , 101, 239-47	4	88
617	Effect of metal primers on bond strength of resin cements to base metals. <i>Journal of Prosthetic Dentistry</i> , 2009 , 101, 262-8	4	45
616	Effect of water aging on microtensile bond strength of dual-cured resin cements to pre-treated sintered zirconium-oxide ceramics. <i>Dental Materials</i> , 2009 , 25, 392-9	5.7	112
615	Graded structures for damage resistant and aesthetic all-ceramic restorations. <i>Dental Materials</i> , 2009 , 25, 781-90	5.7	100
614	Surface modification for enhanced silanation of zirconia ceramics. <i>Dental Materials</i> , 2009 , 25, 1116-21	5.7	119
613	Critical appraisal. Intraoral repair of fractured ceramic restorations. <i>Journal of Esthetic and Restorative Dentistry</i> , 2009 , 21, 275-84	3.5	3
612	In vitro reaction of human osteoblasts on alumina-toughened zirconia. 2009 , 20, 1265-71		22

611	Influence of different surface treatments on surface zirconia frameworks. 2009, 37, 891-7		118
610	Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. 2009 , 37, 848-56		85
609	Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. 2009 , 27, 473-9		87
608	Y-TZP ceramics: key concepts for clinical application. <i>Operative Dentistry</i> , 2009 , 34, 344-51	2.9	71
607	Resin Bonding to Oxide Ceramics for Dental Restorations. 2009 , 23, 1097-1111		92
606	Surface conditioning influences zirconia ceramic bonding. 2009 , 88, 817-22		194
605	Shear Bond Strength of Cement to Zirconia. 2009 , 23, 1125-1132		4
604	Thermocycling Effects on Resin Bond to Silicatized and Silanized Zirconia. 2009 , 23, 1043-1051		26
603	Effect of an internal coating technique on tensile bond strengths of resin cements to zirconia ceramics. <i>Dental Materials Journal</i> , 2009 , 28, 446-53	2.5	54
602	Effect of thermocycling on the bond strength between dual-cured resin cements and zirconium-oxide ceramics. <i>Journal of Oral Science</i> , 2010 , 52, 425-30	1.5	23
601	In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. <i>Clinical Oral Investigations</i> , 2010 , 14, 187-92	4.2	90
600	Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro. <i>Clinical Oral Investigations</i> , 2010 , 14, 193-9	4.2	61
599	Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin. <i>Dental Materials</i> , 2010 , 26, 44-50	5.7	164
598	Effect of primer treatment on bonding of resin cements to zirconia ceramic. <i>Dental Materials</i> , 2010 , 26, 426-32	5.7	104
597	Effect of sandblasting and various metal primers on the shear bond strength of resin cement to Y-TZP ceramic. <i>Dental Materials</i> , 2010 , 26, 650-8	5.7	96
596	The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics. <i>Dental Materials</i> , 2010 , 26, 688-96	5.7	82
595	Morphological analysis of three zirconium oxide ceramics: Effect of surface treatments. <i>Dental Materials</i> , 2010 , 26, 751-60	5.7	62
594	Microtensile bond strength of a resin cement to a novel fluorcanasite glass-ceramic following different surface treatments. <i>Dental Materials</i> , 2010 , 26, 864-72	5.7	28

(2010-2010)

593	Durability of four composite resin cements bonded to dentin under simulated pulpal pressure. <i>Dental Materials</i> , 2010 , 26, 1001-9	5.7	10
592	Bond strength to high-crystalline content zirconia after different surface treatments. 2010 , 93, 318-23		29
591	Effect of silica coating combined to a MDP-based primer on the resin bond to Y-TZP ceramic. 2010 , 95, 69-74		58
590	Assessment of an indirect metal ceramic repair system. <i>Journal of Prosthodontics</i> , 2010 , 19, 25-32	3.9	4
589	Effect of surface conditioning and taper angle on the retention of IPS e.max Press crowns. <i>Journal of Prosthodontics</i> , 2010 , 19, 200-4	3.9	3
588	Bonding to zirconia using a new surface treatment. <i>Journal of Prosthodontics</i> , 2010 , 19, 340-6	3.9	80
587	Effect of aging on coronal microleakage in access cavities through metal ceramic crowns restored with resin composites. <i>Journal of Prosthodontics</i> , 2010 , 19, 347-56	3.9	4
586	Microleakage of porcelain and composite machined crowns cemented with self-adhesive or conventional resin cement. <i>Journal of Prosthodontics</i> , 2010 , 19, 523-30	3.9	9
585	Influence of contamination on resin bond strength to nano-structured alumina-coated zirconia ceramic. 2010 , 118, 396-403		49
584	In vitro assessment of single-retainer tooth-colored adhesively fixed partial dentures for posterior teeth. 2010 , 2010, 101095		1
583	Full maxillary rehabilitation with an all-ceramic system. 2010 , 15, e523-5		2
582	Effect of tribochemical silica coating on the shear bond strength of rebonded monocrystalline ceramic brackets. 2010 , 40, 184		
581	Internal coating of zirconia restoration with silica-based ceramic improves bonding of resin cement to dental zirconia ceramic. 2010 , 20, 77-87		13
580	Shear bond strength of ceramic brackets with various base designs bonded to aluminous and fluorapatite ceramics. 2010 , 32, 87-93		15
579	Development and testing of multi-phase glazes for adhesive bonding to zirconia substrates. 2010 , 38, 773-81		47
578	Fractographic analysis of a dental zirconia framework: a case study on design issues. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2010 , 3, 623-9	4.1	43
577	Adhesive quality of self-adhesive and conventional adhesive resin cement to Y-TZP ceramic before and after aging conditions. <i>Operative Dentistry</i> , 2010 , 35, 689-96	2.9	43
576	The effect of laser treatment on bonding between zirconia ceramic surface and resin cement. 2010 , 68, 354-9		76

575	Effect of air abrasion particles on the bond strength of adhesive resin cement to zirconia core. 2011 , 69, 88-94		16
574	Combined Novel Bonding Method of Resin to Zirconia Ceramic in Dentistry: A Pilot Study. 2011 , 25, 104	9-106	010
573	Restauri adesivi nel dente anteriore trattato endodonticamente. 2011 , 25, 53-64		
572	Effects of different surface-treatment methods on the bond strengths of resin cements to full-ceramic systems. 2011 , 6, 134-139		3
571	Characterization of plasma fluorinated zirconia for dental applications by X-ray photoelectron spectroscopy. 2011 , 257, 10177-10182		30
57°	Cements and adhesives for all-ceramic restorations. 2011 , 55, 311-32, ix		80
569	Bond degradation behavior of self-adhesive cement and conventional resin cements bonded to silanized ceramic. <i>Journal of Prosthetic Dentistry</i> , 2011 , 105, 177-84	4	26
568	The effect of preparation order on the crystal structure of yttria-stabilized tetragonal zirconia polycrystal and the shear bond strength of dental resin cements. <i>Dental Materials</i> , 2011 , 27, 651-63	5.7	55
567	Influence of sandblasting and primer on shear bond strength of resin cement to zirconia. 2011 , 49, 49		3
566	Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. 2011 , 19, 233-9		10
565	Development of a new single-bottle multi-purpose primer for bonding to dental porcelain, alumina, zirconia, and dental gold alloy. <i>Dental Materials Journal</i> , 2011 , 30, 478-84	2.5	14
564	Defective dental restorations: to repair or not to repair? Part 2: All-ceramics and porcelain fused to metal systems. 2011 , 38, 150-2, 154-6, 158		18
563	Effect of surface treatment on shear bond strength of zirconia to human dentin. <i>Journal of Prosthodontics</i> , 2011 , 20, 173-9	3.9	23
562	Treatment options for the replacement of missing mandibular incisors. <i>Journal of Prosthodontics</i> , 2011 , 20, 414-20	3.9	6
561	Shear bond strength of resin cement bonded to alumina ceramic after treatment by aluminum oxide sandblasting or silica coating. <i>Journal of Prosthodontics</i> , 2011 , 20, 561-5	3.9	4
560	Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now?. <i>Dental Materials</i> , 2011 , 27, 71-82	5.7	318
559	Development of a novel surface modification for improved bonding to zirconia. <i>Dental Materials</i> , 2011 , 27, e99-105	5.7	73
558	Long-term microtensile bond strength of surface modified zirconia. <i>Dental Materials</i> , 2011 , 27, 779-85	5.7	29

557	Effect of surface pre-treatments on the zirconia ceramic-resin cement microtensile bond strength. <i>Dental Materials</i> , 2011 , 27, 1024-30	5.7	77	
556	Crystallization and flexural strength optimization of fine-grained leucite glass-ceramics for dentistry. <i>Dental Materials</i> , 2011 , 27, 1153-61	5.7	38	
555	Failure responses of a dental porcelain having three surface treatments under three stressing conditions. <i>Dental Materials</i> , 2011 , 27, 1252-8	5.7	16	
554	Early bond strength of two resin cements to Y-TZP ceramic using MPS or MPS/4-META silanes. 2011 , 99, 62-67		34	
553	Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry. 2011 , 3, 109-115		58	
552	Insights on Ceramics as Dental Materials. Part II: Chemical Surface Treatments. 2011 , 3, 117-123		32	
551	Surface characterization of Ti and Y-TZP following non-thermal plasma exposure. 2011 , 99, 199-206		42	
550	Monoclinic phase transformations of zirconia-based dental prostheses, induced by clinically practised surface manipulations. 2011 , 7, 2994-3002		45	
549	The bond strength of the resin-to-zirconia interface using different bonding concepts. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 2-8	4.1	43	
548	Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials. 2011 , 33, 667-72		34	
547	Determination of resin bond strength to zirconia ceramic surface using different primers. 2011 , 69, 48-5	53	24	
546	Occlusal Surface Reconstruction with Chairside Ceramic Onlay Using CEREC Biogeneric Design Mode: Case Report. 2011 , 493-494, 594-598			
545	Evaluation of the Microtensile Bond Strength between Resin Composite and Hydrofluoric Acid Etched Ceramic in Different Storage Media. 2011 , 25, 2671-2685		9	
544	Cementing all-ceramic restorations: recommendations for success. 2011 , 142 Suppl 2, 20S-4S		46	
543	Influence of Surface Nano-roughness of Dental Alumina Ceramic on Bond Strength to Dual-Cure Resin Cements. 2011 , 25, 2909-2922		1	
542	The influence of surface standardization of lithium disilicate glass ceramic on bond strength to a dual resin cement. <i>Operative Dentistry</i> , 2011 , 36, 478-85	2.9	25	
541	The effects of different adhesive agents on the shear bond strength of a self-adhesive resin cement. 2012 , 10, 149-56		6	
540	Surface preparation techniques for biomedical applications. 2012 , 143-175		4	

