CITATION REPORT List of articles citing

Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period

DOI: 10.1016/s1352-2310(02)00918-4 Atmospheric Environment, 2003, 37, 499-510.

Source: https://exaly.com/paper-pdf/34994769/citation-report.pdf

Version: 2024-04-17

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
397	Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. 2003 , 108,		60
396	Aerosol sampling and sample preparation for elemental analysis. 2003, 41, 903-934		O
395	On the formation of radiation fogs under heavily polluted conditions. <i>Atmospheric Chemistry and Physics</i> , 2003 , 3, 581-589	6.8	22
394	An evaluation of public health impact of ambient air pollution under various energy scenarios in Shanghai, China. <i>Atmospheric Environment</i> , 2004 , 38, 95-102	5.3	56
393	Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air. <i>Atmospheric Environment</i> , 2004 , 38, 227-236	5.3	77
392	Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway densitythe Greater Cincinnati study. <i>Atmospheric Environment</i> , 2004 , 38, 1091-1105	5.3	82
391	Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10. <i>Atmospheric Environment</i> , 2004 , 38, 1511-1521	5.3	100
390	Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002. <i>Atmospheric Environment</i> , 2004 , 38, 1795-1800	5.3	56
389	Wintertime sources and distribution of airborne lead in Korea. <i>Atmospheric Environment</i> , 2004 , 38, 2653	3- <u>3.6</u> 64	36
388	Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. <i>Atmospheric Environment</i> , 2004 , 38, 4447-4456	5.3	332
387	The air-borne particulate pollution in BeijingBoncentration, composition, distribution and sources. <i>Atmospheric Environment</i> , 2004 , 38, 5991-6004	5.3	473
386	A technology-based global inventory of black and organic carbon emissions from combustion. 2004 , 109,		1653
385	One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 1449-1457	6.8	142
384	Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China. <i>Atmospheric Chemistry and Physics</i> , 2005 , 5, 3127-3137	6.8	397
383	Characterization of size-fractionated particulate mercury in Shanghai ambient air. <i>Atmospheric Environment</i> , 2005 , 39, 419-427	5.3	69
382	A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. <i>Atmospheric Environment</i> , 2005 , 39, 1245-1253	5.3	219
381	Review of atmospheric metallic elements in Asia during 2000\(\mathbb{Q}\)004. <i>Atmospheric Environment</i> , 2005 , 39, 3003-3013	5.3	68

(2006-2005)

380	The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. <i>Atmospheric Environment</i> , 2005 , 39, 3735-3749	5.3	220
379	The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment, 2005, 39, 3771-	·3 7 .84	505
378	A review of intraurban variations in particulate air pollution: Implications for epidemiological research. <i>Atmospheric Environment</i> , 2005 , 39, 6444-6462	5.3	274
377	Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China. <i>Atmospheric Environment</i> , 2005 , 39, 6463-6474	5.3	123
376	Characterization of atmospheric mineral components of PM2.5 in Beijing and Shanghai, China. <i>Science of the Total Environment</i> , 2005 , 343, 221-30	10.2	63
375	Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. 2005 , 40, 329-341		76
374	Review of atmospheric water-soluble ionic species in Asia during 1998-2001. 2005 , 21, 189-96		7
373	Characterization of carbonaceous species of ambient PM2.5 in Beijing, China. 2005 , 55, 984-92		16
372	Characterization and sources of regional-scale transported carbonaceous and dust aerosols from different pathways in coastal and sandy land areas of China. 2005 , 110,		29
371	Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing. 2005 , 110,		94
370	Particulate carbon in the atmosphere of a Finnish forest and a German anthropogenically influenced grassland. <i>Atmospheric Research</i> , 2006 , 80, 133-150	5.4	16
369	Measurements of gas and aerosol for two weeks in northern China during the winter pring period of 2000, 2001 and 2002. <i>Atmospheric Research</i> , 2006 , 82, 688-697	5.4	12
368	Characteristics of organic matter in PM2.5 in Shanghai. <i>Chemosphere</i> , 2006 , 64, 1393-400	8.4	120
367	Relative levels of indoor and outdoor particle number concentrations in a residential building in Xi'an. 2006 , 4, 342-345		3
366	Chemical composition of atmospheric aerosol (PM10) at a semi-arid urban site: influence of terrestrial sources. 2006 , 117, 291-305		31
365	Pollution characteristics of atmospheric fine particles and their secondary components in the atmosphere of Shenzhen in summer and in winter. 2006 , 49, 466-474		23
364	A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. <i>Atmospheric Environment</i> , 2006 , 40, 136-146	5.3	63
363	An investigation on NH3 emissions and particulate NH4+NO3Iformation in East Asia. <i>Atmospheric Environment</i> , 2006 , 40, 2139-2150	5.3	52

362	Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. <i>Atmospheric Environment</i> , 2006 , 40, 2973-2985	5.3	84
361	The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. <i>Atmospheric Environment</i> , 2006 , 40, 2935-2952	5.3	399
360	A comparative study of the organic matter in PM2.5 from three Chinese megacities in three different climatic zones. <i>Atmospheric Environment</i> , 2006 , 40, 3983-3994	5.3	147
359	Inventory of black carbon and organic carbon emissions from China. <i>Atmospheric Environment</i> , 2006 , 40, 6516-6527	5.3	291
358	Atmospheric levels and cytotoxicity of PAHs and heavy metals in TSP and PM2.5 at an electronic waste recycling site in southeast China. <i>Atmospheric Environment</i> , 2006 , 40, 6945-6955	5.3	254
357	Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001-2002. <i>Science of the Total Environment</i> , 2006 , 355, 264-75	10.2	195
356	Characterization of PM(2.5) in the ambient air of Shanghai City by analyzing individual particles. <i>Science of the Total Environment</i> , 2006 , 368, 916-25	10.2	87
355	Exposure to PM2.5 and PAHs from the Tong Liang, China epidemiological study. 2006 , 41, 517-42		39
354	A comparative study on black carbon aerosol observations in regions of Beijing and Lhasa in 2006. 2007 ,		2
353	Springtime soluble particles in a suburban area of Taichung in central Taiwan. <i>Atmospheric Research</i> , 2007 , 86, 30-41	5.4	6
352	Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China. <i>Environment International</i> , 2007 , 33, 1063-9	12.9	219
351	Export of toxic chemicals - a review of the case of uncontrolled electronic-waste recycling. <i>Environmental Pollution</i> , 2007 , 149, 131-40	9.3	579
350	Source apportionment of ambient total suspended particulates and coarse particulate matter in urban areas of Jiaozuo, China. 2007 , 57, 561-75		28
349	Global impacts of aerosols from particular source regions and sectors. 2007, 112,		191
348	Is vehicle exhaust a significant primary source of oxalic acid in ambient aerosols?. 2007, 34,		45
347	Chemical composition and source characterization of spring aerosol over Horqin sand land in northeastern China. 2007 , 112,		100
346			
	Spatial and seasonal distributions of carbonaceous aerosols over China. 2007 , 112,		363

