Molecular self-assembly of surfactant-like peptides to f

Proceedings of the National Academy of Sciences of the Unite 99, 5355-5360

DOI: 10.1073/pnas.072089599

Citation Report

#	Article	IF	CITATIONS
1	Improvement in Electrical Conductivity of Indium Tin Oxide Films Prepared via Pulsed Laser Deposition on Electric-Field-Applied Substrates. Japanese Journal of Applied Physics, 2002, 41, 3760-3761.	0.8	3
2	Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society, 2002, 124, 15030-15037.	6.6	851
3	Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel:Â A Potential Candidate for Biomaterials. Journal of the American Chemical Society, 2002, 124, 14846-14847.	6.6	387
4	Emerging biological materials through molecular self-assembly. Biotechnology Advances, 2002, 20, 321-339.	6.0	504
5	Designing supramolecular protein assemblies. Current Opinion in Structural Biology, 2002, 12, 464-470.	2.6	167
6	Structures, function and applications of amphiphilic peptides. Current Opinion in Colloid and Interface Science, 2002, 7, 262-266.	3.4	62
7	Design of nanostructured biological materials through self-assembly of peptides and proteins. Current Opinion in Chemical Biology, 2002, 6, 865-871.	2.8	532
8	Self-assembly in mesoscopic dimension and artificial supramolecular membranes. Current Opinion in Chemical Biology, 2003, 7, 702-709.	2.8	24
9	Amyloid-like fibril-forming supramolecular β-sheets from a β-turn forming tripeptide containing non-coded amino acids: the crystallographic signature. Tetrahedron Letters, 2003, 44, 335-339.	0.7	26
10	Building from the bottom up. Materials Today, 2003, 6, 20-27.	8.3	102
11	Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 2003, 21, 1171-1178.	9.4	3,048
12	Z-DNA: the long road to biological function. Nature Reviews Genetics, 2003, 4, 566-572.	7.7	459
13	Aqueous Self-Assembly of Unsymmetric Peptide Bolaamphiphiles into Nanofibers with Hydrophilic Cores and Surfaces. Journal of the American Chemical Society, 2003, 125, 12680-12681.	6.6	182
14	Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly. Journal of the American Chemical Society, 2003, 125, 6391-6393.	6.6	356
15	Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures. Langmuir, 2003, 19, 4332-4337.	1.6	233
16	Adsorption of β-Hairpin Peptides on the Surface of Water: A Neutron Reflection Study. Journal of the American Chemical Society, 2003, 125, 3751-3757.	6.6	52
17	Biomolecular inorganic materials chemistry. Current Opinion in Solid State and Materials Science, 2003, 7, 273-281.	5.6	58
18	Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes. Science, 2003, 300, 625-627.	6.0	2,321

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
19	15a EJ Biolinspired organic chemistry. Annual Reports on the Progress of Chemistry Section 6, 2005, 99, 447.	0.8	2
22	G Proteinâ€Coupled Receptors. , 2004, , 1-11.		0
23	Peptide Nanotubes. , 2004, , 1035-1041.		0
24	Self-assembling Peptide Detergent A6D Directly Associates with Bovine Rhodopsin and Forms Lipid-like Vesicles. Materials Research Society Symposia Proceedings, 2004, 845, 240.	0.1	Ο
25	Fabrication of molecular materials using peptide construction motifs. Trends in Biotechnology, 2004, 22, 470-476.	4.9	123
26	Bottom-up design of biomimetic assemblies. Advanced Drug Delivery Reviews, 2004, 56, 1537-1563.	6.6	198
27	Electroless metal plating of microtubules: Effect of microtubule-associated proteins. Journal of Materials Science, 2004, 39, 1927-1933.	1.7	26
28	Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices. Nano Letters, 2004, 4, 1079-1083.	4.5	354
29	Organization of designed nanofibrils assembled fromα-helical peptides as determined by electron microscopy. Journal of Peptide Science, 2004, 10, 291-297.	0.8	26
30	Chiral Molecular Self-Assembly. Topics in Stereochemistry, 2004, , 281-372.	2.0	23
31	Design of molecular biological materials using peptide motifs. Journal of Materials Chemistry, 2004, 14, 2082.	6.7	56
32	CRITICAL SELF-ASSEMBLY CONCENTRATION OF AN IONIC-COMPLEMENTARY PEPTIDE EAK16-I. Journal of Adhesion, 2004, 80, 913-931.	1.8	39
33	Self-Assembling Peptide as a Potential Carrier of Hydrophobic Compounds. Journal of the American Chemical Society, 2004, 126, 7522-7532.	6.6	100
34	A New Motif in the Formation of Peptide Nanotubes:  The Crystallographic Signature. Organic Letters, 2004, 6, 4463-4465.	2.4	36
35	Interfacial Nano-structuring of Designed Peptides Regulated by Solution pH. Journal of the American Chemical Society, 2004, 126, 8940-8947.	6.6	45
36	Coarse grain models and the computer simulation of soft materials. Journal of Physics Condensed Matter, 2004, 16, R481-R512.	0.7	359
37	Reversible and Chemically Programmable Micelle Assembly with DNA Block-Copolymer Amphiphiles. Nano Letters, 2004, 4, 1055-1058.	4.5	208
38	Self-Assembly of the Ionic Peptide EAK16: The Effect of Charge Distributions on Self-Assembly. Biophysical Journal, 2004, 87, 1249-1259.	0.2	103

#	Article	IF	CITATIONS
39	Helical Supramolecules and Fibers Utilizing Leucine Zipper-Displaying Dendrimers. Journal of the American Chemical Society, 2004, 126, 734-735.	6.6	103
40	Synthesis of peptide-nanotube platinum-nanoparticle composites. Chemical Communications, 2004, , 1044-1045.	2.2	208
41	Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides. Nano Letters, 2004, 4, 581-585.	4.5	401
42	Self-Association Process of a Peptide in Solution: From β-Sheet Filaments to Large Embedded Nanotubes. Biophysical Journal, 2004, 86, 2484-2501.	0.2	60
43	Effect of NaCl and peptide concentration on the self-assembly of an ionic-complementary peptide EAK16-II. Colloids and Surfaces B: Biointerfaces, 2005, 46, 152-161.	2.5	65
44	Protein fibers as performance proteins: new technologies and applications. Current Opinion in Biotechnology, 2005, 16, 427-433.	3.3	173
45	Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4, 277-288.	13.3	1,294
46	Design and Application of Selfâ€Assembled Low Molecular Weight Hydrogels. European Journal of Organic Chemistry, 2005, 2005, 3615-3631.	1.2	541
47	Self-Assembled Diamide Nanotubes in Organic Solvents. Angewandte Chemie - International Edition, 2005, 44, 3260-3264.	7.2	74
49	Peptide-Based Nanotubes and Their Applications in Bionanotechnology. Advanced Materials, 2005, 17, 2037-2050.	11.1	459
50	?-Helical Polypeptide Microcapsules Formed by Emulsion-Templated Self-Assembly. Chemistry - A European Journal, 2005, 11, 1574-1578.	1.7	41
51	Self-Assembling Peptide Detergents Stabilize Isolated Photosystem Ion a Dry Surface for an Extended Time. PLoS Biology, 2005, 3, e230.	2.6	116
52	A model for the role of short selfâ€assembled peptides in the very early stages of the origin of life. FASEB Journal, 2005, 19, 1051-1055.	0.2	115
53	Tissue Bioengineering. JAMA Ophthalmology, 2005, 123, 1725.	2.6	14
54	Self-assembly of peptides and its potential applications. , 2005, , 421-474.		4
55	Neutron reflection. , 2005, , 299-321.		2
56	Structural Control of Self-Assembled Nanofibers by Artificial β-Sheet Peptides Composed of d- or I-Isomer. Journal of the American Chemical Society, 2005, 127, 17596-17597.	6.6	115
57	Single-Site Mutations in a Hyperthermophilic Variant of the B1 Domain of Protein G Result in Self-Assembled Oligomersâ€. Biochemistry, 2005, 44, 2360-2368.	1.2	12

#	Article	IF	CITATIONS
58	Peptergents:  Peptide Detergents That Improve Stability and Functionality of a Membrane Protein, Glycerol-3-phosphate Dehydrogenase. Biochemistry, 2005, 44, 16912-16919.	1.2	83
59	Self-Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures. Nano Letters, 2005, 5, 1343-1346.	4.5	392
60	Modeling Tubulin at Interfaces. Immobilization of Microtubules on Self-Assembled Monolayers. Journal of Physical Chemistry B, 2005, 109, 17734-17742.	1.2	5
61	Coassembly of Amphiphiles with Opposite Peptide Polarities into Nanofibers. Journal of the American Chemical Society, 2005, 127, 1193-1200.	6.6	303
62	Polypeptide Multilayer Films. Biomacromolecules, 2005, 6, 2895-2913.	2.6	98
63	Self-Assembly of Model DNA-Binding Peptide Amphiphiles. Langmuir, 2005, 21, 11888-11895.	1.6	51
64	Hierarchical Self-Assembly of a Coiled-Coil Peptide into Fractal Structure. Nano Letters, 2005, 5, 1255-1260.	4.5	94
65	Formation of amyloid-like fibrils upon limited proteolysis of bovine α-lactalbumin. International Dairy Journal, 2005, 15, 219-229.	1.5	44
66	Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Israel Journal of Chemistry, 2005, 45, 363-371.	1.0	201
67	Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews, 2005, 105, 1401-1444.	23.0	1,398
68	Self-organization of Short Peptide Fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies. Supramolecular Chemistry, 2005, 17, 87-92.	1.5	83
69	Prediction of Nucleating Sequences from Amyloidogenic Propensities of Tau-Related Peptides. Biochemistry, 2006, 45, 4638-4652.	1.2	64
70	Peptide-Based Viscoelastic Matrices for Drug Delivery and Tissue Repair. BioDrugs, 2006, 20, 263-269.	2.2	28
71	Molecular designer self-assembling peptides. Chemical Society Reviews, 2006, 35, 1105.	18.7	250
72	Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nature Materials, 2006, 5, 502-506.	13.3	141
73	Direct Observation of the Release of Phenylalanine from Diphenylalanine Nanotubes. Journal of the American Chemical Society, 2006, 128, 6903-6908.	6.6	112
74	Structure of Core Domain of Fibril-Forming PHF/Tau Fragments. Biophysical Journal, 2006, 90, 1774-1789.	0.2	104
75	Side-Chain Interactions Determine Amyloid Formation by Model Polyglutamine Peptides in Molecular Dynamics Simulations. Biophysical Journal, 2006, 90, 4574-4584.	0.2	65

#	Article	IF	CITATIONS
76	Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes:  Implications for Nanotechnological Applications. Langmuir, 2006, 22, 1313-1320.	1.6	349
77	Fabrication of Coaxial Metal Nanocables Using a Self-Assembled Peptide Nanotube Scaffold. Nano Letters, 2006, 6, 1594-1597.	4.5	231
78	Controlling amyloid growth in multiple dimensions. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2006, 13, 206-215.	1.4	44
79	Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Physical Biology, 2006, 3, S10-S19.	0.8	182
80	Aggregation of the Amphipathic Peptides (AAKA)ninto Antiparallel β-Sheets. Journal of the American Chemical Society, 2006, 128, 13324-13325.	6.6	44
81	Peptideâ^'TiO2Surface Interaction in Solution by Ab Initio and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2006, 110, 6160-6169.	1.2	109
82	Nanoparticle Traffic on Helical Tracks:  Thermophoretic Mass Transport through Carbon Nanotubes. Nano Letters, 2006, 6, 1910-1917.	4.5	93
83	Enzymatically triggered self-assembly of poly(ethylene glycol)-attached oligopeptides into well-organized nanofibers. Chemical Communications, 2006, , 4897.	2.2	27
84	Cobalt Ion Mediated Self-Assembly of Genetically Engineered Bacteriophage for Biomimetic Coâ^'Pt Hybrid Material. Biomacromolecules, 2006, 7, 14-17.	2.6	121
85	Functional Materials via Multiple Noncovalent Interactions. , 0, , 261-292.		0
87	Application of Nanoscale Bioassemblies to Clinical Laboratory Diagnostics. Advances in Clinical Chemistry, 2006, 41, 23-48.	1.8	3
88	Self-Assembled Nanotubes in Organic Solvents. Macromolecular Symposia, 2006, 241, 68-74.	0.4	8
89	Effects of chain length on the aggregation of model polyglutamine peptides: Molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2006, 66, 96-109.	1.5	62
90	Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotechnology, 2006, 1, 195-200.	15.6	529
91	The role of terminal tyrosine residues in the formation of tripeptide nanotubes: a crystallographic insight. Tetrahedron, 2006, 62, 7274-7283.	1.0	14
92	Two-Dimensional Ordered Î ² -Sheet Lipopeptide Monolayers. Journal of the American Chemical Society, 2006, 128, 13959-13966.	6.6	33
93	Structure by design: from single proteins and their building blocks to nanostructures. Trends in Biotechnology, 2006, 24, 449-454.	4.9	37
94	Controlled Self-Assembly of Amphiphilic Oligopeptides into Shape-Specific Nanoarchitectures. Chemistry - A European Journal, 2006, 12, 1360-1367.	1.7	51