539 Update zum Thema Bracketrebonding von Metall- und Keramikbrackets. **2012**, 44, 13-16

538	Evaluation of chemical treatment on zirconia surface with two primer agents and an alkaline solution on bond strength. <i>Operative Dentistry</i> , 2012 , 37, 625-33	2.9	13
537	Die adhBive Befestigung - klinischer Erfolg aus werkstoffkundlicher Sicht - Teil 2 - Verbund zu Restauration und Zahnhartsubstanz. 2012 , 121, 134-147		1
536	Bonding quality of contemporary dental cements to sandblasted esthetic crown copings. 2012 , 3, 142-7		2
535	Full Issue PDF. Operative Dentistry, 2012, 37, 561-E12	2.9	
534	Full Issue PDF. Operative Dentistry, 2012 , 37, 109-218	2.9	6
533	Ceramic primer heat-treatment effect on resin cement/Y-TZP bond strength. <i>Operative Dentistry</i> , 2012 , 37, 634-40	2.9	11
532	Influence of surface conditioning on ceramic microstructure and bracket adhesion. 2012 , 34, 498-504		18
531	A review of the developments of multi-purpose primers and adhesives comprising novel dithiooctanoate monomers and phosphonic acid monomers. <i>Dental Materials Journal</i> , 2012 , 31, 1-25	2.5	34
530	Influence of glazed zirconia on dual-cure luting agent bond strength. <i>Operative Dentistry</i> , 2012 , 37, 181-	Z .9	42
529	Surface characterization of dental Y-TZP ceramic after air abrasion treatment. 2012 , 40, 723-35		37
528	An in vitro comparison of four intra-oral ceramic repair systems. 2012 , 40, 906-12		34
527	The effect of different power outputs of carbon dioxide laser on bonding between zirconia ceramic surface and resin cement. 2012 , 70, 541-6		34
526	Effect of surface treatment methods on the shear bond strength between resin cement and all-ceramic core materials. 2012 , 358, 925-930		12
525	Critical appraisal. Resin bonding to zirconia. <i>Journal of Esthetic and Restorative Dentistry</i> , 2012 , 24, 417-2	_ 2 9 .5	3
524	Clinical success and survival of indirect resin composite crowns: results of a 3-year prospective study. <i>Dental Materials</i> , 2012 , 28, 952-60	5.7	21
523	Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. <i>Dental Materials</i> , 2012 , 28, 1183-90	5.7	59
522	Comparison of the effects of surface treatments on roughness of two ceramic systems. 2012 , 30, 308-14	4	33

521	Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics. <i>Clinical Oral Investigations</i> , 2012 , 16, 1401-11	4.2	10
520	Surface roughness and morphologic changes of zirconia following different surface treatments. 2012 , 30, 339-45		37
519	Bonding of Resin Materials to All-Ceramics: A Review. 2012 , 3, 7-17		21
518	Effects of Er:YAG Laser Irradiation on Dental Hard Tissues and All-Ceramic Materials: SEM Evaluation. 2012 ,		
517	Determining efficacy of monitoring devices on ceramic bond to resin composite. 2012 , 17, e833-40		2
516	Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments. 2012 , 27, 735-42		47
515	Recovering the function and esthetics of fractured teeth using several restorative cosmetic approaches. Three clinical cases. 2012 , 28, 166-72		6
514	The influence of different convergence angles and resin cements on the retention of zirconia copings. <i>Journal of Prosthodontics</i> , 2012 , 21, 614-21	3.9	8
513	The effect of nano-structured alumina coating on the bond strength of resin-modified glass ionomer cements to zirconia ceramics. 2012 , 32, 2641-2645		20
512	Impaction-modified densely sintered yttria-stabilized tetragonal zirconium dioxide: methodology, surface structure, and bond strength. 2012 , 100, 677-84		7
511	Micromechanical properties of veneer luting resins after curing through ceramics. <i>Clinical Oral Investigations</i> , 2012 , 16, 139-46	4.2	26
510	Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser. 2012 , 27, 7-14		23
509	Effect of different surface treatments on roughness of IPS Empress 2 ceramic. 2012 , 27, 267-72		38
508	To evaluate the effect of various surface treatments on the shear bond strength of three different intraoral ceramic repair systems: an in vitro study. <i>Journal of Indian Prosthodontic Society, The</i> , 2013 , 13, 315-20	1.2	7
507	Durable bonding to mechanically and/or chemically pre-treated dental zirconia. 2013, 41, 170-9		85
506	Tipologie di cementi nel fissaggio di corone in zirconia-ceramica: revisione della letteratura. 2013 , 81, 554-562		
505	Microtensile bond strength of resin cements to caries-affected dentin. <i>Journal of Prosthetic Dentistry</i> , 2013 , 110, 47-55	4	15
504	Intraoral treatment of veneering porcelain chipping of fixed dental restorations: a review and clinical application. 2013 , 144, 31-44		73

503	Effect of heat treatment of dental zirconia ceramic treated with three different primers on the bonding durability of resin cement. 2013 , 21, 71-77		7
502	Effect of incorporating BisGMA resin on the bonding properties of silane and zirconia primers. Journal of Prosthetic Dentistry, 2013 , 110, 402-7	4	45
501	Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. 2013 , 41, 31-41		65
500	Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. 2013 , 41, 51-9		75
499	Characterizing the transformation near indents and cracks in clinically used dental yttria-stabilized zirconium oxide constructs. <i>Dental Materials</i> , 2013 , 29, 241-51	5.7	21
498	Clinical longevity of ceramic laminate veneers bonded to teeth with and without existing composite restorations up to 40′months. <i>Clinical Oral Investigations</i> , 2013 , 17, 823-32	4.2	28
497	Effects of different surface treatments on shear bond strength in two different ceramic systems. 2013 , 28, 1233-9		38
496	Effect of a DPSS laser on the shear bond strength of ceramic brackets with different base designs. 2013 , 28, 1461-6		5
495	Effect of sintering process parameters on the properties of 3Y-PSZ ceramics. 2013 , 47, 012005		1
494	Effect of Sintering Process Parameters on the Properties of 3Y-PSZ Ceramics. 2013 , 749, 44-48		1
493	Surface Textures Fabrication on Zirconia Ceramics by 3D Ultrasonic Vibration Assisted Slant Feed Grinding. 2013 , 797, 326-331		11
492	Considerations for ceramic inlays in posterior teeth: a review. 2013 , 5, 21-32		33
491	Processing and bonding of dental ceramics. 2013 , 129-160		3
490	Evaluation of air-particle abrasion of Y-TZP with different particles using microstructural analysis. 2013 , 58, 183-91		23
489	Self-adhesive resin cements: a new perspective in luting technology. 2013 , 40, 758-60, 763-4, 767-8		14
488	Marginal-internal adaptation and fracture resistance of CAD/CAM crown restorations. <i>Dental Materials Journal</i> , 2013 , 32, 42-7	2.5	29
487	The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core. 2013 , 5, 382-7		7
486	Bond strength of selected composite resin-cements to zirconium-oxide ceramic. 2013 , 18, e115-23		15

485	Degree of conversion of two dual-cured resin cements light-irradiated through zirconia ceramic disks. 2013 , 5, 464-70		20
484	In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning etching and primer conditioning. <i>Dental Materials Journal</i> , 2013 , 32, 928-38	2.5	22
483	The effect of surface treatment conditioning on shear bond strength between zirconia and dental resin cements. 2013 , 51, 73		3
482	One-bottle silane coupling agent containing 4-META. Dental Materials Journal, 2013, 32, 409-12	2.5	7
481	Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations. <i>European Journal of Dentistry</i> , 2013 , 7, 233-238	2.6	
480	CAD-CAM Ceramic Crown Retention of Resin Cements. 2014 , 04,		
479	Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic. 2014 , 39, 296-302		37
478	Surface treatment of feldspathic porcelain: scanning electron microscopy analysis. 2014 , 6, 387-94		14
477	Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. 2014 , 6, 434-43		32
476	Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching. 2014 , 22, 85-90		12
475	The Zirconia Restoration Properties: A Versatile Restorative Material. 2014, 04,		2
474	An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement. 2014 , 24, 2109-16		1
473	The effect of Silano-pen on the shear bond strength of resin to feldspathic porcelain and zirconia. 2014 , 52, 1		О
472	Atomic force microscopy investigation of lithium disilicate glass ceramic after various surface treatments. 2014 , 113, 301-306		1
471	Evaluation of the surface roughness of zirconia ceramics after different surface treatments. 2014 , 72, 432-9		17
470	Il restauro ceramico parziale e adesivo nei settori anteriori. 2014 , 82, 322-339		
469	Effect of surface treatment on the bond strength between yttria partially stabilized zirconia ceramics and resin cement. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 357-64	4	26
468	Effects of a zirconate coupling agent incorporated into an experimental resin composite on its compressive strength and bonding to zirconia. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 29, 171-6	4.1	10

467	Influence of surface treatment of yttrium-stabilized tetragonal zirconium oxides and cement type on crown retention after artificial aging. <i>Journal of Prosthetic Dentistry</i> , 2014 , 111, 395-403	4	23
466	Evaluation of shear bond strength of zirconia bonded to dentin after various surface treatments of zirconia. <i>Journal of Indian Prosthodontic Society, The</i> , 2014 , 14, 38-41	1.2	8
465	An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments. <i>Journal of Prosthodontics</i> , 2014 , 23, 117-23	3.9	24
464	Influence of surface treatments and resin cement selection on bonding to zirconia. 2014 , 29, 19-27		39
463	Bonding effectiveness to different chemically pre-treated dental zirconia. <i>Clinical Oral Investigations</i> , 2014 , 18, 1803-12	4.2	44
462	Effect of surface treatment on the retention of implant-supported zirconia restorations over short abutments. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 38-44	4	11
461	Long-term tensile bond strength of differently cemented nanocomposite CAD/CAM crowns on dentin abutment. <i>Dental Materials</i> , 2014 , 30, 334-42	5.7	10
460	Alumina- and Zirconia-based Ceramics for Load-bearing Applications. 2014 , 219-253		15
459	Bonding between oxide ceramics and adhesive cement systems: a systematic review. 2014 , 102, 395-4	113	113
458	Meta-analysis of bonding effectiveness to zirconia ceramics. 2014 , 93, 329-34		177
457	Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. Journal of Esthetic and Restorative Dentistry, 2014 , 26, 382-93	3.5	86
456	Digital imaging and fabrication. 2014 , 58, 135-58		17
455	Full Issue PDF. <i>Operative Dentistry</i> , 2014 , 39, 1	2.9	
454	Evaluation of resin bond strength to yttria-stabilized tetragonal zirconia and framework marginal fit: comparison of different surface conditionings. <i>Operative Dentistry</i> , 2014 , 39, 50-63	2.9	51
454 453			51
	fit: comparison of different surface conditionings. <i>Operative Dentistry</i> , 2014 , 39, 50-63 CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary		
453	fit: comparison of different surface conditionings. <i>Operative Dentistry</i> , 2014 , 39, 50-63 CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study. 2014 , 57, 216-223 Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond		13

(2015-2014)