(2008-2007)

34	In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing. 2007 , 112,		20
34.	Study of aluminium distribution and speciation in atmospheric particles of different diameters in Nanjing, China. <i>Atmospheric Environment</i> , 2007 , 41, 5788-5796	5.3	7
34	.2 Characterization of carbonaceous aerosols in urban air. <i>Atmospheric Environment</i> , 2007 , 41, 6872-6883	5.3	109
34	Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. <i>Atmospheric Environment</i> , 2007 , 41, 6762-6770	5.3	119
34	Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. Atmospheric Environment, 2007 , 41, 6901-6908	5.3	94
339	Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment. <i>Science of the Total Environment</i> , 2007 , 373, 13-21	10.2	50
33	8 Air pollution and its control in China. 2007 , 1, 129-142		62
337	A study of the origin of individual PM2.5 particles in Shanghai air with synchrotron X-ray fluorescence microprobe. 2007 , 260, 336-342		10
330	6 Chemical characteristics of carbonaceous aerosols during dust storms over Xian in China. 2008 , 25, 847-	-855	9
33.	Simulation of direct effects of black carbon aerosol on temperature and hydrological cycle in Asia by a Regional Climate Model. 2008 , 100, 179-193		31
334	Chemical composition of urban aerosols in Toulouse, France during CAPITOUL experiment. 2008 , 102, 307-323		23
333	3 Organic carbon and elemental carbon in Asia: a review from 1996 to 2006. 2008 , 150, 231-7		19
33	Characteristics of trace elements and lead isotope ratios in PM(2.5) from four sites in Shanghai. 2 2008, 156, 36-43		112
33:	Air pollution in mega cities in China. <i>Atmospheric Environment</i> , 2008 , 42, 1-42	5.3	1818
330	Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. <i>Atmospheric Environment</i> , 2008 , 42, 2405-2414	5.3	65
32	Size-segregated particulate chemical composition in Xinken, Pearl River Delta, China: OC/EC and organic compounds. <i>Atmospheric Environment</i> , 2008 , 42, 6296-6309	5.3	38
32	The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM2.5) in Shanghai atmosphere. <i>Atmospheric Environment</i> , 2008 , 42, 7205-7214	5.3	67
32	$_{7}$ Carbonaceous aerosol composition over various regions of China during 2006. 2008 , 113,		170

326	The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research, 2008, 89, 14	9-3640	154
325	The PCDD/F and PBDD/F pollution in the ambient atmosphere of Shanghai, China. <i>Chemosphere</i> , 2008 , 70, 576-83	8.4	96
324	Chemical Elements and their Source Apportionment of Fine Particulates (PM2.5) in Shanghai Atmosphere. 2008 ,		
323	Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China. 2008 , 58, 1560-70		108
322	Characterization of Metal Species in TSP and PM10 Aerosols in Jiaozuo, China. 2008,		1
321	Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 7637-7649	6.8	53
320	Characteristics of Major PM2.5 Components during Winter in Tianjin, China. 2009, 9, 105-119		24
319	Influence of ozone and humidity on the formation of sulfate and nitrate in airborne fine particles. 2009 , 44, 767-77		3
318	Source identification of individual PM 2.5 particles in Shanghai air in the winter of 2007 with synchrotron X-ray fluorescence microprobe. 2009 , 33, 960-964		2
317	Aerosol background at two remote CAWNET sites in western China. <i>Science of the Total Environment</i> , 2009 , 407, 3518-29	10.2	31
317		10.2 5·3	200
	Environment, 2009 , 407, 3518-29		
316	Environment, 2009, 407, 3518-29 Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 2009, 43, 79-86 Optical and microphysical properties of severe haze and smoke aerosol measured by integrated	5.3	200
316 315	Managing air quality in a rapidly developing nation: China. <i>Atmospheric Environment</i> , 2009 , 43, 79-86 Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. <i>Atmospheric Environment</i> , 2009 , 43, 879-888 Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric	5·3 5·3	200
316 315 314	Managing air quality in a rapidly developing nation: China. <i>Atmospheric Environment</i> , 2009 , 43, 79-86 Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. <i>Atmospheric Environment</i> , 2009 , 43, 879-888 Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis. <i>Atmospheric Environment</i> , 2009 , 43, 1591-1602 lonic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China.	5·3 5·3	200 62 28
316 315 314 313	Managing air quality in a rapidly developing nation: China. <i>Atmospheric Environment</i> , 2009 , 43, 79-86 Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. <i>Atmospheric Environment</i> , 2009 , 43, 879-888 Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis. <i>Atmospheric Environment</i> , 2009 , 43, 1591-1602 lonic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China. <i>Atmospheric Environment</i> , 2009 , 43, 2911-2918 Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in	5·3 5·3 5·3	200 62 28 252
316 315 314 313 312	Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 2009, 43, 79-86 Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. Atmospheric Environment, 2009, 43, 879-888 Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis. Atmospheric Environment, 2009, 43, 1591-1602 lonic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi'an, China. Atmospheric Environment, 2009, 43, 2911-2918 Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment, 2009, 43, 2893-2900 Quantitative chemical composition and characteristics of aerosols over western India: One-year	5·3 5·3 5·3	200 62 28 252 277

(2010-2009)

