Processed meat intake and incidence of Type 2 diabetes

Diabetologia 46, 1465-1473 DOI: 10.1007/s00125-003-1220-7

Citation Report

#	Article	IF	CITATIONS
1	A Prospective Study of Red Meat Consumption and Type 2 Diabetes in Middle-Aged and Elderly Women: The Women's Health Study. Diabetes Care, 2004, 27, 2108-2115.	4.3	336
2	Current problems of food intake in young women in Japan: Their influence on female reproductive function. Reproductive Medicine and Biology, 2004, 3, 107-114.	1.0	15
5	Impact of disaggregation of composite foods on estimates of intakes of meat and meat products in Irish adults. Public Health Nutrition, 2005, 8, 327-337.	1.1	32
6	New approaches to the study of dietary patterns. British Journal of Nutrition, 2005, 93, 573-574.	1.2	84
7	The optimal diet for women with polycystic ovary syndrome?. British Journal of Nutrition, 2005, 94, 154-165.	1.2	66
8	Effect of Dietary Factors on Incidence of Type 2 Diabetes: A Systematic Review of Cohort Studies. Journal of Nutritional Science and Vitaminology, 2005, 51, 292-310.	0.2	48
9	Red meat in the diet. Nutrition Bulletin, 2005, 30, 323-355.	0.8	157
10	Amino acid-dependent modulation of glucose metabolism in humans. European Journal of Clinical Investigation, 2005, 35, 351-354.	1.7	36
11	Food consumption and the incidence of type II diabetes mellitus. European Journal of Clinical Nutrition, 2005, 59, 441-448.	1.3	204
12	A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)—Potsdam Study cohort. Diabetologia, 2005, 48, 1126-1134.	2.9	192
13	Urinary sodium and potassium excretion and the risk of type 2 diabetes: a prospective study in Finland. Diabetologia, 2005, 48, 1477-1483.	2.9	106
14	Evaluation of epidemiologic evidence on the role of nutrition in the development of diabetes and its complications. Current Diabetes Reports, 2005, 5, 366-373.	1.7	2
15	Protein, body weight, and cardiovascular health. American Journal of Clinical Nutrition, 2005, 82, 242S-247S.	2.2	103
16	Dietary pattern, inflammation, and incidence of type 2 diabetes in women. American Journal of Clinical Nutrition, 2005, 82, 675-684.	2.2	329
17	Dietary pattern, inflammation, and incidence of type 2 diabetes in women. American Journal of Clinical Nutrition, 2005, 82, 675-684.	2.2	309
18	The Relationship between Dietary Habits, Blood Glucose and Insulin Levels among People without Cardiovascular Disease and Type 2 Diabetes; The ATTICA Study. Review of Diabetic Studies, 2005, 2, 208-208.	0.5	62
19	Nutritional Management of Diabetes in Pregnancy. , 2005, 17, 174-194.		0
20	Meat and Fat Intake as Risk Factors for Pancreatic Cancer: The Multiethnic Cohort Study. Journal of the National Cancer Institute, 2005, 97, 1458-1465	3.0	193