449	Ceramic dental biomaterials and CAD/CAM technology: state of the art. <i>Journal of Prosthodontic Research</i> , 2014 , 58, 208-16	4.3	190	
448	Reliability estimation for single-unit ceramic crown restorations. 2014 , 93, 923-8		12	
447	Full Issue PDF. Operative Dentistry, 2014, 39, 339	2.9		
446	Coordinate geometry method for capturing and evaluating crown preparation geometry. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 481-7	4	11	
445	Effect of grinding with diamond-disc and -bur on the mechanical behavior of a Y-TZP ceramic. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 37, 133-40	4.1	47	
444	Aspects of bonding between resin luting cements and glass ceramic materials. <i>Dental Materials</i> , 2014 , 30, e147-62	5.7	131	
443	Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 182-7	4	64	
442	Effect of differences in coefficient of thermal expansion of veneer and Y-TZP ceramics on interface phase transformation. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 591-9	4	12	
441	Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 568-75	4	58	
440	Dental zirconia can be etched by hydrofluoric acid. <i>Dental Materials Journal</i> , 2014 , 33, 79-85	2.5	47	
439	Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain. <i>Dental Materials Journal</i> , 2014 , 33, 778-85	2.5	36	
438	Effect of silane and phosphate primers on the adhesive performance of a tri-n-butylborane initiated luting agent bonded to zirconia. <i>Dental Materials Journal</i> , 2014 , 33, 226-32	2.5	19	
437	Microtensile bond strength of a newly developed resin cement to dentin. <i>Dental Materials Journal</i> , 2015 , 34, 61-9	2.5	9	
436	Effect of ultrashort pulsed laser on bond strength of Y-TZP zirconia ceramic to tooth surfaces. <i>Dental Materials Journal</i> , 2015 , 34, 351-7	2.5	8	
435	Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. <i>Dental Materials Journal</i> , 2015 , 34, 161-7	2.5	45	
434	Initial and long-term bond strengths of one-step self-etch adhesives with silane coupling agent to enamel-dentin-composite in combined situation. <i>Dental Materials Journal</i> , 2015 , 34, 663-70	2.5	7	
433	Evaluation of the bond strength between aged composite cores and luting agent. 2015, 7, 108-14		3	
432	Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment. 2015 , 7, 1-7		15	

431	The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. 2015 , 7, 214-23		47
430	Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength. <i>Materials</i> , 2015 , 8, 8087-8096	3.5	6
429	Cleaning and retreatment protocol for a debonded ceramic restoration. 2015 , 7, e60-2		3
428	Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. 2015 , 7, 475-83		17
427	Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding. 2015 , 10, e0129690		11
426	Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic. 2015 , 26, 474-7		11
425	Analysis of Self-Adhesive Resin Cement Microshear Bond Strength on Leucite-Reinforced Glass-Ceramic with/without Pure Silane Primer or Universal Adhesive Surface Treatment. <i>BioMed Research International</i> , 2015 , 2015, 361893	3	10
424	Microshear bond strength evaluation of surface pretreated zirconia ceramics bonded to dentin. <i>European Journal of Dentistry</i> , 2015 , 9, 224-227	2.6	9
423	Shear bond strengths of six different porcelain laminate veneer materials cemented to enamel with two different MDP-containing resin cements. 2015 , 29, 1026-1038		
422	Effect of surface treatments on the biaxial flexural strength, phase transformation, and surface roughness of bilayered porcelain/zirconia dental ceramics. <i>Journal of Prosthetic Dentistry</i> , 2015 , 113, 585-95	4	25
421	Performance of universal adhesives on bonding to leucite-reinforced ceramic. 2015 , 19, 11		27
420	Resin Cements: Factors Affecting Clinical Performance. 2015 , 9-22		1
419	Effects of some chemical surface modifications on resin zirconia adhesion. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 46, 23-30	4.1	32
418	In vitro shear bond strength of two self-adhesive resin cements to zirconia. <i>Journal of Prosthetic Dentistry</i> , 2015 , 113, 122-7	4	20
417	Effect of Luting Agents on Retention of Dental Implant-Supported Prostheses. 2015 , 41, 596-9		3
416	Laminated ceramics with elastic interfaces: a mechanical advantage?. 2015 , 43, 335-41		10
415	Full Issue PDF. Operative Dentistry, 2015 , 40, 115	2.9	
414	Effect of Different Luting Agents on the Retention of Lithium Disilicate Ceramic Crowns. <i>Materials</i> , 2015 , 8, 1604-1611	3.5	10

(2015-2015)

413	Improved Resin-Zirconia Bonding by Room Temperature Hydrofluoric Acid Etching. <i>Materials</i> , 2015 , 8, 850-866	3.5	14
412	Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments. 2015 , 146, 501-7		9
411	Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures. <i>Materials</i> , 2015 , 8, 2650-2657	3.5	5
410	Influence of different adhesive protocols on ceramic bond strength and degree of conversion of resin cements. <i>International Journal of Adhesion and Adhesives</i> , 2015 , 62, 7-13	3.4	3
409	Influence of different surface treatments on microshear bond strength of repair resin composite to two CAD/CAM esthetic restorative materials. 2015 , 12, 178-184		8
408	Fracture resistance of lithium disilicate restorations after endodontic access preparation: An in vitro study. <i>Journal of Prosthetic Dentistry</i> , 2015 , 114, 580-6	4	11
407	Effect of thermocycling with or without 1 year of water storage on retentive strengths of luting cements for zirconia crowns. <i>Journal of Prosthetic Dentistry</i> , 2015 , 113, 609-15	4	24
406	An assessment of shear bond strength between ceramic repair systems and different ceramic infrastructures. 2015 , 37, 300-5		4
405	The Effect of Hydrofluoric Acid Concentration on the Bond Strength and Morphology of the Surface and Interface of Glass Ceramics to a Resin Cement. <i>Operative Dentistry</i> , 2015 , 40, 470-9	2.9	43
404	Effect of hydrofluoric acid concentration and etching duration on select surface roughness parameters for zirconia. <i>Journal of Prosthetic Dentistry</i> , 2015 , 113, 596-602	4	31
403	Effect of dental silane primer activation time on resinâderamic bonding. 2015, 29, 1155-1167		6
402	Heat treatment of silanized feldspathic ceramic: Effect on the bond strength to resin after thermocycling. <i>International Journal of Adhesion and Adhesives</i> , 2015 , 63, 96-101	3.4	3
401	Coupling of 10-methacryloyloxydecyldihydrogenphosphate to tetragonal zirconia: Effect of pH reaction conditions on coordinate bonding. <i>Dental Materials</i> , 2015 , 31, e218-25	5.7	46
400	Adhßion selbstadhßiver Befestigungszemente an indirekten Restaurationsoberflühen aus Lithiumdisilikat- oder Zirkonoxid-Keramik. 2015 , 124, 84-91		
399	Tensile bond strength of different universal adhesive systems to lithium disilicate ceramic. 2015 , 146, 729-34		17
398	Reparatur zahnfiztlicher Restaurationen. 2015 , 9, 297-309		1
397	Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems. 2015 , 15, 55		3
396	Surface treatment of alumina ceramic for improved adhesion to a glass fibre-reinforced polyester composite. <i>International Journal of Adhesion and Adhesives</i> , 2015 , 63, 34-45	3.4	9

Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface. **2015**, 19, 101-112

394	Full Issue PDF. <i>Operative Dentistry</i> , 2015 , 40, 451	2.9	3
393	Using zirconia-based prosthesis in a complete-mouth reconstruction treatment for worn dentition with the altered vertical dimension of occlusion. <i>Journal of Prosthetic Dentistry</i> , 2015 , 113, 81-5	4	14
392	A Practical Clinical Guide to Resin Cements. 2015,		3
391	Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. 2015 , 30, 787-95		37
390	Fracture resistance and microleakage of endocrowns utilizing three CAD-CAM blocks. <i>Operative Dentistry</i> , 2015 , 40, 201-10	2.9	61
389	Effect of different cleaning regimens on the adhesion of resin to saliva-contaminated ceramics. Journal of Prosthodontics, 2015 , 24, 136-45	3.9	24
388	Adhesion to Y-TZP ceramic: study of silica nanofilm coating on the surface of Y-TZP. 2015 , 103, 143-50		48
387	Color stability of adhesive resin cements after immersion in coffee. <i>Clinical Oral Investigations</i> , 2015 , 19, 309-17	4.2	28
386	Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements. 2016 , 41, 167-7	7 5	17
385	Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics. 2016 , 8, 275-84		25
384	Early complications and performance of 327 heat-pressed lithium disilicate crowns up to five years. 2016 , 8, 194-200		12
383	Assessment and comparison of retention of zirconia copings luted with different cements onto zirconia and titanium abutments: An in vitro study. <i>Journal of Indian Prosthodontic Society, The</i> , 2016 , 16, 136-41	1.2	3
382	Influence of nano-structured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement. 2016 , 54, 354		1
381	The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures. 2016 , 8, 75-84		12
380	Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia. 2016 , 11, 5057-5066		14
379	The Effect of Hydrofluoric Acid Concentration and Heat on the Bonding to Lithium Disilicate Glass Ceramic. 2016 , 27, 727-733		12
378	An insight into current concepts and techniques in resin bonding to high strength ceramics. 2016 , 61, 163-73		22

(2016-2016)

377	Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures. 2016 , 7, 347-354		9
376	Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. 2016 , 45, 19194-19215		133
375	The effect of amine-free initiator system and the polymerization type on color stability of resin cements. <i>Journal of Oral Science</i> , 2016 , 58, 157-61	1.5	16
374	Durability of resin bond strength to dental noble metalâderamic alloys conditioned with novel mercapto silane-based primer systems. 2016 , 30, 506-519		10
373	Effect of different ceramic primers on shear bond strength of resin-modified glass ionomer cement to zirconia. 2016 , 30, 2429-2438		1
372	Fracture toughness of chairside CAD/CAM materials - Alternative loading approach for compact tension test. <i>Dental Materials</i> , 2016 , 32, 847-52	5.7	35
371	Clinical Evaluation of Disilicate and Zirconium in Dentistry. 2016, 1115-1128		
370	Three-dimensional profilometric assessment of Er:YAG laser irradiated unsintered zirconia. 2016 , 51, 7266-7275		2
369	Full Issue PDF. Operative Dentistry, 2016 , 41, 453	2.9	
368	Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes. <i>Dental Materials</i> , 2016 , 32, 1453-1463	5.7	7
367	Blue-Light Transmittance of Esthetic Monolithic CAD/CAM Materials With Respect to Their Composition, Thickness, and Curing Conditions. <i>Operative Dentistry</i> , 2016 , 41, 531-540	2.9	17
366	Effect of Storage Time on Bond Strength Performance of Multimode Adhesives to Indirect Resin Composite and Lithium Disilicate Glass Ceramic. <i>Operative Dentistry</i> , 2016 , 41, 541-551	2.9	21
365	The effect of monolithic zirconia thickness on the degree of conversion of dental resin cements: ATR-FTIR spectroscopic analysis. 2016 , 86, 212-217		3
364	Adhesive bonding to polymer infiltrated ceramic. <i>Dental Materials Journal</i> , 2016 , 35, 796-802	2.5	17
363	The Role of Silane Coupling Agents and Universal Primers in Durable Adhesion to Dental Restorative Materials - a Review. 2016 , 3, 244-253		21
362	Effectiveness and stability of silane coupling agent incorporated in @niversal@dhesives. <i>Dental Materials</i> , 2016 , 32, 1218-1225	5.7	100
361	Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive: Influence of various surface treatment methods. 2016 , 77, 366-72		18
360	No-Prep Rehabilitation of Fractured Maxillary Incisors with Partial Veneers. <i>Journal of Esthetic and Restorative Dentistry</i> , 2016 , 28, 351-358	3.5	4