308	Review of the applications of Multiangle Imaging SpectroRadiometer to air quality research. 2009 , 52, 132-144		14
307	Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. 2009 , 7, 161-168		106
306	Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. 2009 , 7, 432-437		47
305	Occurrence and sources of polycyclic aromatic hydrocarbons and n-alkanes in PM(2.5) in the roadside environment of a major city in China. 2009 , 170, 888-94		59
304	Atmospheric Pb levels over Mount Qomolangma region. 2009 , 7, 211-214		6
303	Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. 2009 , 7, 68-75		113
302	Elemental composition of aerosols in Daihai, a rural area in the front boundary of the summer Asian monsoon. <i>Atmospheric Research</i> , 2009 , 92, 229-235	5.4	21
301	Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. <i>Atmospheric Research</i> , 2009 , 92, 434-442	5.4	181
300	Black carbon relationships with emissions and meteorology in Xi'an, China. <i>Atmospheric Research</i> , 2009 , 94, 194-202	5.4	142
299	Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan. 2009 , 114,		46
298	Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006). 2009 , 114,		81
297	Impact of ambient air pollution on public health under various traffic policies in Shanghai, China. 2009 , 22, 210-5		21
296	Spatial distribution and interannual variation of surface PM₁₀ concentrations over eighty-six Chinese cities. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5641-5662	6.8	132
295	Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 595-607	6.8	156
294	Impact assessment of respirable suspended particulate matter from diesel generator sets used for pumping station. 2010 , 85, 437-41		
293	Model analysis of aerosol optical depth distributions over East Asia. 2010 , 53, 1079-1090		13
292	Diurnal variations of water-soluble ions in PM2.5 in Shanghai. 2010 , 14, 235-240		1
291	Characterization of Elemental Species in PM2.5 Samples Collected in Four Cities of Northeast China. <i>Water, Air, and Soil Pollution</i> , 2010 , 209, 15-28	2.6	64

290	Diurnal variations of polycyclic aromatic hydrocarbons associated with PM2.5 in Shanghai, China. 2010 , 22, 389-96		51
289	Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China. 2010 , 22, 405-12		47
288	Pollution situation and possible markers of different sources in the Ordos Region, Inner Mongolia, China. <i>Science of the Total Environment</i> , 2010 , 408, 624-35	10.2	15
287	Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan. <i>Atmospheric Environment</i> , 2010 , 44, 1632-1640	5.3	14
286	Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. <i>Atmospheric Environment</i> , 2010 , 44, 2668-2673	5.3	81
285	Atmospheric transport and deposition of anthropogenic substances from the Asia to the East China Sea. 2010 , 120, 108-115		55
284	A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. 2010 , 30, 28-41		395
283	Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. 2010 , 115,		74
282	Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004. 2010 , 115,		44
281	Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. 2010 , 115,		21
280	Black carbon in a continental semi-arid area of Northeast China and its possible sources of fire emission. 2010 , 115,		31
279	Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China. 2010 , 115,		12
278	Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and Edicarbonyls. 2010 , 115,		56
277	Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. <i>Atmospheric Research</i> , 2010 , 98, 148-162	5.4	81
276	Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000\(\textbf{Q} 008. \) Atmospheric Research, 2010 , 98, 368-377	5.4	24
275	Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China. <i>Chemosphere</i> , 2010 , 80, 800-6	8.4	53
274	Review of Atmospheric Particulate Mass and Soluble Ions Concentrations from Korea, China, Spain, Italy, and Japan During 2000 2 010. <i>Environmental Forensics</i> , 2011 , 12, 124-133	1.6	2
273	An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. 2011 , 116, 16		58

272	Seasonal and diurnal variations of black carbon and organic carbon aerosols in Bangkok. 2011, 116,		63
271	Black carbon and its correlation with trace gases at a rural site in Beijing: Top-down constraints from ambient measurements on bottom-up emissions. 2011 , 116, n/a-n/a		37
270	Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. <i>Atmospheric Research</i> , 2011 , 99, 353-364	5.4	40
269	Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42]=1.5. <i>Atmospheric Research</i> , 2011 , 99, 488-495	5.4	55
268	Numerical Simulation of the Direct Effects on Climate in East Asia Induced by Carbonaceous Aerosol. 2011 , 10, 178-184		4
267	Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 10911-10928	6.8	24
266	Air quality and emissions in the Yangtze River Delta, China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1621-1639	6.8	130
265	Carbonaceous species in PM _{2.5} at a pair of rural/urban sites in Beijing, 2005\(\mathbb{Q}\)008. Atmospheric Chemistry and Physics, 2011, 11, 7893-7903	6.8	60
264	Characteristics of PM_{2.5} speciation in representative megacities and across China. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 5207-5219	6.8	473
263	Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. 2011 , 2, 358-365		16
263 262	Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. 2011 , 2, 358-365 Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011 , 21, 479-88		16
	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion	10.2	
262	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011 , 21, 479-88 Chemical characterization of PMIand PMIImass concentrations emitted by heterogeneous	10.2	107
262	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011, 21, 479-88 Chemical characterization of PMIand PMIImass concentrations emitted by heterogeneous traffic. Science of the Total Environment, 2011, 409, 3144-57 Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate		107
262 261 260	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011, 21, 479-88 Chemical characterization of PMIand PMIImass concentrations emitted by heterogeneous traffic. Science of the Total Environment, 2011, 409, 3144-57 Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment, 2011, 45, 736-744 Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric	5.3	107 37 29
262 261 260 259	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011, 21, 479-88 Chemical characterization of PMIand PMImass concentrations emitted by heterogeneous traffic. Science of the Total Environment, 2011, 409, 3144-57 Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment, 2011, 45, 736-744 Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric Environment, 2011, 45, 1359-1363 Two-year observations of fine carbonaceous particles in variable sampling intervals. Atmospheric	5·3 5·3	107 37 29 117
262 261 260 259 258	Patterns and predictors of personal exposure to indoor air pollution from biomass combustion among women and children in rural China. 2011, 21, 479-88 Chemical characterization of PMIand PMIImass concentrations emitted by heterogeneous traffic. Science of the Total Environment, 2011, 409, 3144-57 Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmospheric Environment, 2011, 45, 736-744 Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels. Atmospheric Environment, 2011, 45, 1359-1363 Two-year observations of fine carbonaceous particles in variable sampling intervals. Atmospheric Environment, 2011, 45, 2418-2426 Application of MM5 in China: Model evaluation, seasonal variations, and sensitivity to horizontal	5·35·35·3	107 37 29 117 8