#	Article	IF	CITATIONS
21	Food Group Consumption and Glycemic Control in People With and Without Type 2 Diabetes: The ATTICA study. Diabetes Care, 2005, 28, 2539-2540.	4.3	22
22	PRIMARY PREVENTION OF DIABETES: What Can Be Done and How Much Can Be Prevented?. Annual Review of Public Health, 2005, 26, 445-467.	7.6	249
23	Overactivation of S6 Kinase 1 as a Cause of Human Insulin Resistance During Increased Amino Acid Availability. Diabetes, 2005, 54, 2674-2684.	0.3	320
24	The Significance of Meat in the Diet. Current Nutrition and Food Science, 2005, 1, 151-159.	0.3	Ο
25	Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 2006, 3, 393-402.	7.2	601
26	The association of meat intake and the risk of type 2 diabetes may be modified by body weight. International Journal of Medical Sciences, 2006, 3, 152-159.	1.1	62
27	Effects of dietary protein on glucose homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 463-468.	1.3	74
28	Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. European Journal of Clinical Nutrition, 2006, 60, 364-371.	1.3	218
29	A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia, 2006, 49, 2604-2613.	2.9	212
30	Obesity and Diabetes. , 2006, , .		4
31	Epidemiological Association between Some Dietary Habits and the Increasing Incidence of Type 1 Diabetes Worldwide. Annals of Nutrition and Metabolism, 2006, 50, 11-19.	1.0	18
32	Lifestyle Management in the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2006, 4, 270-286.	0.5	10
33	Prospective Study of Cured Meats Consumption and Risk of Chronic Obstructive Pulmonary Disease in Men. American Journal of Epidemiology, 2007, 166, 1438-1445.	1.6	71
34	The Mammalian Target of Rapamycin Pathway Regulates Nutrient-Sensitive Glucose Uptake in Man. Diabetes, 2007, 56, 1600-1607.	0.3	210
35	Whole Grains and Diabetes. , 0, , 29-46.		7
36	Increased Lean Red Meat Intake Does Not Elevate Markers of Oxidative Stress and Inflammation in Humans. Journal of Nutrition, 2007, 137, 363-367.	1.3	69
37	Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study. Journal of Hepatology, 2007, 47, 711-717.	1.8	470
38	An Accurate Risk Score Based on Anthropometric, Dietary, and Lifestyle Factors to Predict the Development of Type 2 Diabetes. Diabetes Care, 2007, 30, 510-515.	4.3	341

#	Article	IF	CITATIONS
39	The Role of Iron in Diabetes and Its Complications. Diabetes Care, 2007, 30, 1926-1933.	4.3	335
40	Potassium, Calcium, Magnesium, and Sodium Levels in Biological Samples of Hypertensive and Nonhypertensive Diabetes Mellitus Patients. Biological Trace Element Research, 2008, 124, 206-224.	1.9	48
41	Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sciences, 2008, 82, 1102-1110.	2.0	92
42	Satiating Properties of Meat-Preparations: Role of Protein Content and Energy Density. Journal of the American College of Nutrition, 2008, 27, 244-252.	1.1	5
43	Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. British Journal of Nutrition, 2008, 99, 1107-1116.	1.2	87
44	Nutrition in pathophysiology and treatment of nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2008, 11, 620-625.	1.3	15
45	Dietary patterns and metabolic syndrome factors in a non-diabetic Italian population. Public Health Nutrition, 2009, 12, 1494-1503.	1.1	26
46	Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation. Journal of Biological Chemistry, 2009, 284, 35425-35432.	1.6	73
47	Generalizability of dietary patterns associated with incidence of type 2 diabetes mellitus. American Journal of Clinical Nutrition, 2009, 90, 1075-1083.	2.2	67
48	Eating Fish and Risk of Type 2 Diabetes. Diabetes Care, 2009, 32, 2021-2026.	4.3	98
49	Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. American Journal of Clinical Nutrition, 2009, 89, 1453-1458.	2.2	129
50	Role of Iron Deficiency and Overload in the Pathogenesis of Diabetes and Diabetic Complications. Current Medicinal Chemistry, 2009, 16, 113-129.	1.2	103
51	Association Between Type of Dietary Fish and Seafood Intake and the Risk of Incident Type 2 Diabetes: The European Prospective Investigation of Cancer (EPIC)-Norfolk cohort study. Diabetes Care, 2009, 32, 1857-1863.	4.3	120
52	Coffee, Decaffeinated Coffee, and Tea Consumption in Relation to Incident Type 2 Diabetes Mellitus. Archives of Internal Medicine, 2009, 169, 2053.	4.3	407
53	Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia, 2009, 52, 2277-2287.	2.9	308
54	Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Medical Genomics, 2009, 2, 2.	0.7	421
55	Hypoglycemic Action of Chicken Meat Extract in Type-2 Diabetic KKAy Mice and GK Rats. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2583-2588.	0.6	4
56	Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes?. Endocrine Reviews, 2009, 30, 96-116.	8.9	418