#	Article	IF	CITATIONS
95	The Molecular Basis of Self-Assembly of Dendron–Rod–Coils into One-Dimensional Nanostructures. Chemistry - A European Journal, 2006, 12, 7313-7327.	1.7	61
96	Nanogels prepared by self-assembly of oppositely charged globular proteins. Biopolymers, 2006, 83, 148-158.	1.2	93
97	Epitaxial Growth of Peptide Nanofilaments on Inorganic Surfaces: Effects of Interfacial Hydrophobicity/Hydrophilicity. Angewandte Chemie - International Edition, 2006, 45, 3611-3613.	7.2	77
99	Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Advanced Materials, 2006, 18, 1365-1370.	11.1	742
100	Self-Assembling Nanopeptides Become aÂNew Type of Biomaterial. , 0, , 145-170.		41
101	Self-assembling Behavior of Designer Lipid-like Peptides. Supramolecular Chemistry, 2006, 18, 389-396.	1.5	67
102	Unconventional methods for forming nanopatterns. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2006, 220, 81-138.	0.1	10
103	Designing a Nanotube Using Naturally Occurring Protein Building Blocks. PLoS Computational Biology, 2006, 2, e42.	1.5	33
104	The Application of Photosynthetic Materials and Architectures to Solar Cells. , 2006, , 335-359.		3
105	Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17707-17712.	3.3	159
106	Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1199-1203.	3.3	130
107	Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids. Physical Biology, 2006, 3, S54-S62.	0.8	20
108	Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7791-7796.	3.3	604
109	Patenting Activity in Synthesis of Lipid Nanotubes and Peptide Nanotubes. Recent Patents on Nanotechnology, 2007, 1, 21-28.	0.7	9
110	Integrating peptide nanotubes in micro-fabrication processes. Journal of Micromechanics and Microengineering, 2007, 17, 2360-2365.	1.5	45
112	Chemical evolution toward the origin of life. Pure and Applied Chemistry, 2007, 79, 2101-2117.	0.9	36
113	Sheathing Polymer Gels Fibrils with Nanotubules. Macromolecular Symposia, 2007, 251, 11-14.	0.4	0
114	Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chemical Society Reviews, 2007, 36, 1263.	18.7	931

		Report	
#	Article	IF	CITATIONS
115	Stability of Tubular Structures Based on β-Helical Proteins:  Self-Assembled versus Polymerized Nanoconstructs and Wild-Type versus Mutated Sequences. Biomacromolecules, 2007, 8, 3135-3146.	2.6	10
116	Nanostructure Design Using Protein Building Blocks Enhanced by Conformationally Constrained Synthetic Residuesâ€. Biochemistry, 2007, 46, 1205-1218.	1.2	37
117	Peptide Nanomaterials: Self-assembling Peptides as Building Blocks for Novel Materials. , 0, , 171-183.		6
118	Anticancer Polymeric Nanomedicines. Polymer Reviews, 2007, 47, 345-381.	5.3	270
119	Self-assembly of supramolecular nanostructures from phenylalanine derived bolaamphiphiles. New Journal of Chemistry, 2007, 31, 1674.	1.4	23
120	Self-Assembly of Surfactant-like Peptides. Langmuir, 2007, 23, 12729-12736.	1.6	61
121	Structure and Properties of an Exceptional Low Molecular Weight Hydrogelator. Journal of Physical Chemistry B, 2007, 111, 13180-13187.	1.2	37
122	Ionic Peptide Aggregation:Â Exploration of Conformational Dynamics in Aqueous Solution by Computational Techniques. Journal of Physical Chemistry B, 2007, 111, 1165-1175.	1.2	8
123	Protease-Sensitive Fluorescent Nanofibers. Bioconjugate Chemistry, 2007, 18, 1701-1704.	1.8	48
124	Microtubule Formation Using Two-Component Gel System. Journal of the American Chemical Society, 2007, 129, 1040-1041.	6.6	64
125	Self-Assembly of Multidomain Peptides:  Balancing Molecular Frustration Controls Conformation and Nanostructure. Journal of the American Chemical Society, 2007, 129, 12468-12472.	6.6	322
126	Self-Assembly of Recombinant Amphiphilic Oligopeptides into Vesicles. Biomacromolecules, 2007, 8, 2753-2761.	2.6	87
127	Macroscale assembly of peptide nanotubes. Chemical Communications, 2007, , 2729.	2.2	57
128	Stabilization of Peptide Fibrils by Hydrophobic Interaction. Langmuir, 2007, 23, 2058-2063.	1.6	53
129	Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants. PLoS ONE, 2007, 2, e479.	1.1	101
130	Plausible lipid-like peptides: prebiotic molecular self-assembly in water. , 0, , 440-455.		0
132	Microporous Organic Materials from Hydrophobic Dipeptides. Chemistry - A European Journal, 2007, 13, 1022-1031.	1.7	242
133	One-dimensional self-assembly of a rational designed β-structure peptide. Biopolymers, 2007, 86, 23-31.	1.2	27

#	Article	IF	CITATIONS
134	Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angewandte Chemie - International Edition, 2007, 46, 2431-2434.	7.2	306
135	Bioinspired Design of Nanocages by Self-Assembling Triskelion Peptide Elements. Angewandte Chemie - International Edition, 2007, 46, 2002-2004.	7.2	133
136	A Supramolecular-Hydrogel-Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase. Angewandte Chemie - International Edition, 2007, 46, 4285-4289.	7.2	369
137	Peptide Fibrillization. Angewandte Chemie - International Edition, 2007, 46, 8128-8147.	7.2	564
138	Synthetic Virus‣ike Particles from Selfâ€Assembling Coiledâ€Coil Lipopeptides and Their Use in Antigen Display to the Immune System. Angewandte Chemie - International Edition, 2007, 46, 9015-9018.	7.2	102
144	Formation of Well-Organized Self-Assembled Films from Peptide Nanotubes. Advanced Materials, 2007, 19, 1485-1488.	11.1	78
145	Engineered Microcapsules Fabricated from Reconstituted Spider Silk. Advanced Materials, 2007, 19, 1810-1815.	11.1	119
146	Designer Self-Assembling Peptide Materials. Macromolecular Bioscience, 2007, 7, 13-22.	2.1	160
147	Templated growth of calcium phosphate on tyrosine derived microtubules and their biocompatibility. Colloids and Surfaces B: Biointerfaces, 2007, 60, 158-166.	2.5	21
148	Synthetic polypeptides for biomedical applications. Progress in Polymer Science, 2007, 32, 858-875.	11.8	486
149	Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides. BMC Structural Biology, 2007, 7, 63.	2.3	16
150	Kinetically driven refolding of the hyperstable EBNA1 origin DNAâ€binding dimeric βâ€barrel domain into amyloidâ€like spherical oligomers. Proteins: Structure, Function and Bioinformatics, 2008, 70, 450-461.	1.5	11
151	Organic Solvents Mediate Self-assembly of GAV-9 Peptide on Mica Surface. Acta Biochimica Et Biophysica Sinica, 2007, 39, 285-289.	0.9	17
152	Local delivery of proteins and the use of self-assembling peptides. Drug Discovery Today, 2007, 12, 561-568.	3.2	94
153	Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends in Biotechnology, 2007, 25, 211-218.	4.9	133
154	Steps Towards the Formation of A Protocell: The Possible Role of Short Peptides. Origins of Life and Evolution of Biospheres, 2007, 37, 537-553.	0.8	30
155	Vesicular aggregation and morphologic evolvement of a flexible-rigid block hydrogen-bonding complex. Polymer, 2008, 49, 4159-4167.	1.8	5
156	Hierarchical self-assembly of p-terphenyl derivative with dumbbell-like amphiphilic and rod-coil characteristics. Tetrahedron Letters, 2008, 49, 5522-5526.	0.7	19

#	Article	IF	CITATIONS
157	Self-assembling peptide nanotubes. Nano Today, 2008, 3, 22-30.	6.2	266
158	Synthesis and aggregation of poly(valine)â€poly (ethylene glycol) block copolymers. Journal of Polymer Science Part A, 2008, 46, 5381-5389.	2.5	12
159	Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. Journal of Peptide Science, 2008, 14, 217-223.	0.8	91
160	Bioactive Amphiphilic Peptide Derivatives with pH Triggered Morphology and Structure. Macromolecular Rapid Communications, 2008, 29, 1726-1731.	2.0	36
161	Nanotube and Threeâ€Way Nanotube Formation with Nonionic Amphiphilic Block Peptides. Macromolecular Bioscience, 2008, 8, 1026-1033.	2.1	69
162	De Novo Design of a Bolaamphiphilic Peptide with Only Natural Amino Acids. Macromolecular Bioscience, 2008, 8, 1053-1059.	2.1	31
163	Synergistic Effect and Hierarchical Nanostructure Formation in Mixing Two Designer Lipidâ€Like Peptide Surfactants Acâ€A ₆ Dâ€OH and Acâ€A ₆ Kâ€NH ₂ . Macromolecular Bioscience, 2008, 8, 1060-1067.	2.1	40
164	A Family of Hydrogels Based on Ureidoâ€Linked Aminopolyolâ€Derived Amphiphiles and Bolaamphiphiles: Synthesis, Gelation under Thermal and Sonochemical Stimuli, and Mesomorphic Characterization. Chemistry - A European Journal, 2008, 14, 5656-5669.	1.7	35
165	High Catalytic Activities of Artificial Peroxidases Based on Supramolecular Hydrogels That Contain Heme Models. Chemistry - A European Journal, 2008, 14, 5073-5078.	1.7	63
166	Nematic and Columnar Ordering of a PEG–Peptide Conjugate in Aqueous Solution. Chemistry - A European Journal, 2008, 14, 11369-11375.	1.7	46
167	Controlled Selfâ€Assembly Manipulated by Chargeâ€Transfer Interactions: From Tubes to Vesicles. Angewandte Chemie - International Edition, 2008, 47, 9049-9052.	7.2	198
168	Chitosan Nanostructures with Controllable Morphology Produced by a Nonaqueous Electrochemical Approach. Advanced Materials, 2008, 20, 2111-2115.	11.1	31
169	Multiple Lyotropic Polymorphism of a Poly(ethylene glycol)â€Peptide Conjugate in Aqueous Solution. Advanced Materials, 2008, 20, 4394-4397.	11.1	52
171	Solvent-mediated morphological transformations in peptide-based soft structures. Tetrahedron, 2008, 64, 6202-6208.	1.0	28
172	Peptide-based biopolymers in biomedicine and biotechnology. Materials Science and Engineering Reports, 2008, 62, 125-155.	14.8	264
173	Recent development of peptide self-assembly. Progress in Natural Science: Materials International, 2008, 18, 653-660.	1.8	74
174	Peptide Amphiphile Nanofibers with Conjugated Polydiacetylene Backbones in Their Core. Journal of the American Chemical Society, 2008, 130, 3892-3899.	6.6	163
175	Peptides As Functional Surfactants. Industrial & Engineering Chemistry Research, 2008, 47, 6391-6398.	1.8	88

#	Article	IF	CITATIONS
176	Self-Assembly of Short Peptides for Nanotechnological Applications. , 2008, , 385-395.		1
177	Stimuli Responsive Self-Assembled Hydrogel of a Low Molecular Weight Free Dipeptide with Potential for Tunable Drug Delivery. Biomacromolecules, 2008, 9, 2244-2250.	2.6	157
178	Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Engineering - Part B: Reviews, 2008, 14, 61-86.	2.5	895
179	Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 2008, 4, 550.	1.2	106
180	Controlling self-assembly within nanospace for peptide nanoparticle fabrication. Soft Matter, 2008, 4, 1617.	1.2	52
181	Solid-Phase Growth of Nanostructures from Amorphous Peptide Thin Film: Effect of Water Activity and Temperature. Chemistry of Materials, 2008, 20, 4284-4290.	3.2	56
182	Construction of a Long Cyclodextrin-Based Bis(molecular tube) from Bis(polypseudorotaxane) and Its Capture of C60. ACS Nano, 2008, 2, 554-560.	7.3	36
184	Protease-Catalyzed Co-Oligomerizations of <scp>l</scp> -Leucine Ethyl Ester with <scp>l</scp> -Glutamic Acid Diethyl Ester: Sequence and Chain Length Distributions. Macromolecules, 2008, 41, 7003-7012.	2.2	44
185	Physicochemical Characterization and Tube-like Structure Formation of a Novel Amino Acid-Based Zwitterionic Amphiphile <i>N</i> -(2-Hydroxydodecyl)- <scp>I</scp> -valine in Water. Journal of Physical Chemistry B, 2008, 112, 6629-6635.	1.2	17
186	Effect of Hydrogen Bonding on the Physicochemical Properties and Bilayer Self-Assembly Formation of N-(2-Hydroxydodecyl)-l-alanine in Aqueous Solution. Langmuir, 2008, 24, 6018-6026.	1.6	26
187	Understanding Self-Assembled Amphiphilic Peptide Supramolecular Structures from Primary Structure Helix Propensity. Langmuir, 2008, 24, 7645-7647.	1.6	29
188	Probe-Induced Self-Aggregation of γ-Cyclodextrin: Formation of Extended Nanotubular Suprastructure. Journal of Physical Chemistry C, 2008, 112, 9600-9603.	1.5	32
189	Self-Assembled pH-Responsive Hydrogels Composed of the RATEA16 Peptide. Biomacromolecules, 2008, 9, 1511-1518.	2.6	80
190	Proteins and Their Peptide Motifs in Acellular Apatite Mineralization of Scaffolds for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2008, 14, 433-445.	2.5	46
191	Synthesis and Evaluation of New Type Alginate Hydrogel Using Self-assembly β-Sheet Peptides. Kobunshi Ronbunshu, 2008, 65, 745-750.	0.2	3
192	Molecular Dynamics Simulations of Proteins and Peptides: From Folding to Drug Design. Current Protein and Peptide Science, 2008, 9, 181-196.	0.7	26
193	Formation of Mixed Ionic Complementary Peptide Fibrils. Macromolecular Symposia, 2008, 273, 139-145.	0.4	15
194	Differences between CusA and AcrB Crystallisation Highlighted by Protein Flexibility. PLoS ONE, 2009, 4, e6214.	1.1	6