254	Chemical composition of PM2.5 during winter in Tianjin, China. 2011 , 9, 215-221		80
253	Impacts of internally and externally mixed anthropogenic sulfate and carbonaceous aerosols on East Asian climate. 2011 , 25, 639-658		6
252	Assessment of fine particulate matter (PM2.5) in metropolitan Karachi through satellite and groundBased measurements. 2011 , 5, 053546		3
251	Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. 2012 , 62, 1214-26		290
250	Hotel Indoor Air Quality Enhancement: Research Agenda. 2012 , 8, 1-18		3
249	Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 779-799	6.8	626
248	The Role of Aerosol in Climate Change, the Environment, and Human Health. 2012, 5, 156-161		22
247	Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 105-124	6.8	153
246	Spatial and seasonal variability of PM_{2.5} acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1377-1395	6.8	133
245	Ionic and carbonaceous compositions of PM ₁₀ , PM _{2.5} and PM _{1.0} at Gosan ABC Superstation and their ratios as source signature. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2007-2024	6.8	90
244	Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4897-4907	6.8	117
243	The chemical composition and sources of PM2.5 during the 2009 Chinese New Year's holiday in Shanghai. <i>Atmospheric Research</i> , 2012 , 118, 435-444	5.4	80
242	Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China. <i>Atmospheric Environment</i> , 2012 , 60, 121-131	5.3	28
241	Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009 May 2010. <i>Atmospheric Research</i> , 2012 , 106, 150-158	5.4	67
240	The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. 2012 , 77, 72-83		178
239	Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. 2012 , 39, n/a-n/a		156
238	Characteristics and sources of non-methane hydrocarbons and halocarbons in wintertime urban atmosphere of Shanghai, China. 2012 , 184, 5957-70		11
237	Aerosol properties at gosan in Korea during two pollution episodes caused by contrasting weather conditions. 2012 , 48, 25-33		12

236	Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers. 2012 , 6, 98-105		15
235	Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in XiIIn, China. <i>Atmospheric Environment</i> , 2012 , 46, 217-224	5.3	128
234	Airborne fine particulate pollution in Jinan, China: Concentrations, chemical compositions and influence on visibility impairment. <i>Atmospheric Environment</i> , 2012 , 55, 506-514	5.3	98
233	Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. <i>Science of the Total Environment</i> , 2012 , 414, 525-34	10.2	71
232	Characterization of major pollution events (dust, haze, and two festival events) at Agra, India. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 5737-52	5.1	28
231	Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers. <i>Atmospheric Environment</i> , 2013 , 79, 614-622	5.3	92
230	Long term climatology of particulate matter and associated microphysical and optical properties over Dibrugarh, North-East India and inter-comparison with SPRINTARS simulations. <i>Atmospheric Environment</i> , 2013 , 69, 334-344	5.3	19
229	Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. <i>Atmospheric Environment</i> , 2013 , 75, 265-269	5.3	107
228	Chemical characteristics of PM2.5 during dust storms and air pollution events in Chengdu, China. 2013 , 11, 70-77		49
227	All the Lead in China. Critical Reviews in Environmental Science and Technology, 2013, 43, 1869-1944	11.1	53
226	Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. <i>Atmospheric Research</i> , 2013 , 122, 270-283	5.4	183
225	Analysis of spatial and seasonal distributions of MODIS aerosol optical properties and ground-based measurements of mass concentrations in the Yellow Sea region in 2009. 2013 , 185, 369-8	32	11
224	Characterization of secondary aerosol and its extinction effects on visibility over the Pearl River Delta Region, China. 2013 , 63, 1012-21		22
223	Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. <i>Atmospheric Environment</i> , 2013 , 64, 200-207	5.3	93
222	Aerosol single scattering albedo affected by chemical composition: An investigation using CRDS combined with MARGA. <i>Atmospheric Research</i> , 2013 , 124, 149-157	5.4	22
221	Indoor and outdoor relationships of CO concentrations in natural ventilating rooms in summer, Shanghai. 2013 , 62, 69-76		15
220	Variation of PM2.5 concentration in Hangzhou, China. 2013 , 11, 55-62		14
219	Effect of atmospheric parameters on fine particulate concentration in suburban Shanghai. 2013 , 11, 48-	-54	4

218	Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China. 2013, 30, 1070-108	4	82
217	The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. <i>Atmospheric Environment</i> , 2013 , 74, 413-421	5.3	101
216	Model analysis of long-term trends of aerosol concentrations and direct radiative forcings over East Asia. 2013 , 65, 20410		14
215	Sulfate-nitrate-ammonium aerosols over China: response to 2000\(\mathbb{Z}\)015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 2635-2652	6.8	262
214	Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China. 2013 , 65, 20281		48
213	Characteristics of concentrations and chemical compositions for PM_{2.5} in the region of Beijing, Tianjin, and Hebei, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 4631-4644	6.8	315
212	Source Apportionment of Carbonaceous Particulate Matter in a Shanghai Suburb Based on Carbon Isotope Composition. 2013 , 47, 239-248		6
211	Chemical composition, diurnal variation and sources of PM2.5 at two industrial sites of South China. 2013 , 4, 298-305		35
210	Characteristics and sources of carbonaceous aerosols from Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 803-817	6.8	102
209	How to improve the air quality over megacities in China: pollution characterization and source analysis in Shanghai before, during, and after the 2010 World Expo. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5927-5942	6.8	53
208	Spatial and temporal variation in fine particulate matter mass and chemical composition: the Middle East Consortium for Aerosol Research Study. 2014 , 2014, 878704		17
207	Assessing the Influence of Seasonal and Spatial Variations on the Estimation of Secondary Organic Carbon in Urban Particulate Matter by Applying the EC-Tracer Method. <i>Atmosphere</i> , 2014 , 5, 252-272	2.7	2
206	Measurements of particle number size distributions and optical properties in urban Shanghai during 2010 World Expo: relation to air mass history. 2014 , 66, 22319		7
205	Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. 2014 , 57, 1352-1362		55
204	Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. <i>Science of the Total Environment</i> , 2014 , 490, 134-43	10.2	44
203	Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. 2014 , 26, 1040-51		35
202	Concentrations, seasonal and diurnal variations of black carbon in PM2.5 in Shanghai, China. <i>Atmospheric Research</i> , 2014 , 147-148, 1-9	5.4	42
201	Airborne submicron particulate (PM1) pollution in Shanghai, China: chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. <i>Science of the Total Environment</i> , 2014 , 473-474, 199-206	10.2	73