ARTICLE IF CITATIONS Dietary Management of PCOS., 2009, , 191-202. 0 Dietary Patterns and Prevention of Type 2 Diabetes: From Research to Clinical Practice; A Systematic Review. Current Diabetes Reviews, 2009, 5, 221-227. High processed meat consumption is a risk factor of type 2 diabetes in the Alpha-Tocopherol, 1.2 51 Beta-Carotene Cancer Prevention study. British Journal of Nutrition, 2010, 103, 1817-1822. The role of nutritional profile in the orexigenic neuropeptide secretion in nonalcoholic fatty liver 0.8 disease obese adolescents. European Journal of Gastroenterology and Hepatology, 2010, 22, 557-563. Association between glycemic index, glycemic load, and fructose with insulin resistance: the CDC of 1.8 21 the Canary Islands study. European Journal of Nutrition, 2010, 49, 505-512. Development and Validation of a Semi-Quantitative Food Frequency Questionnaire to Assess Diets of Korean Type 2 Diabetic Patients. Korean Diabetes Journal, 2010, 34, 32. 0.8 Dietary Intake of Total, Animal, and Vegetable Protein and Risk of Type 2 Diabetes in the European 4.3 276 Prospective Investigation into Cancer and Nutrition (EPIC)-NL Study. Diabetes Care, 2010, 33, 43-48. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and 1.6 1,049 Diabetes Mellitus. Circulation, 2010, 121, 2271-2283. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science, 2010, 2.7 350 84, 284-292. Long-term animal-protein consumption is associated with an increased prevalence of diabetes among 1.4 34 the elderly: The Mediterranean islands (MEDIS) study. Diabetes and Metabolism, 2010, 36, 484-490. Serum gamma-glutamyl transferase, ferritin and the risk of type 2 diabetes in women from a Chinese 1.1 13 minority. Diabetes Research and Clinical Practice, 2010, 90, 352-357. Amino Acid Regulation of hVps34 and mTORC1 Signaling. The Enzymes, 2010, 27, 89-100. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. 2.2 547 American Journal of Clinical Nutrition, 2011, 94, 1088-1096. <i>Prameha</i>in<i>Ayurveda</i>: Correlation with Obesity, Metabolic Syndrome, and Diabetes Mellitus. Part 2â€"Management of<i>Prameha</i>. Journal of Alternative and Complementary Medicine, 2011, 17, 589-599. 2.1 To eat or not to eat pork, how frequently and how varied? Insights from the quantitative 2.7 22 Q-PorkChains consumer survey in four European countries. Meat Science, 2011, 88, 619-626. Red meat consumption and risk of heart failure in male physicians. Nutrition, Metabolism and Cardiovascular Diseases, 2011, 21, 941-946. The role of diet in the prevention of type 2 diabetes. Nutrition, Metabolism and Cardiovascular 278 1.1 Diseases, 2011, 21, B32-B48.

CITATION REPORT

74	Viande et santé humaine : excès et défauts. Bulletin De L'Academie Nationale De Medecine, 2011, 195, 1801-1812.	0.0	2
----	--	-----	---

57

59

61

63

64

65

67

68

69

71

#	Article	IF	CITATIONS
75	Meat consumption and risk of type 2 diabetes: the Multiethnic Cohort. Public Health Nutrition, 2011, 14, 568-574.	1.1	68
76	Red meat in the diet: an update. Nutrition Bulletin, 2011, 36, 34-77.	0.8	116
77	Hyperaminoacidaemia at postprandial levels does not modulate glucose metabolism in type 2 diabetes mellitus. Diabetologia, 2011, 54, 1810-1818.	2.9	18
78	Amino acidâ€induced gene expression profiling in clonal βâ€cell line INSâ€1E cells. Diabetes/Metabolism Research and Reviews, 2011, 27, 120-176.	1.7	8
79	Vegetarian Diets and Diabetes. American Journal of Lifestyle Medicine, 2011, 5, 135-143.	0.8	4
80	Fish intake and type 2 diabetes in Japanese men and women: the Japan Public Health Center–based Prospective Study. American Journal of Clinical Nutrition, 2011, 94, 884-891.	2.2	90
81	Insulin Resistance: Pathophysiology and Rationale for Treatment. Annals of Nutrition and Metabolism, 2011, 58, 25-36.	1.0	29
82	Fish, shellfish, and long-chain nâ^'3 fatty acid consumption and risk of incident type 2 diabetes in middle-aged Chinese men and women. American Journal of Clinical Nutrition, 2011, 94, 543-551.	2.2	96
83	Associations of processed meat and unprocessed red meat intake with incident diabetes: the Strong Heart Family Study. American Journal of Clinical Nutrition, 2012, 95, 752-758.	2.2	76
84	The Complex Interplay of Genetic and Lifestyle Risk Factors in Type 2 Diabetes: An Overview. Scientifica, 2012, 2012, 1-11.	0.6	20
85	Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. British Journal of Nutrition, 2012, 107, S214-S227.	1.2	293
86	That it's red? Or what it was fed/how it was bred? The risk of meat. American Journal of Clinical Nutrition, 2012, 96, 446.	2.2	2
87	Fish Consumption and Incidence of Diabetes. Diabetes Care, 2012, 35, 930-938.	4.3	95
88	Meat Consumption and Its Association With C-Reactive Protein and Incident Type 2 Diabetes. Diabetes Care, 2012, 35, 1499-1505.	4.3	66
89	Fish Consumption, Dietary Long-Chain n-3 Fatty Acids, and Risk of Type 2 Diabetes. Diabetes Care, 2012, 35, 918-929.	4.3	188
90	Prevalence and risk factors for self-reported diabetes among adult men and women in India: findings from a national cross-sectional survey. Public Health Nutrition, 2012, 15, 1065-1077.	1.1	38
91	Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World Journal of Diabetes, 2012, 3, 38.	1.3	111
92	Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. American Journal of Clinical Nutrition, 2012, 95, 925-933.	2.2	422