#	ARTICLE	IF	CITATIONS
195	Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1727-1747.	1.6	46
196	Selfâ€Assembly and Growth of Smart Cellâ€Adhesive Mucinâ€Bound Microtubes. Soft Materials, 2009, 7, 21-36.	0.8	14
197	Effect of Phosphate on the Self-Assembly of Peptide EMK16-II. Chinese Physics Letters, 2009, 26, 088103.	1.3	6
198	Selfâ€Assembled Robust Dipeptide Nanotubes and Fabrication of Dipeptideâ€Capped Gold Nanoparticles on the Surface of these Nanotubes. Advanced Functional Materials, 2009, 19, 1949-1961.	7.8	23
199	Gold(I)–Alkanethiolate Nanotubes. Advanced Materials, 2009, 21, 4962-4965.	11.1	40
202	Automated self-assembly programming paradigm: The impact of network topology. International Journal of Intelligent Systems, 2009, 24, 793-817.	3.3	5
203	Control of Duplex Formation and Columnar Selfâ€Assembly with Heterogeneous Amide/Urea Macrocycles. Angewandte Chemie - International Edition, 2009, 48, 1625-1628.	7.2	39
204	Controllable Peptide–Dendron Selfâ€Assembly: Interconversion of Nanotubes and Fibrillar Nanostructures. Angewandte Chemie - International Edition, 2009, 48, 2525-2528.	7.2	106
205	Effects of hydrophobicity and anions on selfâ€assembly of the peptide EMK16â€II. Biopolymers, 2010, 93, 318-329.	1.2	29
206	Peptideâ€dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. BioEssays, 2009, 31, 1100-1109.	1.2	26
207	Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution. Biophysical Chemistry, 2009, 141, 169-174.	1.5	105
208	Toward Homochiral Protocells in Noncatalytic Peptide Systems. Origins of Life and Evolution of Biospheres, 2009, 39, 479-493.	0.8	18
209	Stabilization of Peptide Vesicles by Introducing Inter-Peptide Disulfide Bonds. Pharmaceutical Research, 2009, 26, 2186-2193.	1.7	29
210	Application research of a novel designed peptide as a potential carrier. Science in China Series B: Chemistry, 2009, 52, 632-638.	0.8	5
211	A novel route to <i>inâ€situ</i> incorporation of silver nanoparticles into supramolecular hydrogel networks. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 740-749.	2.4	27
212	Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnology, 2009, 4, 849-854.	15.6	372
213	Designer self-assembling peptide nanomaterials. Nano Today, 2009, 4, 193-210.	6.2	155
214	Growth of rat dorsal root ganglion neurons on a novel self-assembling scaffold containing IKVAV sequence. Materials Science and Engineering C, 2009, <u>29, 2099-2103.</u>	3.8	17

\sim				
	ITAT	121	FDC	NDΤ
<u> </u>		IVL		

#	Article	IF	CITATIONS
215	Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides. Journal of Colloid and Interface Science, 2009, 336, 477-484.	5.0	38
216	Biomorphic mineralization: From biology to materials. Progress in Materials Science, 2009, 54, 542-659.	16.0	313
217	Peptide membranes in chemical evolutionâ [~] †. Current Opinion in Chemical Biology, 2009, 13, 652-659.	2.8	52
218	Design of self-assembling surfactant-like peptides and their applications. Current Opinion in Colloid and Interface Science, 2009, 14, 340-348.	3.4	66
219	Linear nano-templates of styrene and maleic anhydride alternating copolymers. European Polymer Journal, 2009, 45, 1883-1890.	2.6	10
220	Concentration Dependent Transformation of Oligopeptide based Nanovesicles to Nanotubes and an Application of Nanovesicles. Chemistry - an Asian Journal, 2009, 4, 1817-1823.	1.7	36
221	Peptide Nanotube Nematic Phase. Langmuir, 2009, 25, 4262-4265.	1.6	75
222	Designer Peptide Surfactants Stabilize Functional Photosystem-I Membrane Complex in Aqueous Solution for Extended Time. Journal of Physical Chemistry B, 2009, 113, 75-83.	1.2	76
223	Hydrophobic-Region-Induced Transitions in Self-Assembled Peptide Nanostructures. Langmuir, 2009, 25, 4115-4123.	1.6	137
224	Self-assembly of Peptideâ^'Amphiphile C ₁₂ â^'Aβ(11â^'17) into Nanofibrils. Journal of Physical Chemistry B, 2009, 113, 8539-8544.	1.2	42
225	Adsorption of Ionic Peptides on Inorganic Supports. Journal of Physical Chemistry C, 2009, 113, 2433-2442.	1.5	41
226	Enzyme Promotes the Hydrogelation from a Hydrophobic Small Molecule. Journal of the American Chemical Society, 2009, 131, 11286-11287.	6.6	170
227	Influence of Double Hydrogen Bonds and Alkyl Chains on the Gelation of Nonchiral Polyurethane Model Compounds: Sheets, Eaves Trough, Tubes and Oriented Fibers. Langmuir, 2009, 25, 13183-13193.	1.6	36
228	Supramolecular Assemblies of Amphiphilic Homopolymers. Langmuir, 2009, 25, 9660-9670.	1.6	130
229	Self-Assembled Fmoc-Peptides as a Platform for the Formation of Nanostructures and Hydrogels. Biomacromolecules, 2009, 10, 2646-2651.	2.6	297
230	NanoScience in Biomedicine. , 2009, , .		12
231	Design of supramolecular β-sheet forming β-turns containing aromatic rings and non-coded α-aminoisobutyric acid and the formation of flat fibrillar structures through self-assembly. Supramolecular Chemistry, 2009, 21, 681-690.	1.5	4
232	Sequence-Directed Organization of Î ² -Peptides in Self-Assembled Monolayers. Journal of Physical Chemistry B, 2009, 113, 9379-9385.	1.2	9

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
233	Interfacial assembly of cationic peptide surfactants. Soft Matter, 2009, 5, 1630.		1.2	28
234	Direct functionalization of self-assembled nanotubes overcomes unfavorable self-assem processes. Chemical Communications, 2009, , 3457.	hbling	2.2	16
235	Incorporation of supramolecular hydrogels into agarose hydrogels—a potential drug c carrier. Journal of Materials Chemistry, 2009, 19, 7892.	lelivery	6.7	98
236	Kinetics of formation of supramolecular tubules of a sodium cholate derivative. Soft Ma 3018.	tter, 2009, 5,	1.2	46
237	Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter, 2009, 5, 3	870.	1.2	59
238	Computational Validation of Protein Nanotubes. Nano Letters, 2009, 9, 1096-1102.		4.5	6
239	Self-Assembly of Nanodonut Structure from a Cone-Shaped Designer Lipid-like Peptide Langmuir, 2009, 25, 4111-4114.	Surfactant.	1.6	77
240	Engineering responsive mechanisms to control the assembly of peptide-based nanostru Biochemical Society Transactions, 2009, 37, 653-659.	ctures.	1.6	16
241	Title is missing!. Kagaku To Seibutsu, 2010, 48, 523-525.		0.0	0
242	Theory of Self-Assembling Structures of Model Oligopeptides. Macromolecules, 2010, 4	3, 3487-3501.	2.2	6
243	Twisted Nanotubes Formed from Ultrashort Amphiphilic Peptide I ₃ K and T for the Fabrication of Silica Nanotubes. Chemistry of Materials, 2010, 22, 5165-5173.	heir Templating	3.2	110
244	Next-generation peptide nanomaterials: molecular networks, interfaces and supramolec functionality. Chemical Society Reviews, 2010, 39, 3351.	cular	18.7	277
245	Self-assembling and auto-crosslinkable hyaluronic acid hydrogels with a fibrillar structu Biomaterialia, 2010, 6, 195-204.	re. Acta	4.1	38
246	Recent progress in bio-sensing techniques with encapsulated enzymes. Biosensors and 2010, 26, 1-10.	Bioelectronics,	5.3	81
247	Constructing biomaterials using self-assembling peptide building blocks. Frontiers of M Science in China, 2010, 4, 145-151.	aterials	0.5	6
248	The effect of amphiphilic peptide surfactants on the light-harvesting complex II. Photos 48, 610-616.	ynthetica, 2010,	0.9	6
249	Biocompatibility and bioactivity of designer selfâ€assembling nanofiber scaffold contain for rat dorsal root ganglion neurons. Journal of Biomedical Materials Research - Part A, 2 1125-1131.	ning FGL motif 2010, 95A,	2.1	26
251	Amyloid Assemblies: Protein Legos at a Crossroads in Bottomâ€Up Synthetic Biology. C 11, 2347-2357.	hemBioChem, 2010,	1.3	29

ARTICLE IF CITATIONS # Solventâ€Induced Structural Transition of Selfâ€Assembled Dipeptide: From Organogels to Microcrystals. 252 1.7 270 Chemistry - A European Journal, 2010, 16, 3176-3183. Structural Diversity in the Selfâ€Assembly of Pseudopeptidic Macrocycles. Chemistry - A European 1.7 Journal, 2010, 16, 124<u>6-1255.</u> Selfâ€Assembled Ultralong Chiral Nanotubes and Tuning of Their Chirality Through the Mixing of 254 103 1.7 Enantiomeric Components. Chemistry - A European Journal, 2010, 16, 8034-8040. Studies of Amyloidâ€Like Fibrillogenesis through <i>β</i>â€Sheetâ€Mediated Selfâ€Assembly of Short Synthetic 1.0 Peptides. Chemistry and Biodiversity, 2010, 7, 363-375. Peptides Organized as Bilayer Membranes. Angewandte Chemie - International Edition, 2010, 49, 260 7.2 71 4104-4107. Catanionic Tubules with Tunable Charge. Angewandte Chemie - International Edition, 2010, 49, 6604-6607 Selfâ€Assembled Organic Nanostructures with Metallicâ€Like Stiffness. Angewandte Chemie -262 7.2 128 International Edition, 2010, 49, 9939-9942. Amphiphilic Selfâ€Assembly of an nâ€Type Nanotube. Angewandte Chemie - International Edition, 2010, 49, 7.2 196 7<u>688-7691.</u> 264 Exploiting biocatalysis in peptide selfâ€assembly. Biopolymers, 2010, 94, 107-117. 1.2 88 Peptide vor RNA? Das Wattenmeer als Wiege des Lebens. Biologie in Unserer Zeit, 2010, 40, 36-44. Neuronâ€selective toxicity of tau peptide in a cell culture model of neurodegenerative tauopathy: 266 1.3 27 Essential role for aggregation in neurotoxicity. Journal of Neuroscience Research, 2010, 88, 3399-3413. A Simple Method for Cell Sheet Fabrication Using Mica Surfaces Grafted with Peptide Detergent 2.1 A₆K. Macromolecular Bioscience, 2010, 10, 881-886. Molecular orientation and film structure of gramicidin on highly oriented pyrolitic graphite. Journal 268 5.0 3 of Colloid and Interface Science, 2010, 345, 524-527. Conformational properties of surfactant-like peptides with variable glycine tails. Physica A: Statistical 1.2 Mechanics and Its Applications, 2010, 389, 265-272. Concentration and pH-dependent aggregation behavior of an l-histidine based amphiphile in aqueous 270 1.5 12 solution. Chemistry and Physics of Lipids, 2010, 163, 561-568. Interaction of lipidated GBV-C/HGV NS3 (513â€"522) and (505â€"514) peptides with phospholipids monolayer. 271 2.5 An AFM study. Colloids and Surfaces B: Biointerfaces, 2010, 75, 25-33. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. 272 2.556 Colloids and Surfaces B: Biointerfaces, 2010, 81, 329-335. Effect of curcumin and Cu2+/Zn2+ ions on the fibrillar aggregates formed by the amyloid peptide and 273 1.2 other peptides at the organic–aqueous interface. Chemical Physics Letters, 2010, 496, 104-108.