359	The effect of zirconia thickness and curing time on shear bond strength of dualcure resin cement. <i>Dental Materials Journal</i> , 2016 , 35, 132-7	2.5	5
358	Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material. <i>Dental Materials Journal</i> , 2016 , 35, 461-9	2.5	8
357	Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement thickness. <i>Ceramics International</i> , 2016 , 42, 14928-14936	5.1	6
356	Full Issue PDF. Operative Dentistry, 2016 , 41, 229-232	2.9	
355	Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic. 2016 , 2, 41-53		14
354	Investigation of the fatigue behavior of adhesive bonding of the lithium disilicate glass ceramic with three resin cements using rotating fatigue method. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 61, 62-69	4.1	8
353	Dental prostheses mimic the natural enamel behavior under functional loading: A review article. 2016 , 52, 2-13		13
352	Chemical recycling of post-consumer compact discs towards novel polymers for powder coating applications. 2016 , 6, 31462-31469		9
351	Clinical performance of anterior resin-bonded fixed dental prostheses with different framework designs: A systematic review and meta-analysis. 2016 , 47, 1-7		41
350	Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. <i>Journal of Prosthodontic Research</i> , 2016 , 60, 265-273	4.3	61
349	Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements. 2016 , 31, 205-11		30
348	Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic. <i>Operative Dentistry</i> , 2016 , 41, 284-92	2.9	34
347	Clinically used adhesive ceramic bonding methods: a survey in 2007, 2011, and in 2015. <i>Clinical Oral Investigations</i> , 2016 , 20, 1691-8	4.2	8
346	The Effect of Sandblasting, Er:YAG Laser, and Heat Treatment on the Mechanical Properties of Different Zirconia Cores. 2016 , 34, 17-26		18
345	Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement. <i>Ceramics International</i> , 2016 , 42, 1552-	1562	36
344	Effect of Different Surface Treatments on Porcelain-Resin Bond Strength. <i>Journal of Prosthodontics</i> , 2017 , 26, 446-454	3.9	19
343	Effects of tributylborane-activated adhesive and two silane agents on bonding computer-aided design and manufacturing (CAD/CAM) resin composite. 2017 , 105, 437-442		12
342	The use of monolithic lithium disilicate for posterior screw-retained implant crowns. <i>Journal of Prosthetic Dentistry</i> , 2017 , 118, 703-705	4	11

(2017-2017)

the effect of surface treatments on the bonding strength of ceramic inlays to dentinPresented at the 46th Meeting of the Continental European Division of the International Association for Dental Research (CED-IADR) with the Scandinavian Division, Florence, Italy, September 4â 2013. View all	2
Short- and Long-Term Bond Strength Between Resin Cement and Glass-Ceramic Using a Silane-Containing Universal Adhesive. <i>Operative Dentistry</i> , 2017 , 42, 514-525	17
Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement. 2017 , 28, 111	8
Shear bond, wettability and AFM evaluations on CO laser-irradiated CAD/CAM ceramic surfaces. 2017 , 32, 779-785	16
Masking properties of ceramics for veneer restorations. <i>Journal of Prosthetic Dentistry</i> , 2017 , 118, 517-5 2 3	21
Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites. 2017 , 111, 103-111	50
The Use of All-Ceramic Resin-Bonded Bridges in the Anterior Aesthetic Zone. 2017 , 44, 230-2, 235-8	9
Full Issue PDF. Operative Dentistry, 2017 , 42, 457	
Effect of luting agent on the load to failure and accelerated-fatigue resistance of lithium disilicate laminate veneers. <i>Dental Materials</i> , 2017 , 33, 1392-1401	26
Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: Effects of molecular structure and solvents. <i>Dental Materials</i> , 2017 , 33, e415-e427	20
Effect of Hydrofluoric Acid Concentration and Etching Time on Bond Strength to Lithium Disilicate Glass Ceramic. <i>Operative Dentistry</i> , 2017 , 42, 606-615	32
The effects of dentin and intaglio indirect ceramic optimized polymer restoration surface treatment on the shear bond strength of resin cement. 2017 , 884, 012088	O
Effect of electrical discharge machining on dental Y-TZP ceramic-resin bonding. <i>Journal of Prosthodontic Research</i> , 2017 , 61, 158-167	12
Adhesive bond strength and compressive strength of a novel bulk fill composite with zirconia nano-hybrid filler. 2017 , 31, 450-463	5
Effect of silane contamination on dentin bond strength. <i>Journal of Prosthetic Dentistry</i> , 2017 , 117, 438-443	8
Eleven-Year Retrospective Survival Study of 275 Veneered Lithium Disilicate Single Crowns. 2015 , 35, 685-94	25
Densification and biocompatibility of sintering 3.0 mol% yttria-tetragonal ZrO2 polycrystal ceramics with x wt% Fe2O3 and 5.0 wt% mica powders additive. <i>Ceramics International</i> , 2017 , 43, 1809-1818	5
Promotion of resin bonding to dental zirconia ceramic using plasma deposition of tetramethylsilane and benzene. 2017 , 125, 81-87	8
	the 46th Meeting of the Continental European Division of the International Association for Dental Research (ECD-LAPR) with the Scandinavian Division, Florence, Italy, September 43th 2013. View all 12 (2007) 11 (2007) 12 (2007) 12 (2007) 12 (2007) 13 (2007) 13 (2007) 13 (2007) 14 (2007) 14 (2007) 14 (2007) 15 (2007)

323	Comparative study of displacement resistance of four zirconia cements. 2017 , 21, e227-e232		1
322	Full Issue PDF. <i>Operative Dentistry</i> , 2017 , 42, 569	2.9	
321	Effect of bioglass and silica coating of zirconia substrate on its bond strength to resin cement. Dental Materials Journal, 2017 , 36, 54-62	2.5	6
320	Estudio comparativo de la resistencia al desplazamiento de cuatro cementos en zirconia. 2017 , 21, 235-	240	1
319	Resin adhesion strengths to zirconia ceramics after primer treatment with silane coupling monomer or oligomer. <i>Dental Materials Journal</i> , 2017 , 36, 600-605	2.5	11
318	The effect of five kinds of surface treatment agents on the bond strength to various ceramics with thermocycle aging. <i>Dental Materials Journal</i> , 2017 , 36, 755-761	2.5	20
317	"Ormocer an innovative technology": A replacement for conventional cements and veneer? A comparative analysis. <i>European Journal of Dentistry</i> , 2017 , 11, 58-63	2.6	2
316	Functional Biomimetic Dental Restoration. 2017,		
315	Interfaces in fixed dental prostheses: Challenges and opportunities. 2017, 67-83		
314	Shear Bond Strength of AlâDâlSandblasted Y-TZP Ceramic to the Orthodontic Metal Bracket. <i>Materials</i> , 2017 , 10,	3.5	14
313	Effect of the Surface Treatment Method Using Airborne-Particle Abrasion and Hydrofluoric Acid on the Shear Bond Strength of Resin Cement to Zirconia. <i>Dentistry Journal</i> , 2017 , 5,	3.1	5
312	Effects of air-abrasion pressure on the resin bond strength to zirconia: a combined cyclic loading and thermocycling aging study. 2017 , 42, 206-215		9
311	Acid etching of glass-infiltrated zirconia and its biological response. 2017 , 9, 104-109		7
310	The Impact of Plasma Treatment of Cercon [®] Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties. 2017 , 8, S56-S61		20
309	Bonding to silicate ceramics: Conventional technique compared with a simplified technique. 2017 , 9, e384-e386		15
308	Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets. 2017, 8, 17-21		8
307	Acidic pH weakens the bonding effectiveness of silane contained in universal adhesives. <i>Dental Materials</i> , 2018 , 34, 809-818	5.7	32
306	Effect of a glaze layer on adhesion energy between resin cements to zirconia ceramic. <i>International Journal of Adhesion and Adhesives</i> , 2018 , 84, 451-456	3.4	1

305	Influence of glass-based dental ceramic type and thickness with identical shade on the light transmittance and the degree of conversion of resin cement. 2018 , 10, 5		17	
304	Effects of an etching solution on the adhesive properties and surface microhardness of zirconia dental ceramics. <i>Journal of Prosthetic Dentistry</i> , 2018 , 120, 447-453	4	5	
303	Effect of cleaning methods on retentive values of saliva-contaminated implant-supported zirconia copings. 2018 , 29, 530-536		5	
302	Influence of amine and vinyl functional groups of silanes on total performance of thermoplastic-based composites. 2018 , 172, 98-105		9	
301	Two-step vs. one-step conditioning systems and adhesive interface of glass ceramic surface and resin systems. 2018 , 32, 1952-1963		3	
300	Effect of acid etching on tridimensional microstructure of etchable CAD/CAM materials. <i>Dental Materials</i> , 2018 , 34, 944-955	5.7	31	
299	Zirconia toughened mica glass ceramics for dental restorations. <i>Dental Materials</i> , 2018 , 34, e36-e45	5.7	18	
298	Influence of cleaning methods on resin bonding to saliva-contaminated zirconia. <i>Journal of Esthetic and Restorative Dentistry</i> , 2018 , 30, 259-264	3.5	18	
297	Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. <i>Clinical Oral Investigations</i> , 2018 , 22, 2787-2797	4.2	41	
296	Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: A fracture mechanics analysis and interpretation. 2018 , 74, 454-463		4	
295	Effect of different resin cements and surface treatments on the shear bond strength of ceramic-glass polymer materials. <i>Journal of Prosthetic Dentistry</i> , 2018 , 120, 454-461	4	16	
294	The Effect of Lithium Disilicate Ceramic Surface Neutralization on Wettability of Silane Coupling Agents and Adhesive Resin Cements. 2018 , 10, 2391-2397		4	
293	Influence of cement type and ceramic primer on retention of polymer-infiltrated ceramic crowns to a one-piece zirconia implant. <i>Journal of Prosthetic Dentistry</i> , 2018 , 119, 138-145	4	16	
292	Microtensile Bond Strength of a Resin Cement to Silica-Based and Y-TZP Ceramics Using Different Surface Treatments. <i>Journal of Prosthodontics</i> , 2018 , 27, 67-74	3.9	18	
291	Anterior Cantilever Resin-Bonded Fixed Dental Prostheses: A Review of the Literature. <i>Journal of Prosthodontics</i> , 2018 , 27, 266-275	3.9	29	
290	Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. <i>Journal of Prosthodontic Research</i> , 2018 , 62, 75-83	4.3	65	
289	High-performance ceramic parts with complex shape prepared by selective laser sintering: a review. 2018 , 117, 100-117		72	