200	Seasonal variation and sources of aerosol pollution in Delhi, India. 2014 , 12, 529-534		25
199	Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. <i>Atmospheric Environment</i> , 2014 , 95, 598-609	5.3	306
198	Evaluation of impacts of trees on PM2.5 dispersion in urban streets. <i>Atmospheric Environment</i> , 2014 , 99, 277-287	5.3	83
197	PM 2.5 in China: Measurements, sources, visibility and health effects, and mitigation. 2014 , 13, 1-26		487
196	Severe haze episodes and seriously polluted fog water in Ji'nan, China. <i>Science of the Total Environment</i> , 2014 , 493, 133-7	10.2	64
195	Characteristics and relevant remote sources of black carbon aerosol in Shanghai. <i>Atmospheric Research</i> , 2014 , 135-136, 159-171	5.4	33
194	Long-range transport of organic aerosol to Cape Hedo, Japan. 2014 , 13, 35-41		2
193	Optical properties and chemical composition of PM 2.5 in Shanghai in the spring of 2012. 2014 , 13, 52-5	9	23
192	Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions. <i>Atmospheric Environment</i> , 2014 , 92, 442-448	5.3	60
191	Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China. 2014 , 119, 14,165-14,179		92
190	Clouds and Aerosols. 571-658		436
189	PM_{2.5} pollution in a megacity of southwest China: source apportionment and implication. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8679-8699	6.8	243
188	Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 9597-9612	6.8	46
187	Carbonaceous particulate matter characterization in an urban and a rural site in the Philippines. 2014 , 5, 245-252		15
186	Seasonal variation of fine particulate matter in residential micro@nvironments of Lahore, Pakistan. 2015 , 6, 797-804		10
185	Characteristics and potential sources of atmospheric mercury at a subtropical near-coastal site in East China. 2015 , 120, 8563-8574		18
184	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 9577-9591	6.8	72
183	VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11081-11096	6.8	54

182	Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 12935	-68 -1295	2 99
181	Estimating ground-level PM_{2.5} in eastern China using aerosol optical depth determined from the GOCI satellite instrument. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13133-13	144 ⁸	51
180	Long-term changes in surface solar radiation and their effects on air temperature in the Shanghai region. 2015 , 35, 3385-3396		10
179	Characteristics of Organic and Elemental Carbon in PM2.5 and PM0.25 in Indoor and Outdoor Environments of a Middle School: Secondary Formation of Organic Carbon and Sources Identification. <i>Atmosphere</i> , 2015 , 6, 361-379	2.7	14
178	A Case Study of Chemical Characteristics of Daytime and Nighttime Ambient Particles in Shanghai, China. <i>Atmosphere</i> , 2015 , 6, 1141-1153	2.7	6
177	Analysis of the characteristics and evolution modes of PM2.5 pollution episodes in Beijing, China during 2013. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 1099-111	4.6	23
176	Characteristics and Seasonal Variations of Carbonaceous Species in PM2.5 in Taiyuan, China. <i>Atmosphere</i> , 2015 , 6, 850-862	2.7	25
175	Spatial and seasonal variations of atmospheric particulate carbon fractions and identification of secondary sources at urban sites in North India. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 13464-76	5.1	7
174	Temporal variations of atmospheric depositional fluxes of 7Be and 210Pb over 8 years (2006\(\textbf{D}\)013) at Shanghai, China, and synthesis of global fallout data. 2015 , 120, 4323-4339		26
173	Stable sulfur isotope ratios and water-soluble inorganic compositions of PM10 in Yichang City, central China. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 13564-72	5.1	9
172	Potential sources and transport pathways of PM2.5 in Shanghai, China. 2015 ,		3
171	Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City. 2015 , 427, 202-217		24
170	Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. <i>Atmospheric Environment</i> , 2015 , 101, 294-302	5.3	85
169	Climatic effects of air pollutants over china: A review. 2015 , 32, 115-139		61
168	Ambient particulate matter in a central urban area of Seoul, Korea. <i>Chemosphere</i> , 2015 , 119, 812-819	8.4	21
167	Chemical characteristics of submicron particulates (PM1.0) in Wuhan, Central China. <i>Atmospheric Research</i> , 2015 , 161-162, 169-178	5.4	20
166	Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. <i>Atmospheric Environment</i> , 2015 , 123, 380-391	5.3	118
165	Direct Radiative Effect by Multicomponent Aerosol over China*. 2015 , 28, 3472-3495		54

(2016-2015)

164	Statistical analysis of PM2.5 observations from diplomatic facilities in China. <i>Atmospheric Environment</i> , 2015 , 110, 174-185	5.3	78
163	High abundances of dicarboxylic acids, oxocarboxylic acids, and Edicarbonyls in fine aerosols (PM2.5) in Chengdu, China during wintertime haze pollution. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 12902-18	5.1	26
162	Economic Modeling of the Regional Polices to Combat Dust Phenomenon by Using Game Theory. 2015 , 24, 409-418		14
161	Climate Monitoring and Formation Mechanism of Smog Pollution in China. 2015 , 03, 1550013		
160	Long-term trend and spatiotemporal variations of haze over China by satellite observations from 1979 to 2013. <i>Atmospheric Environment</i> , 2015 , 119, 362-373	5.3	45
159	Characteristics and seasonal variation of organic matter in PM2.5 at a regional background site of the Yangtze River Delta region, China. <i>Atmospheric Environment</i> , 2015 , 123, 288-297	5.3	42
158	Mercury in atmospheric aerosols: A preliminary case study for the city of Krakow, Poland. 2015 , 18, 118	83-1191	13
157	Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China. <i>Science of the Total Environment</i> , 2015 , 508, 477-87	10.2	125
156	Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 627-42	5.1	151
155	Aerosol characteristics at a rural station in southern peninsular India during CAIPEEX-IGOC: physical and chemical properties. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 5293-304	5.1	20
154	Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. <i>Atmospheric Environment</i> , 2015 , 101, 125-133	5.3	52
153	Black carbon aerosols in urban central China. 2015 , 150, 3-11		45
152	Simultaneous measurements of black carbon and PM2.5, CO, and NO \times variability at a locally polluted urban location in India. 2015 , 75, 813-829		14
151	PM2.5 Chemical Composition Analysis in Different Functional Subdivisions in Tangshan, China. 2016 , 16, 1651-1664		7
150	Ambient Air Heavy Metals in PM2.5 and Potential Human Health Risk Assessment in an Informal Electronic-Waste Recycling Site of China. 2016 , 16, 388-397		72
149	A preliminary approach of the spatio-temporal distribution of cationic aerosol components in the ambient atmosphere of Kochi, India. 2016 , 7, 1053-1064		1
148	Chemical characteristics of fine particles and their impact on visibility impairment in Shanghai based on a 1-year period observation. 2016 , 48, 151-160		32
147	Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. <i>Environmental Pollution</i> , 2016 , 212, 627-635	9.3	97