#	Article	IF	CITATIONS
93	Nonalcoholic Fatty Liver Disease: A Nutritional Approach. Metabolic Syndrome and Related Disorders, 2012, 10, 161-166.	0.5	22
94	Fiber, Protein, and Lupin-Enriched Foods: Role for Improving Cardiovascular Health. Advances in Food and Nutrition Research, 2012, 66, 147-215.	1.5	23
95	Association of fish and <i>n</i> -3 fatty acid intake with the risk of type 2 diabetes: a meta-analysis of prospective studies. British Journal of Nutrition, 2012, 108, 408-417.	1.2	67
96	Unprocessed Red and Processed Meats and Risk of Coronary Artery Disease and Type 2 Diabetes – An Updated Review of the Evidence. Current Atherosclerosis Reports, 2012, 14, 515-524.	2.0	404
97	The Impact of Built Environment on Diabetic Patients: The Case of Eastern Province, Kingdom of Saudi Arabia. Global Journal of Health Science, 2012, 4, 126-38.	0.1	8
98	Health Implications of a Vegetarian Diet. American Journal of Lifestyle Medicine, 2012, 6, 250-267.	0.8	59
99	Longâ€ŧerm high animal protein diet reduces body weight gain and insulin secretion in dietâ€induced obese rats. Journal of the Science of Food and Agriculture, 2012, 92, 2638-2643.	1.7	5
100	Use of antidepressant medication and risk of type 2 diabetes: results from three cohorts of US adults. Diabetologia, 2012, 55, 63-72.	2.9	104
101	Insulin Resistance of Protein Metabolism in Type 2 Diabetes and Impact on Dietary Needs: A Review. Canadian Journal of Diabetes, 2013, 37, 115-120.	0.4	22
102	Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia, 2013, 56, 47-59.	2.9	129
103	High meat consumption is associated with type 1 diabetes mellitus in a Sardinian case–control study. Acta Diabetologica, 2013, 50, 713-719.	1.2	18
104	Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 292-299.	1.1	312
105	High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. British Journal of Nutrition, 2013, 109, 1143-1153.	1.2	88
106	Serum uric acid and metabolic risk. Current Medical Research and Opinion, 2013, 29, 9-15.	0.9	20
107	Red meat consumption is associated with the risk of type 2 diabetes in men but not in women: a Japan Public Health Center-based Prospective Study. British Journal of Nutrition, 2013, 110, 1910-1918.	1.2	44
108	Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ, The, 2013, 347, f5001-f5001.	3.0	373
109	Fish and Marine Omega-3 Polyunsatured Fatty Acid Consumption and Incidence of Type 2 Diabetes: A Systematic Review and Meta-Analysis. International Journal of Endocrinology, 2013, 2013, 1-11.	0.6	50
110	Red Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes: The Involvement of Advanced Lipoxidation Endproducts. Advances in Nutrition, 2013, 4, 403-411.	2.9	53