#	Article		CITATIONS
274	Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nature Materials, 2010, 9, 454-460.	13.3	384
276	Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology, 2010, 21, 225606.	1.3	46
277	Residue length and solvation model dependency of elastinlike polypeptides. Physical Review E, 2010, 81, 051906.	0.8	1
278	Designer Selfâ€Assembling Peptide Materials for Diverse Applications. Macromolecular Symposia, 2010, 295, 30-48.	0.4	11
279	Aromaticâ^'Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. Journal of the American Chemical Society, 2010, 132, 2719-2728.	6.6	328
280	Protease-Catalyzed Oligomerization of Hydrophobic Amino Acid Ethyl Esters in Homogeneous Reaction Media Using <scp>l</scp> -Phenylalanine as a Model System. Biomacromolecules, 2010, 11, 2152-2160.	2.6	44
281	Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength. Soft Matter, 2010, 6, 2260.	1.2	22
282	Mechanical Manipulation Assisted Self-Assembly To Achieve Defect Repair and Guided Epitaxial Growth of Individual Peptide Nanofilaments. ACS Nano, 2010, 4, 5791-5796.	7.3	30
283	Time-Lapse Atomic Force Microscopy Observations of the Morphology, Growth Rate, and Spontaneous Alignment of Nanofibers Containing a Peptide-Amphiphile from the Hepatitis G Virus (NS3 Protein). Journal of Physical Chemistry B, 2010, 114, 620-625.	1.2	5
284	Supramolecular Structures Generated by a <i>p</i> - <i>tert</i> -Butylphenylamide Derivative of Deoxycholic Acid. From Planar Sheets to Tubular Structures through Helical Ribbons. Langmuir, 2010, 26, 7768-7773.	1.6	20
285	Conformation and Intermolecular Interactions of SA2 Peptides Self-Assembled into Vesicles. Journal of Physical Chemistry B, 2010, 114, 11046-11052.	1.2	14
286	Interfacial Dynamic Adsorption and Structure of Molecular Layers of Peptide Surfactants. Langmuir, 2010, 26, 5690-5696.	1.6	36
287	Self-Assembled Enzyme Capsules in Ionic Liquid [BMIM][BF4] as Templating Nanoreactors for Hollow Silica Nanocontainers. Langmuir, 2010, 26, 16020-16024.	1.6	29
288	Supramolecular hydrogels inspired by collagen for tissue engineering. Organic and Biomolecular Chemistry, 2010, 8, 3267.	1.5	62
289	Self-assembly and application of diphenylalanine-based nanostructures. Chemical Society Reviews, 2010, 39, 1877.	18.7	880
290	Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews, 2010, 39, 2780.	18.7	345
291	Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 2010, 39, 3480.	18.7	599
292	"Annular Ring―microtubes formed by SDS@2β-CD complexes in aqueous solution. Soft Matter, 2010, 6, 1731.	1.2	104

#	Article	IF	Citations
293	Spontaneous and reversible self-assembly of a polypeptide fragment of insulin-like growth factor bindingprotein-2 into fluorescent nanotubular structures. Chemical Communications, 2010, 46, 216-218.	2.2	10
294	Self-assembled nanofibers from leucine derived amphiphiles as nanoreactors for growth of ZnO nanoparticles. Chemical Communications, 2010, 46, 1757.	2.2	18
295	Design of hybrid networks by sheathing polymer fibrils with self-assembled nanotubules. Soft Matter, 2010, 6, 3573.	1.2	25
296	Structure of single-wall peptide nanotubes: in situ flow aligning X-ray diffraction. Chemical Communications, 2010, 46, 6270.	2.2	62
297	Fibronectin-mimetic peptide-amphiphile nanofiber gels support increased cell adhesion and promote ECM production. Soft Matter, 2010, 6, 5064.	1.2	34
298	Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chemical Communications, 2011, 47, 10296.	2.2	44
299	Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide. Physical Chemistry Chemical Physics, 2011, 13, 6914.	1.3	4
300	Fabrication of Hollow Self-Assembled Peptide Microvesicles and Transition from Sphere-to-Rod Structure. Langmuir, 2011, 27, 3835-3841.	1.6	46
301	Micelle to fibre biocatalytic supramolecular transformation of an aromatic peptide amphiphile. Chemical Communications, 2011, 47, 728-730.	2.2	90
302	A bile acid-induced aggregation transition and rheological properties in its mixtures with alkyltrimethylammonium hydroxide. Soft Matter, 2011, 7, 8952.	1.2	12
303	Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter, 2011, 7, 2762.	1.2	76
304	Stereoselective self-sorting in the self-assembly of a Phe–Phe extended guanidiniocarbonyl pyrrole carboxylate zwitterion: formation of two diastereomeric dimers with significantly different stabilities. Chemical Communications, 2011, 47, 7953.	2.2	9
305	Self-assembling peptides and their potential applications in biomedicine. Therapeutic Delivery, 2011, 2, 1043-1056.	1.2	22
306	Effects of Anions on Nanostructuring of Cationic Amphiphilic Peptides. Journal of Physical Chemistry B, 2011, 115, 11862-11871.	1.2	20
307	Origins of Life: The Primal Self-Organization. , 2011, , .		8
308	Salt-Induced Peptide Formation in Chemical Evolution: Building Blocks Before RNA – Potential of Peptide Splicing Reactions. , 2011, , 109-127.		2
309	Self-Assembled Nanotubes and Helical Tapes from Diacetylene Nonionic Amphiphiles. Structural Studies before and after Polymerization. Langmuir, 2011, 27, 12149-12155.	1.6	14
310	Self-Assembled Organic Nanotubes and Their Applications in Nano-Bio Fields. , 2011, , 31-74.		1

#	Article	IF	CITATIONS
311	Designed peptides as model self-assembling nanosystems: characterization and potential biomedical applications. Therapeutic Delivery, 2011, 2, 193-204.	1.2	23
312	Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications. Soft Matter, 2011, 7, 9583.	1.2	140
313	Self-assembly of peptides: influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 2011, 7, 2744-2754.	1.2	109
315	Amphiphilic nanotubes in the crystal structure of a biosurfactant protein hydrophobin HFBII. Chemical Communications, 2011, 47, 9843.	2.2	6
316	Atomistic Molecular Dynamics Simulations of Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of the American Chemical Society, 2011, 133, 3677-3683.	6.6	195
317	Peptide Nanovesicles: Supramolecular Assembly of Branched Amphipathic Peptides. Biophysical Journal, 2011, 100, 388a.	0.2	0
318	Structure and mechanism of action of a de novo antimicrobial detergent-like peptide. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 106-116.	1.4	34
319	Self-assembly of amphiphilic peptides. Soft Matter, 2011, 7, 4122.	1.2	390
320	Integrative Perspectives: In Quest of a Coherent Framework for Origins of Life on Earth. , 2011, , 289-360.		4
321	Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems. PLoS ONE, 2011, 6, e25067.	1.1	52
322	Symmetry-Based Self-Assembled Nanotubes Constructed Using Native Protein Structures: The Key Role of Flexible Linkers. Protein and Peptide Letters, 2011, 18, 362-372.	0.4	1
323	The role of self-assembling polypeptides in building nanomaterials. Physical Chemistry Chemical Physics, 2011, 13, 17435.	1.3	68
324	Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein Journal of Organic Chemistry, 2011, 7, 167-172.	1.3	94
326	Emergence of Self-Reproduction in Cooperative Chemical Evolution of Prebiological Molecules. Origins of Life and Evolution of Biospheres, 2011, 41, 261-275.	0.8	10
327	A peptide-based material platform for displaying antibodies to engage T cells. Biomaterials, 2011, 32, 249-257.	5.7	47
328	Self-assembled microtubes and rhodamine 6G functionalized Raman-active gold microrods from 1-hydroxybenzotriazole. Journal of Chemical Sciences, 2011, 123, 247-254.	0.7	2
329	Bio-inspired supramolecular self-assembly towards soft nanomaterials. Frontiers of Materials Science, 2011, 5, 247-265.	1.1	38
330	Interactions of amyloid Aβ(1–42) peptide with selfâ€assembled peptide nanospheres. Journal of Peptide Science, 2011, 17, 14-23	0.8	6

#	Article	IF	CITATIONS
331	Selfâ€assembly of di―and triblock PEGâ€pentavaline amphiphiles. Journal of Polymer Science Part A, 2011, 49, 871-878		2
332	Improvement of the Mechanical Properties of Epoxy by Peptide Nanotube Fillers. Small, 2011, 7, 1007-1011.	5.2	29
333	Exploiting Dimerization of Purely Peptidic Amphiphiles to Form Vesicles. Small, 2011, 7, 2158-2162.	5.2	12
334	Research and Technique, 2011, 74, 614-626.	1.2	22
	Amino Acid Pairing for De Novo Design of Selfâ∉Assembling Pentides and Their Drug Delivery Potential		
335	Advanced Functional Materials, 2011, 21, 2456-2464.	7.8	41
	Nanostructures from Single Amino Acidâ€Based Molecules: Stability Fibrillation, Encapsulation, and		
336	Fabrication of Silver Nanoparticles. Advanced Functional Materials, 2011, 21, 4126-4136.	7.8	70
	Modular Design in Natural and Biomimetic Soft Materials. Angewandte Chemie - International Edition.		
338	2011, 50, 9026-9057.	7.2	195
	Selfâ€Assembly of Short Peptide Amphiphiles: The Cooperative Effect of Hydrophobic Interaction and		
339	Hydrogen Bonding. Chemistry - A European Journal, 2011, 17, 13095-13102.	1.7	144
940	A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. Journal of	1.0	59
340	Electroanalytical Chemistry, 2011, 656, 120-124.	1.9	52
9/1	Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proceedings	Q Q	104
941	of the National Academy of Sciences of the United States of America, 2011, 108, 9049-9054.	0.0	104
342	Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine	1.3	6
012	Based Peptides. Chinese Physics Letters, 2011, 28, 028702.	1.0	Ū
343	Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proceedings of the National Academy of Sciences of the United States of	3.3	81
	America, 2011, 108, 7679-7684.		
344	Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane	1.4	10
	Protein Stabilization. Memoranes, 2011, 1, 314-326.		
345	Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and	1.8	30
	Potential implications, international journal of Molecular Sciences, 2011, 12, 5756-5746.		
346	Metal chelates anchored to poly-l-peptides and linear d,l-α-peptides with promising nanotechnological applications. Nanotechnology, 2012, 23, 395703	1.3	6
	applications. Nanoteennology, 2012, 25, 5557 05.		
347	Self-assembled nanomaterials for tissue-engineering applications. , 2012, , 490-533.		0
348	Fabrication of Collagen–Elastin-Bound Peptide Microtubes for Mammalian Cell Attachment. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1843-1862.	1.9	4
349	Life's Order, Complexity, Organization, and Its Thermodynamic–Holistic Imperatives. Life, 2012, 2, 323-363.	1.1	13

#	Article	IF	CITATIONS
350	Amino acid–bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. Chemical Communications, 2012, 48, 12011.	2.2	34
351	Peptide Nanovesicles Formed by the Self-Assembly of Branched Amphiphilic Peptides. PLoS ONE, 2012, 7, e45374.	1.1	76
352	Designer peptidesurfactants stabilize diverse functional membrane proteins. Chemical Society Reviews, 2012, 41, 1721-1728.	18.7	67
353	Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine. Soft Matter, 2012, 8, 7402.	1.2	42
354	Self-Assembly of Proteins and Peptides and Their Applications in Bionanotechnology and Dentistry. , 2012, , 209-224.		4
355	Self-assembly growth of electrically conductive chitosan nanofibrous scaffold. Macromolecular Research, 2012, 20, 1070-1074.	1.0	1
357	Nanorods Formed from a New Class of Peptidomimetics. Macromolecules, 2012, 45, 7350-7355.	2.2	20
358	Preliminary Research on the Interaction between a Novel Designed Self-Assembling Peptide with Half-Sequence Ionic Complement and the Natural Product Psoralen. Advanced Materials Research, O, 550-553, 1580-1585.	0.3	0
359	A releasable disulfide carbonate linker for molecular hydrogelations. New Journal of Chemistry, 2012, 36, 1556.	1.4	7
360	Direct Atomic Force Microscopy Observation of DNA Tile Crystal Growth at the Single-Molecule Level. Journal of the American Chemical Society, 2012, 134, 10485-10492.	6.6	28
361	Interfacial adsorption of cationic peptideamphiphiles: a combined study of in situspectroscopic ellipsometry and liquid AFM. Soft Matter, 2012, 8, 645-652.	1.2	23
362	Quasi one-dimensional assembly of gold nanoparticles templated by a pH-sensitive peptide amphiphile from silk fibroin. RSC Advances, 2012, 2, 5599.	1.7	7
363	Branched peptide fibers self-assembled from gemini-like amphiphilic peptides. Soft Matter, 2012, 8, 9523.	1.2	3
365	Probing the Self-Assembly Mechanism of Diphenylalanine-Based Peptide Nanovesicles and Nanotubes. ACS Nano, 2012, 6, 3907-3918.	7.3	264
366	Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System. Molecular Pharmaceutics, 2012, 9, 3079-3088.	2.3	40
367	Tunable Self-Assembled Peptide Amphiphile Nanostructures. Langmuir, 2012, 28, 5017-5022.	1.6	87
368	Self-Assembled Histidine Acid Phosphatase Nanocapsules in Ionic Liquid [BMIM][BF ₄] as Functional Templates for Hollow Metal Nanoparticles. Langmuir, 2012, 28, 10389-10397.	1.6	14
369	Shedding Light on Helical Microtubules: Real-Time Observations of Microtubule Self-Assembly by Light Microscopy. Journal of the American Chemical Society, 2012, 134, 14375-14381.	6.6	36