146	Gravimetric analysis for PM2.5 mass concentration based on year-round monitoring at an urban site in Beijing. 2016 , 40, 154-60		11
145	Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. 2016 , 121, 13,050-13,065		127
144	Monitoring of airborne particulate matter at mountainous urban sites. 2016 , 188, 490		2
143	Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. <i>Atmospheric Environment</i> , 2016 , 142, 194-209	5.3	16
142	Particulate matter and gaseous pollutions in three megacities over China: Situation and implication. <i>Atmospheric Environment</i> , 2016 , 140, 476-494	5.3	46
141	Chemical characterization and source apportionment of PM in a semi-arid and petrochemical-industrialized city, Northwest China. <i>Science of the Total Environment</i> , 2016 , 573, 1031-10.	040 ^{.2}	123
140	Seasonal variability of PM_{2.5} composition and sources in the Klang Valley urban-industrial environment. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 5357-5381	6.8	77
139	Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10671-10687	6.8	40
138	A Comparison of Meteorology-Driven Interannual Variations of Surface Aerosol Concentrations in the Eastern United States, Eastern China, and Europe. 2016 , 12, 146-152		4
137	Influences of El Ni Modoki event 1994/1995 on aerosol concentrations over southern China. 2016, 121, 1637-1651		26
136	Chemical characterization of submicron particles during typical air pollution episodes in spring over Beijing. 2016 , 9, 255-262		3
135	Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. <i>Environmental Pollution</i> , 2016 , 216, 559-567	9.3	83
134	Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China. 2016 , 131, 112-120		48
133	Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. 2016 , 112, 1302-1311		91
132	Emissions and source profiles of PM2.5 for coal-fired boilers in the Shanghai megacity, China. 2016 , 7, 577-584		32
131	Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. <i>Chemosphere</i> , 2016 , 148, 148-62	8.4	132
130	Impact of ambient fine particulate matter (PM2.5) exposure on the risk of influenza-like-illness: a time-series analysis in Beijing, China. 2016 , 15, 17		104
129	Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. 2016 , 174, 109-121		178

128	Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi Pakistan. <i>Atmospheric Environment</i> , 2016 , 128, 114-123	5.3	60
127	Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. <i>Atmospheric Research</i> , 2016 , 167, 24-33	5.4	107
126	Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. 2017 , 26, 60-68		35
125	Evolutionary processes and sources of high-nitrate haze episodes over Beijing, Spring. 2017 , 54, 142-15	1	27
124	Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method. <i>Environmental Pollution</i> , 2017 , 220, 1366-1375	9.3	28
123	Heavy pollution episodes, transport pathways and potential sources of PM during the winter of 2013 in Chengdu (China). <i>Science of the Total Environment</i> , 2017 , 584-585, 1056-1065	10.2	114
122	Aerosols. 2017 , 21-42		3
121	Trends of PM concentrations in China: A long term approach. 2017 , 196, 719-732		61
120	Highly Time-Resolved Atmospheric Observations Using a Continuous Fine Particulate Matter and Element Monitor. 2017 , 1, 580-590		7
119	Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China. <i>Environmental Pollution</i> , 2017 , 231, 612-621	9.3	37
118	Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China. <i>Environmental Geochemistry and Health</i> , 2017 , 39, 913-921	4.7	19
117	Impacts of regional transport on black carbon in Huairou, Beijing, China. <i>Environmental Pollution</i> , 2017 , 221, 75-84	9.3	17
116	A review of current knowledge concerning PM_{2. 5} chemical composition, aerosol optical properties and their relationships across China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 9485-9518	6.8	184
115	Numerical Investigation on the Effect of Avenue Trees on PM2.5 Dispersion in Urban Street Canyons. <i>Atmosphere</i> , 2017 , 8, 129	2.7	14
114	PM, Population Exposure and Economic Effects in Urban Agglomerations of China Using Ground-Based Monitoring Data. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	18
113	A review of current knowledge concerning PM_{2.5} chemical composition, aerosol optical properties, and their relationships across China. 2017 ,		3
112	Dome effect of black carbon and its key influencing factors: A one-dimensional modelling study. 2017 ,		0
111	PM2.5 Characteristics in Qingdao and across Coastal Cities in China. <i>Atmosphere</i> , 2017 , 8, 77	2.7	15

110	PM mitigation in China: Socioeconomic determinants of concentrations and differential control policies. 2018 , 213, 47-55		63
109	Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time-Resolution Influence. 2018 , 123, 5284-530	00	34
108	Assessing the impact of PM on respiratory disease using artificial neural networks. <i>Environmental Pollution</i> , 2018 , 235, 394-403	9.3	73
107	Dome effect of black carbon and its key influencing factors: a´one-dimensional modelling study. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 2821-2834	6.8	80
106	An observational study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO formation during the haze episodes. <i>Science of the Total Environment</i> , 2018 , 630, 1057-1070	10.2	35
105	Khuzestan dust phenomenon: a content analysis of most widely circulated newspapers. Environmental Science and Pollution Research, 2018 , 25, 15918-15924	5.1	3
104	The effects of PM on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. <i>Environmental Pollution</i> , 2018 , 232, 329-337	9.3	75
103	Mathematical modeling of Fog-Haze evolution. 2018 , 107, 1-4		4
102	Characteristics of mass concentration, chemical composition, source apportionment of PM 2.5 and PM 10 and health risk assessment in the emerging megacity in China. 2018 , 9, 309-321		37
101	Chemical characterization and sources of PM at 12-hr resolution in Guiyang, China. 2018 , 37, 334-345		4
100	How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	5
99	Spatial-seasonal characteristics and critical impact factors of PM2.5 concentration in the Beijing-Tianjin-Hebei urban agglomeration. <i>PLoS ONE</i> , 2018 , 13, e0201364	3.7	24
98	Quantitative Assessment of Relationship between Population Exposure to PM and Socio-Economic Factors at Multiple Spatial Scales over Mainland China. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	4
97	Are Green Walls Better Options than Green Roofs for Mitigating PM10 Pollution? CFD Simulations in Urban Street Canyons. <i>Sustainability</i> , 2018 , 10, 2833	3.6	22
96	Characterization of PM2.5 and gaseous emissions during combustion of ultra-clean biomass via dual-stage treatment. <i>Atmospheric Environment</i> , 2018 , 193, 168-176	5.3	10
95	Inorganic chemical composition of PM2.5 emissions from the combustion of six main tree species in subtropical China. <i>Atmospheric Environment</i> , 2018 , 189, 107-115	5.3	15
94	Comparative major components and health risks of toxic elements and polycyclic aromatic hydrocarbons of PM2.5 in winter and summer in Zhengzhou: Based on three-year data. <i>Atmospheric Research</i> , 2018 , 213, 173-184	5.4	28
93	Spring-time PM2.5 elemental analysis and polycyclic aromatic hydrocarbons measurement in High-rise residential buildings in Chongqing and Xian, China. <i>Energy and Buildings</i> , 2018 , 173, 623-633	7	9

(2020-2018)