#	Article	IF	CITATIONS
111	The Alkaline Way. , 2013, , 97-112.		0
112	The Alkaline Way in Digestive Health. , 2013, , 1-21.		Ο
113	Factors Associated with Consumption of Diabetic Diet among Type 2 Diabetic Subjects from Ahmedabad, Western India. Journal of Health, Population and Nutrition, 2013, 30, 447-55.	0.7	16
115	Influence of Physical Activity and Nutrition on Obesity-Related Immune Function. Scientific World Journal, The, 2013, 2013, 1-12.	0.8	39
116	Meat Consumption as a Risk Factor for Type 2 Diabetes. Nutrients, 2014, 6, 897-910.	1.7	71
117	ALA, Fatty Fish or Marine n-3 Fatty Acids for Preventing DM?: A Systematic Review and Meta-Analysis. Current Diabetes Reviews, 2014, 10, 158-165.	0.6	44
118	The association between dietary patterns and type 2 diabetes: a systematic review and metaâ€analysis of cohort studies. Journal of Human Nutrition and Dietetics, 2014, 27, 251-260.	1.3	86
119	Amino acid-induced impairment of insulin sensitivity in healthy and obese rats is reversible. Physiological Reports, 2014, 2, e12067.	0.7	15
120	ls there a relationship between red or processed meat intake and obesity? A systematic review and metaâ€analysis of observational studies. Obesity Reviews, 2014, 15, 740-748.	3.1	197
121	Type of vegetarian diet, obesity and diabetes in adult Indian population. Nutrition Journal, 2014, 13, 89.	1.5	95
122	High cholesterol intake is associated with elevated risk of type 2 diabetes mellitus – A meta-analysis1–4. Clinical Nutrition, 2014, 33, 946-950.	2.3	29
123	The low-carbohydrate diet and cardiovascular risk factors: Evidence from epidemiologic studies. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 337-343.	1.1	80
124	Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Molecular Nutrition and Food Research, 2014, 58, 61-78.	1.5	89
125	Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E197-E209.	1.8	63
126	Diet, Lifestyle, and Genetic Risk Factors for Type 2 Diabetes: A Review from the Nurses' Health Study, Nurses' Health Study 2, and Health Professionals' Follow-Up Study. Current Nutrition Reports, 2014, 3, 345-354.	2.1	110
127	Relative importance of cues underlying Spanish consumers' beef choice and segmentation, and consumer liking of beef enriched with n-3 and CLA fatty acids. Food Quality and Preference, 2014, 33, 74-85.	2.3	67
128	Nutritional Components: How They Enhance the Ability to Adapt. , 2014, , 64-97.		1
129	Considerations for Exploring Livestock as a Nutrition Intervention in the Rural United States. Journal of Hunger and Environmental Nutrition, 2015, 10, 390-408.	1.1	О

#	Article	IF	CITATIONS
130	Long-term intake of animal flesh and risk of developing hypertension in three prospective cohort studies. Journal of Hypertension, 2015, 33, 2231-2238.	0.3	47
131	Risk Factor for Diabetes in Different Populations of Manipur. Biology and Medicine (Aligarh), 2015, 07, .	0.3	1
132	Dietary Diabetes Risk Reduction Score, Race and Ethnicity, and Risk of Type 2 Diabetes in Women. Diabetes Care, 2015, 38, 596-603.	4.3	44
133	A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2015, 64, 768-779.	1.5	123
134	Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. American Journal of Clinical Nutrition, 2015, 102, 1266-1278.	2.2	69
135	Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men. Journal of Nutrition, 2015, 145, 2456-2463.	1.3	37
136	Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies. Nutrients, 2016, 8, 739.	1.7	99
137	Meat Consumption and Risk of Developing Type 2 Diabetes in the SUN Project: A Highly Educated Middle-Class Population. PLoS ONE, 2016, 11, e0157990.	1.1	22
138	The gut microbiota in young and middle-aged rats showed different responses to chicken protein in their diet. BMC Microbiology, 2016, 16, 281.	1.3	17
139	Food quality score and the risk of coronary artery disease: a prospective analysis in 3 cohorts. American Journal of Clinical Nutrition, 2016, 104, 65-72.	2.2	27
140	Potato Consumption and Risk of Type 2 Diabetes: Results From Three Prospective Cohort Studies. Diabetes Care, 2016, 39, 376-384.	4.3	107
141	High intake of fatty fish, but not of lean fish, improved postprandial glucose regulation and increased the <i>n</i> -3 PUFA content in the leucocyte membrane in healthy overweight adults: a randomised trial. British Journal of Nutrition, 2017, 117, 1368-1378.	1.2	27
142	Dietary intake in people consuming a reduced arbohydrate diet in the National Diet and Nutrition Survey. Journal of Human Nutrition and Dietetics, 2017, 30, 360-368.	1.3	4
143	Iron in red meat–friend or foe. Meat Science, 2017, 123, 157-165.	2.7	47
144	Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease. Nutrients, 2017, 9, 800.	1.7	75
145	Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients, 2017, 9, 982.	1.7	126
146	The rs1527483, but not rs3212018, <i>CD36</i> polymorphism associates with linoleic acid detection and obesity in Czech young adults. British Journal of Nutrition, 2018, 119, 472-478.	1.2	25
147	International food group–based diet quality and risk of coronary heart disease in men and women. American Journal of Clinical Nutrition, 2018, 107, 120-129.	2.2	82