287	Silane adhesion mechanism in dental applications and surface treatments: A review. <i>Dental Materials</i> , 2018 , 34, 13-28	5.7	162
286	Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. <i>Journal of Prosthodontic Research</i> , 2018 , 62, 204-209	4.3	25
285	Novel Zirconia Materials in Dentistry. 2018 , 97, 140-147		254
284	Effect of thickness and surface modifications on flexural strength of monolithic zirconia. <i>Journal of Prosthetic Dentistry</i> , 2018 , 119, 987-993	4	35
283	The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. 2018, 97, 132-139		82
282	Effect of femtosecond laser beam angle and formed shape on surface roughness and shear bond strength between zirconia and resin cement. 2018 , 32, 1265-1277		6
281	Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. <i>Clinical Oral Investigations</i> , 2018 , 22, 1973-1983	4.2	33
280	Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials. 2018 , 88, 221-226		10
279	Effect of ceramic surface treatments on the bond strength of different composite resinsPresented at the 34st Annual Conference of the European Prosthodontic Association and 1st Conference of the Association of prosthetic Dentistry of Kosova, in September 23â\(\textit{\Pi}\)5 /2010 Prishtina / Kosova. View all notes. 2018 , 32, 247-257		1
278	Etiology of Secondary Caries in Prosthodontic Treatments. 2018,		1
277	Effects of different ceramic primers and surface treatments on the shear bond strength of restorative composite resin to zirconium. 2018 , 27, 111-117		4
276	Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids, Application Protocol and Etching Effectiveness. 2018 , 6, 568-573		19
275	Evaluation of micro shear bonding strength of two universal dentin bondings to superficial dentin by self etch and etch-and-rinse strategies. 2018 , 10, e837-e843		4
274	A low cost minimally invasive adhesive alternative for maxillary central incisor replacement. <i>Journal of Esthetic and Restorative Dentistry</i> , 2018 , 30, 469-473	3.5	3
273	Effect of Luting Cements On the Bond Strength to Turkom-Cera All-Ceramic Material. 2018 , 6, 548-553		1
272	Influence of cleaning methods on bond strength to saliva contaminated zirconia. <i>Journal of Esthetic and Restorative Dentistry</i> , 2018 , 30, 551-556	3.5	8
271	Functionally graded nanostructured biomaterials (FGNB). 2018 , 159-180		
270	Effect of a silane and phosphate functional monomer on shear bond strength of a resin-based luting agent to lithium disilicate ceramic and quartz materials. <i>Journal of Oral Science</i> , 2018 , 60, 360-366	5 ^{1.5}	6

269	Bond strength of resin cement to zirconia treated in pre-sintered stage. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 86, 84-88	4.1	8
268	Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics. <i>Journal of Oral Science</i> , 2018 , 60, 201-211	1.5	11
267	Effect of sandblasting, etching and resin bonding on the flexural strength/bonding of novel glass-ceramics. <i>Dental Materials</i> , 2018 , 34, 1566-1577	5.7	6
266	Repair bond strength of resin composite to bilayer dental ceramics. 2018 , 10, 101-112		5
265	Effect of Air Abrasion on the Number of Particles Embedded in Zironia. Materials, 2018, 11,	3.5	7
264	Applications of Laser Welding in Dentistry: A State-of-the-Art Review. 2018 , 9,		15
263	Evaluation of the Effect of Different Types of Abrasive Surface Treatment before and after Zirconia Sintering on Its Structural Composition and Bond Strength with Resin Cement. <i>BioMed Research International</i> , 2018 , 2018, 1803425	3	10
262	Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials. 2018 , 72, 900-905		2
261	Effect of different surface treatments on the shear bond strength of resin cement to zirconia ceramic and metal alloy** This study was presented in September 2015 at the 47th International Association of Dental Research (CED-IADR) meeting in Antalya, Turkey.View all notes. 2018 , 32, 2232-2	2243	2
26 0	Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis. 2018 , 5,		5
259	Internal adjustments decrease the fatigue failure load of bonded simplified lithium disilicate restorations. <i>Dental Materials</i> , 2018 , 34, e225-e235	5.7	16
258	The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis. 2018 , 13, e0190736		20
257	Surface Roughness of Ceramic-Resin Composites After Femtosecond Laser Irradiation, Sandblasting or Acid Etching and Their Bond Strength With and Without Silanization to a Resin Cement. <i>Operative Dentistry</i> , 2019 , 44, 156-167	2.9	12
256	Effect of universal adhesives on microtensile bond strength to hybrid ceramic. 2019 , 19, 178		7
255	Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement. <i>Dental Materials</i> , 2019 , 35, 1545-1556	5.7	10
254	HF etching of CAD/CAM materials: influence of HF concentration and etching time on shear bond strength. 2019 , 15, 21		10
253	Shear bond strength of debonded ceramic restorations re-cemented by means of a cleaning and retreatment protocol. 2019 , 11, e506-e511		O
252	Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods. <i>Dental Materials</i> , 2019 , 35, 1388-1396	5.7	11

251	An investigation of atomic force microscopy, surface topography and adhesion of luting cements to zirconia: effect of silica coating, zirconia primer and laser. 2019 , 33, 2047-2060		2
250	Effect of surface conditioning methods on the microtensile bond strength of repair composite to indirect restorative materials. 2019 , 33, 2369-2384		2
249	Effect of Combined Surface Treatments on Surface Roughness and Resin Bond Strength to Y-TZP Ceramic and Nickel-Chromium Metal Alloy. 2019 , 37, 442-450		6
248	Current status on lithium disilicate and zirconia: a narrative review. 2019 , 19, 134		70
247	Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material. <i>Journal of Prosthetic Dentistry</i> , 2019 , 122, 491.e1-491.e9	4	6
246	Effect of zirconia surface treatment on its wettability by liquid ceramics. <i>Journal of Prosthetic Dentistry</i> , 2019 , 122, 410.e1-410.e6	4	10
245	Evolution of Aesthetic Dentistry. 2019 , 98, 1294-1304		30
244	Microtensile Bond Strength of Self-Adhesive Resin Cements to CAD/CAM Resin-Matrix Ceramics Prepared with Different Surface Treatments. 2019 , 32, 433-438		3
243	Full Issue PDF. Operative Dentistry, 2019 , 44, 445-C4	2.9	
242	Effect of Endocrowns on Fracture Strength and Microleakage of Endodontically Treated Primary Molar Teeth. 2019 , 10, 113-119		1
241	Comparison of Bond Strength of Monolithic CAD-CAM Materials to Resin Cement Using Different Surface Treatment Methods. 2019 , 10, 120-127		4
240	Effect of different air-abrasion protocols on topography, surface wettability and adhesion of MDP monomer-based resin cement to zirconia. 2019 , 33, 1948-1958		3
239	Effect of hot-etching treatment on shear bond strength of zirconia to resin cement. 2019 , 118, 16-22		2
238	Dental Resin-Zirconia Bonding Promotion Using High-Silica PVD Coating with High Ionization Sputtering Processing. 2019 , 9, 182		4
237	Full Issue PDF. Operative Dentistry, 2019 , 44, 109-E104	2.9	
236	The effect of fusion sputtering surface treatment on microshear bond strength of zirconia and MDP-containing resin cement. <i>Dental Materials</i> , 2019 , 35, e107-e112	5.7	9
235	Biomechanical evaluation between orthodontic attachment and three different materials after various surface treatments:. 2019 , 89, 742-750		1
234	Bond Strength Stability of Self-adhesive Resin Cement to Etched Vitrified Yttria-stabilized Tetragonal Zirconia Polycrystal Ceramic After Thermomechanical Cycling. <i>Operative Dentistry</i> , 2019 , 44, 545-555	2.9	5

(2020-2019)

233	Chairside management of an open proximal contact on an implant-supported ceramic crown using direct composite resin. <i>Journal of Prosthetic Dentistry</i> , 2019 , 122, 1-4	4	3
232	IPS e.max for All-Ceramic Restorations: Clinical Survival and Success Rates of Full-Coverage Crowns and Fixed Partial Dentures. <i>Materials</i> , 2019 , 12,	3.5	7
231	Evaluation of the light transmission of chairside polymer infiltrated hybrid ceramics in different shades and thicknesses. 2019 , 17, 2280800018807109		4
230	The Current State of Chairside Digital Dentistry and Materials. 2019 , 63, 175-197		55
229	Bond strength of surface-treated novel high translucent zirconia to enamel. 2019 , 6, 35-42		2
228	Clinical and Esthetical Evaluation of 79 Lithium Disilicate Multilayered Anterior Veneers with a Medium Follow-Up of 3 Years. <i>European Journal of Dentistry</i> , 2019 , 13, 581-588	2.6	6
227	Graphene oxide-based experimental silane primers enhance shear bond strength between resin composite and zirconia. 2019 , 127, 570-576		20
226	Shear bond strength of zirconia to resin: The effects of specimen preparation and loading procedure. 2019 , 11, 313-323		3
225	Impact of Silane-containing Universal Adhesive on the Biaxial Flexural Strength of a Resin Cement/Glass-ceramic System. <i>Operative Dentistry</i> , 2019 , 44, 200-209	2.9	3
224	Repairing fractured ceramic veneer with CAD/CAM ceramic blocks: a preliminary tensile bond strength study. 2019 , 34, 43-50		
223	Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y-TZP ceramic and resin cement. <i>Dental Materials Journal</i> , 2019 , 38, 241-249	2.5	10
222	Evaluation of effects of non-thermal plasma treatment on surface properties of CAD/CAM materials. 2019 , 33, 35-49		3
221	Evaluation of structural and mechanical properties of aerosol-deposited bioceramic films for orthodontic brackets. <i>Ceramics International</i> , 2019 , 45, 6702-6711	5.1	6
220	Bond strength between composite repair and polymer-infiltrated ceramic-network material: Effect of different surface treatments. <i>Journal of Esthetic and Restorative Dentistry</i> , 2019 , 31, 275-279	3.5	6
219	Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser-Treated Zirconia Ceramics. Journal of Prosthodontics, 2019 , 28, e881-e885	3.9	12
218	Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy. <i>Clinical Oral Investigations</i> , 2019 , 23, 529-538	4.2	26
217	Effect of Different Surface Treatments on Bond Strength of Resin Cement to a CAD/CAM Restorative Material. <i>Journal of Prosthodontics</i> , 2019 , 28, 71-78	3.9	37
216	Effect of Silane Heat Treatment by Laser on the Bond Strength of a Repair Composite to Feldspathic Porcelain. <i>Journal of Prosthodontics</i> , 2020 , 29, 49-55	3.9	2