#	Article		CITATIONS
370	Modeling the Self-Assembly of Peptide Amphiphiles into Fibers Using Coarse-Grained Molecular Dynamics. Nano Letters, 2012, 12, 4907-4913.	4.5	140
371	Nanomaterials based on peptides. Polymer Science - Series C, 2012, 54, 88-95.	0.8	3
372	Converting molecular information of redox coenzymes via self-assembly. Chemical Communications, 2012, 48, 11106.	2.2	7
373	Controlled peptide coated nanostructures via the self-assembly of functional peptide building blocks. Polymer Chemistry, 2012, 3, 2479.	1.9	21
374	On the Possible Amyloid Origin of Protein Folds. Journal of Molecular Biology, 2012, 421, 417-426.	2.0	119
375	Lipid-like Self-Assembling Peptides. Accounts of Chemical Research, 2012, 45, 2142-2150.	7.6	123
376	2Dâ€Oriented Selfâ€Assembly of Peptides Induced by Hydrated Electrons. Chemistry - A European Journal, 2012, 18, 14614-14617.	1.7	24
377	Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells. Microbial Cell Factories, 2012, 11, 163.	1.9	7
378	Self-assembling peptide materials. Amino Acids, Peptides and Proteins, 2012, , 40-65.	0.7	4
379	Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter, 2012, 8, 5364.	1.2	53
381	Charge Effects on the Fibril-Forming Peptide KTVIIE: A Two-Dimensional Replica Exchange Simulation Study. Biophysical Journal, 2012, 102, 1952-1960.	0.2	14
382	Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chemical Society Reviews, 2012, 41, 4736.	18.7	198
383	Coassembly of Aromatic Dipeptides into Biomolecular Necklaces. ACS Nano, 2012, 6, 9559-9566.	7.3	82
384	Peptide nanotube formation: a crystal growth process. Soft Matter, 2012, 8, 7463.	1.2	36
385	Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life. Life, 2012, 2, 170-212.	1.1	16
386	Small surfactant-like peptides can drive soluble proteins into active aggregates. Microbial Cell Factories, 2012, 11, 10.	1.9	78
387	Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the Nâ€ŧerminus of 18â€ŧesidue amphipathic helical peptides. Journal of Peptide Science, 2012, 18, 122-128.	0.8	1
388	Selfâ€assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids. Journal of Peptide Science, 2012, 18, 283-292.	0.8	23

#	Article	IF	CITATIONS
389	Peptide Adsorption on Silica Nanoparticles: Evidence of Hydrophobic Interactions. ACS Nano, 2012, 6, 6356-6363.	7.3	183
390	Decompositionâ€Assembly of Tetraphenylethylene Nanoparticles With Uniform Size and Aggregationâ€Induced Emission property. Macromolecular Rapid Communications, 2012, 33, 1584-1589.	2.0	21
391	Advanced Materials for Coâ€Đelivery of Drugs and Genes in Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 373-392.	3.9	123
392	Phase Networks of Cross-Î ² Peptide Assemblies. Langmuir, 2012, 28, 6386-6395.	1.6	75
393	Peptide Self-Assembly on Mica under Ethanol-Containing Atmospheres: Effects of Ethanol on Epitaxial Growth of Peptide Nanofilaments. Journal of Physical Chemistry B, 2012, 116, 2927-2933.	1.2	15
394	The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis. Journal of Molecular Evolution, 2012, 74, 1-34.	0.8	73
395	Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials, 2012, 33, 592-603.	5.7	84
396	Nano structures through self-assembly of protected hydrophobic amino acids: encapsulation of rhodamine B dye by proline-based nanovesicles. Journal of Materials Science, 2012, 47, 1825-1835.	1.7	6
397	Selfâ€assembling peptide nanofibers promoting cell adhesion and differentiation. Biopolymers, 2013, 100, 731-737.	1.2	15
398	Self-assembling properties of a series of homologous ester-diamides – from ribbons to nanotubes. Soft Matter, 2013, 9, 8483.	1.2	17
399	α-Lactalbumin hydrolysate spontaneously produces disk-shaped nanoparticles. International Dairy Journal, 2013, 32, 133-135.	1.5	12
400	Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor. Photochemical and Photobiological Sciences, 2013, 12, 798.	1.6	5
401	Self-Assembly of Amphiphilic Peptide (AF) ₆ H ₅ K ₁₅ : Coarse-Grained Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2013, 117, 9690-9698.	1.2	39
402	Self-assembled surfactant cyclic peptide nanostructures as stabilizing agents. Soft Matter, 2013, 9, 9465.	1.2	40
403	Selfâ€assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 582-612.	3.3	286
405	Soft materials based on designed self-assembling peptides: from design to application. Molecular BioSystems, 2013, 9, 609.	2.9	33
406	Interaction between a Cationic Surfactant-like Peptide and Lipid Vesicles and Its Relationship to Antimicrobial Activity. Langmuir, 2013, 29, 14246-14253.	1.6	54
407	Conductive microrod preparation by molecular self-assembly and polymerization. RSC Advances, 2013, 3, 8468.	1.7	8

#	Article	IF	CITATIONS
408	Self-assembly of a model amphiphilic oligopeptide incorporating an arginine headgroup. Soft Matter, 2013, 9, 4794.	1.2	43
409	Spacer driven morphological twist in Phe-Phe dipeptide conjugates. Tetrahedron, 2013, 69, 2004-2009.	1.0	11
410	Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. Journal of the American Chemical Society, 2013, 135, 15565-15578.	6.6	112
411	A case of cyclodextrin-catalyzed self-assembly of an amphiphile into microspheres. Soft Matter, 2013, 9, 7710.	1.2	11
412	Toward a Mechanistic Understanding of Ionic Self-Complementary Peptide Self-Assembly: Role of Water Molecules and Ions. Biomacromolecules, 2013, 14, 3943-3950.	2.6	40
413	Molecular dynamics approach to investigate the coupling of the hydrophilic–lipophilic balance with the configuration distribution function in biosurfactant-based emulsions. Journal of Molecular Modeling, 2013, 19, 5539-5543.	0.8	7
414	Self-assembly and accurate preparation of Au nanoparticles in the aqueous solution of a peptide A6D and a zwitterionic C14DMAO. Soft Matter, 2013, 9, 5572.	1.2	18
415	Self-assembling peptide assemblies bound to ZnS nanoparticles and their interactions with mammalian cells. Colloids and Surfaces B: Biointerfaces, 2013, 103, 405-415.	2.5	12
416	Nanoassemblies from homostructured polypeptides as efficient nanoplatforms for oral drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 408-418.	1.7	3
418	Free Energy Profile and Mechanism of Self-Assembly of Peptide Amphiphiles Based on a Collective Assembly Coordinate. Journal of Physical Chemistry B, 2013, 117, 9004-9013.	1.2	26
419	Steered Molecular Dynamics Studies of the Potential of Mean Force for Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers. Journal of Physical Chemistry A, 2013, 117, 7453-7460.	1.1	63
420	Free-Energy Landscape for Peptide Amphiphile Self-Assembly: Stepwise versus Continuous Assembly Mechanisms. Journal of Physical Chemistry B, 2013, 117, 14059-14064.	1.2	26
421	Directing neural stem cell fate with biomaterial parameters for injured brain regeneration. Progress in Natural Science: Materials International, 2013, 23, 103-112.	1.8	36
422	Tuning of peptide assembly through force balance adjustment. Journal of Colloid and Interface Science, 2013, 407, 287-295.	5.0	18
423	Exploring the Self-Assembly of a Short Aromatic Aβ(16–24) Peptide. Langmuir, 2013, 29, 2713-2721.	1.6	22
424	Protein Î ² -interfaces as a generic source of native peptide tectons. Chemical Communications, 2013, 49, 2825.	2.2	23
425	Self-Assembly of Ketals of Arjunolic Acid into Vesicles and Fibers Yielding Gel-Like Dispersions. Langmuir, 2013, 29, 1766-1778.	1.6	30
426	Self-assembled arginine-coated peptide nanosheets in water. Chemical Communications, 2013, 49, 1850.	2.2	92

~	_	
	DE	
CHAD	IVE.	PORT

#	Article	IF	CITATIONS
427	Role of non-covalent interactions in the molecular organization of N-n-hexadecanoyl amino acid amphiphiles with hydrophobic Cα-side chains in Tris buffer (pH 9.3). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 420, 10-21.	2.3	17
428	Materiomics: An â€ <i>omics</i> Approach to Biomaterials Research. Advanced Materials, 2013, 25, 802-824.	11.1	134
429	Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnology Advances, 2013, 31, 638-653.	6.0	22
430	Self-Assembled Proteins and Peptides for Regenerative Medicine. Chemical Reviews, 2013, 113, 4837-4861.	23.0	255
432	Surface mediated l-phenylalanyl-l-phenylalanine assembly into large dendritic structures. Faraday Discussions, 2013, 166, 257.	1.6	20
433	Peptide nanofibres as molecular transporters: from self-assembly to in vivo degradation. Faraday Discussions, 2013, 166, 181.	1.6	15
434	Molecular Design and Applications of Self-Assembling Surfactant-Like Peptides. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	23
435	Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers. Nanotechnology, 2013, 24, 465603.	1.3	46
436	Selfâ€assembly of pH and calcium dualâ€responsive peptideâ€amphiphilic hydrogel. Journal of Peptide Science, 2013, 19, 737-744.	0.8	29
437	Towards lysozyme nanotube and 3D hybrid self-assembly. Nanoscale, 2013, 5, 7197.	2.8	51
438	The critical aggregation concentration of peptide surfactants is predictable from dynamic hydrophobic property. SAR and QSAR in Environmental Research, 2013, 24, 89-101.	1.0	4
439	Noncovalent Immobilization of Proteins to Surfaces. , 2013, , 502-525.		0
440	Formation of Ordered Biomolecular Structures by the Self-assembly of Short Peptides. Journal of Visualized Experiments, 2013, , e50946.	0.2	4
441	Photocontrolled Selfâ€Assembly of a Bisâ€Azobenzene ontaining αâ€Amino Acid. Chemistry - A European Journal, 2013, 19, 15841-15846.	1.7	9
442	Nanotubular structures developed from wheyâ€based αâ€lactalbumin fractions for food applications. Biotechnology Progress, 2014, 30, 1301-1310.	1.3	14
443	Self-assembly of surfactant-like peptides and their applications. Science China Chemistry, 2014, 57, 1634-1645.	4.2	40
444	Model of a homochiral supramolecular string. Russian Journal of Physical Chemistry B, 2014, 8, 613-619.	0.2	4
445	Ultrafast synthesis of Au(I)-dodecanethiolate nanotubes for advanced Hg2+ sensor electrodes. Nanoscale Research Letters, 2014, 9, 601.	3.1	3

#	Article	IF	CITATIONS
446	Origins and Emergent Evolution of Life: The Colloid Microsphere Hypothesis Revisited. Origins of Life and Evolution of Biospheres, 2014, 44, 87-110.	0.8	11
447	Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Research Letters, 2014, 9, 653.	3.1	62
448	Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli. Microbial Cell Factories, 2014, 13, 178.	1.9	3
449	Molecular insights into the self-assembly of short amphiphilic peptides FmDn and FmKn. RSC Advances, 2014, 4, 60741-60748.	1.7	9
450	1,1,1,3,3,3-Hexafluoro-2-propanol and 2,2,2-trifluoroethanol solvents induce self-assembly with different surface morphology in an aromatic dipeptide. Organic and Biomolecular Chemistry, 2014, 12, 6181.	1.5	12
451	Something between the amazing functions and various morphologies of self-assembling peptides materials in the medical field. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1331-1345.	1.9	6
453	Novel Cyclopeptide Bolaamphiphile for Constructing Supramolecular Nanotubes. Chinese Journal of Chemistry, 2014, 32, 22-26.	2.6	3
454	Biocatalytic Selfâ€Assembly of Nanostructured Peptide Microparticles using Droplet Microfluidics. Small, 2014, 10, 285-293.	5.2	41
455	Pyreneâ€Based Fluorescent Ambidextrous Gelators: Scaffolds for Mechanically Robust SWNT–Gel Nanocomposites. Chemistry - A European Journal, 2014, 20, 1349-1358.	1.7	47
456	Morphology of nanostructures and their long-acting properties in vivo for a novel synthetic peptide of gonadotropin-releasing hormone antagonist. Journal of Pharmacy and Pharmacology, 2014, 66, 1077-1081.	1.2	0
457	Self-assembly of chiral tubules. Soft Matter, 2014, 10, 510-518.	1.2	19
458	Intensified expression and purification of a recombinant biosurfactant protein. Chemical Engineering Science, 2014, 105, 12-21.	1.9	27
459	Selfâ€assembling amphiphilic peptides. Journal of Peptide Science, 2014, 20, 453-467.	0.8	306
460	Morphological Diversity and Polymorphism of Self-Assembling Collagen Peptides Controlled by Length of Hydrophobic Domains. ACS Nano, 2014, 8, 12514-12523.	7.3	35
461	On the self-assembly of a tryptophan labeled deoxycholic acid. Physical Chemistry Chemical Physics, 2014, 16, 19492.	1.3	19
462	Steric effect on the self-assembly behaviours of amino acid derivatives. RSC Advances, 2014, 4, 52245-52249.	1.7	9
463	Amino acid inspired microscale organization of metallic nanocrystals. Journal of Materials Chemistry A, 2014, 2, 100-106.	5.2	6
464	Tuning Chelation by the Surfactant-Like Peptide A ₆ H Using Predetermined pH Values. Biomacromolecules, 2014, 15, 591-598.	2.6	23