#	Article	IF	CITATIONS
148	Interaction of Dietary and Genetic Factors Influencing Body Iron Status and Risk of Type 2 Diabetes Within the EPIC-InterAct Study. Diabetes Care, 2018, 41, 277-285.	4.3	15
149	Factors contributing to the selection of dietary protein food sources. Clinical Nutrition, 2018, 37, 130-138.	2.3	64
150	Dietary Protein Intake, Meat Consumption, and Dairy Consumption in the Year Preceding Pregnancy and During Pregnancy and Their Associations With the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Southwest China. Frontiers in Endocrinology, 2018, 9, 596.	1.5	30
151	Red Meat Consumption (Heme Iron Intake) and Risk for Diabetes and Comorbidities?. Current Diabetes Reports, 2018, 18, 100.	1.7	25
152	The Dynamic Effects of Isosteviol on Insulin Secretion and Its Inability to Counteract the Impaired β-Cell Function during Gluco-, Lipo-, and Aminoacidotoxicity: Studies In Vitro. Nutrients, 2018, 10, 127.	1.7	8
153	Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetology and Metabolic Syndrome, 2018, 10, 48.	1.2	28
154	Processed red meat intake and risk of COPD: A systematic review and dose-response meta-analysis of prospective cohort studies. Clinical Nutrition, 2019, 38, 1109-1116.	2.3	32
155	Association between major dietary patterns and polycystic ovary syndrome: evidence from a case-control study. Applied Physiology, Nutrition and Metabolism, 2019, 44, 52-58.	0.9	17
156	Partial and total replacement of meat by plant-based proteins in chicken sausage: evaluation of mechanical, physico-chemical and sensory characteristics. Journal of Food Science and Technology, 2019, 56, 2660-2669.	1.4	85
157	Rural–Urban Differences in Dietary Behavior and Obesity: Results of the Riskesdas Study in 10–18-Year-Old Indonesian Children and Adolescents. Nutrients, 2019, 11, 2813.	1.7	45
158	Caveats for the Good and Bad of Dietary Red Meat. Antioxidants, 2019, 8, 544.	2.2	9
159	Substitution of red meat with poultry or fish and risk of type 2 diabetes: a Danish cohort study. European Journal of Nutrition, 2019, 58, 2705-2712.	1.8	23
160	Effect of whole-grain plant-based diet on the diabetes mellitus type 2 features in newly diagnosed patients: a pilot study. International Journal of Diabetes in Developing Countries, 2019, 39, 535-546.	0.3	1
161	Red meat consumption and metabolic syndrome in the Costa Rica Heart Study. European Journal of Nutrition, 2020, 59, 185-193.	1.8	23
162	TMAO, creatine and 1-methylhistidine in serum and urine are potential biomarkers of cod and salmon intake: a randomised clinical trial in adults with overweight or obesity. European Journal of Nutrition, 2020, 59, 2249-2259.	1.8	29
163	Association between empirically derived dietary patterns and polycystic ovary syndrome: A case-control study. Nutrition, 2020, 79-80, 110987.	1.1	10
164	Plant-Based Meats, Human Health, and Climate Change. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	91
165	Association between dietary patterns and prediabetes, undetected diabetes or clinically diagnosed diabetes: results from the KORA FF4 study. European Journal of Nutrition, 2021, 60, 2331-2341.	1.8	21