92	Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM in the Beijing, Tianjin, and Langfang Region, China. <i>International Journal of Environmental Research and Public Health</i> , 2018 , 15,	4.6	29
91	Characteristics of PM_{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. 2018 ,		
90	Prediction of Wind Environment and Indoor/Outdoor Relationships for PM2.5 in Different Building Tree Grouping Patterns. <i>Atmosphere</i> , 2018 , 9, 39	2.7	17
89	Does utilizing WHO's interim targets further reduce the risk - meta-analysis on ambient particulate matter pollution and mortality of cardiovascular diseases?. <i>Environmental Pollution</i> , 2018 , 242, 1299-13	09:3	10
88	Characteristics of PM_{2.5} mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8849-8871	6.8	103
87	The impact of household air cleaners on the chemical composition and children's exposure to PM metal sources in suburban Shanghai. <i>Environmental Pollution</i> , 2019 , 253, 190-198	9.3	24
86	Large contribution of fine carbonaceous aerosols from municipal waste burning inferred from distributions of diacids and fatty acids. <i>Environmental Research Communications</i> , 2019 , 1, 071005	3.1	4
85	On the nature of sea salt aerosol at a coastal megacity: Insights from Manila, Philippines in Southeast Asia. <i>Atmospheric Environment</i> , 2019 , 216, 116922	5.3	22
84	Pollution Characteristics and Sources of Fine Particles During a Heavy Haze Episode in Winter: A Case Study of Weinan City. <i>IOP Conference Series: Earth and Environmental Science</i> , 2019 , 281, 012012	0.3	
83	Characterization of particulate-bound polycyclic aromatic compounds (PACs) and their oxidations in heavy polluted atmosphere: A case study in urban Beijing, China during haze events. <i>Science of the Total Environment</i> , 2019 , 660, 1392-1402	10.2	13
82	Spatial and seasonal variations of elemental and ion components in air particulate matters in three mega-cities in China. <i>Environmental Forensics</i> , 2019 , 20, 1-12	1.6	1
81	Evaluation of Anthropogenic Emissions and Ozone Pollution in the North China Plain: Insights from the Air Chemistry Research in Asia (ARIAs) Campaign. 2019 ,		2
80	Short-term exposure to particulate matters is associated with septic emboli in infective endocarditis. <i>Medicine (United States)</i> , 2019 , 98, e17899	1.8	1
79	Similarities and differences in PM and PM concentrations, chemical compositions and sources in Hefei City, China. <i>Chemosphere</i> , 2019 , 220, 760-765	8.4	29
78	Dry Deposition of Particulate Matter and Ions in Forest at Different Heights. <i>International Journal of Environmental Research</i> , 2019 , 13, 117-130	2.9	7
77	Source signatures from combined isotopic analyses of PM carbonaceous and nitrogen aerosols at the peri-urban Taehwa Research Forest, South Korea in summer and fall. <i>Science of the Total Environment</i> , 2019 , 655, 1505-1514	10.2	11
76	Effect of air quality and dust deposition on power generation performance of photovoltaic module on building roof. <i>Building Services Engineering Research and Technology</i> , 2020 , 41, 73-85	2.3	12
75	Characteristics and source apportionment of PM2.5-bound saccharides and carboxylic acids in Central Shanghai, China. <i>Atmospheric Research</i> , 2020 , 237, 104817	5.4	8

74	Source routing and detection of dust storm in the Salt Lake basin of Qom in Iran. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	1.8	4
73	Chemical composition and seasonal variations of PM2.5 in an urban environment in Kunming, SW China: Importance of prevailing westerlies in cold season. <i>Atmospheric Environment</i> , 2020 , 237, 117704	5.3	9
72	Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production. <i>Environmental Science & Environmental </i>	9 1 913	7
71	The pollution characteristics and source analysis of water-soluble ions in indoor PM2.5 during the Spring Festival in Jingyue Suburb of Changchun City. <i>IOP Conference Series: Earth and Environmental Science</i> , 2020 , 474, 052099	0.3	
70	Chemical characterization and source identification of submicron aerosols from a year-long real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor. <i>Atmospheric Research</i> , 2020 , 246, 105154	5.4	6
69	Spatio-temporal assessment and climatology of atmospheric organic carbon over Pakistan. <i>Arabian Journal of Geosciences</i> , 2020 , 13, 1	1.8	2
68	Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over Canal Head Taocha Station, Henan Province. <i>Remote Sensing</i> , 2020 , 12, 3432	5	1
67	Is There Something in the Air? Sources, Concentrations and Ionic Composition of Particulate Matter (PM2.5) in an Industrial Coastal City in Southern Brazil. <i>Water, Air, and Soil Pollution</i> , 2020 , 231, 1	2.6	1
66	Episode-Based Analysis of Size-Resolved Carbonaceous Aerosol Compositions in Wintertime of Xinxiang: Implication for the Haze Formation Processes in Central China. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 3498	2.6	1
65	Toxicological assessment of chlorine concentration in atmospheric particulate matter in Benin City, Nigeria. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 885-891	5.6	1
64	The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. <i>Environment International</i> , 2020 , 142, 105862	12.9	19
63	Evolution of source contributions during heavy fine particulate matter (PM2.5) pollution episodes in eastern China through online measurements. <i>Atmospheric Environment</i> , 2020 , 232, 117569	5.3	11
62	Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta: In situ online observations in Shanghai and Nanjing. <i>Atmospheric Environment</i> , 2020 , 225, 117350	5.3	18
61	Impact of wind speed and apartment ventilation on indoor concentrations of PM10 and PM2.5 in Krakw, Poland. <i>Air Quality, Atmosphere and Health</i> , 2020 , 13, 553-562	5.6	12
60	Temperature modulation of the adverse consequences on human mortality due to exposure to fine particulates: A study of multiple cities in China. <i>Environmental Research</i> , 2020 , 185, 109353	7.9	O
59	Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 857-896	11.1	15
58	Lead isotopes in the Central Yellow Sea Mud: Evidence of atmospheric deposition and its implication for regional energy consumption shift. <i>Environmental Pollution</i> , 2021 , 268, 115702	9.3	2
57	Spatiotemporal Characteristics and Driving Factors of Black Carbon in Augsburg, Germany: Combination of Mobile Monitoring and Street View Images. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 160-168	10.3	4