#	Article	IF	CITATIONS
465	High length–diameter ratio nanotubes self-assembled from a facial cyclopeptide. Soft Matter, 2014, 10, 947.	1.2	14
466	Effects of hydrophobic interaction strength on the self-assembled structures of model peptides. Soft Matter, 2014, 10, 4956-4965.	1.2	14
467	Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomaterials Science, 2014, 2, 362-369.	2.6	40
468	Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science, 2014, 2, 867-874.	2.6	20
469	Lipid-like Self-Assembling Peptide Nanovesicles for Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 8184-8189.	4.0	95
470	Supramolecular Assembly of Asymmetric Self-Neutralizing Amphiphilic Peptide Wedges. Langmuir, 2014, 30, 9201-9209.	1.6	3
471	A self-assembled π-conjugated system as an anti-proliferative agent in prostate cancer cells and a probe for intra-cellular imaging. RSC Advances, 2014, 4, 48433-48437.	1.7	21
472	A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation. Chemical Communications, 2014, 50, 12556-12559.	2.2	7
473	Self-Assembly of Amphiphilic Peptide (AF)6H5K15 Derivatives: Roles of Hydrophilic and Hydrophobic Residues. Journal of Physical Chemistry B, 2014, 118, 2683-2692.	1.2	21
474	Molecular Dynamics Simulations and Electronic Excited State Properties of a Self-Assembled Peptide Amphiphile Nanofiber with Metalloporphyrin Arrays. Journal of Physical Chemistry A, 2014, 118, 8553-8562.	1.1	11
475	Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates. Journal of the American Chemical Society, 2014, 136, 13805-13817.	6.6	77
476	Prediction of the structure of a silk-like protein in oligomeric states using explicit and implicit solvent models. Soft Matter, 2014, 10, 5362.	1.2	11
477	Nanotubes Self-Assembled from Amphiphilic Molecules via Helical Intermediates. Chemical Reviews, 2014, 114, 10217-10291.	23.0	208
478	Aqueous Self-Assembly within the Homologous Peptide Series A _{<i>n</i>} K. Langmuir, 2014, 30, 10072-10079.	1.6	12
479	Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides. Journal of Physical Chemistry B, 2014, 118, 8624-8630.	1.2	4
480	Short peptide based self-assembled nanostructures: implications in drug delivery and tissue engineering. Polymer Chemistry, 2014, 5, 4431-4449.	1.9	159
481	Smart chemistry in polymeric nanomedicine. Chemical Society Reviews, 2014, 43, 6982-7012.	18.7	171
482	Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnology Advances, 2014, 32, 564-574.	6.0	17

#	Article	IF	CITATIONS
483	Peptide Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 6866-6881.	7.2	292
484	Selfâ€assembly of azide containing dipeptides. Journal of Peptide Science, 2014, 20, 479-486.	0.8	5
485	Evolution of the first genetic cells and the universal genetic code: A hypothesis based on macromolecular coevolution of RNA and proteins. Journal of Theoretical Biology, 2014, 357, 220-244.	0.8	11
486	A Computational Study of the Adsorption and Reactive Dynamics of Diglycine on Cu(110). Journal of Physical Chemistry C, 2014, 118, 3610-3619.	1.5	9
487	Self-assembled lipase nanosphere templated one-pot biogenic synthesis of silica hollow spheres in ionic liquid [Bmim][PF6]. RSC Advances, 2015, 5, 105800-105809.	1.7	4
488	Bioactive Self-Assembling Lipid-Like Peptides as Permeation Enhancers for Oral Drug Delivery. Journal of Pharmaceutical Sciences, 2015, 104, 2304-2311.	1.6	20
489	Silica Nanowires Templated by Amyloidâ€like Fibrils. Angewandte Chemie - International Edition, 2015, 54, 13327-13331.	7.2	20
490	Silica Nanowires Templated by Amyloidâ€like Fibrils. Angewandte Chemie, 2015, 127, 13525-13529.	1.6	6
492	Synthesis and Evaluation of New Type Alginate Hydrogel Using Self-Assembly β-Sheet Peptides. Kobunshi Ronbunshu, 2015, 72, 773-776.	0.2	0
493	Fabrication of Chiral Materials via Selfâ€Assembly and Biomineralization of Peptides. Chemical Record, 2015, 15, 665-674.	2.9	7
494	Microtubuleâ€based nanomaterials: Exploiting nature's dynamic biopolymers. Biotechnology and Bioengineering, 2015, 112, 1065-1073.	1.7	29
495	Betaâ€Sheetâ€Forming, Selfâ€Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. Small, 2015, 11, 3623-3640.	5.2	161
496	Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. International Journal of Nanomedicine, 2015, 10, 847.	3.3	21
497	Molecular Design for Dual Modulation Effect of Amyloid Protein Aggregation. Journal of the American Chemical Society, 2015, 137, 8062-8068.	6.6	31
498	The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. Journal of the American Chemical Society, 2015, 137, 7775-7784.	6.6	50
499	Acid-responsive nanospheres from an asparagine-derived amphiphile. RSC Advances, 2015, 5, 8585-8590.	1.7	2
500	A self-assembled nanopatch with peptide–organic multilayers and mechanical properties. Nanoscale, 2015, 7, 2250-2254.	2.8	13
501	Self-assembly of amphiphilic peptides: Effects of the single-chain-to-gemini structural transition and the side chain groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 263-270.	2.3	16

#	Article	IF	CITATIONS
502	A comparative study on the selfâ€assembly of an amyloidâ€like peptide at water–solid interfaces and in bulk solutions. Microscopy Research and Technique, 2015, 78, 375-381.	1.2	13
503	pH responsiveness of fibrous assemblies of repeatâ€sequence amphipathic αâ€helix polypeptides. Protein Science, 2015, 24, 883-894.	3.1	2
504	Propensity of Self-Assembled Leucine-Lysine Diblock Copolymeric α-Helical Peptides To Remain in Parallel and Antiparallel Alignments in Water. Journal of Physical Chemistry B, 2015, 119, 9520-9531.	1.2	2
505	Mechanisms of the self-assembly of EAK16-family peptides into fibrillar and globular structures: molecular dynamics simulations from nano- to micro-seconds. European Biophysics Journal, 2015, 44, 263-276.	1.2	19
506	Tracking morphologies at the nanoscale: Self-assembly of an amphiphilic designer peptide into a double helix superstructure. Nano Research, 2015, 8, 1822-1833.	5.8	22
507	Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine, 2015, 10, 873-891.	1.7	20
508	Self-rolled nanotubes with controlled hollow interiors by patterned grafts. Soft Matter, 2015, 11, 3714-3723.	1.2	6
509	Zn ²⁺ and Cu ²⁺ induced nanosheets and nanotubes in six different lectins by TEM. RSC Advances, 2015, 5, 16828-16836.	1.7	5
510	Spontaneous Structural Transition in Phospholipid-Inspired Aromatic Phosphopeptide Nanostructures. ACS Nano, 2015, 9, 4085-4095.	7.3	19
511	Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Soft Matter, 2015, 11, 3822-3832.	1.2	61
512	Synthesis of highly emissive 1,8-diaryl anthracene derivatives and fabrication of their micro/nanostructures. RSC Advances, 2015, 5, 98447-98455.	1.7	12
513	Comparison between Free and Immobilized Ion Effects on Hydrophobic Interactions: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 13152-13159.	1.2	18
514	Amphiphilic Peptides A ₆ K and V ₆ K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study. Biomacromolecules, 2015, 16, 2940-2949.	2.6	39
515	Co-adsorption of peptide amphiphile V ₆ K and conventional surfactants SDS and C ₁₂ TAB at the solid/water interface. Soft Matter, 2015, 11, 7986-7994.	1.2	8
516	Molecular dynamics simulations of self-assembled peptide amphiphile based cylindrical nanofibers. RSC Advances, 2015, 5, 66582-66590.	1.7	23
517	Design of an electroactive peptide probe for sensing of a protein. Analytica Chimica Acta, 2015, 890, 143-149.	2.6	13
518	Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide. Soft Matter, 2015, 11, 331-342.	1.2	25
519	Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomaterials Science, 2015, 3, 25-40.	2.6	58

#	Article	IF	Citations
520	Self-Assembled Peptide Nanostructures for Regenerative Medicine and Biology. , 2015, , 63-90.		3
521	Recent advances in photosynthetic energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 19-33.	5.6	95
522	Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. International Journal of Nanomedicine, 2017, Volume 12, 73-86.	3.3	139
523	Development of New Smart Materials and Spinning Systems Inspired by Natural Silks and Their Applications. Frontiers in Materials, 2016, 2, .	1.2	15
524	Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions. Organic and Biomolecular Chemistry, 2016, 14, 7500-7508.	1.5	12
525	Exploring structural features of folded peptide architectures in the construction of nanomaterials. Chemical Communications, 2016, 52, 9597-9600.	2.2	18
526	pHâ€induced structural transformation of <i>N</i> , <i>N</i> ′â€diaspartic acidâ€3, 4, 9, 10â€ŧetracarboxylic diimide as observed by scanning probe microscopy. Surface and Interface Analysis, 2016, 48, 1002-1006.	0.8	5
527	Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
528	Elementary supramolecular strings in solutions of chiral trifluoroacetylated amino alcohols. Russian Journal of Physical Chemistry B, 2016, 10, 725-734.	0.2	7
529	Self-assembling N -(9-Fluorenylmethoxycarbonyl)- l -Phenylalanine hydrogel as novel drug carrier. International Journal of Biological Macromolecules, 2016, 93, 1639-1646.	3.6	27
530	A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Archives of Biochemistry and Biophysics, 2016, 596, 22-42.	1.4	31
531	Reversible, Short α-Peptide Assembly for Controlled Capture and Selective Release of Enantiomers. Journal of the American Chemical Society, 2016, 138, 5773-5776.	6.6	48
532	Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5604-5609.	3.3	56
533	Wormlike micelles with pH-induced rheological property formed by cationic surfactant/anthranilic acid mixed aqueous solution. Journal of Molecular Liquids, 2016, 224, 333-337.	2.3	11
534	Entropic Phase Transitions with Stable Twisted Intermediates of Bioâ€Inspired Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 15237-15241.	1.7	8
535	The self-assembly mechanism of tetra-peptides from the motif of β-amyloid peptides: a combined coarse-grained and all-atom molecular dynamics simulation. RSC Advances, 2016, 6, 100072-100078.	1.7	10
536	Smart Materials for DNA-Based Nanoconstructions. , 2016, , 21-60.		0
537	Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2016, 27, 402002.	1.3	76

ARTICLE IF CITATIONS # Nanosheet Formation by an Anionic Surfactant-like Peptide and Modulation of Self-Assembly through 539 1.6 23 Ionic Complexation. Langmuir, 2016, 32, 10387-10393. Water-driven stabilization of diphenylalanine nanotube structures. Theoretical Chemistry Accounts, 540 2016, 135, 1. 541 Energy Harvesting with Biomaterials., 2016, , 297-316. 1 Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane 542 Interaction Propensity. Biomacromolecules, 2016, 17, 3591-3601. Synthesis of peptides with narrow molecular weight distributions via exopeptidase-catalyzed 543 1.3 14 aminolysis of hydrophobic amino-acid alkyl esters. Polymer Journal, 2016, 48, 955-961. Enzymatically activated emulsions stabilised by interfacial nanofibre networks. Soft Matter, 2016, 12, 2623-2631. 544 1.2 A multiple covalent crosslinked soft hydrogel for bioseparation. Chemical Communications, 2016, 52, 545 2.2 11 3247-3250. The road to the synthesis of $\hat{a} \in \alpha$ difficult peptides $\hat{a} \in \alpha$. Chemical Society Reviews, 2016, 45, 631-654. 18.7 546 171 548 Biomedical Applications of Self-Assembling Peptides. Bioconjugate Chemistry, 2016, 27, 3-18. 1.8 136 Hydrophobized plant polyphenols: self-assembly and promising antibacterial, adhesive, and 549 2.2 49 anticorrosion coatings. Chemical Communications, 2016, 52, 312-315. Fibrous Proteins: Structures and Mechanisms. Sub-Cellular Biochemistry, 2017, , . 550 1.0 13 Properties of Engineered and Fabricated Silks. Sub-Cellular Biochemistry, 2017, 82, 527-573. 1.0 A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nature 553 5.8 49 Communications, 2017, 8, 14018. Formation and size distribution of self-assembled vesicles. Proceedings of the National Academy of 554 3.3 Sciences of the United States of America, 2017, 114, 2910-2915. Catalytically-active inclusion bodiesâ€"Carrier-free protein immobilizates for application in 555 1.9 64 biotechnology and biomedicine. Journal of Biotechnology, 2017, 258, 136-147. Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives. Langmuir, 2017, 33, 5803-5813. 29 Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anionâ[~]i€ 557 6.6 75 Interactions. Journal of the American Chemical Society, 2017, 139, 7823-7830. Can self-assembled hydrogels composed of aromatic amino acid derivatives function as drug delivery 558 1.4 carriers?. New Journal of Chemistry, 2017, 41, 308-315.