#	Article	IF	CITATIONS
166	The association of red meat intake with inflammation and circulating intermediate biomarkers of type 2 diabetes is mediated by central adiposity. British Journal of Nutrition, 2021, 125, 1043-1050.	1.2	24
167	Health-Promoting Phytonutrients Are Higher in Grass-Fed Meat and Milk. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	32
168	Acute hyperaminoacidemia does not suppress insulin-mediated glucose turnover in healthy young men. Applied Physiology, Nutrition and Metabolism, 2021, 46, 397-403.	0.9	0
169	Advances in dietary pattern analysis in nutritional epidemiology. European Journal of Nutrition, 2021, 60, 4115-4130.	1.8	43
170	Dietary iron to total energy intake ratio and type 2 diabetes incidence in a longitudinal 12-year analysis of the Korean Genome and Epidemiology Cohort Study. European Journal of Nutrition, 2021, 60, 4453-4461.	1.8	4
171	A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Scientific Reports, 2021, 11, 13828.	1.6	72
172	Understanding the role of information and taste heterogeneity in consumer preferences for functional beef: The case of the omega-3 enriched burger. Meat Science, 2021, 181, 108614.	2.7	9
173	Diet and Lifestyle in Prevention and Management of Type 2 Diabetes. , 2006, , 429-443.		2
174	Protein, body weight, and cardiovascular health. American Journal of Clinical Nutrition, 2005, 82, 242S-247S.	2.2	7
176	A study of correlation of serum ferritin with glycated haemoglobin in diabetes mellitus type 2 patients: a case control study. Asian Pacific Journal of Health Sciences, 2016, 3, 83-88.	0.0	3
177	A new approach to the study of diet and risk of type 2 diabetes. Journal of Postgraduate Medicine, 2007, 53, 139-143.	0.2	22
178	Medical Nutrition Therapy in the Treatment of Type 1 and Type 2 Diabetes. , 2009, , 245-260.		0
179	Iron Metabolism and Oxidative Stress. , 2011, , 205-228.		2
180	Diet and Inflammation: Effects of Macronutrients and Dietary Patterns. International Journal of Cardiology and Lipidology Research, 2015, 2, 7-13.	0.0	0
181	The association between maternal dietary protein intake and risk of gestational diabetes mellitus. International Journal of Preventive Medicine, 2019, 10, 197.	0.2	10
182	A STUDY OF CLINICAL, METABOLIC AND ANTHROPOMETRIC PROFILE AND POSSIBLE ETIOLOGICAL FACTORS AMONG NEWLY DETECTED TYPE 2 DM IN NORTH KERALA. Journal of Evolution of Medical and Dental Sciences, 2019, 8, 907-914.	0.1	1
183	Dietary approach to stop hypertension and obesity among Iranian adults: Yazd health study-TAMYZ and Shahedieh cohort. Nutrition and Food Science, 2022, 52, 1142-1157.	0.4	0
184	Vegetarian "Sausages―with the Addition of Grape Flour. Applied Sciences (Switzerland), 2022, 12, 2189.	1.3	9

~			~		
CT	ΓΑΤ	ION	RE	PO P	RT

#	Article	IF	CITATIONS
185	Ultra-processed food and risk of type 2 diabetes: a systematic review and meta-analysis of longitudinal studies. International Journal of Epidemiology, 2022, 51, 1120-1141.	0.9	54
187	The role of iron in obesity and diabetes. Journal of Medical Investigation, 2022, 69, 1-7.	0.2	6
188	Nutritive, chemical and technological properties of liver pate formulated with beef offal, sheep tail fat and licorice and ginger root. Potravinarstvo, 0, 16, 733-749.	0.5	4
189	Red/processed meat consumption and non-cancer-related outcomes in humans: umbrella review. British Journal of Nutrition, 2023, 130, 484-494.	1.2	4
190	The association between dietary patterns derived by three statistical methods and type 2 diabetes risk: YaHS-TAMYZ and Shahedieh cohort studies. Scientific Reports, 2023, 13, .	1.6	0