215	The effect of firing protocols on the resin-bond strength to alumina-coated zirconia ceramics. 2020 , 119, 267-275		6
214	Nanoparticles in Medicine. 2020,		1
213	Dual-curing resin cement with colour indicator for adhesively cemented restorations to dental tissues: Change of colour by curing and some physical properties. 2020 , 27, 395-400		1
212	Effects of different silica-based layer coatings on bond strength of Y-TZP to bovine dentin. <i>Dental Materials Journal</i> , 2020 , 39, 154-160	2.5	
211	Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension. <i>Ceramics International</i> , 2020 , 46, 6469-6476	5.1	21
210	Influence of Aging on Biaxial Flexural Strength and Hardness of Translucent 3Y-TZP. <i>Materials</i> , 2019 , 13,	3.5	4
209	Primer-Treated Ceramic Bracket Increases Shear Bond Strength on Dental Zirconia Surface. <i>Materials</i> , 2020 , 13,	3.5	O
208	Effect of airborne-particle abrasion of a titanium base abutment on the stability of the bonded interface and retention forces of crowns after artificial aging. <i>Journal of Prosthetic Dentistry</i> , 2021 , 126, 214-221	4	8
207	Cleaning and Conditioning of Contaminated Core Build-Up Material before Adhesive Bonding. <i>Materials</i> , 2020 , 13,	3.5	2
206	Influence of Er:YAG laser surface treatment on flexural and bond strengths to glass-infiltrated zirconia-reinforced ceramic. 2021 , 36, 1487-1495		2
205	Effect of surface treatment and cleaning on the bond strength to polymer-infiltrated ceramic network CAD-CAM material. <i>Journal of Prosthetic Dentistry</i> , 2021 , 126, 698-702	4	7
204	Shear bond strength of glass ionomer and resin-based cements to different types of zirconia. Journal of Esthetic and Restorative Dentistry, 2020 , 32, 806-814	3.5	2
203	Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments. <i>Journal of Esthetic and Restorative Dentistry</i> , 2020 , 32, 726-733	3.5	1
202	Construction of a silicate-based epitaxial transition film on a zirconia ceramic surface to improve the bonding quality of zirconia restorations 2020 , 10, 32476-32484		2
201	Influence of Sandblasting Particle Size and Pressure on Resin Bonding Durability to Zirconia: A Residual Stress Study. <i>Materials</i> , 2020 , 13,	3.5	4
200	Challenging the Resin-Zirconia Interface by Thermal Cycling or Mechanical Load Cycling or Their Combinations. 2020 , 10, 7352		1
199	Changes in Bond Strength and Topography for Y-TZP Etched with Hydrofluoric Acid Depending on Concentration and Temperature Conditions. <i>Medicina (Lithuania)</i> , 2020 , 56,	3.1	1
198	Effect of zirconia etching solution on the shear bond strength between zirconia and resin cement. Journal of Prosthetic Dentistry, 2021 , 126, 693-697	4	1

197	Microshear bond strength of contemporary self-adhesive resin cements to CAD/CAM restorative materials: effect of surface treatment and aging. 2020 , 34, 2484-2498		2
196	Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. 2020 , 12, 22-32		10
195	Fracture resistance of CAD/CAM occlusal veneers: A systematic review of laboratory studies. Journal of the Mechanical Behavior of Biomedical Materials, 2020 , 110, 103948	4.1	5
194	Marginal gap and fracture resistance of CAD/CAM ceramill COMP and cerasmart endocrowns for restoring endodontically treated molars bonded with two adhesive protocols: an study. 2020 , 7, 50-60		3
193	One-step ceramic primer as surface conditioner: Effect on the load-bearing capacity under fatigue of bonded lithium disilicate ceramic simplified restorations. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 104, 103686	4.1	11
192	Two-year Follow-up of Ceramic Veneers and a Full Crown Treated With Self-etching Ceramic Primer: A Case Report. <i>Operative Dentistry</i> , 2020 , 45, 352-358	2.9	3
191	Materials in digital dentistry-A review. Journal of Esthetic and Restorative Dentistry, 2020, 32, 171-181	3.5	38
190	Effects of 10-MDP Based Primer on Shear Bond Strength between Zirconia and New Experimental Resin Cement. <i>Materials</i> , 2020 , 13,	3.5	7
189	Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic. <i>Materials</i> , 2020 , 13,	3.5	2
188	Comparing the Repair of Veneered Zirconia Crowns with Ceramic or Composite Resin: An in Vitro Study. <i>Dentistry Journal</i> , 2020 , 8,	3.1	3
187	Effect of Low-Concentration Hydrofluoric Acid Etching on Shear Bond Strength and Biaxial Flexural Strength after Thermocycling. <i>Materials</i> , 2020 , 13,	3.5	4
186	Clinical efficacy of methods for bonding to zirconia: A systematic review. <i>Journal of Prosthetic Dentistry</i> , 2021 , 125, 231-240	4	14
185	Improvement of flexural bond strength of zirconia-resin cement by surface patterning using sub-nanosecond UV laser. 2021 , 18, 51-59		1
184	Effect of different surface treatments on the biaxial flexure strength, Weibull characteristics, roughness, and surface topography of bonded CAD/CAM silica-based ceramics. <i>Dental Materials</i> , 2021 , 37, e151-e161	5.7	3
183	Monolithic Zirconia Partial Coverage Restorations: An In Vitro Mastication Simulation Study. <i>Journal of Prosthodontics</i> , 2021 , 30, 76-82	3.9	3
182	Survey of clinically used adhesive ceramic bonding methods - follow up after 12 years. <i>Dental Materials</i> , 2021 , 37, e195-e200	5.7	1
181	Effect of an MDP-containing ceramic primer application on adhesion to a ZLS ceramic with or without prior acid etching. 2021 , 35, 1687-1699		
180	Effect of a single-component ceramic conditioner on shear bond strength of precoated brackets to different CAD/CAM materials. <i>Clinical Oral Investigations</i> , 2021 , 25, 1953-1965	4.2	3

179	Influence of different cleaning procedures on the shear bond strength of 10-methacryloyloxydecyl dihydrogen phosphate-containing self-adhesive resin cement to saliva contaminated zirconia. <i>Journal of Prosthodontic Research</i> , 2021 , 65, 443-448	4.3	1
178	Biocomposites for prosthesis. 2021 , 339-351		1
177	Effect of different laser treatments on the shear bond strength of zirconia ceramic to resin cement. Dental Research Journal, 2021 , 18, 56	0.8	О
176	A cantilever all-ceramic resin-bonded fixed dental prosthesis using digital technology for a patient with cleft lip and palate. 2021 , 21, 7-10		
175	EVALUATION OF SHEAR BOND STRENGTH OF DIFFERENT RESIN CEMENTS AFTER ZIRCONIA SURFACE TREATMENTS.		
174	Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types. 2021 , 59, 153		
173	Effect of Different Surface Treatment Methods on Bond Strength of Dental Ceramics to Dental Hard Tissues: A Systematic Review. <i>Molecules</i> , 2021 , 26,	4.8	4
172	Effect of Two Antibacterial Luting Protocols with and without Immediate-Dentin-Bonding on Microtensile Bond Strength of Glass Ceramic to Bur-Cut Cavity Floor Dentin. 2021 , 25, 13-19		
171	Bond strengths of three-step etch-and-rinse adhesives to silane contaminated dentin. <i>Dental Materials Journal</i> , 2021 , 40, 385-392	2.5	O
170	Effect of sandblasting and liner on shear bond strength of veneering ceramic to zirconia. 2021 , 43, 6-1	2	
169	Effect of chemical aging on color stability and surface properties of stained all-ceramic restorations. <i>Journal of Esthetic and Restorative Dentistry</i> , 2021 , 33, 636-647	3.5	О
168	Use of ceramic veneers for improving esthetics and extending the service life of an existing cement-retained implant-supported ceramic restoration: A clinical report with a 3-year follow-up. <i>Journal of Prosthetic Dentistry</i> , 2021 ,	4	1
167	Effect of Acid Mixtures on Surface Properties and Biaxial Flexural Strength of As-Sintered and Air-Abraded Zirconia. <i>Materials</i> , 2021 , 14,	3.5	О
166	Effect of thermocycling on the surface properties of resin-matrix CAD-CAM ceramics after different surface treatments. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 117, 104401	4.1	2
165	Evaluation of Efficacy of Various Surface Conditioning Methods on the Repair Bond Strength of Composite to Different Fracture Types of Zirconia Ceramics. 2021 , 2021, 5537761		О
164	A Systematic Review on Current Status of Zirconia Bonding with Novel Silane Couplant for Dental Restorations. 1		
163	Influence of roughening procedures and priming agents on shear bond strength of CAD/CAM materials to zirconia frameworks. <i>Dental Materials Journal</i> , 2021 , 40, 664-673	2.5	
162	Investigation of phase formation and mechanical properties of lithium disilicate glass-ceramic doped CeO2. 2021 , 561, 120772		О

161	Effect of repair systems on dentin bonding performance. Dental Materials Journal, 2021, 40, 903-910	2.5	
160	Comparison Of The Effect Of Surface Conditioning Methods On The Bond Strength Of Different Zirconia Reinforced Lithium Silicate And Hybrid Ceramics To Resin Cement.		
159	Restoration of a nonideally placed anterior implant: A clinical report. <i>Journal of Prosthetic Dentistry</i> , 2021 ,	4	
158	In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants. <i>Materials</i> , 2021 , 14,	3.5	1
157	Additive manufacturing of ceramics and cermets: present status and future perspectives. 2021 , 46, 1		3
156	The Effect of Different Surface Treatments on the Micromorphology and the Roughness of Four Dental CAD/CAM Lithium Silicate-Based Glass-Ceramics. 2021 , 4, 467-475		1
155	Examining the effects of acid etching duration on the bond strength between two CAD/CAM materials and one composite resin. 2021 , 1		О
154	Effect of Cement Layer Thickness on the Immediate and Long-Term Bond Strength and Residual Stress between Lithium Disilicate Glass-Ceramic and Human Dentin. <i>Materials</i> , 2021 , 14,	3.5	3
153	Influence of Different Surface Pretreatments of Zirconium Dioxide Reinforced Lithium Disilicate Ceramics on the Shear Bond Strength of Self-Adhesive Resin Cement. 2021 , 55, 264-279		О
152	PROTETE DE EDAVSEUYGULAMALARINDA ADEZYONUN NEME 1-1		
151	Shear bond strength between gingival composite resin and glazed gingival porcelain for		
	implant-supported prostheses. 2021 , 129, e12762		0
150	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. 2021 , 28, 315-326		0
150 149	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis		
	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. 2021 , 28, 315-326 Shear Bond Strength of Lithium Disilicate to Resin Cement After Treatment with Hydrofluoric Acid	2.5	1
149	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. 2021, 28, 315-326 Shear Bond Strength of Lithium Disilicate to Resin Cement After Treatment with Hydrofluoric Acid and a Self-etching Ceramic Primer. 2021, 24, Effect of aging on color stability and bond strength of dual-cured resin cement with amine or	2.5	0
149 148	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. 2021, 28, 315-326 Shear Bond Strength of Lithium Disilicate to Resin Cement After Treatment with Hydrofluoric Acid and a Self-etching Ceramic Primer. 2021, 24, Effect of aging on color stability and bond strength of dual-cured resin cement with amine or amine-free self-initiators. Dental Materials Journal, 2021,	2.5	1 0
149 148 147	Handcrafted digital light processing apparatus for additively manufacturing oral-prosthesis targeted nano-ceramic resin composites. 2021, 28, 315-326 Shear Bond Strength of Lithium Disilicate to Resin Cement After Treatment with Hydrofluoric Acid and a Self-etching Ceramic Primer. 2021, 24, Effect of aging on color stability and bond strength of dual-cured resin cement with amine or amine-free self-initiators. <i>Dental Materials Journal</i> , 2021, Application of Nanoparticles in Dentistry: Current Trends. 2020, 55-98	2.5	1 0 0