#	Article	IF	CITATIONS
559	Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects. Materials Science and Engineering C, 2017, 72, 590-600.	3.8	66
560	Discovery and design of self-assembling peptides. Interface Focus, 2017, 7, 20170028.	1.5	103
561	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
562	Systematic Moiety Variations of Ultrashort Peptides Produce Profound Effects on Self-Assembly, Nanostructure Formation, Hydrogelation, and Phase Transition. Scientific Reports, 2017, 7, 12897.	1.6	25
563	Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery. RSC Advances, 2017, 7, 47592-47601.	1.7	13
564	Printable Fluorescent Hydrogels Based on Self-Assembling Peptides. Scientific Reports, 2017, 7, 9691.	1.6	49
565	Formation of peptide layers and adsorption mechanisms on a negatively charged cation-exchange membrane. Journal of Colloid and Interface Science, 2017, 508, 488-499.	5.0	28
566	Thermally Regulated Reversible Formation of Vesicle-Like Assemblies by Hexaproline Amphiphiles. Journal of Physical Chemistry B, 2017, 121, 7443-7446.	1.2	7
568	Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1866-1881.	1.5	5
569	Interfacial Films Formed by a Biosurfactant Modularized with a Silken Tail. Journal of Physical Chemistry C, 2017, 121, 14658-14667.	1.5	5
570	Branched Amphipathic Peptide Capsules: Different Ratios of the Two Constituent Peptides Direct Distinct Bilayer Structures, Sizes, and DNA Transfection Efficiency. Langmuir, 2017, 33, 7096-7104.	1.6	14
571	Self-assembly of bioactive peptides, peptide conjugates, and peptide mimetic materials. Organic and Biomolecular Chemistry, 2017, 15, 5867-5876.	1.5	136
572	Self-assembling peptide-based building blocks in medical applications. Advanced Drug Delivery Reviews, 2017, 110-111, 65-79.	6.6	169
573	Development of Nano- and Bio-Materials Using Nanofibers Fabricated from Self-Assembling Peptides. Kobunshi Ronbunshu, 2017, 74, 162-171.	0.2	2
574	Anticancer Agents: Polymeric Nanomedicines. , 2017, , 58-82.		0
575	Peptide Self-Assembled Nanostructures for Drug Delivery Applications. Journal of Nanomaterials, 2017, 2017, 1-16.	1.5	61
576	4.16 Surface Engineering Using Amphiphilic Peptides â~†. , 2017, , 272-291.		0
577	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352

#	Article	IF	CITATIONS
578	Controlling the Diameters of Nanotubes Selfâ€Assembled from Designed Peptide Bolaphiles. Small, 2018, 14, e1703216.	5.2	45
579	Self-assembling helical structures in solutions of achiral diamide-ester gelator molecules. Polymer, 2018, 145, 202-231.	1.8	2
580	Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils. Chemical Communications, 2018, 54, 5696-5699.	2.2	14
581	Direct Synthesis of a Covalently Selfâ€Assembled Peptide Nanogel from a Tyrosineâ€Rich Peptide Monomer and Its Biomineralized Hybrids. Angewandte Chemie - International Edition, 2018, 57, 5630-5634.	7.2	33
582	Direct Synthesis of a Covalently Selfâ€Assembled Peptide Nanogel from a Tyrosineâ€Rich Peptide Monomer and Its Biomineralized Hybrids. Angewandte Chemie, 2018, 130, 5732-5736.	1.6	6
583	Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides. Journal of Chemical Physics, 2018, 148, 134903.	1.2	6
584	Self-assembly of amphiphilic truncated cones to form hollow nanovesicles. RSC Advances, 2018, 8, 13526-13536.	1.7	0
585	The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. Journal of Physical Chemistry B, 2018, 122, 1826-1835.	1.2	14
586	Terminal aspartic acids promote the self-assembly of collagen mimic peptides into nanospheres. RSC Advances, 2018, 8, 2404-2409.	1.7	8
587	New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines. Nanoscale, 2018, 10, 3212-3224.	2.8	28
588	Instructive Design of Triblock Peptide Amphiphiles for Structurally Complex Micelle Fabrication. ACS Biomaterials Science and Engineering, 2018, 4, 2330-2339.	2.6	40
589	The Properties of Strings Formed in the Homochiral Solutions of Trifluoroacetylated Amino Alcohols in Cyclohexane. Russian Journal of Physical Chemistry B, 2018, 12, 28-35.	0.2	0
590	Rational design and self-assembly of short amphiphilic peptides and applications. Current Opinion in Colloid and Interface Science, 2018, 35, 112-123.	3.4	73
591	Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS Omega, 2018, 3, 3143-3155.	1.6	39
592	Amyloid and immune homeostasis. Immunobiology, 2018, 223, 288-293.	0.8	7
593	Synthesis and comparison of crosslinked peptide nanoparticles based on diphenylalanine derivatives. Journal of Applied Polymer Science, 2018, 135, 45930.	1.3	3
594	Tracking self-assembly morphology of cationic peptide analogues using turbidimetric- potentiometric titration. International Journal of Engineering and Technology(UAE), 2018, 7, 1067.	0.2	1
595	C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs. Scientific Reports, 2018, 8, 17127.	1.6	31

ARTICLE IF CITATIONS # Molecular Mechanisms of Tryptophanâ€"Tyrosine Nanostructures Formation and their Influence on 596 2.3 7 PC-12 Cells. ACS Applied Bio Materials, 2018, 1, 1266-1275. Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed 2.6 34 Peptides. Biomacromolecules, 2018, 19, 4286-4298. Investigation of various synthetic protocols for self-assembled nanomaterials and their role in 598 1.7 5 catalysis: progress and perspectives. Materials Today Chemistry, 2018, 10, 31-78. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. International 599 Journal of Nanomedicine, 2018, Volume 13, 5003-5022. Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry., 600 11 2018, , 231-249. Reductionist Approach in Peptide-Based Nanotechnology. Annual Review of Biochemistry, 2018, 87, 5.0 533-553. Multiscale prediction of functional self-assembled materials using machine learning: 602 2.8 24 high-performance surfactant molecules. Nanoscale, 2018, 10, 16013-16021. Induction of adaptive immune response by self-aggregating peptides. Expert Review of Vaccines, 2018, 17, 2.0 9 723-738. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface 604 1.1 26 Science towards Origins of Life Research. Life, 2018, 8, 10. Self-assembling peptides and their application in tissue engineering and regenerative medicine., 2018, 245-281. Guiding principles for peptide nanotechnology through directed discovery. Chemical Society Reviews, 606 18.7 116 2018, 47, 3737-3758. Peptide surfactants in membrane protein purification and stabilization., 2018, , 485-512. A review on phospholipid vesicles flowing through channels. MRS Communications, 2018, 8, 718-726. 608 0.8 4 Functionalization of self-assembling peptides for neural tissue engineering., 2018, 475-493. 609 Nanoscale insight into silk-like protein self-assembly: effect of design and number of repeat units. 610 0.8 6 Physical Biology, 2018, 15, 066010. Hierarchy of Times for Forming the System of Chiral Phases in Solutions of Trifluoroacetylated Amino Alcohols. Russian Journal of Physical Chemistry B, 2018, 12, 426-437. Helical Structure of Nucleation in a Solution of a Chiral Trifluoroacetylated Amino Alcohol. Russian 612 0.2 1 Journal of Physical Chemistry B, 2018, 12, 394-402. Alternatives to Detergents for Handling Membrane Proteins in Aqueous Solutions. Biological and Medical Physics Series, 2018, , 97-149.

#	Article	IF	CITATIONS
614	Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. Langmuir, 2019, 35, 1302-1311.	1.6	20
615	Modulation of structure and mechanical properties of self-assembled peptide nanofibrils and nanosheets. Materials Letters, 2019, 255, 126540.	1.3	3
616	Concentration-dependent fabrication of short-peptide-based different self-assembled nanostructures with various morphologies and intracellular delivery property. Materials Chemistry Frontiers, 2019, 3, 2110-2119.	3.2	14
617	PECylation affects the self-assembling behaviour of amphiphilic octapeptides. International Journal of Pharmaceutics, 2019, 571, 118752.	2.6	9
618	Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures. Langmuir, 2019, 35, 5617-5625.	1.6	8
619	pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide. Langmuir, 2019, 35, 12460-12468.	1.6	17
620	Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Advances, 2019, 9, 844-852.	1.7	41
621	Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives. Molecules, 2019, 24, 351.	1.7	166
622	Small Interfering RNA-Mediated Silencing of the Ribophorin II Gene: Advances in the Treatment of Malignant Breast Cancer. , 2019, , 27-41.		1
623	Nonviral Gene Therapy: Peptiplexes. , 2019, , 247-276.		2
624	Peptoid microsphere coatings: The effects of helicity, temperature, pH, and ionic strength. Biopolymers, 2019, 110, e23283.	1.2	6
625	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	2.3	30
626	Stimuli-Responsive Protein Fibers for Advanced Applications. , 2019, , 323-377.		2
627	Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly. Biomacromolecules, 2019, 20, 1362-1374.	2.6	75
628	Self-Assembling Micelles Based on an Intrinsically Disordered Protein Domain. Journal of the American Chemical Society, 2019, 141, 4291-4299.	6.6	31
629	Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS Applied Materials & Interfaces, 2019, 11, 9893-9903.	4.0	56
630	Molecular motifs encoding self-assembly of peptide fibers into molecular gels. Soft Matter, 2019, 15, 9205-9214.	1.2	12
631	Self-Assembling Peptides and Their Application in the Treatment of Diseases. International Journal of Molecular Sciences, 2019, 20, 5850.	1.8	131

#	Article	IF	CITATIONS
632	Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 391-399.	2.0	83
633	Enzymatic Activity in Fractal Networks of Self-Assembling Peptides. Biomacromolecules, 2019, 20, 422-434.	2.6	7
634	Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 2019, 126, 1116-1124.	3.6	86
635	Enhanced Fluorescence for Bioassembly by Environmentâ€Switching Doping of Metal Ions. Advanced Functional Materials, 2020, 30, 1909614.	7.8	33
636	The Design of Dissipative Molecular Assemblies Driven by Chemical Reaction Cycles. CheM, 2020, 6, 552-578.	5.8	157
637	The impact of metal coordination on the assembly of bis(indolyl)methane-naphthalene-diimide amphiphiles. Dalton Transactions, 2020, 49, 13685-13692.	1.6	10
638	Superior mechanical and optical properties of a heterogeneous library of cross-linked biomimetic self-assembling peptides. Materials and Design, 2020, 194, 108901.	3.3	9
639	Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coordination Chemistry Reviews, 2020, 421, 213418.	9.5	67
640	Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chemical Reviews, 2020, 120, 13434-13460.	23.0	147
641	Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules, 2020, 25, 3482.	1.7	35
642	Physicochemical Processes That Probably Originated Life. Russian Journal of Bioorganic Chemistry, 2020, 46, 675-691.	0.3	2
643	Role of alkylated residues in the tetrapeptide selfâ€assembly—A molecular dynamics study. Journal of Computational Chemistry, 2020, 41, 2634-2640.	1.5	2
644	Selfâ€assembling peptides: From a discovery in a yeast protein to diverse uses and beyond. Protein Science, 2020, 29, 2281-2303.	3.1	28
645	Two Dimensional Oblique Molecular Packing within a Model Peptide Ribbon Aggregate. ChemPhysChem, 2020, 21, 1519-1523.	1.0	9
646	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
647	Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food and Function, 2020, 11, 9468-9488.	2.1	6
648	Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. Nanomaterials, 2020, 10, 1008.	1.9	40
649	Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophysical Chemistry, 2020, 265, 106429.	1.5	89

		15	Circuration
#	ARTICLE	IF	CITATIONS
650	efficiency <i>in vivo</i> . Nanoscale, 2020, 12, 18654-18662.	2.8	6
651	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	23.0	189
652	Nanoscale Self-Assembly for Therapeutic Delivery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 127.	2.0	170
653	The Role of Hydrophobicity in the Stability and pH-Switchability of (RXDX) ₄ and Coumarin–(RXDX) ₄ Conjugate l²-Sheets. Journal of Physical Chemistry B, 2020, 124, 1723-1732.	1.2	3
654	Alternating copolymers with glycyl-glycine and alanyl-alanine side-chain pendants: synthesis, characterization and solution properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 675-683.	1.2	17
655	Nanostructures from protected L/L and D/L amino acid containing dipeptides. Peptide Science, 2021, 113, e24176.	1.0	9
657	Structural and dynamical properties of water in surfactant-like peptide-based nanotubes: Effect of pore size, tube length and charge. Journal of Molecular Liquids, 2021, 323, 115033.	2.3	7
658	p67 phox â€derived selfâ€assembled peptides prevent Nox2 NADPH oxidase activation by an autoâ€inhibitory mechanism. Journal of Leukocyte Biology, 2021, 109, 657-673.	1.5	3
659	Minimalistic Peptide Self-assembly into Supramolecular Biomaterials. RSC Soft Matter, 2021, , 236-263.	0.2	2
660	Electrospinning and nanofibrous structures for biomedical applications. , 2021, , 401-436.		1
661	Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 4444-4458.	2.9	29
662	Biopolymer-based materials in nanomedicine: Synthesis and characterization. , 2021, , 3-28.		0
663	Influence of dityrosine nanotubes on the expression of dopamine and differentiation in neural cells. Journal of Materials Chemistry B, 2021, 9, 3900-3911.	2.9	1
664	Self-Assembly of Nicotinic Acid-Conjugated Selenopeptides into Mesotubes. ACS Applied Bio Materials, 2021, 4, 1912-1919.	2.3	6
665	Microwave-assisted Degradation of Poultry Feather to Synthesize Protein-based Surfactant. IOP Conference Series: Earth and Environmental Science, 2021, 706, 012026.	0.2	0
666	Tailoring of Peptide Vesicles: A Bottom-Up Chemical Approach. Accounts of Chemical Research, 2021, 54, 1934-1949.	7.6	31
667	Beyond Tripeptides Two-Step Active Machine Learning for Very Large Data sets. Journal of Chemical Theory and Computation, 2021, 17, 3221-3232.	2.3	24
668	Exploiting Peptide Self-Assembly for the Development of Minimalistic Viral Mimetics. Frontiers in Chemistry, 2021, 9, 723473.	1.8	10