56	Oxidative potential of atmospheric PM at five different sites of Ahmedabad, a big city in Western India. <i>Environmental Pollution</i> , 2021 , 268, 115909	9.3	9
55	Monitoring of aerosols and studying its effects on the environment and humans health in Iran. <i>Environmental Geochemistry and Health</i> , 2021 , 43, 317-331	4.7	1
54	Air Pollutants in an Intermediate City: Variability and Interactions with Weather and Anthropogenic Elements in Bahii Blanca, Argentina. <i>Environmental Processes</i> , 2021 , 8, 349-375	2.8	2
53	Spatio-Temporal Characteristics of PM2.5, PM10, and AOD over the Central Line Project of Chinal South-North Water Diversion in Henan Province (China). <i>Atmosphere</i> , 2021 , 12, 225	2.7	3
52	Acute kidney damage by PM exposure in a rat model. <i>Environmental Toxicology and Pharmacology</i> , 2021 , 83, 103587	5.8	3
51	Different Characteristics of PM2.5 Measured in Downtown and Suburban Areas of a Medium-Sized City in South Korea. <i>Atmosphere</i> , 2021 , 12, 832	2.7	1
50	Temporal trends of the concentration and sources of secondary organic aerosols in PM2.5 in Shanghai during 2012 and 2018. <i>Atmospheric Environment</i> , 2021 , 261, 118596	5.3	6
49	Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 during a wintertime particle pollution episode in Nanjing, China. <i>Atmospheric Research</i> , 2021 , 262, 105769	5.4	1
48	Role of carbonaceous aerosols in Asian pollution. 2022 , 111-127		O
47	Spatiotemporal Characteristics of Particulate Matter and Dry Deposition Flux in the Cuihu Wetland of Beijing. <i>PLoS ONE</i> , 2016 , 11, e0158616	3.7	22
46	Spatial and Temporal Variations of the Particulate Matter in Riyadh City, Saudi Arabia. <i>Journal of Environmental Protection</i> , 2015 , 06, 1293-1307	0.6	8
45	Characteristics of PM _{2.5} speciation in representative megacities and across China.		19
44	Typical types and formation mechanisms of haze in an eastern Asia megacity, Shanghai.		13
43	Spatial and seasonal variability of PM _{2.5} acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols.		6
42	Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols.		26
41	A parameterization of low visibilities for hazy days in the North China Plain.		3
40	Carbonaceous species in PM _{2.5} at a pair of rural-urban sites in Beijing, 2005\(\begin{align*} 2005\(3
39	Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo.		4

38	Characteristics and sources of carbonaceous aerosols from Shanghai, China.		8
37	Sulfate-nitrate-ammonium aerosols over China: response to 2000\(\textit{\pi}\)015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia.		2
36	Simulation of the interannual variations of aerosols in China: role of variations in meteorological parameters.		3
35	PM _{2.5} pollution in a megacity of southwest China: source apportionment and implication.		13
34	Heavy air pollution episodes in Beijing during January 2013: inorganic ion chemistry and source analysis using Highly Time-Resolved Measurements in an urban site.		8
33	Estimating ground-level PM _{2.5} in Eastern China using aerosol optical depth determined from the GOCI Satellite Instrument.		4
32	Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors.		1
31	Meteorological-gaseous influences on seasonal PM _{2.5} variability in the Klang Valley urban-industrial environment.		5
30	Observationally-constrained carbonaceous aerosol source estimates for the Pearl River Delta area of China.		1
29	Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai.		2
28	VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China.		9
27	Polar organic tracers in PM _{2.5} aerosols from forests in eastern China.		2
26	Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006.		1
25	Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China.		4
24	Latitudinal gradient and interannual variation of PM ₁₀ concentration over eighty-six Chinese cities.		1
23	Aerosol optical properties during dust and biomass burning episodes retrieved from sun-photometer over Shanghai.		3
22	An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009. <i>Journal of the Korean Earth Science Society</i> , 2012 , 33, 269-279	0.1	2
21	Air quality and emissions in the Yangtze River Delta, China.		

Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles.

19	Study on vertical visibility during haze in Shanghai based on the spaceborne lidar. 2018,		
18	Retrospect and Outlook of Research on Regional Haze Pollution in China: A Systematic Literature Review. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	1
17	The modified layer-by-layer weakening solar radiation models based on relative humidity and air quality index. <i>Energy</i> , 2021 , 122488	7.9	2
16	Spatial Distribution of Pm2.5 Concentrations from Vehicles in the Guanzhong Plain, China. <i>SSRN Electronic Journal</i> ,	1	
15	Seasonal Source Analysis of Nitrogen and Carbon Aerosols of Pm2.5 in Typical Cities of Zhejiang, China. SSRN Electronic Journal,	1	
14	Spatial Distribution of Primary and Secondary PM2.5 Concentrations Emitted by Vehicles in the Guanzhong Plain, China. <i>Atmosphere</i> , 2022 , 13, 347	2.7	1
13	Exploring the Sensitivity of Visibility to PM2.5 Mass Concentration and Relative Humidity for Different Aerosol Types. <i>Atmosphere</i> , 2022 , 13, 471	2.7	O
12	The seasonal characterization and source analysis of water-soluble inorganic ions in PM2.5 in Fuxin, northeast China. <i>Environmental Forensics</i> , 1-12	1.6	О
11	Traffic costs of air pollution: the effect of PM2.5 on traffic violation. <i>Environmental Science and Pollution Research</i> ,	5.1	
10	Health effects of PM2.5 constituents and source contributions in major metropolitan cities, South Korea. <i>Environmental Science and Pollution Research</i> ,	5.1	О
9	Insight into Source and Evolution of Oxalic Acid: Characterization of Particulate Organic Diacids in a Mega-City, Shanghai from 2008 to 2020. 2022 , 13, 1347		
8	Accuracy assessment of CAMS and MERRA-2 reanalysis PM2.5 and PM10 concentrations over China. 2022 , 288, 119297		1
7	Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018. 2022 , 19, 11627		1
6	Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013 2020 in the Beijing Lianjin Hebei region. 2023 , 23, 23-39		1
5	County level study of the interaction effect of PM2.5 and climate sustainability on mortality in China. 10,		О
4	Vertical measurements of stable nitrogen and oxygen isotope composition of fine particulate nitrate aerosol in Guangzhou city: Source apportionment and oxidation pathway. 2023 , 865, 161239		О
3	Characteristics of Atmospheric Pollution in a Chinese Megacity: Insights from Three Different Functional Areas. 2023 , 15, 2429		O

Impact of changes in refractive indices of secondary organic aerosols on precipitation over China during 1980\(\mathbb{0}\)1019. 2023, 299, 119644

О

Concentration of Ammonia Related to Fuel-Types of Vehicle in Urban Tunnel. 2023, 39, 1-8

O