143	Qualitative evaluation of the adesive interface between lithium disilicate, luting composite and natural tooth. 2016 , 7, 1-3		3	
142	Influence of different luting agents on the marginal discrepancy of Procera Allceram alumina crown copingsan experimental study. 2008 , 51, 13-8		2	
141	Contemporary All-ceramic Systems âlPart 2. 2007 , 50, 105-107		2	
140	In Vitro Evaluation of the Effect of Different Surface Treatments of a Hybrid Ceramic on the Microtensile Bond Strength to a Luting Resin Cement. 2019 , 10, 297-303		4	
139	Influence of alumina air-abrasion for highly translucent partially stabilized zirconia on flexural strength, surface properties, and bond strength of resin cement. 2020 , 28, e20190371		13	
138	Bond strengths of various resin cements to different ceramics. 2019 , 33, e095		4	
137	Hydrofluoric Acid: Burns and Systemic Toxicity, Protective Measures, Immediate and Hospital Medical Treatment. 2018 , 6, 2257-2269		24	
136	Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study. Journal of Conservative Dentistry, 2016 , 19, 166-70	0.9	23	
135	evaluation of fracture resistance and cyclic fatigue resistance of computer-aided design-on and hand-layered zirconia crowns following cementation on epoxy dies. <i>Journal of Indian Prosthodontic Society, The,</i> 2020 , 20, 90-96	1.2	О	
134	Shear bond strength of metal brackets to ceramic surfaces using a universal bonding resin. 2018 , 10, e739-e745		8	
133	Fracture Resistance of Aluminium Oxide and Lithium Disilicate-based Crowns using Different Luting Cements: An in vitro Study. <i>Journal of Contemporary Dental Practice</i> , 2009 , 10, 51-58	0.7	11	
132	Silane Based Concepts on Bonding Resin Composite to Metals. <i>Journal of Contemporary Dental Practice</i> , 2007 , 8, 1-8	0.7	38	
131	Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-ceramic Material. <i>Journal of Contemporary Dental Practice</i> , 2016 , 17, 920-925	0.7	3	
130	Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview. <i>Journal of Contemporary Dental Practice</i> , 2017 , 18, 622-626	0.7	6	
129	A Review of Surface Treatment Methods to Improve the Adhesive Cementation of Zirconia-Based Ceramics. 2013 , 2013, 1-10		21	
128	Comparison of Bonding Strength by Cleaning Method of Pediatric Zirconia Crown Contaminated with Saliva or Blood. 2018 , 45, 185-194		1	
127	Evaluation of Shear Bond Strength of Feldspathic CAD/CAM Ceramic with Dentin using 2 Bonding Agents and 2 Surface Treatments- An Invitro Study. 2015 , 9, ZC36-9		2	
126	The effect of different cleaning agents and resin cement materials on the bond strength of contaminated zirconia. 2021 ,		O	

125	Systine Empress et restaurations prothitques. 2009 , 167-178	
124	Tandheelkundige adhesieven om te hechten aan tand- en restauratiemateriaal. 2010 , 216-230	
123	Effect of Air-Abrasion on Microshear Bond Strength of Two Resin Cements to Cercon Porcelain. 2010 , 4, 142-145	O
122	Vertical marginal gap & retention of ceramic full coverage & inlay retained ceramic fixed partial dentures. 2011 , 01, 140-149	О
121	Modes of Failure of Bonding Interfaces in Dentistry. 193-203	
120	Dental and Maxillofacial Surgery Applications of Polymers. 2013 , 783-836	
119	The Effect of Surface Treatment on the Shear Bond Strength of Zirconia Ceramics to Resin Cemen. 2013 , 29, 69-79	
118	Understanding and trends of esthetic treatment in prosthodontics : IPS e.max. 2014 , 14, 447-452	1
117	Effect of Different Surface Treatment on the Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal and Non-10-Methacryloyloxydecyl Dihydrogen Phosphate-Containing Resin Cement. 2014 , 7, 49-57	1
116	Clinical Evaluation of Disilicate and Zirconium in Dentistry. 2015 , 1-15	
115	Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive. 2015 , 8, 82-88	
114	Bond Strength of Zirconia to Different Core Materials. <i>World Journal of Dentistry</i> , 2016 , 7, 169-174 0.2	1
113	Dental and Maxillofacial Surgery. 2408-2442	
112	DEB YNTEMLERLE HAZIRLANAN METAL ALT YAPILAR ZERNDEK[VENEER PORSELENLERNN KIRILMA DRENCNE FARKLI ALT YAPI EKÜLERNN ETKSNN NCELENMES 1457-457	
111	Effect of the Surface Treatment of Zirconia and the pH of Artificial Saliva on Shear Bond Strengths Between Zirconia and Resin Cement. 2016 , 43, 307-316	
110	The Bond Strength of Nanohybrid and Nanoceramic Composites to Feldspathic Porcelain. 2017 , 8, 558-564	1
109	KUMLAMA [IEM]NDE KULLANILAN KUM PARTKÜLER]NN BNKLIVE BASINÜ FARKLILIININ ZRKONYUM VE REZIN SMAN BALIANMA DAYANIMI ZERNE ETKS (II 107-107	1
108	Comparative Evaluation of Shear Bond Strength of Newer Resin Cement (RelyX Ultimate and RelyX U200) to Lithium Disilicate and Zirconia Ceramics as Influenced by Thermocycling. 2018 , 9, 601-606	3

107	Challenge of smile rehabilitation in case of dental fluorosis. 2018 , 9,	
106	Ultrastructural analysis of dental ceramic surface processed by a 1070 nm fiber laser. 2018,	
105	EFFECT OF DIFFERENT SURFACE TREATMENT ON BOND STRENGTH OF RESIN CEMENT TO ZIRCONIUM AND LEUCITE-REINFORCED GLASS CERAMIC. 150-156	
104	BR NANOHBRII KOMPOZIIN TAMRNDE KULLANILAN FARKLI YZEY [IEMLER[VE KOMPOZII REZNLERN MKROSIZINTIYA ETKS[]	
103	Effect of Surface Conditioning Methods on Shear Bond Strength of Resin Luting Cement to All-ceramic Coping Material: An In Vitro Study. 2019 , 9, 18-24	
102	Effects of coloring procedures on shear bond strength between resin cement and colored zirconia. 2018 , 52, 122-126	
101	Avaliao da resisticia de unio de uma cerinica de lido de zircia submetida a tratamentos de superficie por abraso. 48,	
100	An comparison of the effect of various surface treatments on the tensile bond strength of three different luting cement to zirconia copings. <i>Journal of Indian Prosthodontic Society, The</i> , 2019 , 19, 26-32 1.2	3
99	A case report of esthetic and masticatory rehabilitation with ceramic restorations. 2019, 11, 423-426	
98	The difference between porcelain and composite resin shear bond strength in the administration of 4% and 19.81% silane. 2019 , 52, 27	
97	Bond Strength of Metal and Ceramic Brackets on Resin Nanoceramic Material With Different Surface Treatments. 2020 , 33, 115-122	О
96	Farkl-asitleme ilemlerinin lityum disilikat seramik sistemlerin ylley pfblllve balanma dayanm-lerine etkileri. <i>Selcuk Dental Journal</i> ,	
95	The Influence of Surface Treatments on Resin Bond Strength to Zirconia. 2020 , 2, 29-35	
94	Shear bond strength of orthodontic brackets to porcelain surface using universal adhesive compared to conventional method. <i>Dental Research Journal</i> , 2020 , 17, 19	3
93	Farkl-adeziv primerlerin lityum disilikat cam seramik ile rezin siman arasādaki balanma dayan ānā a etkisi. <i>Selcuk Dental Journal</i> ,	
92	Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching 2021 , 46, e54	O
91	Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements. 2020 , 12, 197-203	О
90	Cement selection criteria for full coverage restorations: A comprehensive review of literature. 2021 , 13, e1154-e1161	2

(2021-2020)

89	Effect of post etching cleansing on surface microstructure, surface topography, and microshear bond strength of lithium disilicate. <i>Journal of Indian Prosthodontic Society, The</i> , 2020 , 20, 363-370	1.2	1
88	The effects of different surface treatments on the shear bond strengths of two dual-cure resin cements to CAD/CAM restorative materials. 2020 , 12, 189-196		2
87	The survival and complication rates of all-ceramic cantilever bridges: A review of the literature. 2020 , 12, 209-224		
86	The effect of silane and universal adhesives on the micro-shear bond strength of current resin-matrix ceramics. 2021 , 13, 292-303		O
85	Frezlerle Ve Sonik Ularla Basamakl-Kole Preparasyonu Yapłm:Dilerin Ylley Pfbllbb Kartal:Olarak Aralf-tmas:-Selcuk Dental Journal,		
84	AIZIPORSELEN TAMR SETLERININ KESME BAIJANMA DAYANIMINA GARGARA KULLANIMININ ETKISI1-1		
83	Marginal integrity of CAD/CAM fixed partial dentures. European Journal of Dentistry, 2007, 1, 25-30	2.6	4
82	Bonding all-ceramic restorations with two resins cement techniques: a clinical report of three-year follow-up. <i>European Journal of Dentistry</i> , 2011 , 5, 478-85	2.6	5
81	Zirconia: cementation of prosthetic restorations. Literature review. ORAL and Implantology, 2010, 3, 25	-9	17
80	Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar. <i>Journal of Dentistry of Tehran University of Medical Sciences</i> , 2012 , 9, 196-203		2
79	Effect of Coloring-by-Dipping on Microtensile Bond Strength of Zirconia to Resin Cement. <i>Journal of Dentistry of Tehran University of Medical Sciences</i> , 2015 , 12, 414-23		
78	Deposition of Crystalline Hydroxyapatite Nanoparticles on Y-TZP Ceramic: A Potential Solution to Enhance Bonding Characteristics of Y-TZP Ceramics. <i>Journal of Dentistry of Tehran University of Medical Sciences</i> , 2017 , 14, 62-68		1
77	Effect of Storage Time of a Ceramic Primer on Microshear Bond Strength to Zirconia. <i>Journal of Dentistry of Tehran University of Medical Sciences</i> , 2018 , 15, 375-381		
76	Shear bond strength of orthodontic brackets to porcelain surface using universal adhesive compared to conventional method. <i>Dental Research Journal</i> , 2020 , 17, 19-24	0.8	1
75	[Establishment and mechanisms of chemical interaction between phosphate monomer and zirconia model]. <i>Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology</i> , 2017 , 35, 145-149		
74	[Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites]. <i>Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology</i> , 2017 , 35, 593-597		
73	Shear Bond Strength of Zirconia Ceramic to Four Different Core Materials, An Study. <i>Journal of Dentistry</i> , 2021 , 22, 138-143	0.5	
72	Effect of different laser treatments on the shear bond strength of zirconia ceramic to resin cement. <i>Dental Research Journal</i> , 2021 , 18, 56	0.8	