#	Article	IF	CITATIONS
669	Deterministic chaos in the self-assembly of \hat{I}^2 sheet nanotubes from an amphipathic oligopeptide. Matter, 2021, 4, 3217-3231.	5.0	36
670	Self-assembled diphenylalanine-zinc oxide hybrid nanostructures as a highly selective luminescent biosensor for trypsin detection. Applied Surface Science, 2021, 554, 149600.	3.1	9
671	Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Frontiers in Microbiology, 2021, 12, 710199.	1.5	25
672	Study on a 3D-Bioprinted Tissue Model of Self-Assembled Nanopeptide Hydrogels Combined With Adipose-Derived Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 663120.	2.0	6
673	Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews, 2021, 121, 13869-13914.	23.0	171
674	Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. Journal of the American Chemical Society, 2021, 143, 15852-15862.	6.6	49
675	De novo design of peptides that coassemble into β sheet–based nanofibrils. Science Advances, 2021, 7, eabf7668.	4.7	20
676	Facile expression and purification of active human growth hormone in E. coli by a cleavable self-aggregating tag scheme. Protein Expression and Purification, 2021, 188, 105974.	0.6	5
677	Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter, 2021, 17, 3096-3104.	1.2	13
678	Variational design principles for nonequilibrium colloidal assembly. Journal of Chemical Physics, 2021, 154, 014107.	1.2	17
679	From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides. Nanoscale Advances, 2021, 3, 3605-3614.	2.2	3
681	A Coarse Grain Model for Lipid Monolayer and Bilayer Studies. Lecture Notes in Physics, 2002, , 27-63.	0.3	1
682	Design Peptide Scaffolds for Regenerative Medicine. Advances in Experimental Medicine and Biology, 2003, 534, 147-163.	0.8	17
683	Nanostructure Formation in Hydrogels. , 2014, , 285-297.		3
684	High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides. Journal of Physical Chemistry B, 2017, 121, 7421-7430.	1.2	17
685	Hierarchical self-assembly of zwitterionic dendrimer–anionic surfactant complexes into multiple stimuli-responsive dynamic nanotubes. Nanoscale, 2018, 10, 1411-1419.	2.8	9
686	Formation of Peptide-Pyrazole Nanoassemblies and Their Biological Applications. Journal of Chemical and Biological Interfaces, 2013, 1, 127-137.	0.3	1
687	Soluble Amphiphilic Nanostructures and Potential Applications. , 2005, , .		1

#	Article	IF	CITATIONS
688	Molecular Design of Biological and Nano-Materials. , 2005, , 229-242.		2
689	Modular Biomimetic Drug Delivery Systems. , 2013, , 85-122.		3
690	Toward Intelligent Materials. , 2012, , 1-36.		2
691	Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4. PLoS ONE, 2017, 12, e0186442.	1.1	25
692	Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Current Medicinal Chemistry, 2020, 27, 4855-4881.	1.2	15
694	Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering. , 2018, , 476-504.		1
695	Supramolecular peptide nanostructures: Self-assembly and biomedical applications. Giant, 2022, 9, 100082.	2.5	15
696	Nanotechnology and Trends in Drug Delivery Systems with Self-Assembled Carriers. , 2005, , .		0
697	Designed Self-assembling Peptide Nanobiomaterials. , 2006, , 39-54.		0
698	Self-Assembled Organic Nanotubes. , 2007, , .		0
699	Nanoscale Mechanisms for Assembly of Biomaterials. , 2009, , 43-75.		0
701	Micromechanics of 3D Crystallized Protein Structures. , 2012, , 197-212.		0
702	Toward Intelligent Materials. , 2012, , 17-52.		0
703	Nanotoxicology: A Threat to the Environment and to Human Beings. , 2013, , 385-400.		0
704	Self-assembly of designed peptides and their nanomaterials applications. Amino Acids, Peptides and Proteins, 2013, , 122-150.	0.7	1
705	Hierarchical Self-Assembled Peptide Nano-ensembles. , 2014, , 247-284.		0
706	Pharmaceutical Applications of Nano-Niosomes in Drug, Vaccine and Gene Delivery. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7, 2603-2611.	0.0	1
707	Anticancer Agents: Polymeric Nanomedicines. , 0, , 242-266.		0

#	Article	IF	CITATIONS
708	Modular Biomimetic Drug Delivery Systems. , 0, , 4786-4814.		0
709	Self-Assembled Organic Nanotubes: Novel Bionanomaterials for Orthopedics and Tissue Engineering. , 2017, , 17-46.		0
710	Self-assembled Peptide Nanostructures for Antibacterial Applications. RSC Soft Matter, 2020, , 395-428.	0.2	1
711	Peptide-based vesicles and droplets: a review. Journal of Physics Condensed Matter, 2020, 33, 053002.	0.7	7
712	Self-Assembled Peptides and Their Applications. International Journal of Life Sciences and Biotechnology, 0, , .	0.2	0
713	Amino Acids, Peptides, and Proteins: Implications for Nanotechnological Applications in Biosensing and Drug/Gene Delivery. Nanomaterials, 2021, 11, 3002.	1.9	38
714	Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering. Advances in Chemical and Materials Engineering Book Series, 0, , 104-132.	0.2	0
715	Improved stability and controlled release of lycopene via self-assembled nanomicelles encapsulation. LWT - Food Science and Technology, 2022, 155, 112878.	2.5	5
716	Molecular dynamics study of hydrogen bond in peptide membrane at 150–300ÂK. Journal of Molecular Liquids, 2022, 349, 118165.	2.3	4
717	A hybrid coarse-grained model for structure, solvation and assembly of lipid-like peptides. Physical Chemistry Chemical Physics, 2022, 24, 1553-1568.	1.3	4
718	Self-assembling peptides: Molecule-nanostructure-function and application on food industry. Trends in Food Science and Technology, 2022, 120, 212-222.	7.8	12
719	Sulfate ion-triggered self-assembly transitions of amphiphilic short peptides by force balance adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128252.	2.3	2
720	Structural and photoactive properties of self-assembled peptide-based nanostructures and their optical bioapplication in food analysis. Journal of Advanced Research, 2022, , .	4.4	1
721	Surfactant-like Peptide Self-Assembled into Hybrid Nanostructures for Electronic Nose Applications. ACS Nano, 2022, 16, 4444-4457.	7.3	8
722	Biological preparation and characterization of surfactantâ€like peptides. Journal of Surfactants and Detergents, 0, , .	1.0	0
723	Vaccine building â€~kit': combining peptide bricks to elicit a desired immune response without adding an adjuvant. Nanomedicine, 2022, 17, 461-475.	1.7	1
724	Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Quarterly Reviews of Biophysics, 2022, 55, 1-103.	2.4	8
725	Investigating the effects of N-terminal acetylation on KFE8 self-assembly with 2D IR spectroscopy. Biophysical Journal, 2022, 121, 1549-1559.	0.2	6

#	Article	IF	CITATIONS
726	Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. Journal of Molecular Liquids, 2022, 355, 118940.	2.3	3
727	On the Origin of Genetically Coded Protein Synthesis. Russian Journal of Bioorganic Chemistry, 2021, 47, 1201-1219.	0.3	1
728	Designer peptides as versatile building blocks for functional materials. Bioorganic and Medicinal Chemistry Letters, 2022, 68, 128733.	1.0	7
730	Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules, 2022, 23, 2019-2030.	2.6	4
731	Luminescence and morphological behaviour of the aromatic dipeptide pair having singular structural variability. Luminescence, 2023, 38, 1185-1191.	1.5	0
732	Peptide Core Containing Polymer–Polyoxometalate Hybrid as Novel Antifungal Agent. Journal of Molecular and Engineering Materials, 2022, 10, .	0.9	1
733	Advantages of self-assembled nano peptide hydrogels in biological tissue engineering. Current Protein and Peptide Science, 2022, 23, .	0.7	1
734	Enhancing the optical response and biosensing capabilities of bioinspired peptide microâ€waveguides exploiting chromatic aberration. Journal of Biophotonics, 2022, 15, .	1.1	2
735	P2R Inhibitors Prevent Antibody-Mediated Complement Activation in an Animal Model of Neuromyelitis Optica. Neurotherapeutics, 2022, 19, 1603-1616.	2.1	3
736	Supramolecular Self-Assembly of Dipalmitoylphosphatidylcholine and Carbon Nanotubes: A Dissipative Particle Dynamics Simulation Study. Nanomaterials, 2022, 12, 2653.	1.9	0
737	Crystalline Metalâ€Peptide Networks: Structures, Applications, and Future Outlook. ChemBioChem, 2023, 24, .	1.3	3
738	Peptide-based nanomaterials: applications and challenges. , 2023, , 133-171.		0
739	Advancements in antimicrobial nanoscale materials and self-assembling systems. Chemical Society Reviews, 2022, 51, 8696-8755.	18.7	23
740	Insect olfactory system inspired biosensors for odorant detection. Sensors & Diagnostics, 0, , .	1.9	3
741	Self-Assembly of Colloidal Nanocrystals. SpringerBriefs in Applied Sciences and Technology, 2022, , 15-27.	0.2	0
743	Atomistic Pictures of Self-Assembled Helical Peptide Nanofibers. Journal of Physical Chemistry B, 2022, 126, 9476-9492.	1.2	0
744	Peptidyl Virusâ€Like Nanovesicles as Reconfigurable "Trojan Horse―for Targeted siRNA Delivery and Synergistic Inhibition of Cancer Cells. Small, 2023, 19, .	5.2	2
745	Oxidation triggered structural transformations of a self-assembled telluropeptide. Materials Today Chemistry, 2023, 27, 101318.	1.7	2

#	Article	IF	CITATIONS
746	Realâ€ŧime Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of ï€â€"ï€ Stacking Driven Molecular Selfâ€øssembly of an Organic Gelator Devoid of Hydrogen Bonding. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
747	Realâ€ŧime Observation of Macroscopic Helical Morphologies under Optical Microscope: A Curious Case of π–΀ Stacking Driven Molecular Selfâ€assembly of an Organic Gelator Devoid of Hydrogen Bonding. Angewandte Chemie, 2023, 135, .	1.6	0
748	Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Current Pharmaceutical Design, 2022, 28, 3546-3562.	0.9	3
749	Aqueous self-assembly of extracted cyclotides from Viola odorata into novel stable supramolecular structures. Journal of Molecular Liquids, 2023, 372, 121217.	2.3	1
750	Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Journal of Colloid and Interface Science, 2023, 636, 113-133.	5.0	16
751	Exploring chemical space and structural diversity of supramolecular peptide materials. , 2023, 2, 100030.		3
752	Self-assembled protein nanoparticles for multifunctional theranostic uses. , 2023, , 345-366.		0
753	Surfactant like peptides for targeted gene delivery to cancer cells. Biochemical and Biophysical Research Communications, 2023, 652, 35-45.	1.0	1
754	Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics, 2023, 15, 482.	2.0	4
755	A Novel Surfactant with Short Hydrophobic Head and Long Hydrophilic Tail Generates Vesicles with Unique Structural Feature. Small, 2023, 19, .	5.2	2
756	Revealing the Key Packing Features Determining the Stability of Peptide Bilayer Membrane. ACS Applied Bio Materials, 2024, 7, 564-578.	2.3	2
757	Designed peptide amphiphiles as scaffolds for tissue engineering. Advances in Colloid and Interface Science, 2023, 314, 102866.	7.0	9
758	Organic nanoparticles with tunable AIE derived from amino acids appended naphthalenediimide based amphiphiles. Journal of Molecular Liquids, 2023, 382, 121824.	2.3	0
763	Ultra-Short Peptide Nanomaterials. , 2023, , 121-144.		0
764	Peptide Bionanomaterials Global Market: The Future of Emerging Industry. , 2023, , 539-555.		0
765	$\hat{I}^2\text{-}Sheet$ and $\hat{I}^2\text{-}Hairpin$ Peptide Nanomaterials. , 2023, , 53-86.		0
766	Design Rules for Self-Assembling Peptide Nanostructures. , 2023, , 1-52.		0