71	Is the application of a silane-based coupling agent necessary to stabilize the fatigue performance of bonded simplified lithium disilicate restorations?. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 126, 104989	4.1	O
70	The effects of different silicatization and silanization protocols on the bond durability of resin cements to new high-translucent zirconia. <i>Clinical Oral Investigations</i> , 2021 , 1	4.2	3
69	Is the bond strength of zirconia-reinforced lithium silicate lower than that of lithium disilicate? A systematic review and metaanalysis. <i>Journal of Prosthodontic Research</i> , 2021 ,	4.3	0
68	Durability of resin bonding to lithium disilicate using different self-etching and conventional ceramic primers after long-term aging <i>Dental Materials</i> , 2022 ,	5.7	О
67	Evaluation of Micro-Shear Bond Strength of Four Different CAD-CAM Polymer-Infiltrated Ceramic Materials after Thermocycling. <i>Journal of Prosthodontics</i> , 2021 ,	3.9	O
66	Effects of Novel versus Conventional Porcelain Surface Treatments on Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis <i>BioMed Research International</i> , 2022 , 2022, 8246980	3	O
65	Comparative evaluation of effect of One Coat 7 Universal and Tetric N-Bond Universal adhesives on shear bond strength at resin-zirconia interface: An study <i>Journal of Conservative Dentistry</i> , 2021 , 24, 336-340	0.9	0
64	The Effect of Curing Pressure on Shear Bond Strength of Zirconia to Resin Cement. <i>Open Dentistry Journal</i> , 2021 , 15, 410-416	0.8	
63	Shear bond strengths of various resin cements between three types of adherends and bovine teeth with and without thermocycling <i>Dental Materials Journal</i> , 2022 , 41,	2.5	
62	Different surface treatment strategies on etchable CAD-CAM materials: Part II-Effect on the bond strength <i>Journal of Prosthetic Dentistry</i> , 2022 ,	4	O
61	The resin bond to high-translucent zirconia-A systematic review <i>Journal of Esthetic and Restorative Dentistry</i> , 2022 ,	3.5	1
60	Microstructural considerations for novel lithium disilicate glass ceramics: A review <i>Journal of Esthetic and Restorative Dentistry</i> , 2022 ,	3.5	5
59	A comparative evaluation of different saliva cleaning regimens on the shear bond strength of two different ceramics with resin cement: An in vitro study. <i>SRM Journal of Research in Dental Sciences</i> , 2022 , 13, 17	0.2	
58	Effects of two methyl methacrylate-tributylborane-based luting agents with a silane-phosphate primer on bonding of four different CAD/CAM resin composite materials <i>Journal of Oral Science</i> , 2022 , 64, 167-171	1.5	O
57	Effect of universal adhesives and self-etch ceramic primers on bond strength to glass ceramics: A systematic review and meta-analysis of in vitro studies <i>Journal of Prosthetic Dentistry</i> , 2022 ,	4	2
56	Revolution of Current Dental Zirconia: A Comprehensive Review <i>Molecules</i> , 2022 , 27,	4.8	4
55	Do resin cement viscosity and ceramic surface etching influence the fatigue performance of bonded lithium disilicate glass-ceramic crowns?. <i>Dental Materials</i> , 2021 ,	5.7	0
54	Color stability of a resin nanoceramic after surface treatments, adhesive cementation, and thermal aging <i>Journal of Prosthetic Dentistry</i> , 2021 ,	4	O

53	A comprehensive in vitro study on the performance of two different strategies to simplify adhesive bonding <i>Journal of Esthetic and Restorative Dentistry</i> , 2022 ,	3.5	3
52	Resin Cement Residue Removal Techniques: In Vitro Analysis of Marginal Defects and Discoloration Intensity Using Micro-CT and Stereomicroscopy <i>Dentistry Journal</i> , 2022 , 10,	3.1	O
51	Preparation and properties of Si3N4 ceramics via digital light processing using Si3N4 powder coated with Al2O3-Y2O3 sintering additives. <i>Additive Manufacturing</i> , 2022 , 53, 102713	6.1	О
50	Do zirconia single-retainer resin-bonded fixed dental prostheses present a viable treatment option for the replacement of missing anterior teeth? A systematic review and meta-analysis. <i>Journal of Prosthetic Dentistry</i> , 2021 ,	4	
49	Surface Treatment Effect on Shear Bond Strength between Lithium Disilicate Glass-Ceramic and Resin Cement <i>European Journal of Dentistry</i> , 2021 ,	2.6	
48	Effects of surface modification techniques on zirconia substrates and their effect on bonding to dual cure resin cement - An in- vitro study. <i>Journal of Indian Prosthodontic Society, The</i> , 2022 , 22, 179	1.2	
47	Bonding CAD/CAM materials with current adhesive systems: An overview. <i>Saudi Dental Journal</i> , 2022 ,	2.5	1
46	Effect of Zirconia Core Thickness, Firing Cycle and Veneering Technique on Biaxial Flexural Strength of Veneering Porcelain in Porcelain Veneered Zirconia Restorations. <i>World Journal of Dentistry</i> , 2022 , 13, 191-200	0.2	
45	Surface Treatment and Cementation of Lithium Silicate Ceramics Containing ZrO2 <i>Operative Dentistry</i> , 2022 ,	2.9	1
44	SMANTASYON NCESIZRKONYUM SERAMRLERE UYGULANAN YZEY DEMLERÜ <i>Selcuk Dental Journal</i> ,		
43	Evaluation of Cleaning Methods on Lithium Disilicate Glass Ceramic Surfaces After Organic Contamination <i>Operative Dentistry</i> , 2022 ,	2.9	O
42	Clinical longevity and trend analysis of 801 ultrathin ceramic veneers: A clinical cohort study. <i>Journal of Prosthetic Dentistry</i> , 2022 ,	4	
41	In vivo biocompatible shape memory polyester derived from recycled polycarbonate e-waste for biomedical application. 2022 , 212961		1
40	Silica deposition on zirconia via Room-Temperature Atomic Layer Deposition and bond strength to resin-based luting agent. <i>Ceramics International</i> , 2022 ,	5.1	
39	Bonding of Clear Aligner Composite Attachments to Ceramic Materials: An In Vitro Study. <i>Materials</i> , 2022 , 15, 4145	3.5	1
38	In Vitro Comparative Evaluation of Bond Strength of CAD/CAM Monolithic Zirconia Copings Influenced by Luting Agents and Finish Line Design. <i>Journal of Contemporary Dental Practice</i> , 2022 , 23, 343-350	0.7	
37	Influence of mechanical and chemical pre-treatments on the repair of a hybrid ceramic. <i>Dental Materials</i> , 2022 , 38, 1140-1148	5.7	О
36	A systematic review and meta-analysis of bond strength studies associated with self-etching primer and HF acid etching of dental glass-ceramics. <i>International Journal of Adhesion and Adhesives</i> , 2022 , 118, 103216	3.4	

35	8-year multicenter retrospective study on partial laminate veneers. <i>Journal of Prosthodontic Research</i> , 2022 ,	4.3	О
34	Effect of air abrasion, acid etching, and aging on the shear bond strength with resin cement to 3Y-TZP zirconia. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022 , 134, 105348	4.1	О
33	Assessment of Different Techniques for Adhesive Cementation of All-Ceramic Systems. <i>Medicina</i> (Lithuania), 2022 , 58, 1006	3.1	O
32	Does surface treatment with primers increase the shear bond strength between metallic bracket and monolithic zirconia?.		
31	EFFECT OF SURFACE TREATMENT METHODS ON SHEAR BOND STRENGTH OF RESIN MATRIX CERAMICS.		
30	Effect of surface treatment, ferrule height, and luting agent type on pull-out bond strength of monolithic zirconia endocrowns. 2022 , 64, 279-282		O
29	Effect of Self-cured Universal Adhesive System on Shear Bond Strengths of Conventional and Bulk-fill Composites. 271-277		0
28	Ceramic Inlays: A Case Report. 2022 ,		O
27	Adhesion concepts and techniques for laboratory-processed indirect dental restorations. 2022,		0
26	Current Protocols for Resin-Bonded Dental Ceramics. 2022 , 66, 603-625		O
25	Effect of 9% Hydrofluoric Acid Gel Hot-Etching Surface Treatment on Shear Bond Strength of Resin Cements to Zirconia Ceramics. 2022 , 58, 1469		О
24	Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: impact on the chemical bonding with silane. 2022 , 9, 035-041		О
23	Effects of Particle Abrasion Media and Pressure on Flexural Strength and Bond Strength of Zirconia. 2022 ,		O
22	Surface roughness and characteristics of CAD/CAM zirconia and glass ceramics after combined treatment procedures. 2022 , 22,		O
21	Phase Formation, Mechanical Strength, and Bioactive Properties of Lithium Disilicate Glassâlleramics with Different Al2O3 Contents. 2022 , 15, 8283		0
20	Ceramic Bonding Interface under Shearâllompression Stress: Ultra-High-Speed Imaging Contribution. 002203452211385		O
19	Clinical Applications of Digital Technology in Fixed Prosthodontics. 2023 , 122-153		О
18	Operator versus material influence on film thickness using adhesive resin cement or pre-heated resin composite.		O

CITATION REPORT

17	Effect of different surface treatments on resin-matrix CAD/CAM ceramics bonding to dentin: in vitro study. 2022 , 22,	1
16	Marginal Fit of Porcelain Laminate Veneer Materials under Thermocycling Condition: An In-Vitro Study. 2023 , 11, 12	O
15	Effect of Hydroxyapatite Coating in Combination with Physical Modifications on Microshear Bond Strength of Zirconia to Resin Cement. 2023 , 2023, 1-8	O
14	Roughness of the Surface of Zirconia Reinforced Lithium Disilicate Ceramic Treated by Different Procedures. 2023 , 16, 265	O
13	An investigation on fatigue, fracture resistance, and color properties of aesthetic CAD/CAM monolithic ceramics.	O
12	Repair bond strength of different CAD-CAM ceramics after various surface treatments combined with laser irradiation. 2023 , 38,	O
11	Selection of Luting Agents: Part 2. 2006 , 34, 161-166	0
10	Effect of ceramic primers with different chemical contents on the shear bond strength of CAD/CAM ceramics with resin cement after thermal ageing. 2023 , 23,	O
9	Infiltrating fluorapatite glass-ceramics on the surface of dental 3 % yttria-stabilized zirconia to enhance bond strength. 2023 , 461, 129436	0
8	Cleaning methods of contaminated zirconia: A systematic review and meta-analysis. 2023 , 39, 235-245	O
7	Comparative Analysis of Three Surface Treatments on the Bond Strength of Zirconia to Resin-luting Agents: An In Vitro Study. 2023 , 23, 883-888	O
6	Assessment of Intra-Oral Repair Systems for Veneered Zirconia and Zirconia Only. 2023 , 16, 1407	O
5	Evaluation of bond strength of glass and resin-ceramics with laser phototherapy: A systematic review and meta-analysis of in vitro studies. 2023 ,	О
4	Effect of Anti-COVID-19 Mouthwashes on Shear Bond Strength of Resin-Matrix Ceramics Repaired with Resin Composite Using Universal Adhesive: An In Vitro Study. 2023 , 14, 158	O
3	Effects of Translucency and Thickness of Lithium Disilicate-Reinforced Glass-Ceramic Veneers on the Degree of Conversion of a Purely Light-Curing Bonding Resin: An In Vitro Study. 2023 , 15, 1617	O
2	Comparison of the Micro-Shear Bond Strength of Resin Cements to CAD/CAM Glass Ceramics with Various Surface Treatments. 2023 , 16, 2635	O
1	Interfacial fatigue fracture of elastomer bilayers under cyclic large deformation. 2023, 285, 109295	0